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to metabolic resilience through the mixed meal model

Shauna D. O’Donovan,1,2,3,9,* Balázs Erd}os,4 Doris M. Jacobs,5 Anne J. Wanders,5 E. Louise Thomas,6

Jimmy D. Bell,6 Milena Rundle,7 Gary Frost,7 Ilja C.W. Arts,4 Lydia A. Afman,1,8 and Natal A.W. van Riel2,3,8

SUMMARY

Despite the pivotal role played by elevated circulating triglyceride levels in the
pathophysiology of cardio-metabolic diseases many of the indices used to quan-
tify metabolic health focus on deviations in glucose and insulin alone. We present
the Mixed Meal Model, a computational model describing the systemic interplay
between triglycerides, free fatty acids, glucose, and insulin. We show that the
Mixed Meal Model can capture deviations in the post-meal excursions of plasma
glucose, insulin, and triglyceride that are indicative of features of metabolic resil-
ience; quantifying insulin resistance and liver fat; validated by comparison to
gold-standard measures. We also demonstrate that the Mixed Meal Model is
generalizable, applying it to meals with diverse macro-nutrient compositions. In
this way, by coupling triglycerides to the glucose-insulin system the Mixed
Meal Model provides a more holistic assessment of metabolic resilience from
meal response data, quantifying pre-clinical metabolic deteriorations that drive
disease development in overweight and obesity.

INTRODUCTION

Health was once considered to simply be the absence of disease or injury. However, increasingly the

concept of health is being re-defined as the ability of an individual to respond and adapt to physical,

emotional, or social challenges, often referred to as resilience (Huber et al., 2011; Luthar et al., 2000). Meta-

bolic resilience, generally defined as the body’s ability to recover and maintain optimal circulating levels of

nutrients in response to external stresses such as food intake, physical activity, or periods of fasting, is gov-

erned by a complex interplay betweenmultiple tissues and organs including the brain, liver, skeletal muscle,

and adipose tissue. Liberating nutrients such as glucose and non-esterified fatty acids (NEFAs) from body

stores in the fasting state and quickly and effectively removing excess nutrients from the plasma following

the consumption of a meal (van Ommen et al., 2014). In overweight and obesity, the excessive accumulation

of adipose tissue can disrupt the delicate balance between these tissues and organs (Hill et al., 2012), lead-

ing to raised circulating levels of NEFAs and triglycerides (Lewis et al., 2002; Unger, 2003). This dyslipidemia

can lead to ectopic fat deposition (Avramoglu et al., 2006; Bergman and Ader, 2000) directly contributing to

the development of insulin resistance in the liver and skeletal muscle (Eckel et al., 2005; Kahn et al., 2006),

potentially leading to a loss of glycemic control (Reaven, 1988). Consequently, to fully understand the

pre-clinical metabolic deteriorations observed in overweight and obesity it is important to consider the

role of elevated plasma triglyceride concentrations (Hassing et al., 2012; Yuan et al., 2007), in addition to

the rise in glucose and insulin, in the pathophysiology of cardio-metabolic diseases, which are among the

leading causes of mortality in developed countries (Bays et al., 2004; Ford, 2005; Higgins and Adeli, 2017).

In the clinic, fasting plasma glucose and triglyceride concentration or glycated hemoglobin (HbA1c),

a marker of long-term glycaemic control, are used as indicators of metabolic health (American Diabetes

Association, 2011; Reaven, 1988; WHO, 2006). However, the metabolic dysregulation underlying a loss

of glycemic control is observable in the postprandial state long before deviations are detectable in the fast-

ing state (van Ommen et al., 2014). Consequently, in line with the increased focus on resilience as ameasure

of health, challenge tests such as oral glucose tolerance tests (OGTT) or high-calorie mixed meal challenge

tests (MMT) are regularly employed in research to assess the body’s capacity to clear excess nutrients such

as glucose and fat from the blood (Wopereis et al., 2017). Nevertheless, how best to quantify and interpret

these multivariate meal responses still presents researchers with many challenges (Vis et al., 2015).
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Several simple summarymeasures aiming to quantify insulin resistance or beta-cell functioning from fasting

and mean postprandial glucose and insulin concentrations have been proposed in the literature (Matsuda

and DeFronzo, 1999). More recently, metrics capturing specific dynamic properties of the meal response

curve, such as the rate of decay of the glucose curve, have been proposed to quantify tissue-specific insulin

resistance (Abdul-Ghani et al., 2007). However, these indices quantify impairments in the glucose-insulin

system alone and do not account for deviations in plasma triglyceride levels which may have predictive

relevance, particularly as an early marker of cardio-metabolic disease risk. Moreover, the majority of these

indices have only been validated on standardized 75g OGTTs and are not readily generalizable for use on

complex meals or free-living conditions.

Metrics such as the incremental area under the curve, time in range, or postprandial rise in plasma concentra-

tion are regularly employed to quantify responses to complex meals (Berry et al., 2020; Vis et al., 2015; Zeevi

et al., 2015). However, such measures fail to capture dynamic properties of the post-meal plasma metabolite

trajectories such as peak height and time that may have clinical significance. Furthermore, these approaches

analyze the response of each metabolite independently neglecting the interplay between triglycerides,

glucose, and insulin. There is a need for a generalizable metric that can integrate and quantify the post-

meal trajectories of multiple macro-nutrients, providing a more holistic assessment of metabolic resilience.

Physiology-based mathematical models (PBMMs) are mathematical representations of key metabolic pro-

cess that underly a given biological system and have been applied to study how interactions between

different metabolic species give rise to observed system behavior (Fischer, 2008). One such model pro-

posed by Dalla Man et al. describes the dynamics between glucose and insulin under fasting and fed con-

ditions and has been used as an alternative to animal testing when training control algorithms for insulin

pump devices (Dalla Man et al., 2007, 2014; Kovatchev et al., 2009). More recently, the application of a phys-

iology-based computational model of the glucose-insulin system to a large population of overweight and

obese individuals was shown to capture features of insulin sensitivity and rate of insulin secretion from

OGTT responses (Erd}os et al., 2021). Although these models have been shown to capture responses to

complex meals, their focus on the glucose-insulin system means that, like the simple summary measures

applied to OGTTs, they fail to capture deviations in postprandial plasma triglyceride trajectories that

may provide insight into processes that drive the development of cardio-metabolic diseases.

In this study, we present the MixedMeal Model a computational model introducing the systemic postpran-

dial interplay between triglyceride and NEFA in the glucose-insulin system with the aim of capturing the

pre-clinical deteriorations inmetabolic resilience that underly overweight and obesity. To ensure theMixed

Meal Model is sufficiently robust to describe responses to meals with different macro-nutrient composi-

tions, we apply the model to meal challenge test data from two independent diet intervention studies.

Moreover, we apply the Mixed Meal Model to sub-populations defined by insulin resistance status and

hepatic fat accumulation to show the model can capture physiologically relevant features of metabolic re-

silience from meal response data. The Mixed Meal Model provides a new objective definition of metabolic

resilience, reducing the multi-dimensional time series of glucose, insulin, triglycerides, and NEFA to a

three-dimensional ‘‘health-space’’ simultaneously quantifying insulin resistance, hepatic lipid accumula-

tion, and beta-cell functionality. In this way, the Mixed Meal Model can be used to elucidate the role of di-

etary lipids and dyslipidemia in the pathophysiology of cardio-metabolic diseases.

RESULTS

TheMixedMeal Model is a physiology-informedmathematical model describing the systemic interplay be-

tween glucose, insulin, triglycerides, and NEFA, summarized in Figure 1. Meal-derived glucose and triglyc-

eride enter the plasma via the gut and lymphatic system respectively. Insulin is produced in response to

increase in plasma glucose concentrations and acts as a master regulator in the system; the secretion of

endogenously produced glucose and triglyceride by the liver is inhibited by insulin and plasma glucose

is taken up into the tissues at both an insulin dependent and independent rate, hydrolysis of circulating

triglyceride by lipoprotein lipase is stimulated by insulin, and the release of NEFA from the adipose tissue

is inhibited by insulin. In this way, we see that insulin is the key component of metabolic resilience linking

carbohydrate and lipid metabolism during the meal response. Consequently, metabolic deteriorations

such as insulin resistance not only affect glucose homeostasis but also impacts lipidmetabolism. TheMixed

Meal Model was constructed by extending an existing model of glucose and insulin dynamics (Rozendaal

et al., 2018) with terms to account for the interplay between triglycerides and non-esterified fatty acids
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(NEFAs). These new lipid terms were either derived from previously published models of lipid metabolism

(O’Donovan et al., 2019) or formulated-based observations from lipid tracer studies in humans (Adiels et al.,

2007; McQuaid et al., 2011; Ruge et al., 2009). The average meal response from the NutriTech Study (TNO,

2016) was to evaluate prospective model terms during model constructions. The generalizability of the

Mixed Meal Model was then assessed by applying the model to meal response data from the MetFlex

Study (Fechner et al., 2020), an independent diet intervention study. A more expansive description of

the model development can be found in the STAR Methods section.

Model parameters were estimated by minimizing the error between the model simulation and measured

meal response data. In addition, physiology-informed regularization, whereby the cost function used to

fit the model to data was extended to include terms that penalized undesirable behaviors, such as

nutrient dumping or a failure to return to the measured steady state, was introduced. Thereby guiding

the parameter estimation procedure to more favorable regions of the solution space.

Average meal responses

Firstly, to evaluate the ability of the Mixed Meal Model to capture responses to diverse meals the model was

fitted to average meal challenge test data from two human intervention studies (Figure 2). The first column

depicts the model fitting to the mean postprandial plasma glucose, insulin, triglyceride, and NEFA trajec-

tories from the NutriTech Study (TNO, 2016), consisting of data from 69 overweight and obese (BMI

29.2 G 2.8kg/m2) men and women (aged 50–65 years). The second column shows the model fitting to the

Figure 1. Scheme of Mixed Meal model

The Mixed Meal Model describes the plasma dynamics of glucose, insulin, triglyceride (TG), and non-esterified fatty acids (NEFA). Meal-derived glucose is

described as entering the plasma via the gut and endogenous glucose released into the plasma by the liver is suppressed in the postprandial state by insulin.

Glucose leaves the plasma and is taken up by tissues via insulin dependent and insulin independent pathways. Insulin is produced in response to increases in

plasma glucose. Meal derived triglyceride passes through a gut and lymphatic compartment before appearing in the plasma. As with glucose, endogenous

triglyceride secreted into the plasma from the liver can be inhibited by increased plasma insulin. Circulating triglyceride is removed from the plasma by LPL

lipolysis. The release of NEFA from the adipose tissue is inhibited by increased insulin in the postprandial state, NEFA can also spill-over into the plasma from

LPL lipolysis of circulating triglyceride. Plasma NEFA is taken up into peripheral tissues at a rate proportional to the circulating NEFA concentration.
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average meal response data from the MetFlex Study (Fechner et al., 2020), an independent study containing

data from 40 overweight and obese (BMI = 29.2 G 2.7kg/m2) men and women (aged 51–70 years) used for

validation. The model is able to capture the earlier peaks in glucose and insulin in the first 60–120 min and

the more delayed postprandial increase in plasma triglyceride levels. The model also captures the postpran-

dial dip and the subsequent overshoot in plasma NEFA that has been observed in multiple studies (Bickerton

et al., 2008; Jelic et al., 2009; McQuaid et al., 2011). This NEFA overshoot and subsequent return to fasting

levels can be more clearly seen in the extended model simulation displayed in Figure S1.

Insulin sensitivity sub-groups

Secondly, to evaluate the ability of the Mixed Meal Model to infer physiologically relevant metrics of

metabolic resilience from meal response data model parameters were estimated by fitting the model to

Figure 2. Fit of Mixed Meal model to average meal response from the NutriTech and MetFlex studies

Visualization of the model fit to the average meal response of plasma glucose, insulin, triglyceride, and NEFA from the

NutriTech Study (n = 69 individuals) and the MetFlex Study (n = 40 individuals). Model simulations are shown in blue, the

black crosses indicate the average of the measured data Gthe standard deviation across each time point.
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average post-meal plasma glucose, insulin, triglyceride, andNEFA trajectories for insulin-sensitive and insulin-

resistant sub-populations. These insulin sensitivity subgroups were defined by taking the highest and lowest

tertile of individuals based on an independentmeasure of insulin resistance. In theMetFlex Study insulin sensi-

tivity is measured by the M-value of the hyperinsulinemic-euglycemic clamp (DeFronzo et al., 1979), the gold

standard for quantifying peripheral insulin sensitivity. In the NutriTech study, insulin sensitivity status is deter-

mined by HOMA-IR (Matthews et al., 1985), a surrogate index for whole-body insulin resistance.

Figure 3 depicts the model fitting for mean meal response for insulin-sensitive and insulin-resistant sub-

groups from the MetFlex Study. Comparing the measured meal responses, it is evident that the insulin-

resistant sub-group not only has higher fasting plasma glucose, insulin, and triglyceride concentrations

but also higher and more prolonged postprandial responses, taking longer to return to fasting levels

(Figure 3 D, E, H red). The Mixed Meal Model was capable of capturing these diverse responses to

the standardized meal used in the MetFlex Study. Moreover, the Mixed Meal Model could be used to

infer the rates of internal fluxes which were not directly measured. For example, the Mixed Meal Model

predicts a very evident increase in the rate of triglyceride secretion from the liver (Figure 3G), with k 16,

the coefficient for triglyceride secretion from the liver, increasing 0.014 mmol/L/min in the insulin-sensi-

tive group to 0.018 mmol/L/min for the insulin-resistant group (Table 1). Figure 3 panel C depicts the

predicted glucose uptake into the peripheral tissues, indicating a dampening of the glucose uptake in

the insulin-resistant group when compared to the insulin-sensitive group. This is reflected in the esti-

mated values for k5, the parameter governing insulin-dependent glucose uptake into the tissues, with

k5 decreasing from 0.142 min�1 for the insulin-sensitive group to 0.073 min�1 for the insulin-resistant

group (Table 1). In addition, the estimated parameter values also indicate an increase in the rate of in-

sulin secretion, with k6, the coefficient for insulin secretion and a marker of beta-cell functionality,

increasing from 2.204 min�1 for the insulin-sensitive group to 4.304 min�1 for the insulin-resistant group.

Figure 3. Fit of Mixed Meal Model to insulin sensitivity sub-groups in the MetFlex Study

Insulin sensitivity sub-groups are defined by dividing the population of the MetFlex Study into tertiles based on the M-value of the hyperinsulinemic-

euglycemic clamp. The model fitting and mean meal responses of plasma D) glucose, E) insulin, H) triglyceride, and I) NEFA for the insulin-sensitive sub-

group (13 individuals with highest M-value) and the insulin-resistant sub-group (13 individuals with lowest M-value) are shown in yellow and red, respectively.

The model fitting also allows for the inference of fluxes that are not directly measured including the rate of appearance of meal derived A) glucose and F)

triglyceride in the plasma, B) the net hepatic glucose flux and C) the glucose uptake and G) the secretion of triglyceride from the liver. For reference, the

model fit for the average meal response for all 40 individuals in the MetFlex study is shown in grey. Average measured plasma valuesG standard error of the

mean for glucose, insulin, triglyceride, and NEFA for the insulin-sensitive and insulin-resistant subgroups are indicated with yellow and red crosses,

respectively.
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An increase in beta-cell mass, and thereby insulin secretion, has been reported in individuals with insulin

resistance (Chen et al., 2017). In this way the Mixed Meal Model presents a new and objective definition

of metabolic resilience, reducing the multi-variate time series data collected during a meal challenge test

to a three-dimensional metabolic fitness space quantifying insulin resistance, beta-cell functionality, and

hepatic lipid accumulation.

To test the generalizability of the Mixed Meal Model as a definition and metric of metabolic resilience,

this analysis was repeated for the NutriTech Study defining insulin-sensitive and insulin-resistant sub-

populations using the HOMA-IR index (Figure 4). As seen for the MetFlex Study, the Mixed Meal Model

predicts there is an increase in the rate of VLDL secretion from the liver, with k16 increasing from

0.010 mmol/L/min for the insulin-sensitive group to 0.013 mmol/L/min for the insulin-resistant group re-

sulting in the observed increase in circulating triglyceride concentration in the insulin-resistant state.

Moreover, the estimated parameter values again indicate an increase in insulin secretion (k6) coupled

with a decrease in the rate of insulin-dependent glucose uptake into the peripheral tissues (k5) in the in-

sulin-resistant group (Table 1).

Liver fat sub-groups

To explore the ability of the Mixed Meal Model to capture diverse metabolically relevant phenotypes it was

also fit to the mean meal responses of individuals from the NutriTech Study stratified by higher and lower

intrahepatocellular lipid content defined as the ratio of lipid to water content in the liver as quantified with

proton magnetic resonance spectroscopy (Thomas et al., 2012). The results are visualized in Figure 5. The

trends in the estimated parameter values between the lower liver fat group versus the higher liver fat group

are in the same direction as the differences observed in the insulin-sensitive versus insulin-resistant sub-

groups (Table 2), with the estimated value for k16, the rate of endogenous triglyceride secretion from the liver

being higher for the higher liver fat group than the lower liver fat group. The model-predicted increase in he-

patic triglyceride secretion is evident when comparing the curves for the higher liver fat group (red) to the

average for the full NutriTech population (dashed grey line) in Figure 5 panel G.Moreover, themodel inferred

rate of hepatic triglyceride secretion is higher for the higher liver fat group (k16 = 0.014 mmol/L/min) than was

observed for the insulin-resistant sub-group (k16 = 0.013 mmol/L/min). In addition, the Mixed Meal Model

derived measure of insulin sensitivity (k5) is lower for the higher liver fat group than the lower liver fat group.

Physiology-informed regularization

When estimating parameter values, the cost function has been extended to not only account for the quality

of the model fit to the measured meal response data but also to ensure the parameters produce

Table 1. Estimated Mixed Meal Model parameters for insulin resistance subgroups in the NutriTech and MetFlex studies

Parameters

MetFlex NutriTech

Insulin

sensitive

Insulin

resistant

Population

average

Insulin

sensitive

Insulin

resistant

Population

average

Number of individuals n = 13 n = 13 n = 40 n = 22 n = 22 n = 69

k5 Glucose uptake into tissues 0.142 0.073 0.102 0.073 0.025 0.042

k6 Insulin secretion 2.204 4.304 2.852 1.966 2.592 2.413

k11 Rate of lipolysis circulating TG 1.4 3 10�4 5.2 3 10�5 8.3 3 10�5 8.2 3 10�5 2.3 3 10�5 4.6 3 10�5

KATL Rate of lipolysis of stored TG 0.130 0.124 0.126 0.099 0.026 0.041

k16 TG secretion from liver (VLDL) 0.014 0.018 0.015 0.010 0.013 0.012

Mean M-value (mg/kg/min) 8.8 4.0 6.3 – – –

Mean HOMA-IR 2.5 4.4 3.2 2.4 6.3 4.2

Mean Hepatic lipid water ratio – – – 1.4 10.3 4.5

Values for selected parameters estimated by fitting the Mixed Meal Model to meal response data for insulin-sensitivity sub-groups and the population average

for the MetFlex and NutriTech studies. Insulin sensitivity subgroups are generated by taking the highest and lowest tertiles defined by the hyperinuslinemic -eu-

glycemic clamp or the HOMA-IR index for theMetFlex and NutriTech studies, respectively. For reference sub-population averages of insulin sensitivity measured

via hyperinsulinemic-euglycemic clamp and HOMA-IR index and hepatic organ fat ratio are supplied where available. A complete set of estimated parameter

values can be found in Table S1.
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biologically plausible behavior. This is achieved by supplementing the cost function with terms to ensure all

exogenous glucose and triglyceride appear within four and ten hours of meal consumption, respectively

and that the system returns to the measured fasting steady state by twelve hours post-ingestion. We

have termed these additional penalties physiology-informed regularization. In Figure S2 the effect of

the physiology-informed regularization is visualized. In panel I, we can see that the model trained without

regularization (red curve) finds a new steady state owing to the influence of the data points measured dur-

ing the postprandial overshoot in NEFA between 360 and 480 min, also introducing an erroneous spike in

the predicted plasma NEFA concentration in the first 60 min. By including a term in the cost function that

penalizes model simulations where the model-predicted plasma NEFA concentration at 0 min differs from

the measured fasting plasma NEFA concentration (blue curve) the parameter estimation algorithm is

guided toward regions of the solution space where the model steady state reflects the measured fasting

values.

DISCUSSION

The Mixed Meal Model captures deviations in the post-meal excursion of plasma glucose, insulin, and tri-

glyceride concentrations that are indicative of features of metabolic resilience such as insulin resistance

status, beta-cell functionality, and intrahepatic lipid accumulation. Moreover, trends in the resulting

parameter estimates are reflective of the expected difference in the underlying physiology. The estimated

values for k5, the parameter governing insulin-mediated uptake of glucose into the tissues, is 50% lower in

the insulin resistant than in insulin-sensitive sub-populations in the MetFlex Study. The Mixed Meal Model

also predicts an increase in the rate of insulin secretion, compensating for the decrease in insulin sensitivity

in the tissues (Cheng et al., 2019; Tura et al., 2011). To further validate theMixedMeal Model predictions we

repeated these analyses by applying the Mixed Meal Model to meal responses for insulin sensitivity sub-

groups from the NutriTech study defined using the HOMA-IR index. The insulin-resistant group consists of

Figure 4. Fit of Mixed Meal Model to insulin sensitivity sub-groups in the NutriTech Study

Insulin sensitivity sub-groups are defined by separating the 69 individuals from the NutriTech Study population into tertiles based on HOMA-IR value;

calculated using fasting glucose and insulin measurements. The model fitting and mean meal responses of plasma D) glucose, E) insulin, H) triglyceride, and

I) NEFA for the insulin-sensitive sub-group (22 individuals with lowest HOMA-IR value) and the insulin-resistant sub-group (22 individuals with highest

HOMA-IR) are shown in yellow and red, respectively. The model fitting also allows for the inference of fluxes that are not directly measured including the rate

of appearance of meal derived A) glucose and F) triglyceride in the plasma, B) the net hepatic glucose flux and C) the glucose uptake and G) the secretion of

triglyceride from the liver. For reference the model fit for the average meal response for all 69 individuals in the NutriTech study are shown in grey. Average

measured plasma valuesG standard error of the mean for glucose, insulin, triglyceride and NEFA for the insulin-sensitive and insulin-resistant subgroups are

indicated with yellow and red crosses, respectively.
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22 individuals with a HOMA-IR value greater than 4.6 and the insulin-sensitive grouping all have a HOMA-IR

value less than 3.2. Again, we see the same trend in parameter estimates, with the model-predicted insulin

sensitivity (k5) decreasing from 0.073 min�1 to 0.025 min�1 from the insulin-sensitive to insulin-resistant

group, respectively, and the model inferred rate of insulin secretion (k6) increases from 1.966 min�1 to

2.592 min�1. The relationship between the parameter k5 and independent insulin-resistant measures

such as the hyperinsulinemic-euglycaemic clamp and HOMA-IR is in-line with the findings of a recent study

by Edr}os et al. who report a statistically significant correlation of 0.68 between k5 and the Matsuda index

(Matsuda and DeFronzo, 1999) when applying a concordant model of glucose and insulin dynamics to

OGTT responses from a large population of overweight individuals (n = 738) (Erd}os et al., 2021). Although

we see consistent trends in estimated model parameters when comparing insulin-sensitive and insulin-

resistant groups within the MetFlex and Nutritech studies, the numerical values of the parameter estimates

do differ between the study populations. Further application of the Mixed Meal Model to data from addi-

tional studies would not only confirm reliable ranges for each parameter but potentially allow for the deter-

mination of parameter cut-offs that would be indicative of metabolic disease states as has been achieved

for other surrogate measures of glycemic control such as HOMA-IR (Gayoso-Diz et al., 2013).

Terms introduced to capture changes in plasma triglyceride predict an increase in the rate of endogenous

triglyceride secretion from the liver (Table 1, k16). Moreover, the intrahepatocellular lipid measured using

MRS increases from an average of 1.4 for the insulin-sensitive group to 10.3 for the insulin-resistant group

suggesting the model is capturing changes in the meal response that are indicative of increased liver

fat accumulation. This increase in the rate of endogenous triglyceride secretion in insulin-resistant

state has previously been observed in stable isotope tracer studies (Adiels et al., 2007). This suggests es-

timates of k16 from the Mixed Meal Model have the potential to provide a surrogate measure of intrahe-

patic lipid accumulation as measured with MRS, however further validation considering personalized

Figure 5. Fit of Mixed Meal Model sub-groups defined by the liver fat ratio in the NutriTech Study

Liver fat sub-groups are defined by splitting the population of the NutriTech Study into tertiles based on intrahepatocellular lipid (IHCL) content. This is a

measure of the ratio of the lipid to the water content of the liver measured with MRS. The model fitting and mean meal responses of plasma D) glucose, E)

insulin, H) triglyceride, and I) NEFA for the lower liver fat sub-group (21 individuals with lowest IHCL) and the higher liver fat sub-group (21 individuals with

highest IHCL) are shown in yellow and red, respectively. The model fitting also allows for the inference of fluxes that are not directly measured including the

rate of appearance of meal derived A) glucose and F) triglyceride in the plasma, B) the net hepatic glucose flux and C) the glucose uptake and G) the

secretion of triglyceride from the liver. For reference, the model fit the average meal response for all 69 individuals in the NutriTech study are shown in grey.

Average measured plasma values of glucose, insulin, triglyceride, and NEFA G standard error of the mean for the lower liver fat and higher liver fat groups

are indicated with yellow and red crosses, respectively.
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models on independent study populations would be necessary to confirm that the observed relationship is

reproducible.

To further explore the ability of the Mixed Meal Model to differentiate between metabolic resilience phe-

notypes, we repeated the above analysis for sub-populations of the NutriTech study defined by the

hepatic organ fat ratio. The increase in the predicted rate of endogenous triglyceride secretion from

the liver, our proposed surrogate measure of hepatic fat accumulation, relative to the NutriTech popu-

lation average is twice as large for the higher liver fat group (Table 2, k16) than the insulin resistance

group (Table 1, k16). In addition, the decrease in model-predicted insulin sensitivity relative to the

average reference is less for the higher liver fat group than for the insulin-resistant group. The smaller

difference in model-predicted insulin resistance status between the higher and lower liver fat sub-groups

in NutriTech is reflective of range of HOMA-IR value for the groupings, with the difference between the

lower and higher liver fat being 2.5 units whereas the difference between the insulin sensitivity sub-

groups being 3.9 units (Table 2). These differences in parameter estimates between the higher liver

fat and insulin-resistant subgroup in NutriTech indicate that the Mixed Meal Model can capture subtle,

yet physiologically relevant, differences between these phenotypes in the post-meal trajectories of

glucose, insulin, triglyceride, and NEFA. Moreover, just 13 individuals were common to both the insu-

lin-resistant (n = 22) and the higher liver fat (n = 21) groups, demonstrating that the determination of

a metabolic impairment is highly dependent on the metric being used, reflecting the heterogeneity

we see in the manifestation of metabolic deteriorations associated with obesity. Currently in research,

an array of metrics and indices that rely on glucose concentrations at a single time point or as a simple

function of glucose and insulin are regularly employed to quantify glucose tolerance or insulin resistance

independently. Using the Mixed Meal Model we decompose the high-dimensional meal challenge test

data into a subset of parameters, simultaneously quantifying metabolic resilience according to three

axes, namely insulin resistance status, beta-cell functionality, and hepatic lipid accumulation. In this

way, we can differentiate between subtle differences in the meal response dynamics that are indicative

of distinct metabolic sub-phenotypes.

There is growing interest surrounding the field of precision nutrition, whereby dietary interventions will be

targeted toward an individual’s specific metabolic aberrations (Ben-Yacov et al., 2021; Berry et al., 2020;

Gijbels et al., 2021; Zeevi et al., 2015). In order to achieve this transition toward the provision of personal-

ized interventions it is necessary to be able to objectively quantify metabolic resilience. A recent study by

Erd}os et al. outlined a pipeline for the individualization of computational models such as the Mixed Meal

Model (Erd}os et al., 2021). In future work, the generation of personalized Mixed Meal Models could allow

for the individualized assessment of metabolic resilience, quantifying three features of metabolic resil-

ience: 1) hepatic triglyceride secretion, 2) insulin sensitivity, and 3) the rate of insulin secretion under phys-

iologically relevant conditions. Each component has been studied independently and compared with their

respective gold standard methods for clinical assessment. In this way, the M3al Model can allow for the

Table 2. Estimated Mixed Meal Model parameters for liver fat subgroups in the NutriTech study

Parameters

NutriTech

Lower liver fat Higher liver fat Population average

Number of individuals n = 21 n = 21 n = 69

k5 Glucose uptake into tissues 0.067 0.028 0.042

k6 Insulin secretion 2.351 2.961 2.413

k11 Rate of lipolysis circulating TG 8.0 3 10�5 2.9 3 10�5 4.6 3 10�5

KATL Rate of lipolysis of stored TG 0.057 0.038 0.041

k16 TG secretion from liver (VLDL) 0.011 0.014 0.012

Mean HOMA-IR 2.8 5.3 4.2

Mean Hepatic lipid water ratio 0.7 10.9 4.5

Values for selected parameters estimated by fitting theMixedMeal Model to meal response data for the population average

and intrahepatocellular lipid sub-groups from the NutriTech study. Liver fat subgroups are generated by taking the highest

and lowest tertiles defined by the intrahepatocellular lipid to water ratio measured using MRS. A complete set of estimated

parameter values can be found in Table S1.
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identification of specific metabolic deteriorations and individualized assessment of intervention success,

thereby supporting the transition toward precision nutrition.

In this study, the Mixed Meal Model is successfully applied to mixed meal data from two independent

studies, indicating that the model is generalizable. Moreover, the macro-nutrient composition of the meals

differs between the two studies, with the shake from the NutriTech Study consisting of 75g of glucose, 60g

of palm oilen (lipid), and 20g of protein whereas the meal from the MetFlex Study consisting of a mixture of

whole milk, fruit concentrate, egg yolk, safflower oil, and unsalted butter containing 67g of glucose, 36g of

lipid, and 12g of protein. In this way, we show the Mixed Meal Model definition of metabolic resilience is

robust and applicable to diverse meals. Although, both of the meals used in our analyses were liquid mixed

meal shakes, with comparatively simple rates of appearance, they are representative of the types of meal

challenges commonly used in a research setting (Wopereis et al., 2017). However, validation of the model

on responses to meals containing food products with a more complex food matrix would be beneficial. In

addition, both the NutriTech and MetFelx study populations consist of overweight and obese men and

women (ages 50 to 71 years and a BMI of 24.9 to 35.8 kg/m2) with no overt clinical metabolic disease.

Further validation of the Mixed Meal Model on more diverse populations such as lean healthy individuals

or patients with type 2 diabetes mellitus is necessary to confirm both the robustness of the model fit and

range over which the estimated parameter values maintain physiologically relevance. In this study we have

successfully applied the model to a range of meal responses indicative of insulin-sensitive and resistant

states as well as lower and higher liver fat accumulation, consequently we expect that the Mixed Meal

Model is sufficiently flexible to be directly applied to these different study populations. In some instances,

for example, if fitting to individuals with type 1 diabetes mellitus, it may be necessary to adjust the values of

fixed parameter or alter which parameters are estimated to better represent the underlying physiology. In

these instances, we would recommend repeating the local parameter sensitivity analysis and identifiability

analyses outlined in the STAR Methods section to ensure the model remains parsimonious.

Triglycerides are transported in the blood in the form of lipoprotein particles such as chylomicrons or very

low-density lipoproteins, each with their own distinct properties and kinetics (Adiels et al., 2007; Bickerton

et al., 2007; Packard et al., 2000, 2020). However, measuring the triglyceride flux across individual lipopro-

tein classes can be complex and time-consuming, often necessitating the use of expensive tracer measure-

ments. As a result, these measurements are rarely generated for standard meal challenge tests. To make

the Mixed Meal Model as generalizable as possible we have elected to group endogenous and dietary

derived triglyceride into a single generic triglyceride pool. In this way, the model can be parameterized us-

ing measurements of plasma triglyceride alone. In future work, it would be possible to decouple the

endogenous and dietary-derived triglyceride terms to account for specific lipoprotein kinetics. In this study

we find consistent trends between the estimated values for parameters governing the rates of endogenous

triglyceride secretion from the liver (k16) or LPL lipolysis of circulating triglyceride (k11) and independent

measures of health such as insulin resistance and liver fat accumulation; however, we have not been able

to quantitatively validate the predicted model fluxes. Although the term used to describe the rate of

LPL lipolysis has previously been validated using arterio-venous measurements coupled with a palmitate

tracer the equation describing endogenous triglyceride secretion from the liver is new. Should such

data become available, the application of the Mixed Meal Model to challenge test data which makes

use of multiple stable isotope tracer protocols to label both endogenous triglyceride secretion and the

rate of LPL lipolysis could allow for the validation of these predicted fluxes.

When estimating parameters for the Mixed Meal Model from measured meal response data we em-

ployed physiology-informed regularization, whereby the cost function used to fit the model to the

data was extended to penalize unfavorable behavior, such as nutrient dumping or a failure to return

to the measured steady state. The inclusion physiology-informed regularization has a minimal impact

on the fit of the model to the measured meal response data (Figure S2). However, the true benefit of

this physiology-informed regularization becomes more evident when looking at the longer-term dy-

namics (9-15 hours) of triglyceride and NEFA in the Mixed Meal Model simulation; the model trained

without regularization finds a new erroneous steady state (Figure S2, red) whereas the model trained

with regularisation displays the characteristic postprandial NEFA overshoot reported in the literature

(Jelic et al., 2009) and then returns to steady-state concentrations. We purport that physiology-informed

regularization can be a particularly powerful tool when estimating model parameters, particularly in in-

stances with sparse sampling frequency.
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The Mixed Meal Model expands on classical models of glucose and insulin dynamics by explicitly account-

ing for interactions with lipid species, allowing for the detection of early changes in postprandial triglycer-

ide dynamics that may be predive for future disease risk. However, the model still does not describe the

effects of protein ingestion, dietary fibers, and other hormones such as glucagon and GLP1 on glucose

and lipid metabolism. Studies have demonstrated the modulatory effect of dietary derived protein on

both insulin secretion and endogenous glucose production (Sloun et al., 2020). Moreover, the impact of

incretin hormones such as GLP1 and GIP on both insulin secretion and satiety has been widely reported

(Baggio and Drucker, 2007), with GLP1-agonists now being regularly employed in the treatment of type

2 diabetes mellitus (Man et al., 2009). In future work, the integration of protein kinetics, as well as terms

to explicitly model the effects of incretin hormones in the Mixed Meal Model, may further improve the abil-

ity of the model to capture physiologically relevant features of metabolic health from meal response data.

In summary, in this study, we introduce a computational model capable of quantifying features of meta-

bolic resilience from meal challenge test data. As the Mixed Meal Model introduces terms explicitly ac-

counting for the role of triglyceride and NEFA in the glucose and insulin system it provides a more holistic

view of metabolic resilience than existing summary measures, models, and indices. Application of our

model to meal challenge test data from two independent human studies indicates that not only is the

Mixed Meal Model generalizable to meals with different macro-nutrient compositions but that the esti-

mated parameter values capture distinct features of metabolic health such as endogenous triglyceride

secretion, insulin sensitivity, and beta-cell functionality. In this way, our Mixed Meal Model provides a

new and objective definition of metabolic resilience.

Limitations of the study

While we have shown consistent trends between estimated parameter values and independent measures

of metabolic health for sub-populations defined by insulin resistance status and liver fat accumulation we

have not quantitatively validated the predicted model fluxes. In future work, the use of challenge test data

incorporating a stable isotope tracer protocol labeling glycerol or palmitate would allow for the validation

of these model fluxes, particularly for newly introduced terms such as the rate of endogenous triglyceride

secretion. In this study we have successfully applied the Mixed Meal Model to liquid meals with different

macro-nutrient compositions, further validation of the Mixed Meal Model on responses to meals with com-

plex food matrices would be necessary to apply the model to free-living conditions. We present a model

accounting for the insulin-mediated interactions between glucose, triglyceride, and NEFA; however, the

Mixed Meal Model fails to account for the role of dietary protein or incretin hormones such as GIP and

GLP1 which have been shown to impact the postprandial insulin response.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Material availability

B Data and code availability

d METHOD DETAILS

B Data

B Model formulation

B Parameter estimation

B Physiology-informed regularisation

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.105206.

ACKNOWLEDGMENTS

The authors would like to thank both the participants and researchers involved in the collection of data in

the NutriTech andMetFlex studies. The research presented in this article was supported by a grant from the

Dutch Research Council (NWO)[https://www.nwo.nl/] as part of the Complexity Programme (project

ll
OPEN ACCESS

iScience 25, 105206, November 18, 2022 11

iScience
Article

https://doi.org/10.1016/j.isci.2022.105206
https://www.nwo.nl/


number 645.001.003) with contributions from the Unilever Food Innovation Center, Wageningen, the

Netherlands [https://hive.unilever.com/] and Caelus Health, Amsterdam, the Netherlands [https://

caelushealth.com/] awarded to N.A.W.v.R., I.C.W.A., and L.A.A. The funders had no role in study design,

data collection and analysis, decision to publish, or preparation of the article.

AUTHOR CONTRIBUTIONS

Conceptualization, L.A.A, I.C.W.A, S.D.O’D, and N.A.W.v.R; methodology, B.E., S.D.O’D, and N.A.W.v.R;

resources, L.A.A, J.D.B, G.F, D.M.J, M.R., E.L.T., and A.J.W; software, S.D.O’D; formal analysis, S.D.O’D;

writing – original draft, S.D.O’D; writing – review & editing, L.A.A, I.C.W.A, J.D.B., B.E, G.F., D.M.J.,

S.D.O’D, M.R., E.L.T., N.A.W.v.R, and A.J.W.; funding acquisition, L.A.A, I.C.W.A, and N.A.W.v.R; supervi-

sion, L.A.A, I.C.W.A, and N.A.W.v.R.

DECLARATION OF INTERESTS

SDOD, BE, ELT, JDB, MR, GF, ICWA, LAA, and NAWvR declare no conflicts of interest. DMJ and AJW are

employees of Unilever, which manufactures and markets consumer food products.

Received: July 21, 2022

Revised: September 1, 2022

Accepted: September 22, 2022

Published: November 18, 2022

REFERENCES
Abdul-Ghani, M.A., Matsuda, M., Balas, B., and
DeFronzo, R.A. (2007). Muscle and liver insulin
resistance indexes derived from the oral glucose
tolerance test. Diabetes Care 30. https://doi.org/
10.2337/dc06-1519.

Adiels, M., Olofsson, S.O., Taskinen, M.R., and
Borén, J. (2008). Overproduction of very low-
density lipoproteins is the hallmark of the
dyslipidemia in the metabolic syndrome
Arteriosclerosis, Thrombosis, and Vascular
Biology. Arterioscler. Thromb. Vasc. Biol. 28,
1225–1236. https://doi.org/10.1161/ATVBAHA.
107.160192.

Adiels, M., Westerbacka, J., Soro-Paavonen, A.,
Häkkinen, A.M., Vehkavaara, S., Caslake, M.J.,
Packard, C., Olofsson, S.O., Yki-Järvinen, H.,
Taskinen, M.R., and Borén, J. (2007). Acute
suppression of VLDL1 secretion rate by insulin is
associated with hepatic fat content and insulin
resistance. Diabetologia 50, 2356–2365. https://
doi.org/10.1007/s00125-007-0790-1.

Anderwald, C., Gastaldelli, A., Tura, A., Krebs, M.,
Promintzer-Schifferl, M., Kautzky-Willer, A.,
Stadler, M., DeFronzo, R.A., Pacini, G., and
Bischof, M.G. (2011). Mechanism and effects of
glucose absorption during an oral glucose
tolerance test among females and males. J. Clin.
Endocrinol. Metab. 96, 515–524. https://doi.org/
10.1210/jc.2010-1398.

Avramoglu, R.K., Basciano, H., and Adeli, K.
(2006). Lipid and lipoprotein dysregulation in
insulin resistant states. Clin. Chim. Acta 368, 1–19.
https://doi.org/10.1016/j.cca.2005.12.026.

Baggio, L.L., and Drucker, D.J. (2007). Biology of
incretins: GLP-1 and GIP. Gastroenterology 132,
2131–2157. https://doi.org/10.1053/j.gastro.
2007.03.054.

Bays, H., Mandarino, L., and DeFronzo, R.A.
(2004). Role of the adipocyte, free fatty acids, and
ectopic fat in pathogenesis of type 2 diabetes

mellitus: peroxisomal proliferator-activated
receptor agonists provide a rational therapeutic
approach. J. Clin. Endocrinol. Metab. 89,
463–478. https://doi.org/10.1210/jc.2003-030723.

Ben-Yacov, O., Godneva, A., Rein, M., Shilo, S.,
Kolobkov, D., Koren, N., Cohen Dolev, N.,
Travinsky Shmul, T., Wolf, B.C., Kosower, N., et al.
(2021). Personalized postprandial glucose
response-targeting diet versus mediterranean
diet for glycemic control in prediabetes. Diabetes
Care 44, 1980–1991. https://doi.org/10.2337/
dc21-0162.

Bergman, R.N., and Ader, M. (2000). Free fatty
acids and pathogenesis of type 2 diabetes
mellitus. Trends Endocrinol. Metab. 11, 351–356.
https://doi.org/10.1016/S1043-2760(00)00323-4.

Bergman, R.N., Ider, Y.Z., Bowden, C.R., and
Cobelli, C. (1979). Quantitative estimation
of insulin sensitivity. Am. J. Physiol. 236, E667–
E677. https://doi.org/10.1152/ajpendo.1979.236.
6.e667.

Berry, S.E., Valdes, A.M., Drew, D.A., Asnicar, F.,
Mazidi, M., Wolf, J., Capdevila, J., Hadjigeorgiou,
G., Davies, R., al Khatib, H., et al. (2020). Human
postprandial responses to food and potential for
precision nutrition. Nat. Med. 26, 964–973.
https://doi.org/10.1038/s41591-020-0934-0.

Bickerton, A.S.T., Roberts, R., Fielding, B.A.,
Hodson, L., Blaak, E.E., Wagenmakers, A.J.M.,
Gilbert, M., Karpe, F., and Frayn, K.N. (2007).
Preferential uptake of dietary fatty acids in
adipose tissue and muscle in the postprandial
period. Diabetes 56, 168–176. https://doi.org/10.
2337/db06-0822.

Bickerton, A.S.T., Roberts, R., Fielding, B.A.,
Tornqvist, H., Blaak, E.E., Wagenmakers, A.J.M.,
Gilbert, M., Humphreys, S.M., Karpe, F., and
Frayn, K.N. (2008). Adipose tissue fatty acid
metabolism in insulin-resistant men.

Diabetologia 51, 1466–1474. https://doi.org/10.
1007/s00125-008-1040-x.

Chen, C., Cohrs, C.M., Stertmann, J., Bozsak, R.,
and Speier, S. (2017). Human beta cell mass and
function in diabetes: recent advances in
knowledge and technologies to understand
disease pathogenesis. Mol. Metab. 6, 943–957.
https://doi.org/10.1016/j.molmet.2017.06.019.

Cheng, X., Yang, N., Li, Y., Sun, Q., Qiu, L., Xu, L.,
Ping, F., Li, W., and Zhang, H. (2019). The shape of
the glucose response curve during an oral
glucose tolerance test heralds b-cell function in a
large Chinese population. BMC Endocr. Disord.
19, 119. https://doi.org/10.1186/s12902-019-
0446-4.

Man, C.D., Micheletto, F., Lv, D., Breton, M.,
Kovatchev, B., and Cobelli, C. (2014). The UVA/
PADOVA type 1 diabetes simulator: new features.
J. Diabetes Sci. Technol. 8, 26–34. https://doi.
org/10.1177/1932296813514502.

Dalla Man, C., Rizza, R.A., and Cobelli, C. (2007).
Meal simulation model of the glucose-insulin
system. IEEE Trans. Biomed. Eng. 54, 1740–1749.
https://doi.org/10.1109/TBME.2007.893506.

DeFronzo, R.A., Tobin, J.D., and Andres, R.
(1979). Glucose clamp technique: a method for
quantifying insulin secretion and resistance. Am.
J. Physiol. 237, E214–E223. https://doi.org/10.
1152/ajpendo.1979.237.3.e214.

Eckel, R.H., Grundy, S.M., and Zimmet, P.Z.
(2005). The metabolic syndrome. Lancet 365,
1415–1428. https://doi.org/10.1016/S0140-
6736(05)66378-7.

Eichenlaub, M.M., Hattersley, J.G., and
Khovanova, N.A. (2019). A minimal model
approach for the description of postprandial
glucose responses from glucose sensor data in
diabetes mellitus. Proceedings of the Annual
International Conference of the IEEE Engineering

ll
OPEN ACCESS

12 iScience 25, 105206, November 18, 2022

iScience
Article

https://hive.unilever.com/
https://caelushealth.com/
https://caelushealth.com/
https://doi.org/10.2337/dc06-1519
https://doi.org/10.2337/dc06-1519
https://doi.org/10.1161/ATVBAHA.107.160192
https://doi.org/10.1161/ATVBAHA.107.160192
https://doi.org/10.1007/s00125-007-0790-1
https://doi.org/10.1007/s00125-007-0790-1
https://doi.org/10.1210/jc.2010-1398
https://doi.org/10.1210/jc.2010-1398
https://doi.org/10.1016/j.cca.2005.12.026
https://doi.org/10.1053/j.gastro.2007.03.054
https://doi.org/10.1053/j.gastro.2007.03.054
https://doi.org/10.1210/jc.2003-030723
https://doi.org/10.2337/dc21-0162
https://doi.org/10.2337/dc21-0162
https://doi.org/10.1016/S1043-2760(00)00323-4
https://doi.org/10.1152/ajpendo.1979.236.6.e667
https://doi.org/10.1152/ajpendo.1979.236.6.e667
https://doi.org/10.1038/s41591-020-0934-0
https://doi.org/10.2337/db06-0822
https://doi.org/10.2337/db06-0822
https://doi.org/10.1007/s00125-008-1040-x
https://doi.org/10.1007/s00125-008-1040-x
https://doi.org/10.1016/j.molmet.2017.06.019
https://doi.org/10.1186/s12902-019-0446-4
https://doi.org/10.1186/s12902-019-0446-4
https://doi.org/10.1177/1932296813514502
https://doi.org/10.1177/1932296813514502
https://doi.org/10.1109/TBME.2007.893506
https://doi.org/10.1152/ajpendo.1979.237.3.e214
https://doi.org/10.1152/ajpendo.1979.237.3.e214
https://doi.org/10.1016/S0140-6736(05)66378-7
https://doi.org/10.1016/S0140-6736(05)66378-7


in Medicine and Biology Society, EMBS. https://
doi.org/10.1109/EMBC.2019.8857195.

Erd}os, B., van Sloun, B., Adriaens, M.E.,
O’Donovan, S.D., Langin, D., Astrup, A., Blaak,
E.E., Arts, I.C.W., and van Riel, N.A.W. (2021).
Personalized computational model quantifies
heterogeneity in postprandial responses to oral
glucose challenge. PLoS Comput. Biol. 17,
e1008852. https://doi.org/10.1371/JOURNAL.
PCBI.1008852.

Fechner, E., Bilet, L., Peters, H.P.F., Hiemstra, H.,
Jacobs, D.M., Op ‘t Eyndt, C., Kornips, E.,
Mensink, R.P., and Schrauwen, P. (2020). Effects of
a whole diet approach on metabolic flexibility,
insulin sensitivity and postprandial glucose
responses in overweight and obese adults – a
randomized controlled trial. Clin. Nutr. 39, 2734–
2742. https://doi.org/10.1016/j.clnu.2019.12.010.

Fischer, H.P. (2008). Mathematical modeling of
complex biological systems: from parts lists to
understanding systems behavior. Alcohol Res.
Health 31, 49–59.

Ford, E.S. (2005). Risks for all-cause mortality,
cardiovascular disease, and diabetes associated
with the metabolic syndrome: a summary of the
evidence. Diabetes Care 28, 1769–1778. https://
doi.org/10.2337/diacare.28.7.1769.

Gayoso-Diz, P., Otero-González, A., Rodriguez-
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METHOD DETAILS

Data

NutriTech

The Nutritech Study, funded as part of the European Union 7th Framework Programme (www.clincaltrials.

gov record no. NCT01684917), aimed to better phenotype human volunteers in response to standardised

challenge tests in dietary intervention studies (TNO, 2016). As part of this study 72 overweight and obese

(mean BMI 29.7 G 2.7 kg/m2) men and women (48.6% male) with an average age of 59.2 G 4.2 years were

recruited. Prior to the intervention period study participants underwent a high-fat, high-glucose liquidmeal

challenge test (75g glucose, 60g lipid (palm olein), 20g Protifar asmilk protein concentrate (Nutricia, Utrect,

the Netherlands) (Wopereis et al., 2017)). Themeal challenge test began at 9AM following a 12-h over-night

fast. The liquid meal was ingested within 5 min and blood was collected at 0, 60, 120, 240, 360, and 480 min

in which glucose, insulin, triglyceride, and non-esterified free fatty acids (NEFA) concentrations were

measured. In addition, participant’s body composition, including liver fat content, were assessed with

MRI and spectroscopy on a 1.5 T multinuclear system (Philips, Eindhoven, the Netherlands) as previously

described (Thomas et al., 2012). All subjects gave written informed consent before participating in the

NutriTech Study. The NutriTech Study was performed in accordance with the Declaration of Helsinki and

received ethical approval from the Brent Ethics Committee (REC ref:12/LO/0139).

MetFlex

MetFlex is dietary intervention study in which 40 middle-aged (50–70 years) healthy, but overweight or obese

(BMI 25–35 kg/m2) men and women (47.5% male) were randomly assigned to either a western diet or healthy

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

MATLAB 2019b The MathWorks Inc. https://nl.mathworks.com/products/matlab.html

Other

Original Mixed Meal Model code This paper https://github.com/shauna-odonovan/Mixed_Meal_Model
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diet (low in high-glycaemic carbohydrates and rich in fruits, vegetables, fibres, and polyunsaturated fats) for six

weeks (Fechner et al., 2020). Prior to the diet intervention period all study participants underwent a liquid

mixed meal challenge test (67g glucose, 36g lipid,12g protein, as described in Table S1 of Fechner et al.,

2020) following an overnight fast. Blood samples were collected at 0, 15, 30, 45, 60, 90, 120, 180, 240, and

300 min following consumption of the liquid meal shake. Plasma glucose and insulin concentrations were

determined at all time points. Plasma triglyceride and NEFA concentrations were measured at 0, 30, 60,

120, 180, 240, and 300min. In addition, all study participants underwent a 2.5 h 1-step hyperinsulinemic-eugly-

cemic clamp with an insulin infusion rate of 40mU/m2/min to quantify peripheral insulin sensitivity. All partic-

ipants gave their written and informed consent prior to the start of the study. The studywas conducted accord-

ing to the guidelines stated in the Declaration of the Helsinki and the protocol was approved by the medical

ethical committee of Maastricht University Medical Centre+ (MUMC+) and registered at www.clincaltrials.gov

as NCT02519127.

Model formulation

Glucose and insulin kinetics

Several well validated glucose-insulin models are currently available in the literature; from simple mini-

mal models that describe changes in plasma glucose at a whole-body level (Bergman et al., 1979; Ei-

chenlaub et al., 2019) to more detailed multi-compartmental models describing glucose metabolism

across multiple tissues (Dalla Man et al., 2007; Pearson et al., 2016; Sips et al., 2015). One such model,

the Eindhoven Diabetes Education Simulator (E-DES) is a comparatively simple three compartment

physiology based mathematical model describing postprandial glucose and insulin dynamics in the

gut, plasma, and interstitial fluid (Maas et al., 2015). The E-DES model has previously been applied to

describe postprandial plasma glucose and insulin excursions in response to a diverse range of complex

meals (Rozendaal et al., 2018) and more recently has been shown to capture the considerable inter-in-

dividual heterogeneity in oral glucose tolerance test responses (Erd}os et al., 2021). In the E-DES model

glucose appears in the plasma by either endogenous glucose released from the liver or as exogenous

glucose from a meal via the gut (Figure 1). Uptake of plasma glucose into tissues such as the skeletal

muscle, adipose tissue, and brain occurs at an insulin dependent and independent rate and are

described as a collective glucose sink. Insulin secretion in response to changing plasma glucose concen-

trations is described using a proportional-integral-derivative controller. A more detailed model formu-

lation can be found in Section S1.

Triglyceride kinetics

Plasma triglycerides have two primary sources; exogenous triglyceride from dietary intake transition

through the gut and lymphatic system (described as three transition compartments) before appearing in

the plasma as chylomicron triglyceride (TGgutÞ. Endogenous triglyceride is secreted from the liver as

very low-density lipoprotein (VLDL) particles (TGliverÞwhich is inhibited by insulin in lean, healthy individuals

(McQuaid et al., 2011). The effect of insulin on VLDL secretion has been shown to be attenuated in insulin

resistance and with increased hepatic fat (Adiels et al., 2007, 2008; Avramoglu et al., 2006) content. Both

chylomicron and VLDL triglycerides are removed from the plasma through hydrolysis by lipoprotein lipase

(LPL) which is stimulated by insulin (TGLPLÞ and the resulting NEFA is taken up into tissues including the skel-

etal muscle and adipose tissue (O’Donovan et al., 2019). To make our meal model as generalisable as

possible we have elected to combine both chylomicron and VLDL into a single generic triglyceride pool,

in this way the model can be fit to postprandial plasma triglyceride measurements without the need to

quantify specific lipoprotein subfractions. Consequently, the rate of change of plasma triglyceride concen-

tration (TGPLÞ is described as such;

dTGPL

dt
= TGgut + TGliver � TGLPL

Where,

TGliver = k16 � k15$ðId4 � IbÞ
Here, k16 is the basal rate of secretion of endogenous triglyceride from the liver and k15 governs the

effect of insulin on VLDL secretion. Id4 is the delayed insulin signal that inhibits triglyceride secretion

and Ib is the basal (fasting) insulin concentration. TGLPL, the term describing LPL lipolysis of circulating

triglyceride has previously been validated using arterio-venous flux measurements (O’Donovan et al.,

2019).
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NEFA kinetics

In the fasting state NEFA enters the plasma from the adipose tissue (NEFAATLÞ. The release of NEFA from

triglyceride stores in the adipose tissue is inhibited by insulin in the postprandial state. In addition, a small

proportion (fspillÞ of NEFA released by LPL lipolysis of circulating triglyceride spills-over into the plasma.

Model terms describing the fractional spill-over and release of NEFA from the adipose tissue have previ-

ously been validated (O’Donovan et al., 2019) using arterio-venous palmitate tracer measurements

collected across the abdominal subcutaneous adipose tissue. NEFA is taken up into tissues at a rate

(k12Þ proportional to the plasma NEFA concentration (Sips et al., 2015). The rate of change of plasma

NEFA concentrations is described in the following way;

dNEFAPL

dt
= NEFAATL + 3 fspill$TGLPL � k12$NEFAPL

WhereNEFAPL is the plasma NEFA concentration and TGLPL is the rate of LPL lipolysis of circulating triglyc-

eride described above.

A complete list of model equations can be found in Section S1.

Parameter estimation

The final mixed meal model consists of 13 ordinary differential equations with 25 model parameters. To

achieve numerically reliable parameter estimates from data it is necessary to minimise the complexity of

the model being applied. Local parameter sensitivity analyses, whereby each parameter was varied 50%

in both directions from the average estimate, was conducted to determine which parameters have substan-

tial effect on the model output (Figures S4–S26). Non-sensitive parameters were fixed to values reported in

their respective publications (O’Donovan et al., 2019; Rozendaal et al., 2018). Basal glucose and insulin

values were fixed to the measured plasma glucose and insulin values following an overnight fast, as advised

for the E-DES model (Maas et al., 2015). This analysis resulted in a model with nine parameters that will be

estimated from the data. Subsequent profile likelihood analysis (Raue et al., 2009) showed that these nine

parameters were identifiable given the six time-point meal challenge test data in the NutriTech Study (Fig-

ure S3). A full set of model parameters can be found in Table S2.

Parameter values were estimated from data by minimizing the below combined cost function CðqÞ using
lsqnonlin, (MATLAB, 2019b, The MathWorks Inc., Natick, Massachusetts, United States) a local, gradient-

based least square solver. To avoid becoming trapped in erroneous local minima, the optimal parameter

sets were obtained following twenty-five initializations of the optimization algorithm using Latin hypercube

sampling of the solution space.

CðqÞ =
XM
i = 1

XTi
j = 1

 
yi;jðqÞ � yobs

i;j

max
�
yobs
i

�
!2

WhereM is the number of measured metabolites, in this case glucose, insulin, triglyceride, and NEFA. Ti is

the number of time points for which measured data is available for metabolite i. yi;jðqÞ denotes the model

prediction for metabolite i at time point j for a given parameter vector q and yobsi;j denotes the correspond-

ing measured concentration of metabolite i at time point j. To account for the difference in scales between

the metabolites the difference between the model simulation and the observed measurements for the

error function are weighted by the maximum observed value for the given metabolite.

Physiology-informed regularisation

Regularisation is the process by which additional information about a system is supplied during the param-

eter estimation procedure in-order to solve an ill-proposed problem or to prevent overfitting. In this study,

a number of additional terms are added to the cost function CðqÞ to penalise undesirable behaviours, such

as nutrient dumping or a failure of the model simulation to return to steady state, thereby guiding the

parameter estimation algorithm towards regions of the solution space which produce physiologically plau-

sible behaviour. We have dubbed this form of regularisation as physiology-informed regularisation. To

ensure that the full mass of glucose and triglyceride administered in the meal (Gmeal and TGmeal respec-

tively) appear in the plasma and are not dumped from the gut compartment of the model two additional

constraints AUCG and AUCTG are placed on the model fitting. Within these constrains the area under the

curve of glucose appearance from the gut within the first four hours (Anderwald et al., 2011) after the meal
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consumption should equal the glucose content of the meal and the complete triglyceride appearance via

the lymphatic system should occur within 10 h (Bickerton et al., 2007; Ruge et al., 2009). Two additional con-

straints are included to ensure triglyceride and NEFA return to steady state or fasting values. Hence, the

modified cost function (C�ðqÞÞ for parameter estimation becomes;

C�ðqÞ = CðqÞ+ �AUCGj240 � Gmeal

�
+
�
AUCTGj600 � TGmeal

�
+

�
TGPLj720 � TGb

�
+
�
NEFAPLj0 � NEFAb

�
Where TGb and NEFAb are the measured fasting plasma concentrations of triglyceride and NEFA

respectively.
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