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Abstract — Scientific workflows orchestrate the execution of complex experiments frequently using distributed 

computing platforms. Meta-workflows represent an emerging type of such workflows which aim to reuse existing 

workflows from potentially different workflow systems to achieve more complex and experimentation minimizing 

workflow design and testing efforts. Workflow interoperability plays a profound role in achieving this objective. 

This paper is focused at fostering interoperability across meta-workflows that combine workflows of different 

workflow systems from diverse scientific domains. This is achieved by formalizing definitions of meta-workflow 

and its different types to standardize their data structures used to describe workflows to be published and shared 

via public repositories.  The paper also includes thorough formalization of two workflow interoperability 

approaches based on this formal description: the coarse-grained and fine-grained workflow interoperability 

approach. The paper presents a case study from Astrophysics which successfully demonstrates the use of the 

concepts of meta-workflows and workflow interoperability within a scientific simulation platform. 
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I. INTRODUCTION 

Scientific workflows represent complex computational experiments conducted by scientists focused at identifying and 

addressing scientific problems across diverse subject domains. Such experiments commonly involve analyzing large 

volumes of data and can be run on a variety of computing platforms including high performance computing 

infrastructures such as clusters, grids and clouds. Scientific workflows are often composed of control and data flow 

statements and rules which perform the analytics required to achieve the intended experimentation [1]. A typical 

scientific workflow is composed of one or more individual tasks each of which requires certain number of inputs and 

generates the respective output(s) after performing its intended function.  

An interesting and emerging trend in workflow development is composing workflows by integrating one or more 

existing workflows called sub-workflows or embedded workflows into meta-workflows. These complex workflows, may 

utilize existing workflows incorporating them as components of the meta-workflow for faster and more efficient 

development. Meta-workflows engage complex orchestration of applications which may span across multiple domains 

and include workflows from heterogeneous workflow platforms. For such complex workflows the nodes represent a 

combination of workflow jobs and also sub-workflows which can host multiple tasks within them.  

The use of meta-workflows to achieve complex scientific experimentation has been growing consistently in various 

scientific domains. For instance, within the MoSGrid Science Gateway [2], meta-workflows have been used extensively 

especially in docking and molecular dynamics domains contributing to facilitated job submission and output analysis. 

Furthermore, recent advancements in Heliophysics [3] have witnessed remarkable growth in use of meta-workflows to 

automate manually cumbersome and complex tasks to aid studies focused at analyzing the impact of solar wind on the 

Earth’s atmosphere. Workflow systems have been widely used also in Astronomy and Astrophysics, and recently meta-

workflows have been used extensively to facilitate access to Astronomical catalogues and archives. In particular, 

Astronomers implemented a library of simple atomic operations that can be re-used as basic components (sub-

workflows) of other more complex meta-workflows that represent Astronomical use cases [4]. This paper describes a 

scientific use case from Astrophysics to highlight the significance of the contribution made by the paper. 

Our focus in this paper is to investigate the challenges encountered in facilitating widespread sharing of such complex 

scientific meta-workflows. The work presented in this paper is an extension to our work in [5] and is aimed at the formal 

definition and analysis of the different types of meta-workflows. Moreover, the paper highlights the role of workflow 

interoperability in different approaches for meta-workflow creation and execution. In particular, we present a detailed 

formal description of meta-workflows to support their design and execution. To the best of our knowledge, this work 

demonstrates a pioneering effort for formal definition of different types of meta-workflows and approaches for their 

creation and execution. Therefore, we are making significant contribution towards scientific workflow interoperability by 

providing a unified method to define such workflows. Within this context, we highlight current limitations of workflow 

repositories when describing and managing meta-workflows and propose the adoption of our formal approach for 

describing meta-workflows to overcome these limitations. We demonstrate the effectiveness of our proposed approach by 

including a scientific use-case from the Astrophysics domain which exemplifies the formal definitions proposed in this 

paper. 

The rest of the paper is organized as follows: Section II introduces the SHIWA Simulation Platform and its 

contribution towards workflow interoperability and meta-workflows. Section III describes the underlying concepts of 

meta-workflows including atomic and compound tasks, approaches for meta-workflow creation and execution, and 

different types of meta-workflows. Section IV presents the application of the formal workflow definitions within a public 

workflow repository when extending its data structure to better accommodate meta-workflows, followed by a description 

of a scientific use case to demonstrate the effectiveness of the proposed formalism within Astrophysics in Section V. 

Section VI describes the existing literature related to the work described in this paper. Finally, section VII concludes the 

paper and lists our future endeavors 

II. THE SHIWA SIMULATION PLATFORM 

The FP7 SHIWA (Sharing Interoperable Workflows for large-scale scientific simulations on Available DCIs) project 

[6] created the SHIWA Simulation Platform (SSP) [7] to enable data, infrastructure and workflow interoperability. It 

supports the whole workflow life-cycle addressing the challenges of (i) workflow interoperability by executing 

workflows of different workflow systems, (ii) combining workflows of different workflow systems into meta-workflows, 

and (iii) running workflows on different DCIs and accessing different data storages. SHIWA created the Coarse-Grained 

Interoperability (CGI) and Fine-Grained Interoperability (FGI) concepts to support workflow interoperability. This paper 

focuses on the lessons learned from this project with respect to enabling meta-workflows and introduces new concepts 

and structures based on experiences from this project to improve workflow interoperability.  
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Fig 1: SHIWA Simulation Platform 

SHIWA developed the SHIWA Simulation Platform. The simulation platform, presented in Fig 1, contains a science 

gateway (SHIWA Science Gateway), a submission service (SHIWA Submission Service), and a workflow repository 

(SHIWA Repository). The SHIWA Science Gateway, built on the gUSE gateway technology [8], incorporates a portal 

(SHIWA Portal), a workflow system (WS-PGRADE Workflow Management System), and a computing and data 

resource access service (DCI Bridge and Data Avenue Service). The portal, as the presentation layer of the gateway, 

contains a graphical workflow editor, a workflow configurator and a workflow execution monitor. The Data Avenue 

Service and the DCI Bridge represent the infrastructure access layer of the science gateway. The DCI Bridge service 

provides access to different Distributed Computing Infrastructures (DCI) such as clouds, clusters, desktop and service 

grids, and supercomputers. Data Avenue Service manages data transfer among different storages using multiple data 

transfer protocols such as ftp, sftp, S3, etc. The SHIWA Repository is the key service for sharing workflows. It allows 

publishing and retrieving workflows created using different workflow systems, such as Galaxy, Kepler, MOTEUR, 

Taverna, WS-PGRADE, etc. These imported workflows can be used by a workflow developer as part of a meta-

workflow from within the SHIWA Portal. The repository handles both workflows and workflow engines storing their 

binaries, configuration, default and meta-data. Developers can publish (or export, or upload), edit, and delete workflows 

and workflow engines through the repository GUI. Meta-data enables searching workflows based on their application 

domain. This domain-oriented search can identify the workflows that can be considered for scientific experiments in 

particular research domains. The meta-data also contains a workflow graph image, a list of input and output ports, and a 

plain text description of the workflow functionality. The SHIWA Submission Service allows sharing workflows of 

different workflow systems. First, it imports the workflow from the SHIWA Repository. Next, it either invokes it locally 

or remotely on pre-deployed workflow engines, or submits workflow engines with the workflow to local or remote 

resources. The Data Avenue service manages different data formats and data transfer technologies to transfer data used 

by different workflow systems.  

The SHIWA project analyzed major workflow systems and developed a formal description of abstract and concrete 

workflows and defined the relevant data structures to describe workflows. According to this description, each workflow 

is represented by a single abstract and one or multiple concrete workflows. We specified the data structure of these 

workflows in [7]. The abstract workflow specifies the workflow functionality and the workflow graph. The data structure 

of the abstract workflow contains 5 basic attributes. The domain and tasktype attributes describe application areas of the 

abstract workflow and its functionality. They allow straightforward categorization of workflows to support efficient 

search operations. The inport and outport attributes define input and output ports of the abstract workflow. The 

configuration attribute specifies parameter requirements of ports. Each abstract workflow may have multiple concrete 

workflows which represent different implementations of the abstract workflow on the same or in different workflow 

systems. The concrete workflow defines the implementation of the abstract workflow by specifying the binaries, default 

input files and parameters needed to run the workflow. Concrete workflows either contain or reference (via URLs) 

executables required to run the workflow on the associated workflow engine, together with additional meta-data. The key 

attributes of the concrete workflow are: definition, dependency and configuration attributes. The definition attribute is a 

reference to a file that describes the workflow graph of the concrete workflow. The concrete workflow also stores 

information about the workflow engine which executes it. The dependency attribute handles any requirement of the 
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particular concrete workflow. It can be for instance a DCI middleware, a security infrastructure, or files/executables 

required for execution. Configuration attributes resolve these dependencies.  

Due to the lack of widespread adoption of meta-workflows at the beginning of the project, the support for meta-

workflows in the SHIWA Repository was rather limited. The repository did not allow developers to manage meta-

workflows as a set of sub-workflows. It handled the meta-workflow as a monolithic single workflow. This approach led 

to a few drawbacks. Firstly, it did not allow developers to describe meta-workflows as a set of sub-workflows and 

customize the sub-workflows to their needs. Secondly, it did not support efficient debugging of meta-workflows. As a 

meta-workflow can be a complex entity, tracing a fault during execution can be problematic. Identifying sub-workflows 

for a meta-workflow along with their additional information can facilitate trouble-shooting individual workflows by 

identifying and locating issues concerning their successful execution.  

With the emergence and significant rise in the use of meta-workflows within diverse scientific communities, the 

support for such workflows is paramount to enable workflow sharing across different scientific domains. To address 

these challenges the original formalism behind the SHIWA Repository has been extended to support the SHIWA and 

other similar workflow repositories. There were two major challenges to be addressed. First, the data structure must allow 

managing meta-workflows at both sub- and meta-workflow level, i.e. to be able to specify the sub-workflows of a meta-

workflow and provide direct access to these sub-workflows in the repository. Second, it must enable description of how 

sub-workflows are connected and what kind of data is transferred between them. Furthermore, we envisage it to provide 

the required impetus to standardize the meta-data required to describe workflows in general and meta-workflows in 

particular, thereby addressing challenges with respect to workflow interoperability. 

III. DEFINITION AND TYPES OF META-WORKFLOWS 

Scientific workflows are usually represented using a directed graph where the nodes represent individual tasks or 

functionalities, whereas the edges represent relationships or dependencies between these tasks. A simple graphical 

representation of scientific workflows has been presented in Fig 2a where the individual tasks are represented by nodes 

N1, N2 and N3, and the dependencies between these nodes are represented by edges e1, e2 and e3. 

We define the following types of workflows: single workflow, native meta-workflow and non-native meta-workflow. 

In a single workflow all the nodes of workflow are individual jobs that are executed and managed by a single workflow 

system such as P-GRADE [9], Galaxy [10] or Taverna [11] etc. Fig 2a presents a graphical representation for a single 

workflow.  

We define the term embedded workflows to refer to the sub-workflows which constitute a meta-workflow. 

Furthermore, we distinguish meta-workflows based on the workflow engine responsible for the execution of embedded 

workflows. Within this context, in a native meta-workflow, the embedded sub-workflows are all from the same host 

workflow system (WS1) as demonstrated by Fig 2b. However, in a non-native meta-workflow, at least one of the 

embedded workflows is from external workflow systems, as has been presented in Fig 2c where the two embedded 

workflows are from workflow systems WS2 and WS3, respectively.  

N1

CN2

CN1

N2

N3

Embedded WF

ce1

e1

e3

e2

Host Workflow System (WS1)

N1

N2

N3

e1

e3

e2

Host Workflow System (WS1)

 

Fig 2a: A single workflow    Fig 2b: Native meta-workflow 
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ce1

ce1

ce2

 

Fig 2c: Non-native meta-workflow 
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In order to draw a formal representation of the meta-workflow concept, we follow the definitions and guidelines 

adopted by [7]. A meta-workflow is considered a multi-graph structure represented by <vertices, edges, source, target> 

where the vertices represent jobs, the edges represent dependencies between jobs. Here, the source and target of an edge 

represents the dependee and depender, respectively. Firstly, in order to be qualified as a graph, a multi-graph structure G 

has to satisfy the following condition:  

vertices (G) ≠ φ 

Let G represent the meta-workflow graph. CG1 and CG2 are two sub-workflow graphs, G is a meta-workflow 

composed of CG1 and CG2 if and only if 

𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝐶𝐺1) ∪ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝐶𝐺2) ⊆ 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝐺), and 

𝑒𝑑𝑔𝑒𝑠(𝐶𝐺1) ∪ 𝑒𝑑𝑔𝑒𝑠 (𝐶𝐺2) ⊆ 𝑒𝑑𝑔𝑒𝑠 (𝐺) 

A. Approaches for Meta-workflow Creation and Execution 

In order to create non-native meta-workflows, two different approaches have been established, i.e. Coarse-Grained 

Interoperability (CGI) or black box approach, and Fine-Grained Interoperability (FGI) or white box approach [1]. This 

section explains each of these along with their respective formal representations. 

We start with the formal definition of the job and a set of jobs 

J =: {J_ABS, J_CNR, J_CNF, J_ENG} (eq. 1) 

where J_ABS  : abstract description of the job,  

J_CNR : implementation or executable of the job,  

J_CNF  : configuration of the job, and 

J_ENG : workflow engine running the job 

JOBS = J_ATOM ∪ J_COMP (eq. 2) 

where J_ATOM : set of atomic jobs and  

J_COMP : set of compound jobs 

Next, we borrow the basic definitions of workflows from [7] using the following data models: 

WF_ID :   the unique workflow ID 

J_NA :      native job    

J_NN :      non-native job   

WF_NA : set of native workflows 

WF_NN : set of non-native workflows 

WE_NA : set of native workflow engine(s)  

WE_NN : set of non-native workflow engine(s) 

workflow: 

WF =: {WF_ABS, WF_CNR, WF_CNF, WF_ENG}  (eq. 3) 

where WF_ABS: abstract workflow 

WF_CNR: concrete workflow 

WF_CNF: workflow configuration 

WF_ENG: workflow engine running the workflow. 

 

abstract workflow: 

WF_ABS =: {J_ABS, PORT_IN, PORT_OUT, WF_GRP} (eq. 4) 

where  J_ABS :          abstract description of jobs constituting the workflow  

PORT_IN :     inputs for the workflow 

PORT_OUT : outputs for the workflow 

WF_GRP :      workflow graph representing the orchestration of jobs 

 

concrete workflow: 

J_CNRk   =: {J_ATRk, J_IMPk} (eq. 5) 

where  Jk ∈ JOBS 

 J_ATRk : attributes of the job, such as for instance the environment variables, data locations, command 

line arguments etc. 

J_IMPk : implementation/executable of the job 

WF_CNR =: {J_CNR1,…, J_CNRn} (eq. 6) 

where Ji : a job such that Ji ∈ JOBS and i = 1,…, n   

 

meta-workflow: 

WFmeta = :{J_NA, J_NN, WF_NA, WF_NN},  (eq. 7) 
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Fine-Grained Interoperability Approach: With FGI, the workflow is treated as having two distinguished parts, i.e. the 

abstract part and the concrete part. The abstract part includes the abstract input/output functionality of a workflow and the 

workflow based orchestration of computational tasks. The concrete part contains low level information about the 

implementation technologies of its computational tasks, such as the method to call a web service or executing an 

application on a specific machine.  

As part of the FGI approach, the abstract part of the workflow is transformed into an Interoperable Workflow 

Intermediate Representation (IWIR) as illustrated by Fig 3. At the abstract level, IWIR is used for describing workflows 

at a lower level of abstraction that is only processed by the existing workflow systems and not directly exposed to the 

human developer [1]. The concrete part of the workflow is not transformed but is bundled with the IWIR representation 

of the abstract part to form an IWIR bundle. The FGI approach for creating meta-workflows has several advantages such 

as abstraction from high-level workflow language, abstraction from the Distributed Computing Infrastructure (DCI) and 

the enactment engine, and runtime interoperability among different workflow engines.  

Concrete WF

N1 N2

N3

Executable JSDL

A

B

C

IW
IR

 B
u

n
d

le

 

Fig3: Transformation of workflows for FGI approach 

Using the structures and definitions presented earlier in this section, we present the formal definition of the FGI 

approach using Z-notation [12] in Fig. 4. Z is a state-based mathematical specification language including set theory and 

predicate calculus. The state and operations are conventionally defined and used in a Z specification. The state consists of 

state variables, and operations are specified upon the state. Our choice of Z notation is motivated by its ease to 

understand and the flexibility to model a specification which can directly lead to the code. Z notation has been used in 

contemporary systems to describe a system and its properties such, as [13] and [14]. 

 FGI based Meta-workflow Execution  

ΔMeta_Workflow_Execution_FGI 

WF_ID? : ℕ  

Ti : ATOM_TASKS 

Tj : COMP_TASKS 

Port_i : PORT_IN 

Port_j : PORT_OUT 

WF = {WF_ABS, WF_CNR, WF_CNF, WF_ENG}  

WF_ID > 0 

PORTS = PORT_IN ∪ PORT_OUT 

WF_ABS =: {J_ABS, PORT_IN, PORT_OUT, WF_GRP} 

JOBS = J_ATOM ∪ J_COMP  

Jk   =: {J_ABSk , J_ATRk, J_IMPk} 

 

Iff Jk ∈ JOBS 

 WF_CNR =: {J_ATRk, J_IMPk} 

 IWIR_WF_G->Create_abs_IWIR_WF(WF_ABS) 

 

Foreach Jx ∈  JOBS ⇸WF_ABS 

 J_CNRx : DCI_Ind_CNR(J_IMPx)   

 JOBS_CNR = {J_CNRx} 

 IWR_Bundle = Bundle(IWIR_WF, JOBS_CNR) 

Fig 4: Formal definition of the FGI approach using Z-notation 

Coarse-Grained Interoperability Approach (CGI): It is focused at defining a workflow engine based interoperability 

concept independent of the workflow systems, allowing sharing workflows from different workflow systems [7]. In this 
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approach the non-native workflows and workflow engines are managed as legacy applications by the native workflow 

system.  

Fig 5 presents a graphical representation of the CGI approach for workflow interoperability exemplifying the 

sequence of events to execute a non-native workflow using a repository and a submission service. The formalization for 

the CGI approach is presented in Fig 6 which extends on our initial effort in [15] and makes use of the Z-notation. 

Further details of the CGI approach and method used to achieve formalism are elaborated in [5].  

Workflow 

Engine A

Workflow 

Repository

Submission 

Service

Workflow 

Engine B

DCIWF2WF1

WF3

Meta-workflow
Native WF 

Engine

Non-native 

workflow

Native WFNative WF

Non-native 

WF Engine

 

Fig 5: Coarse-grained workflow interoperability usage scenario 

  CGI based Meta-workflow Execution____________ 

ΔMeta_Workflow_Execution_CGI 

WF_ID? : ℕ  

𝑤𝑓𝑛𝑎?: WF_NA 

𝑤𝑓𝑛𝑛?: WF_NN  

𝑤𝑒𝑛𝑎?: WE_NA 

𝑤𝑒𝑛𝑛?:WE_NN 

WF_ID > 0 

WF_NA    ≠ <> 

WF_NN ≠ <> 

WE_NA≠ <> 

WE_NN  ≠ <>  

 

If wfi ∈ WF_NN 

 𝑤𝑓𝑛𝑛 = wfi 

 𝑤𝑒𝑛𝑛 = wfi (WFeng) 

 Execute_Submission_Service(𝑤𝑓𝑛𝑛 , 𝑤𝑒𝑛𝑛 ) 

Else 

 wfn = wfi  

 we_nn  = wfi(WFeng) 

 Execute_Native_WFEngine(wfn , we_nn) 

Fig 6: Formal definition of the CGI approach using Z-notation 

Although we introduced the concepts surrounding both CGI and FGI approaches to meta-workflows, the focus of this 

paper will be limited to CGI based meta-workflows due to their support in the SHIWA Simulation Platform. 

B. Types of CGI-based Meta-workflows 

In this section we describe the different types of meta-workflows along with their formal definitions. These 

definitions are envisioned to improve the understanding of the attributes and semantics of each type of meta-workflows 

thereby facilitating workflow developers to design new workflows. 

Single job meta-workflow: This type of meta-workflow is a special meta-workflow that represents a workflow with one 

job in the native workflow system. The job representing this workflow can be a simple native job, a native workflow or 

even a non-native workflow. Fig. 7 presents a graphical representation of this workflow type. As we have emphasized as 

part of our formalization in [7], jobs can be native and non-native.  
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As a job can be native or non-native depending upon its workflow engine, we define workflow engine of a job as: 

J_ENG =: {ENG_NA, ENG_NN} (eq. 8) 

where ENG_NA : native workflow engine 

ENG_NN : non-native workflow engine 

Therefore the single job meta-workflow can be described using eq. 3 and eq. 7 such as  

WFsnj =: {J1} = : {J_ABS, J_CNR, J_CNF, J_ENG} (eq. 9) 

where  J1 : {Jna ∪ Jnn ∪ WFna ∪ WFnn}, 

Jna : a native job,  

Jnn : a non-native job,  

WFna : a native workflow, and 

Wnn : a non-native workflow.  

Linear multi-job meta-workflow: This is a pipeline of multiple jobs in the native workflow system where any (or even 

all) of these jobs can be non-native workflows. The execution of each job depends on the receipt of input files from 

previous jobs. Fig. 8 presents a graphical representation of this type of workflow. As linear multi-job meta-workflows are 

composed of single jobs and/or single job meta-workflows, we use our formalization from previous sections to describe 

this type of meta-workflow. Therefore, a linear multi-job meta-workflow can be described using our basic definition of 

meta-workflows from eq. 7 such that 

WFlmj =: {J1,..,Jm}= :{J_NA, J_NN, WF_NA, WF_NN} (eq. 10) 

where  Jj  : job of linear multi-job workflow, j = 1,.., m. and 

Jj  {Jna ∪ Jnn ∪ WFna ∪ WFnn} 

1 2

Job0

 

Job0

1 2 12 1 2

Job1 Job2

 

Fig. 7: Single job meta-workflow Fig. 8: Linear multi-job meta-workflow 

Now, in order to formalize a linear multi-job meta-workflow, let us define an edge as a connection between an input 

and an output port. By definition, an edge is defined as e = (i,o) where i is the input port and o is the output port. 

Consequently if Pi is the input port and Po is the output port of job J, then edge is defined as  

e = (Pi, Po). 

Therefore, for a linear multi-job meta-workflow, if Jx and Jy are any two consecutive jobs and Jx is not the last job of 

the workflow, there exists a valid edge such that 

exy= (Pyi, Pxo) (eq. 11) 

where Pyi  : the input  port of Jy. 

Pxo : the output port of Jx and  

Parallel multi-job meta-workflow: This is a workflow that includes parallel branches. One or more of these branches can 

include one or more embedded non-native workflows. Parallel multi-job meta-workflows are composed of several linear 

multi-job meta-workflows as presented in Fig. 9.  

1

2

1

1 1

1

2

2

32

4

Job1

Job0

Job2 Job3

Job4

 

1

1

1

1

2 2

2

Generator

Job2Job1

Collector

 

Fig. 9: Parallel multi-job meta-workflow  Fig. 10: Parameter sweep meta-workflow 

To formalize parallel multi-job meta-workflows we have to define connections between their jobs. Let Js represent a 

split job (a job that is followed by several parallel worker jobs), and Jwx represent a worker job where x = 1…k. Here, a 

worker job refers to a job assigned with a specific task within the workflow. A parallel multi-job meta-workflow must 

contain a “split” edge.  
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eswx = (Pso, Pwxi) (eq. 12) 

where   Pso : the output port of the split job Js 

Pwxi : the input port of the worker job Jwx 

Furthermore, let Jm represent the merge job that merges the results of parallel workers jobs. Therefore, a parallel 

multi-job meta-workflow must also have a merge edge ewxm such that 

ewxm = (Pwxo, Pmix) (eq. 13) 

where Pwxo : the output port of a worker job Jwx, and 

Pmix     : the input port of the merge job Jm. 

Utilizing formalization from eq. 7, the parallel multi-job meta-workflow can be described as 

WFpmj =: {J1,…,Jn} =: { Js , Jw1,…Jk, Jm} = :{J_NA, J_NN, WF_NA, WF_NN} (eq. 14) 

where  Jj job of a parallel multi-job meta-workflow j = 1…n, 

 Js   : {J_NA, J_NN, WF_NA, WF_NN}, 

Jwx : {J_NA, J_NN, WF_NA, WF_NN}, and 

Jm  : {J_NA, J_NN, WF_NA, WF_NN}, 

Parameter sweep meta-workflow: This represents a parameter sweep workflow that contains a generator job, several 

worker jobs, and a collector job. The generator job produces a number of inputs each to be consumed by a worker job. 

Here, a worker job refers to job assigned with a specific task within the workflow. The collector job aggregates the 

outputs of all the worker jobs and prepares the final output. Although this functionality is very similar to the parallel 

multi-job meta-workflow, the primary difference between the two is that the worker jobs for parameter sweep workflow 

are generated dynamically and are not known at the configuration stage of the workflow. Therefore the relations between 

the generator, worker and collector jobs are dynamic as compared to the parallel multi-job workflow, as presented in Fig. 

10. Also, while workers in parallel multi-job meta-workflows can represent different functionality, in case of parameter 

sweep meta-workflows all workers represent the same functionality with different parameter values only. The 

connections between the generator, collector and worker jobs for a parameter sweep meta-workflow can be described as: 

egwx = (Pgo, Pwyi)  (eq. 15) 

where  Pgo : the output port of the generator job Jg 

Pwyi : the input port of the worker job Jwy and y = 1 … l 

Furthermore, let Jc represent the collector job A parameter sweep meta-workflow must also have an edge ewyc such 

that 

ewyc = (Pwyo, Pci) (eq. 16) 

where  Pwyo : the output of a worker job Jwy, and 

 Pci : an input port of collector job Jc. 

Due to the similarity with the parallel multi-job meta-workflow, parameter sweep meta-workflow can be described 

using eq. 7 as: 

WFpsj =: {J1,…,Jn} =:{ Jg , Jw1,…Jl, Jc}= :{J_NA, J_NN, WF_NA, WF_NN} (eq. 17) 

where Jj : job of parameter sweep meta-workflow, j =1,…,m 

 Jg   : {J_NA, J_NN, WF_NA, WF_NN}, 

Jwy : {J_NA, J_NN, WF_NA, WF_NN}, and 

Jc  : {J_NA, J_NN, WF_NA, WF_NN}, 

IV. METAWORKFLOW DEFINITIONS FOR WORKFLOW REPOSITIORIES 

In order to illustrate the potential application of the formal meta-workflow definitions introduced in section III, this 

section describes how the data structure of a workflow repository can be improved to better accommodate meta-

workflows. As part of the SHIWA project, the SHIWA Repository has been developed to support the sharing of 

workflows across different scientific domains. However, due to the lack of widespread adoption of meta-workflows at the 

beginning of the project, the support for such meta-workflows in the repository is rather limited. The current generic data 

structure for a workflow in the SHIWA Repository is described in [7], whereas Fig 11 displays the information about an 

example meta-workflow published in the repository.  

As it can be seen in the figure, information available for the meta-workflow in the repository is limited to input and 

output port definitions (inputs/port0001, inputs/port0002, inputs/port0003, and outputs/port0004), sample datasets 

(datasets/dataset0001), and generic metadata (e.g. application, domain, subdomain, keywords). Therefore, the repository 

describes the meta-workflow as a complete black-box, not including any information about its sub-workflows. This is 

especially disadvantageous in that it does not allow the user of such workflow to identify the sub-workflows and if 

possible customize them to their needs. For instance, in case of FGI and template based approaches for meta-workflow 

creation, a user is able to customize the sub-workflows by making modifications allowed by the workflow developer. 

However, with the current implementation of data structures within the SHIWA Repository, it is not possible. Another 
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use-case requiring such detailed information about sub-workflows is to facilitate the efficient debugging of meta-

workflows. As a meta-workflow can be a complex entity, tracing a fault in its successful execution can be problematic. 

Identifying sub-workflows for a meta-workflow along with their additional information can facilitate trouble-shooting 

individual workflows by identifying and locating issues concerning their successful execution. 

 

Fig 11: Information stored for a meta-workflow in the SHIWA Repository 

element sub-element Description data type 

Domain sub-domain application domain/sub-domain List 

Tasktype  type of task the workflow executes plain text 

workflow type  simple or meta-workflow  

sub-workflow  sub-workflows in case of 

workflow_type = meta-workflow 

 

 workflow_uid UID of the workflow   

 description   

Inputs  workflow input port  

 number  List 

 description  plain text 

 data type  List 

 sub-workflow 

mapping 

sub-workflow to be mapped to the port  

Outputs  workflow output port  

 number  List 

 description  plain text 

 data type  List 

 sub-workflow 

mapping 

sub-workflow to be mapped to the port  

configuration  resolution of in- & output ports data 

requirements 

 

 Portref input port referenced plain text 

 Value value passed to the port plain text 

Keyword  domain/sub-domain keywords List 

Table1: Data structure for meta-workflow in the SHIWA Repository 

Remark: The new elements of the data structure are highlighted in grey in Table 1. 
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With the emergence and significant rise in the use of meta-workflows within diverse scientific communities, the 

support for such workflows is paramount to enable workflow sharing across different scientific domains. The formalism 

proposed as part of this paper will facilitate achieving this above objective by extending the data structures supported by 

the SHIWA and other similar workflow repositories. Furthermore, we envisage it to provide the required impetus to 

standardize the meta-data required to describe workflows in general and meta-workflows in particular thereby addressing 

challenges with respect to workflow sharing and interoperability. 

The Table 1 presents the proposed data structure for workflow repositories based on the formalized description 

presented in this paper to accommodate meta-workflows. We have included the sub-workflow element to represent the 

structure containing a set of sub-workflows embedded in the meta-workflow. This structure is envisaged to provide 

linkages to sub-workflows present in the repository and therefore will facilitate a user to explore further details of each 

sub-workflow. We have also included the sub-element sub-workflow mapping for both the input and output ports. This is 

to provide the detail of how the different sub-workflows are orchestrated within the meta-workflow. We envision 

continuing this research by investigating implementation of this approach within the SHIWA Repository to improve the 

capabilities offered by the SHIWA Repository for sharing of meta-workflows. 

V. THE SCIENTIFIC USE CASE 

The results of the research presented in this paper have been adopted by diverse scientific disciplines. We have 

presented the successful scientific use-case from the Heliophysics community in [5]. In this section, we describe the 

experience of the Astrophysics community in mapping their use case to the formal descriptions described earlier in this 

paper. The scientific details and significance of this use case have been presented in [4] and have been further elaborated 

as part of the ER-Flow project deliverables [16]. 

Hubble Space Telescope (HST) use case 

The International Astronomical Virtual Observatory (IVOA) produces unified virtual data, and offers services to 

perform complex data discovery and processing tasks across the whole range of astronomical resources provided by 

Astronomical Data Centers all around the world. IVOA developed a set of standards and services that are commonly and 

widely used by Astronomers to access archives and catalogues, and to perform operations on observed data. 

 

Fig 13: Hubble Space Telescope data access and manipulation meta-workflow 

In order to facilitate access to the IVOA resources and services, a large number of data-oriented workflows have been 

developed [4]. These workflows, built on the AstroTAVERNA plugin [17] of the TAVERNA workflow engine, are data-

oriented workflows that are used to access and manipulate astronomical data. They deliver atomic operations that can be 

reused as basic components (sub-workflows) in other complex astronomical meta-workflows. We created the IVOA 

workflow library importing the AstroTaverna Virtual Observatory workflows into the SHIWA Repository as abstract 

workflows. It allows workflow developers designing and implementing complex astronomical scientific experiments. 

These experiments combine data access based on IVOA standards and data processing operations (e.g. data reduction and 

analysis). This library has been widely used in the STARNet gateway federation [18] to build astronomical applications. 

STARNet is a federated network of science gateways based on the gUSE science gateway technologies. It is explicitly 



12 

 

designed and tuned to the needs of the astronomical and astrophysical (A&A) community in Europe. This federated 

gateway infrastructure shares a common authentication system, a distributed computing infrastructure, data archives, 

portlets, and workflow repositories allowing scientists to explore new collaboration opportunities and advancing the 

scientific research activity within A&A. Building upon these technologies, a number of challenging applications from 

different A&A domains have been successfully prototyped and tested including [4, 16, 18]. 

The Hubble Space Telescope (HST) use case will be presented in the rest of this section to outline how to create 

meta-workflows. The HST archive offers access to the HST observations using the IVOA services. Data can be retrieved 

in the form of FITS files or VOTables (XML) files [19]. The Hubble Space Telescope data access and manipulation 

meta-workflow incorporates workflows from the IVOA workflow library. The meta-workflow has four phases each one 

of these is implemented by a sub-workflow available in the IVOA workflow library, as shown in Fig. 13: 

1. Concatenating VOTables workflow: Concat_VOTables_WF 

One of the common astronomical data processing tasks is to combine data retrieved from archives or catalogues. 

This workflow selects astronomical objects to be searched in the HST catalogue using their source name from an 

ASCII list. The inputs of the workflow, presented in Fig. 14, are VOTables. This workflow combines them into a 

vertically replicated single table. In the search operation source names in different astronomical catalogues could 

be different.  

 

Fig 14: Concatenating VOTables workflow  

2. Cone search pre-processing workflow: ConeSearch_PreProc_WF 
First, it converts source names into astronomical coordinates to allow cone search [20]. Next, it generates an XML 

file (VOTable) with a list of cone searches to be executed on the HST SIAP image service (Simple Image Access 

Protocol) [21]. 

 
Fig 15: HST Cone Search Workflow 
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3. Cone search workflow: ConeSearch_WF 

It queries the HST SIAP service using the list of cone searches compiled in the previous phase. The cone search 

workflow, presented in Fig 15, runs a cone-search around a point in the Sky. The input of the workflow is an 

ASCII file with a list of source names. First, this file is converted into a VOTable and an extra column is added for 

the coordinates that are necessary to query the SIAP image service. Next, the HST SIAP service is queried. The 

final result consists of two different VOTables called Concat_HST_Tables. The output of this workflow can be 

processed and further analysed. For example it is possible to make photometric analysis using the SExtractor 

workflow (Source Extractor) [17], stored in the IVOA workflow library, to find all sources from the HST images 

and evaluating their magnitude and position. 

4. Cone search post-processing workflow: ConeSearch_PostProc_WF 

The final query result is processed to obtain two different VOTables created by the VO Services. 

Since the above listed workflows are all Taverna workflows, they have to be wrapped in WS-PGRADE workflows to 

enable their execution on the SHIWA Simulation Platform using the Coarse-Grained Interoperability approach, as 

presented in Section III. Having wrapped Taverna workflows, they can be executed on their own or can be added to 

meta-workflows. 

Following our definitions in section II, the above mentioned workflows are non-native. Therefore, the HST meta-

workflow can be written as: 

HST_metaWF =: {J_NA, J_NN, WF_NA, WF_NN}  

where 

WF_NN = {Concat_VOTables_WF, ConeSearch_WF, ConeSearch_PreProc_WF, ConeSearch_PostProc_WF} 

Using the formal model for CGI based meta-workflow execution in section III,  

 ___HST_Metaworkflow_Execution______ 

ΔHST_metaWorkflow_Execution_CGI 

WF_ID? : ℕ   

𝑤𝑓𝑛𝑛?: WF_NN  

𝑤𝑒𝑛𝑛?:WE_NN 

WF_ID > 0 

WF_NN = {Concat_VOTables_WF, ConeSearch_WF, ConeSearch_PreProc_WF,     

ConeSearch_PostProc_WF} 

WE_NN = {Taverna}  

 

 𝑤𝑓𝑛𝑛 = wfi 

 𝑤𝑒𝑛𝑛 = wfi (WF_ENG) 

Execute_Submission_Service(𝑤𝑓𝑛𝑛 , 𝑤𝑒𝑛𝑛 ) 

Fig 16: Formal definition of HST workflows using CGI approach 

Within the context of the meta-workflow definitions presented earlier in this paper, The Hubble Space Telescope 

(HST) data access and manipulation meta-flow is a linear multi-job meta-workflow that can be described by eq. 10 and 

eq. 11. 

VI. RELATED WORK 

The usage of scientific workflow paradigm has been widely adopted to address problems across widespread domains 

such as Computational Chemistry [22] [23], [24], Astrophysics [25], or Bioinformatics [26]. In order to facilitate 

workflow development, various workflow systems have been implemented which enable the process of workflow 

creation, configuration and execution. Examples of such workflow systems include Taverna [11], MOTEUR[27], Galaxy 

[10], and P-GRADE [9]. 

As many different workflow systems have been developed based on different programming models having different 

internal workflow description, interoperability across workflows generated by different workflow systems is a non-trivial 

challenge. Workflow interoperability is fundamental to facilitate sharing of workflows across different workflow systems 

and therefore has attracted significant attention from the scientific community. Within this context, four major 

approaches for workflow interoperability include workflow language standardization, workflow translation, workflow 

engine integration, and sharing among data sources [7].  

A number of recent efforts focus on addressing the workflow interoperability problem, establishing mechanisms to 

facilitate sharing of scientific workflows, and creating meta-workflows. 
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The SHIWA (Sharing Interoperable Workflows for large-scale scientific simulations on Available DCIs) [6] project 

focused at addressing the challenge of workflow interoperability by using the Coarse-Grained Interoperability (CGI) and 

Fine-Grained Interoperability (FGI) concepts. The CGI concept is based on workflow engine integration, embedding and 

nesting workflows of different workflow systems [7]. The FGI concept is built on workflow language translation using 

the Interoperable Workflow Intermediate Representation (IWIR) for common workflow description [1]. The SHIWA 

project has developed a workflow repository, the SHIWA Workflow Repository, which enables publishing and retrieving 

workflows created using different workflow systems such as Galaxy, Kepler, MOTEUR, Taverna, WS-PGRADE, etc. 

These imported workflows can be used by a workflow developer as part of a meta-workflow from within the SHIWA 

Portal.  

Furthermore, there has been a significant rise in the interest from diverse scientific communities with regards to the 

use of meta-workflows to facilitate achieving complex experimentation. The authors in [3] present an effort from the 

Heliophysics community detailing their experiences with regards to using meta-workflows to “re-think and re-design 

with the aim of fostering re-usability” and to aid usability with respect to workflow execution. The authors make use of 

multiple workflow engines, i.e. Taverna and WS-PGRADE, to develop atomic workflows which are re-used as building 

blocks by users to compose more complex meta-workflows to address specific science cases. The case study presented in 

the previous section is an example of such meta-workflows. These experiences are significant in that they represent an 

effort to compose meta-workflows using both native and non-native workflows thereby highlighting the vast possibilities 

of meta-workflows.   

Moreover, [22], [23] and [24] represent efforts from Computational Chemistry discipline to use meta-workflows with 

the objective to enhance re-usability across different methodologies in Computational Chemistry, namely molecular 

dynamics and quantum chemistry. The authors present their experiences with the WS-PGRADE technology to develop 

meta-workflows by using atomic workflows from within the Quantum Chemistry domain and by re-using basic 

workflows developed for the molecular dynamics domain.  

The authors in [28] and [29] represent efforts from Neuroimaging to use meta-workflows to achieve complex data 

processing and analysis using high performance computing infrastructures. The overall objective of using meta-

workflows in this case is to foster collaboration among different research groups by sharing data processing applications, 

data and workflows. Both of these efforts highlight the use of WS-PGRADE tools developed as part of the SHIWA 

project to achieve their objectives. These efforts demonstrate the effectiveness of the meta-workflow concepts to 

facilitate workflow interoperability and sharing across diverse scientific domain by using different workflow 

technologies.  

The ClowdFlows [30] project aims to facilitate workflow creation, execution and sharing using a user friendly web 

based front end. It allows the users to construct new workflows using elements called widgets and also enables them to 

share their workflows via a workflow repository. The platform also facilitates the creation of meta-workflows. 

Abouelhoda et al. [26] present another approach to facilitate creation and execution of meta-workflows with specific 

emphasis on the bioinformatics scientific community. The approach focuses on two workflow engines i.e. Taverna and 

Galaxy which are widely used within the bioinformatics community and develops a software system called Tavaxy to 

combine advantages of both systems. Wings Project [31] is an extension to the Pegasus workflow engine with special 

emphasis on execution and management of very large scientific workflows. The approach exploits semantic 

representation of workflows to create workflow templates which can then be used to create workflows or meta-

workflows of any scale.  

In addition to the above described literature, there have been considerable efforts with respect to formalism for 

workflows. In this respect, a number of efforts have utilized petri nets to achieve this due to multifold reasons, as 

explained in [32]. Furthermore, workflow schemas have also been used to represent formal foundations of workflows. 

For instance, [8] presents an effort to achieve improved flexibility of the workflow management systems by using 

workflow schemas.  The authors propose to use workflow schemas to represent different workflows with the aim to 

enable them to dynamically change the structure of the workflow instances. 

The authors in [33] introduce an effort for formal semantics of workflows for the Taverna2 workflow management 

system. The primary objective of this formalism is to define “when two workflow specifications are equivalent and to 

allow reasoning about what can and cannot be expressed in Taverna”. The calculus presented includes formal 

representation of the workflows as well as the traces of events within the workflow execution. The formalism presented 

by the authors is complex and focused at representing individual workflows and the respective operations with the overall 

aim to determine if two given workflows are identical.  

Within the context of interoperability, [7] represent an effort to provide formal foundation for workflows to facilitate 

workflow sharing and interoperability. The authors propose fundamental definitions of workflows with identification of 

different components of a workflow such as the abstract and concrete parts of a workflow. This formalism envisioned to 

enable improved representation of the workflows within the SHIWA simulation platform in general and to enable 
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creation of meta-workflows in particular. The formal notations proposed in this paper have extended the definitions 

proposed by [7] to achieve sharing of workflows and creation of meta-workflows.   

Although meta-workflows have been introduced in various related papers, no attempt has been made to categorize 

and systematically describe meta-workflow types and their design patterns. 

VII. CONCLUSIONS 

The paper has contributed towards the definition and analysis of meta-workflow approaches for complex scientific 

meta-workflows. It has presented the formal definitions of different types of meta-workflows including formalizing the 

CGI-based and FGI-based meta-workflow execution approaches. The paper has also identified the need for a standard to 

describe scientific workflows to facilitate workflow sharing. Furthermore, it has demonstrated the use of formal notations 

presented in this paper to describe meta-workflows for the SHIWA repository. The paper has also presented 

experimentation for Astrophysics as a proof of concept for the approach presented in the paper. The authors plan to 

undertake the implementation of proposed formalism for workflow sharing as part of a workflow repository in near 

future.  
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