

WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Building an evaluation instrument for OO CASE tool
assessment for Unified Modelling Language support.

Radmila Juric 1,3

Jasna Kuljis 2

1 South Bank University Business School
2 Department of Mathematical and Computing Sciences, Goldsmiths College,
University of London
3 Radmila Juric now works within the School of Informatics, University of
Westminster

Copyright © [2000] IEEE. Reprinted from Kalpic, Demir and Dobric, Vesna
Hljuz, (eds.) Proceedings of the 22nd International Conference on Information
Technology Interfaces, ITI 2000, 13-16 June 2000, Pula, Croatia. IEEE, pp.
97-104. ISBN 9539676916.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of the
University of Westminster's products or services. Personal use of this
material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. By
choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

The WestminsterResearch online digital archive at the University of Westminster
aims to make the research output of the University available to a wider audience.
Copyright and Moral Rights remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch
(http://www.westminster.ac.uk/westminsterresearch).
In case of abuse or copyright appearing without permission e-mail
repository@westminster.ac.uk.

Building an Evaluation Instrument for OO CASE Tool Assessment for
Unified Modelling Language Support

Radmila Juric
Business School

South Bank University
103 Borough Road, London SE1 OAA, UK

Tel: +44(0)171 815 7815
Fax: +44(0)171 815 7793
E-mail: juricr@sbu.ac.uk

Jasna Kuljis
Department of Mathematical and Computing

Sciences
Goldsmiths College, University of London

New Cross, London SE14 6NW, UK
Tel +44(0)171 919 7868
Fax +44(0)171 919 7853

E-mail: j.kuljis@gold.ac.uk

Abstract

The Unified Modelling Language (UML) as delivered in
September 1997 offers the structure and dynamics of its
modelling constructs developed in order to standardise
different object oriented (OO) development practices.
Represented as a language, UML covers some aspects
addressed by any methodology and is expected to be
accompanied by OO CASE tools through notation and
implementation of the UML philosophy. This paper
discusses the problem of OO CASE tools as methodology
companions that encourage or enforce methodology
support. The basis for an evaluation instrument has been
developed in order to analyse how commercially available
OO CASE tools support the UML. The evaluation
instrument is based on extraction of a set of rules that are
supposed to be followed in order to claim that the UML
itself is being followed. The rules are extracted from the
current UML Semantics document and its well-formedness
rules. The evaluation instrument is tested against a few
OO CASE tools in order to analyse how it can be used on
a larger scale for assessing the level of automation and
UML support embedded in the tools.

1. Introduction

In the last decade we have witnessed the significant
influence of the OO paradigm (Booch, [1]) in solving
problems encountered when developing complex software
systems. The result is a shift towards the OO software
development process described in different OO
methodologies (Rumbaugh et al., [22]; Booch, [1];
Yourdon, [28]) and a plethora of new OO programming

languages and environments that support the new
technology. In order to standardise different OO practices,
the process of UML definition was initiated four years
ago. Despite being a language that can accompany any OO
development process, UML covers many aspects
addressed by any OO methodology. As it has become a
standard language by the decision of the Object
Management Group (OMG), the UML is expected to take
a leading role in information systems development within
the OO community.

The problem of choosing the right OO CASE tool in the
OO development process has been a serious obstacle for
OO practitioners. CASE tools have been playing a role of
‘methodology companions’, i.e. when buying a tool we
were very often buying a methodology! This might not be
an issue any more if we have agreed that the UML is a
standard modelling language. However, it is still important
to know how and to what extent OO CASE tools support
the UML. This leads towards creating an evaluation
instrument that can measure the level of the UML support
in each OO CASE tool.

This paper attempts to analyse this problem and build
the basis for such an evaluation instrument. The
instrument is tested against a few OO CASE tools in order
to analyse how it can be used on a larger scale for
assessing the level of automation for the UML support
embedded in the tools.

Section 2 discusses what methodologies for information
systems development are supposed to address. A set of
rules that represent a philosophy of the methodology is
expected to be embedded in CASE tools if they offer
automated support of the methodology. From this aspect
section 2.1 discusses CASE tools as methodology
companions.

Section 3 covers the problem of building an evaluation

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

1Authorized licensed use limited to: University of Westminster. Downloaded on June 14,2010 at 14:50:29 UTC from IEEE Xplore. Restrictions apply.

instrument for the UML support, and starts with an
overview of some CASE tool evaluation frameworks and
standards. Section 3.1 gives guidelines on how UML
rules, that contribute to the creation of such an instrument,
are to be found. Section 3.2 critically assesses the UML
well-formedness rules and discusses inconsistencies found
in the UML Semantics [24], giving some examples.
Section 3.3 addresses the process of extraction of the UML
rules and the way of representing them. All rules found in
the Core Elements and the Extension Mechanisms of the
UML Foundation Package [24] are listed in sections 3.4
and 3.5. In section 3.6 the evaluation instrument is defined
and the application of its simplified version is suggested.

Section 4 describes the method and results of testing the
evaluation instrument when applied to a few commercially
available OO CASE tools. Implications of the evaluations
are discussed in section 4.3. Section 5 gives conclusions
and guidelines for future research.

2. Methodologies for Information Systems
Development

The development of information systems is concerned
with the definition of a set of general steps and activities
in order to produce an effective information processing
system (Jayaratna, [5]). A methodology, as defined in
Jayaratna [5] (page 35) for information systems
development must further elaborate this definition and
represent a specific rather than general way of performing
the systems development (Peters, [21]; Wainwright et al.,
[27]). It should give a detailed and specific structure on
(i) what steps are regarded as essential,
(ii) in what order they should be performed,
(iii) how they could be carried out, and
(iv) which products/models will result from them.

If we want to claim that a particular methodology is
being used, we need to ensure that all steps of the
methodology are followed in the prescribed order.
Furthermore, methodologies are trying to help us in
structuring our ‘thinking’ from the perspective of user and
developer. This implies different philosophical
assumptions of ‘reality’ to be modelled (Jayaratna, [5]).
The result is a different philosophy and approach to the
development process. Whatever the differences among
various methodologies are, they are expected to define two
primary aspects in the systems development: process and
product. The former deals with the approach to (and
employment of) many different techniques to manage an
extremely complex task of systems development. The
example is a top-down approach and functional
decomposition of the analysis process in structured
methodologies (De Marco, [3]; Sarson and Gane, [23]).
The latter deals with different deliverables as results of
applying a particular technique or undertaking a particular
phase/stage of the development process. Both aspects:

process and product could be further elaborated towards
issues that every methodology is expected to address
(Juric, [9]):
(a) The coverage of an SDLC and its role within an

analysis and design,
(b) The set of concepts and guidelines that define all

modelling elements,
(c) The set of rules that represent the philosophy of the

methodology and are supposed to be followed,
(d) Fully described deliverables and their employment

within different models, and
(e) Notation acceptable for both users and developers.

Not many methodologies cover all these requirements,
and many users/developers face difficulties when applying
structured and OO methodologies in order to clearly
recognise (a)-(e) above. If we want to claim that a
particular methodology is being used, then (c) above, i.e.
rules of the methodology, are expected to be followed. It is
not unreasonable to assume that CASE tools, which offer
automated methodology support, should also have at least
(c) above, embedded in them.

2.1 CASE Tools as Methodology Companions

CASE tools are expected to offer automated assistance
in the development process that significantly contributes
towards improving software productivity. The first and
second generation of CASE tools addressed all problems
when supporting processes of the system development life
cycle. This includes the creation of products in the form of
various diagrams and performing consistency,
completeness and correctness checking. However, CASE
tools are still deficient in a number of important areas such
as providing support for defining new methodologies, or
providing an exchange of products resulting from different
processes expressed in different methodologies
(Mehandjiska et al., [16]). The research into the
development of an open architecture for software
environments has addressed this problem and should result
in the integration of independently developed CASE tools
(Lang, [11]; Nilsson, [18]; Papahristos and Gray, [20];
Mehandjiska et al., [15]). However, the question of CASE
tools methodology dependence remains a very important
issue that has been addressed not only by researchers, but
also by CASE tools vendors and OO practitioners.

If we consider CASE tools as methodology’s
companions, as defined in (McClure, [14]), we expect
them to implement a methodology support. This means
that they should assist us in following all rules, applied to
process and products, as prescribed by a methodology.
The support from CASE tools is provided through an
automated control of rules and an informative feedback on
the violations of rules (Hatley, [4]). Any violation of rules
may result in the CASE tool preventing a user/developer
from proceeding in a non-methodological way or simply

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

2Authorized licensed use limited to: University of Westminster. Downloaded on June 14,2010 at 14:50:29 UTC from IEEE Xplore. Restrictions apply.

issuing a warning/error message. This determines the basic
underlying philosophy of CASE tools as methodology
companions, as discussed in Hatley [4], Vessey [25] and
Juric, [6].

The process support from CASE tools should include a
guideline, encouragement or enforcement of using
prescribed steps defined by a methodology. Support for
products should assist in the creation of different diagrams
that are supposed to be as accurate/complete as possible
given the rules of a methodology. This includes both
internal and inter-product consistency checking. Hence,
‘checks’ on a methodology’s process and products are the
most important component embedded in the CASE tool.
They form the basis for any evaluation instrument that can
determine the extent to which a CASE tool supports a
particular methodology.

3. Building an Evaluation Instrument for
UML Support

Many different works have addressed the problem of
CASE tools evaluation through formal and informal CASE
tools comparison and evaluation frameworks such as
Marttiin et al. [13], Mosley [17], Mehandjiska et al., 16],
Vessey et al. [25], Vessey and Sravanapudi [26] and Juric
[6]. Not many of them explicitly address OO CASE tools
and they are not appropriate for the evaluation of UML
support. The project described in Mehandjiska et al. [16]
discusses the evaluation framework that acknowledges the
variety of different OO CASE tools available today. The
framework is based on an inheritance hierarchy of CASE
tools categories and contains more than 80 carefully
selected questions. Some questions are adopted from
Mosley [17] and all of them are classified according to the
nodes of the CASE tools hierarchy. This allows the
classification of questions along with the various types of
tools, hence the evaluation framework can be easily
extended.

The standards for classifying and evaluating CASE
tools described in Mosley [17] include six categories of
questions designed to determine how well a tool does what
it was intended to do. The assessment instrument is the
generic set of 140 questions plus a tailored set of
functional questions (the number varies from 30 to 100)
specific to the type of a tool being evaluated. Many
questions addressed tools’ functionality and the quality of
process and product support.

The evaluation instrument from Vessey et al. [25]
contained questions in the form of rules that covered many
aspects of structured analysis and design with entity
relationship modelling, including pair-wise
interrelationships between the techniques. A different
evaluation instrument defined in Juric [6] was created
before the development of the UML had been initiated. It
contained a set of rules that originated in four different OO

methodologies: OMT (Rumbaugh et al., [22]), Booch
(Booch, [1]), Shlaer-Mellor (Lang, [12]) and Coad-
Yourdon (Yourdon, [28]; Coad and Yourdon, [2]). This
evaluation instrument proved to be very difficult to apply
and interpret due to the lack of standardised OO modelling
constructs at that time, and some conflicting issues among
mentioned methodologies (Juric and Snaith, [7]).

3.1 UML Rules

This paper attempts to demonstrate how such an
evaluation instrument could be created to determine the
extent to which commercially available OO CASE tools
support the UML. The first step in developing an
evaluation instrument is to extract a set of rules for all
UML modelling constructs. The rules should constitute a
list of all UML ‘checks’ that support the development
process and products. However, the UML is defined as
being process free and not including any process/strategy
definitions. It is represented as a language that can support
any methodology for OO systems development. Despite
that, the UML covers many aspects addressed by a
methodology, stated in (b)-(e) from section 2. This helps
in the extraction of all rules that play a role of ‘checks’
when applying the UML.

All rules (particularly (c) from section 2) in previous
versions of the UML had to be extracted manually from its
semantics and notation documents (Juric, [8] and [9]). In
the current UML [24] we can see them better defined in
the form of well-formedness rules as one of three different
views of the UML metamodel. However, there are some
obstacles and inconsistencies in their specification, which
are also discussed in Juric and Song [10]. The examples
are given in the next section. This is the reason why it has
not been possible to collect all well-formedness rules
defined in the Semantics document [24] and use them
straightforwardly as part of an evaluation instrument.

3.2 UML Well-formedness Rules

The UML authors explicitly define in the current UML
[24] well-formedness rules given in OCL expressions
(Object Constraint Language Specification supplement,
[24]). The well-formedness rules are part of static
semantics defined in the UML, which are to be fulfilled by
well-formed modelling constructs from dynamic semantics
(described as abstract syntax under the headings
Semantics). Some of the well-formedness rules like
‘multiplicity’ and ‘ordered’ constraints on relationships are
defined in diagrams which are part of abstract syntax,
showing all modelling constructs and their relationships.
All these rules are defined as a set of invariants of an
instance of a metaclass that are to be satisfied for the
construct to be meaningful (page 11 from Semantics,
[24]). The well-formedness rules specify all constraints

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

3Authorized licensed use limited to: University of Westminster. Downloaded on June 14,2010 at 14:50:29 UTC from IEEE Xplore. Restrictions apply.

over attributes and associations of each modelling
construct in informal explanation and OCL expression.
However, a detailed analysis of the Semantics document
[24] revealed many discrepancies regarding what is
represented in the well-formedness rules and how they
support the abstract syntax.

The CORE Foundation Package [24] suffers from many
inconsistencies in abstract syntax, particularly when
addressing static and dynamic rules. Here are some
examples.

(1) An Association is the first modelling construct
represented in abstract syntax. Its definition in informal
language explicitly states possible rules regarding
AssociationEnds: “An Association has at least two
AssociationEnds”, or “ The same Classifier may be
connected to more than one AssociationEnds in the same
Association”. Both of these rules can be directly mapped
from the diagram (page 17, figure 6 from Semantics, [24]),
which is justified by the multiplicity constraints being
represented within an abstract syntax. However, these
rules are not present (or repeated) within the well-
formedness rules section (pages 27 and 28 from
Semantics, [24]) as we expect. Furthermore, the first rule
is repeated within ‘connection’ (which is the association
section of the Association construct’s abstract syntax).
This problem shows the inconsistency in abstract syntax
between the short informal description and the short
explanation of the modelling construct’s attributes, and
opposite role names of associations (connected to the
modelling construct itself). It also raises the question of
“what” is included in well-formedness rules if such an
important rule as the one above is omitted from them.

(2) There are more rules (this time not related to
multiplicity and ordered constraint) which are found
within a short informal description of a construct’s abstract
syntax and not represented within well-formedness rules.
An example is the definition of an Association construct
that includes the sentence “Each tuple value may appear
at most once”, or an AssociationEnd construct which
ChangeableKind attribute ‘frozen’ specifies that ”No links
may be added after the creation of the source object”.
Both of these could be very important rules to follow, but
they can not be found within any well-formedness rules
specified later within the same chapter. This problem
(including the example from (1) above) is the result of a
strict division of the UML syntax into static (well-
formedness rules) and dynamic (abstract syntax) which
immediately allows some ‘static rules’ (like multiplicity
and ordered constraints) to be declared within the
‘dynamic section’. It also allows some dynamic issues to
be represented in the form of rules that are definitely as
important as well-formedness rules, but do not find their
place within them.

(3) Furthermore, the only attribute of the Association
construct named ‘name’ is represented in abstract syntax

through the rule: “The name of Association which, in
combination with its associated Classifier, must be unique
within an enclosing namespace (usually a Package)”. This
gives a clear guideline for name uniqueness that is also
expected within well-formedness rules. It is not found
within an Association construct’s well-formedness rules
(which is expected) but within the well-formedness rules
of a Namespace construct (page 33 from Semantics, [24]).
This somehow contradicts the authors’ decision to allow
the expression of all current semantics of a modelling
construct in its superclass. It should be a ModelElement
(page 17, figure 6 from Semantics, [24]) for an
Association construct where we can impose a constraint on
its ‘name’ attribute. A very experienced practitioner can
trace the name uniqueness rule easily after reading the
Namespace abstract syntax where “A Namespace is a
ModelElement and can own other ModelElements” and
after reading well-formedness rule [4] for Association.
However, this can be a confusing issue for any attempt to
quickly map abstract syntax represented in different
diagrams and informal language, with corresponding well-
formedness rules. This problem is a consequence of the
weak structure and connection between static and dynamic
semantics of the UML modelling constructs and again
points out the role and importance of well-formedness
rules.

All points above: (1), (2) and (3) are related to the Core
Package of the UML Semantics [24]. The Extension
Mechanism modelling constructs, as a part of the
Foundation Package, show similar weaknesses in
representing well-formedness rules as the Core package.
However, all components of the Behaviour Element
Package, (Collaborations, Use Cases and State Machine)
exhibit more stable presentation of well-formedness rules.
Their abstract syntax does not contain any sentence in the
form of rules i.e. it contains definitions only. One has to
assume that all necessary rules regarding the UML
behavioural modelling constructs are contained in their
well-formedness rules.

3.3 Extracting UML Rules

In order to address the problems discussed in section
3.2, a detailed analysis of Core and Extension Mechanism
modelling constructs of the Foundation package [24] was
required. The task of extracting all UML rules consisted of
collecting all important rules found outside well-
formedness rules (from ‘abstract syntax’ and ‘semantics’)
and incorporating them into the existing set of well-
formedness rules. There are 67 rules from the Core
elements listed in section 3.4 and labelled with CE.
Section 3.5 shows that only 15 rules, labelled with EM,
are extracted from the Extension Mechanism package.
When listing all rules, bold print is used to note the
introduction of a particular modelling construct; and italic

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

4Authorized licensed use limited to: University of Westminster. Downloaded on June 14,2010 at 14:50:29 UTC from IEEE Xplore. Restrictions apply.

is used to specify the attribute name of a particular
modelling construct. Attribute values for a given
modelling construct are in upper case except ‘frozen’ and
‘addOnly’, which are in inverted commas. All modelling
construct names start with an upper-case letter and are
spelled the same way as in the UML document [24]. All
rules are grouped according to the semantics of the
modelling construct they represent. Sometimes the
additional letters a-d are needed in order to emphasise this
grouping.

If we want a list of all ‘checks’ that support all the
UML modelling constructs then we have to add the rules
from sections 3.4 and 3.5 to the set of 106 well-
formedness rules for behavioural modelling constructs
defined in the Behavioural Element package of the
Semantics document [24].

3.4 Foundation Package: CORE Elements Rules

CE1 Association may be defined between two
classifiers which are not Interface or DataType (unless
a DataType is part of a composite aggregation).

CE1a The name of Association (in combination with
associated Classifier) must be unique (within enclosed
Namespace).

CE1b Association must contain at least TWO
AssociationEnds.

CE2 The name of AssociationEnd must be unique
within an Association.

CE2a Each AssociationEnd is part of one Association
only.

CE2b The same Classifier may be connected to more
than one AssociationEnd within the same Association.

CE3 At most one AssociationEnd may be aggregation
and composition.

CE3a If Association has 3 or more AsscoiationEnds than
no AssociationEnd may be an aggregation
/composition.

CE3b The ‘part’ of an aggregate may be contained in
other aggregates.

CE3c The ‘part’ owned by the composite may not be
‘part’ of any other composite.

CE4a If changeable attribute of an AssociationEnd is
specified as ‘frozen’ no links may be added after the
creation of the source object.

CE4b If changeable attribute of an AssociationEnd is
specified as ‘addOnly’ links may be added at any time
from the source object, but once created a link may not
be removed before at least one participating object is
destroyed.

CE5 If ordering attribute of an AssociationEnd placed
on the target end of Association, is specified

(AssociationEnds are ordered within Association) the
ordering must be determined and maintained by
Operations that add links.

CE6 AssociationClass can not be defined between
itself and any other Classifier.

CE6a The names of the AssociationEnds and
StructuralFeature of AssociationClass do not overlap.

CE7a If changeable attribute of an Attribute is specified
as ‘frozen’ the value may not be altered after the object
is instantiated and its value initialise. No additional
values may be added to a set.

CE7b If changeable attribute of an Attribute is specified
as ‘addOnly’(assuming that multiplicity is not fixed to
a single value) additional values may be added to a set
of values. However, once created a value may not be
removed or altered.

CE8 No objects can be instantiated from an abstract
Class.

CE8a If Class is concrete all the Operations of Class
should have a realising method in the full descriptor.

CE9 Objects instantiated from a Class do not contain
values corresponding to BehaviouralFeatures or class-
scope Attributes, but all Objects of a Class share the
definitions of the BehaviouralFeatures from the Class.

CE10 Class may realise zero or more Interfaces (its full
descriptor must contain every Operation from every
realised Interface).

CE10a One Interface may be offered by more than one
Class.

CE11 For each an Operation in an Interface provided by
the Class, the Class must have a matching Operation.

CE12 A Class can only contain Classes, Associations,
Generalisations, UseCases, Constraints, Dependencies,
Collaborations and Interfaces as a Namespace.

CE13 No BehaviouralFeature, of the same kind may
have the same signature in a Classifier.

CE13a No Attributes and no opposite AssociationEnds
may have the same signature within a Classifier.

CE13b The name of an Attribute may not be the same as
the name of an opposite AssociationEnd or a
ModelElement contained in the Classifier.

CE13c The name of an opposite AssociationEnd may not
be the same as the name of an Attribute or a
ModelElement contained in the Classifier.

CE14 An Interface can only contain Operations
CE14a An Interface can not contain any Classifier.

CE15 All Features defined in an Interface are public.

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

5Authorized licensed use limited to: University of Westminster. Downloaded on June 14,2010 at 14:50:29 UTC from IEEE Xplore. Restrictions apply.

CE16 An Interface can not be used as the type of a
parameter.

CE17 GeneralisableElement may only be a subclass of
GeneralisableElement of the same kind.

CE18a If isAbstract attribute of GeneralisableElement is
set to TRUE then the Generalisable element is
incomplete (abstract) and is not instantiable.

CE18b If isAbstract attribute of GeneralisableElement is
set to FALSE then the Generalisable element is
complete (concrete).

CE19a If isLeaf attribute of GeneralisableElement is set to
TRUE then the Generalisable Element is descendent
and may not add descendents.

CE19b If isLeaf attribute of GeneralisableElement is set to
FALSE then the Generalisable Element may add
descendents whether or not has any descendent at the
moment.

CE20a If isRoot attribute of GeneralisableElement is set to
TRUE then the Generalisable element is ancestor and
may not add ancestors.

CE20b If isRoot attribute of GeneralisableElement is set to
FALSE then the Generalisable element may add
ancestors whether or not has any descendent at the
moment.

CE21 Circular inheritance is not allowed.

CE22 The supertype must be included in the Namespace
of the GenralisableElement.

CE23 Generalisation (as a directed inheritance
relationship) can contain a discriminator which name
need not be unique (the empty string is considered just
as another name).

CE24 Every ModelElement except a root element must
belong to exactly one Namespace (the pathname of
Namespace names starting from the system provides a
unique designation for every ModelElement).

CE25 If a contained element which is not Association or
Generalisation has a name then the name must be
unique in the Nmaespace.

CE26a If isQuery attribute of BehaviouralFeature is set
to TRUE an execution of the feature leaves the state of
the system unchanged.

CE26b If isQuery attribute of BehaviouralFeature is set to
FALSE an execution of the feature indicates that side
effect may occur.

CE27 The entire signature of BehaviouralFeature (name
and parameter list) must be unique within its
containing Classifier (All Parameters should have
unique names).

CE28 Each Operation must contain a list of values that
are compatible with the types of the Parameter.

CE29 The type of the Parameter should be included in
the Namespace of the Classifier.

CE30a If ownerScope attribute of Feature is set to
INSTANCE then each Instance of the Classifier holds
its own value for the Feature.

CE30b If ownerScope attribute of Feature is set to
CLASSIFIER then there is just one value of the
Feature for the entire Classifier.

CE31a If a visibility attribute of Feature is set to PUBLIC
than any outside Classifier with visibility to the
Classifier can use the Feature.

CE31b If a visibility attribute of Feature is set to
PROTECTED than any descendent of the Classifier
can use the Feature.

CE31c If a visibility attribute of Feature is set to
PRIVATE than any the Classifier itself can use the
feature.

CE32 An Operation as a BehaviouralFeature (applied to
Instances of the Classifier) must have a signature
(possible parameters and return values).

CE33a If a concurrency attribute (semantics of concurrent
calls to a passive instance, isActive=FALSE) of an
Operation is set to SEQUENTIAL, only one call to an
Instance (on any sequential Operation) may be
outstanding at once.

CE33b If a concurrency attribute of an Operation is set to
GUARDED, only one call of all calls occurring
simultaneously is allowed to commence. The others are
blocked until the performance of the first Operation is
complete.

CE33c If a concurrency attribute of an Operation is set to
CONCURRENT all calls may proceed concurrently
with correct semantics. Concurrent Operations must
perform correct in the case of simultaneous sequential
or guarded Operations (or concurrent semantics can not
be claimed).

CE34a If isPolymorphic attribute of Operation is set to
TRUE then Methods can be defined on subclasses.

CE34b If isPolymorphic attribute of Operation is set to
FALSE then the Method realising the Operation in the
current Classifier is inherited unchanged by all
descendents.

CE35 The Operation must be owned by the Classifier
that owns the Method or be inherited by it.

CE36 The signature of the Method should be the same as
the signature of the realised Operation.

CE37 The visibility of the Method should be the same as
for the realised Operations.

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

6Authorized licensed use limited to: University of Westminster. Downloaded on June 14,2010 at 14:50:29 UTC from IEEE Xplore. Restrictions apply.

CE38 In Dependency relationship the presence of client
ModelElement requires the presence and the
knowledge of the supplier ModelElement.

CE38a Both client and supplier ModelElements must exist
at the same level of abstractions.

CE38b A Dependency indicates a semantic relationship
among ModelElements themselves rather than their
Instances.

3.5 Foundation Package: EXTENSION
Mechanisms Rules

EM1 Constraints, Stereotypes and TaggedValues can
be applied to ModelelEments referred as baseClass in
the UML metamodel and can not be applied to
Instances.

EM2 Any ModelElement can be marked by at most on
Stereotype, but any Stereotype can be constructed as a
specialisation of numerous Stereotypes.

EM2a The presence of a Stereotype may impose implicit
Constraints on the ModelElement and may require the
presence of specific TaggedValues.

EM3 A ModelElement may have a set of Constraints.
EM3a The Constraint is to be evaluated when the system

is stable.

EM4 A Constraint attached to a Stereotype must not
conflict with Constraints on any inherited Stereotype,
or associated with the baseClass.

EM4a A Constraint attached to a stereotyped
ModelElement must not conflict with any Constraints
on the attached classifying Stereotype, nor with the
Class (the baseClass of the ModelElement).

EM4b Constraint attached to a Stereotype will apply to
all ModelElements classified by that Stereotype and
must not conflict with any constraints on the attached
classifying Stereotype, nor with the Class (the
baseClass) of the ModelElement.

EM5 Stereotype names must not clash with any
baseClass name.

EM5a Stereotype names must not clash with the names of
any inherited Stereotype.

EM5b Stereotype names must not clash in the meta-class
Namspace nor with the names of any inherited
Stereotype, nor with any baseClass names.

EM5c The baseClass name must be provided; icon is
optional and specified in an implementation specific
way.

EM5d Tagg names attached to Stereotype must not clash
with meta-attribute namespace of the appropriate
baseClass ModelElement nor with Tagg names of any
inherited Stereotypes.

EM6 Taggs associated with ModelElement (directed via
a property list or indirectly via a Stereotype) must not
clash with any meta-attribute associated with the
ModelElement.

EM7 A ModelElement must have at most one
TaggedValue with a given tag name

3.6 The Evaluation Instrument

The rules represented in sections 3.4 and 3.5 cover all
modelling constructs defined in the Core and Extension
Mechanisms of the UML Foundation package [24]. If we
add 106 well-formedness rules from the Behavioural
Elements package [24], then the total number of rules will
be 188. This comprises only one aspect of the evaluation
instrument. The way these rules are implemented as
‘checks’ in CASE tools should also be considered. This
may include various questions like: “when/how does a
‘check’ occur” and “what type of feedback the CASE tool
provides”, as discussed and used in Vessey [25] and Juric
[6].

Hence the complete evaluation instrument requires that
for each ‘check’ the following be considered:
(1) WHEN a ‘check’ occurs:

(a) When creating a modelling construct/diagram
(b) When saving a modelling construct/diagram
(c) When exiting a diagram where a modelling

construct is used
(2) HOW a ‘check’ occurs:

(a) Automatically
(b) On request

(3) WHAT is the feedback when implementing a ‘check’:
(a) Warning is issued
(b) Error is issued

In order to test such an evaluation instrument against
OO CASE tools it has been decided to limit the number of
‘checks’ to 82 UML rules that are listed in sections 3.4 and
3.5 They cover the creation of class/object diagrams only.
Due to lack of time and for reasons of simplicity, only
3(a)(b) from the above is considered in the testing. Hence,
for each rule it was asked:
(i) Is this rule embedded as a ‘check’ in a tool?
(ii) If YES, consider WHAT feedback a tool provides:

warning or error.

4. Applying the Evaluation Instrument

The authors have aimed to test the evaluation
instrument by applying it to the leading OO CASE tools,
which contributed to previous research (Juric, [6]).
However, on this occasion only two OO CASE tools
vendors responded positively: SELECT Software Tools
with their SELECT Enterprise and Popkins Software &
Systems with their System Architect. An important role in

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

7Authorized licensed use limited to: University of Westminster. Downloaded on June 14,2010 at 14:50:29 UTC from IEEE Xplore. Restrictions apply.

the evaluation has been given to their consultants. They
were analysing the evaluation instrument with the authors
and answering questions (as suggested in section 3.6) in
order to cut the time required for an independent
evaluation of each tool by someone unfamiliar or not
equally familiar with both tools. Unfortunately,
RationalRose (Rational) and ObjectTeam (Cayenne
Software) consultants declined the help needed when
evaluating and approving the results of the evaluation, due
to lack of time and non-availability of their consultants.

4.1 System Architect

System Architect from Popkins Software & Systems
supports a range of methodologies, from structured to
object-oriented. Specific rule ‘checks’ are provided for
each notation, including UML. The rules from the
evaluation instrument may be compared with those
provided in System Architect. The following 11, out of 82
rules from the evaluation instrument, are examples of
‘checks’ applied by System Architect: CE1a, CE1b, CE2a,
CE3, CE3b, CE6, CE9, CE10, CE10a, CE21, and CE27.

The main philosophy of this tool is to give as much
flexibility as possible to the user/developer when applying
the UML. This means that the number of ‘checks’
embedded in the tool, that are enforced by the tool and can
not be over-ridden, is relatively small. However, the
user/developer has the opportunity to implement and
enforce a quite significant number of other optional
‘checks’:
(i) Prescribed in the UML but deliberately not enforced

by the tool (e.g. a ‘warning’ message is issued!), or
(ii) User implemented (important for the modelling from

the user’s perspective).
The default UML rules checking in System Architect

does not support all of the rules in the evaluation
instrument. However, the rules checking mechanisms
allow additional ‘checks’ to be written so that almost all
82 rules from the evaluation instrument could be covered.
Furthermore, it is possible to identify additional modelling
rules implemented by System Architect but not identified
in the evaluation instrument (e.g. “each class must have at
least one operation”). System Architect also enforces more
‘checks’ that are covered in the context of general input
and storage mechanisms (like ‘drop’ and ‘drag’ from an
allowed list), which might be included in (i) and (ii) above
and are applicable in some circumstances.

4.2 SELECT Enterprise

SELECT Enterprise from SELECT Software Tools
supports the UML (including Jacobson OOSE and OMT)
and some structured analysis and design methodologies. It
exhibits a specific philosophy in the OO development
process, which resulted in many ‘checks’ being embedded

in the tool. This means that many ‘checks’ described in the
evaluation instrument, plus some other ‘checks’ that are
not contained in it, are enforced by the tool (issuing an
error when a particular rule is violated or when a particular
checking is initiated). These enforced ‘checks’ can not be
changed or over-ridden but they can be extended if
required by the user/developer.

The following 30, out of 82 rules represented in the
evaluation instrument are examples of ‘checks’ embedded
in SELECT Enterprise: CE1, CE1b, CE2, CE2a, CE3,
CE3a, CE3b, CE6, CE13, CE13a, CE17, CE18a, CE18b,
CE21, CE24, CE25, CE26a, CE26b, CE27, CE30a,
CE30b, CE31a, CE31b, CE31c, CE34a, CE34b, CE35,
CE38, EM2, and EM5c.

The following 6 rules are also embedded in SELECT
Enterprise: CE2b, CE10, CE10a, CE15, CE23, and EM3,
but their roles are different from the set of 30 rules
specified before. They do not enforce but they do allow
some modelling elements to be constructed in a particular
fashion. For example rule CE10a states that “One
Interface may be offered by more than one Class”. The
tool will simply allow this and will follow the UML
modelling principles. Rule CE23 which states that
“Generalisation can contain a discriminator which name
need not be unique” will also be supported by SELECT
Enterprise and exclude the name uniqueness in this
particular case.

Some of the rules from the evaluation instrument are
not present in SELECT Enterprise for various reasons:
(i) Not considered to be ‘vital’ for representing the

philosophy of the UML support given by the tool (e.g.
rules CE20a, CE20b), or

(ii) Not clear enough to be implemented (e.g. rules
CE38a, CE29), or

(iii) Not very desirable in the modelling process practised
with SELECT Enterprise (e.g. rules CE16, CE29).

4.3 Interpretation and Implications of Results

The results show that System Architect applies 13% and
SELECT Enterprise enforces 46% ‘checks’, specified as
rules in the evaluation instrument. However, System
Architect allows all other rules - that are not ‘checked by
default’ - to be implemented to customise the tool. This
might also include ALL rules from the evaluation
instrument. In contrast SELECT Enterprise ‘checks’ by
default many rules from the evaluation instrument, but
does not allow some other rules from the evaluation
instrument to be embedded in the tool. This tool could be
customised by extending and not over-riding some of the
embedded ‘checks’. The set of rules from the evaluation
instrument, which are checked by default in both tools,
overlaps: all ‘checks’ (except rule CE1a) found in System
Architect are also embedded in SELECT Enterprise.

These results could have implications for OO

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

8Authorized licensed use limited to: University of Westminster. Downloaded on June 14,2010 at 14:50:29 UTC from IEEE Xplore. Restrictions apply.

practitioners and CASE tools vendors. If an OO CASE
tool has the majority of rules from the evaluation
instrument embedded (i.e. rules that are checked by
default and can not be over-ridden), it will exhibit a ‘strict
philosophy’ and disciplined approach in applying the
UML. On the other hand a flexible tool will not enforce
many ‘checks’ and will allow different rules to be
embedded in different circumstances. The evaluation
instrument, as described in section 3.6, also gives some
other criteria that polarise OO CASE tools into restrictive,
guided and flexible tools, as in Hatley [4], Vessey [25] and
Juric [6]. An experienced OO practitioner might prefer a
flexible tool that will allow freedom in the development
process, in contrast to a beginner who might benefit from
the restrictive or guided tool when learning and applying
the UML. In order to develop and clearly specify the tool’s
philosophy as UML companion, OO CASE tools vendors
could use the same guideline. This also helps users to buy
the right tool.

Without guidelines from the UML authors, it could be
difficult to define the minimum set of rules that an OO
CASE tool should have embedded when supporting the
UML. In addition, although Rational was instrumental in
the creation of the UML, it has been adopted as part of the
OMG’s standards drive. It is in the public domain now,
and Rational does not have any criteria for OO CAE tools
vendors to ensure they meet UML certification. One has to
assume that the number of rules and the way they are
implemented in a tool, as specified in the evaluation
instrument, will determine the philosophy of the tool and
serve as a guideline when deciding when and how to use
which tool.

5. Conclusions and Future Research

This paper attempts to create a basis for an evaluation
instrument that can measure the extent to which
commercially available OO CASE tools support the UML.
The instrument itself should consist of (a) a set of the
UML rules that are supposed to be present within tools in
the form of ‘checks’ and (b) the way the rules are
implemented. In order to create a set of rules, the
UML[24] has been consulted and the process of extracting
them appears not to be a straightforward task. Despite
having explicitly defined UML well-formedness rules
there are inconsistencies within the document when
defining them, which is particularly evident in the UML
Core Foundation Package [24]. This is a serious obstacle
when extracting all rules: it was not possible to rely on
well-formedness rules only (defining static semantics).
There are rules found within dynamics semantics of the
modelling constructs that should not be missed. The
solution is in the UML document that includes a section on
all rules (well-formedness rules and rules that cover
dynamics) that are to be fully stated, separated from

abstract syntax and referred from abstract syntax whenever
necessary. Rules should also be listed in hierarchical order
as the modelling constructs are represented in the diagrams
of the UML documentation set. This would improve the
readability of the whole UML Semantics document and
would be of significant value to OO CASE tools vendors.

The rules extracted in this paper are applicable in the
evaluation process. Many of them can be and are
embedded in OO CASE tools and many of them are even
enforced by tools. However, the list of rules represented in
sections 3.4 and 3.5 is not exhaustive and does not cover
all rules that are expected to be available when creating
class/object diagrams. This problem should be addressed
by the UML authors. It also requires a careful comparison
of well-formedness rules from the Core and Behavioural
Elements Packages [24] in order to capture the rules that
might have been missed.

The evaluation instrument defined in this paper proved
to be applicable in the process of measuring how OO
CASE tools support the UML. There is a possibility of
applying it on a larger scale. It will polarise OO CASE
tools as having a different underlying philosophy: from
very flexible tools that do not enforce many ‘checks’ (e.g.
System Architect may exclude the enforcement of rules
significantly) to restrictive tools that enforce many
‘checks’ and give a strict guideline on the UML (e.g.
SELECT Enterprise enforces almost 50% of the ‘checks’
listed in the evaluation instrument).

The first task in future work is to include the collection
of all UML rules: 82 from sections 3.4 and 3.5, and 106
well-formedness rules explicitly defined for the
behavioural modelling constructs in the UML Semantics
document. Furthermore, all these rules should be
‘translated’ from strict UML syntax into vocabulary
suitable for the wider OO community (not exclusively for
OO practitioners comfortable with UML terminology).
This requires careful analysis of all rules in order to
discuss potential redundancy amongst them. Rules can also
be categorised according to a particular modelling
construct/diagram they cover. They should include an
additional completeness /consistency checking between
different diagrams/ models.

Such a collection of rules could be used in many
different ways. It could be incorporated into existing
evaluation frameworks, such as one described in
Mehandjiska et al. [16] and find its place within more than
one node of their CASE tools type classification hierarchy.
It could also be used as the component of a stand-alone
evaluation instrument, where for each rule all three aspects
of rule implementation in a CASE tool are considered (as
specified in (1)(a)(b)(c), (2)(a)(b) and (3)(a)(b) from
section 3.6). This could be done on a large scale and
include as many OO CASE tools as possible. It would be
interesting to see how this evaluation instrument might
contribute to the criteria that OVUM employs in

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

9Authorized licensed use limited to: University of Westminster. Downloaded on June 14,2010 at 14:50:29 UTC from IEEE Xplore. Restrictions apply.

evaluating CASE products [19]. This is particularly
applicable to the analysis/ design/ construction sections of
their assessment method.

Acknowledgements

We wish to acknowledge the assistance of the following
consultants: Eugene McSheffrey and James Midgley from
Popkins Software & Systems and Mark O’Hare from
SELECT Software Tools. Without their help this paper
could not have been accomplished.

References:

[1] Booch, G., Object Oriented Analysis and Design with
Applications, The Benjamin Cummings Publishing
Company, Wokingham UK, 1994

[2] Coad, P. and E. Yourdon Object Oriented Analysis,
Yourdon Press, 1990

[3] De Marco, T., Structured Analysis and System Specification,
Yourdon Press New York US,(1979)

[4] D.J. Hatley, “CASE Tool Evaluation: A real-time example”,
Proceedings of CASE ‘88, Boston 1988, pp. 28-32

[5] Jayaratna, N., Understanding and Evaluating Methodologies
NIMSAD: A Systematic Framework, McGraw Hill Book
Company, 1994

[6] Juric, R., OO Methodologies and OO CASE Tools, To
Which Extent Do Commercially Available OO CASE Tools
Support OO Methodologies, Technical report, Southbank
University, 1995

[7] R. Juric, and J. Snaith, “A comparative analysis of Booch
‘93 and OMT object oriented methodologies”, In D. Kalpic,
V Hljuz-Dobric (eds.) Proceedings of the 17th International
Conference on Information Technology Interfaces ‘95, (Pula,
Croatia), Zagreb: University Computing Centre, June 1995,
pp. 559-609

[8] R. Juric, “the unified method rules”, In M.M. Tanik, F.B.
Bastiani, D. Gibson, P.J. Fielding (eds.) Proceedings of the
Second World Conference on Integrated Design and Process
Technology, (Austin, Texas, US) IDPT Volume 2, Austin:
Society for Design and Process Science Press, December
1996, pp. 272-279

[9] R. Juric, “The UML rules”, accepted for publication in ACM
Software Engineering Notes (SIGSOFT) in 1998

[10] R. Juric, and I.Y. Song, “The assessment of OO modelling
elements of the UML 1.1”, in T. Ozsu, A. Dogac, O. Ulusoy
(eds.) Proceedings of the third biennial world conference on
Integrated Design and Process Technology, (Berlin,
Germany) IDPT Volume 2, Austin, Texas, US: Society for
Design and Process Science Press, July 1998, pp. 464-473

[11] B. Lang, “CASE support for the software process: advances
and problems”, in A. Lamsweerde and A. Fugetta (eds.)
Proceedings of ESEC ’91, Springer-Verlag Berlin, 1991

[12] N. Lang, “Shlaer-Mellor object-oriented analysis rules”,
ACM SIGSOFT, Software Engineering Notes, Vol.18, No.1,
1993, pp.54-58

[13] P. Marttiin, M. Rossi, V. Tahvanainen, and K. Lyytinrn, “A
comparative review of CASE shells: a preliminary
framework and research outcomes”, Information and
Management, Elesevier Science Publishers B. V., 1993

[14] C. McClure, “The CASE for structured development”, PC
Technical Journal, August 1988, pp. 51-67

[15] D. Mehandjiska, D. Page, and M.D. Choi, “The
development of an intelligent object oriented CASE tool”, in
Patel D, Sun Y and Patel S (eds.) Proceedings of the first
International Conference on Object Oriented Information
Systems (London, December), Springer-Verlag, December
1994, pp. 215-226

[16] D. Mehandjiska, D. Page, and M.D. Choi, “Meta-modelling
and methodology support in object oriented CASE tools”, in
Patel D, Sun Y and Patel S (eds.) Proceedings of the third
International Conference on Object Oriented Information
Systems (London), Springer, December 1996, pp. 370-
386,1996

[17] V. Mosley, “How to assess tools efficiently and
quantitatively”, IEEE Software, Vol 8, No 3, 1992, pp. 160-
163

[18] E. Nilsson, “CASE tools and software factories”, in Goos,
G. and Hartmanis, J. (eds.) Advanced Information Systems
Engineering, CaiSE ’90, Springer-Verlag, Berlin, 1990

[19] OVUM Evaluates CASE Products, editor Budd M. OVUM
Ltd, March, 1998

[20] S. Papahristos, and W. Gray, “Federated CASE
environment”, in G. Goos, and J. Hartmanis, (eds.)
Advanced Information Systems Engineering, CaiSE ’90,
Springer-Verlag, Berlin, 1991

[21] Peters, L. (1988) Advanced Structured Systems Analysis and
Design. Prentice Hall, New Jersey, US, 1988

[22] Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W.
Lorensen, Object Oriented Modelling and Design, Prentice
Hall International,1991

[23] Sarson, T. and C. Gane, Structured Systems Analysis: Tools
and Techniques, Prentice Hall, New York, US, 1979

[24] The UML 1.1 Documentation set, Rational Corporation,
September, 1997,

[25] I. Vessey, S.L.,Javenpaa, and N. Tranctinsky, “Evaluation
of vendors products: CASE tools as methodology
companions”, Communications ACM, Vol 35,No 4, 1992,
pp.91-105

[26] I. Vessey, and A.P. Sravanapudi, “CASE tools as
collaborative support technologies”, Communications ACM,
Vol.38, No.1, 1995, pp.83-95

[27] Wainwright, M., D. De Hayes, J. Hoffer, and W. Perkins,
Managing Information Technology, Macmillan Publishing
Company, UK, 1991

[28] Yourdon, E., Object Oriented System Design, An Integrated
Approach, Prentice Hall International, Inc., 1991

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

0-7695-0001-3/99 $10.00 (c) 1999 IEEE

Proceedings of the 32nd Hawaii International Conference on System Sciences - 1999

10Authorized licensed use limited to: University of Westminster. Downloaded on June 14,2010 at 14:50:29 UTC from IEEE Xplore. Restrictions apply.

