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Augmenting evidence suggests that such is the functional dependance of neural stem
cells (NSCs) on the vasculature that they normally reside in “perivascular niches”.
Two examples are the “neurovascular” and the “oligovascular” niches of the adult
brain, which comprise specialized microenvironments where NSCs or oligodendrocyte
progenitor cells survive and remain mitotically active in close proximity to blood vessels
(BVs). The often observed co-ordination of angiogenesis and neurogenesis led to these
processes being described as “coupled”. Here, we adopt an evo-devo approach to
argue that some stages in the life of a NSC, such as specification and commitment,
are independent of the vasculature, while stages such as proliferation and migration
are largely dependent on BVs. We also explore available evidence on the possible
involvement of the vasculature in other phenomena such as the diversification of NSCs
during evolution and we provide original data on the senescence of NSCs in the
subependymal zone stem cell niche. Finally, we will comment on the other side of the
story; that is, on how much the vasculature is dependent on NSCs and their progeny.

Keywords: neural stem cells, vasculature, blood vessels, neurogenesis, proliferation, differentiation, migration,
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INTRODUCTION

The observation that neurogenesis and angiogenesis are seasonally coordinated in the brain of
songbirds (Louissaint et al., 2002) produced the first evidence on the existence of a cross-talk
between neural stem cells (NSCs) and blood vessels (BVs). More recently, it was shown that
endothelial cells control the function of adult brain NSCs via direct cell contact and diffusible
signals (Ottone and Parrinello, 2015). But is this the truth and nothing but the truth? The first
neurons and glia appeared in animals that had no vasculature (Satterlie, 2015) and in early
neurodevelopmental stages of mammals NSCs emerge and form the neural tube in the absence of
vascularization. This strongly suggests that NSCs can exist and function in the absence of BVs and
raises the challenging question: how much does the existence and the function of NSCs depend on
the vasculature?

To address this question in a systematic and comprehensive way we defined the
major functional stages in the life of a NSC, informed both by evolution and development
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FIGURE 1 | The role of the vasculature in the life of a neural stem cell (NSC). In this graphic illustration, the different stages in the life of a NSC are shown and
the involvement of the vasculature is depicted by the distance of the cells from the blood vessels (BVs). For example, specification and commitment of NSCs appear
to happen away from the vessels, whilst proliferation and migration in close proximity.

(Figure 1): (i) specification of NSC identity from earlier
pluripotent—e.g., embryonic or ancestral stem cells;
(ii) proliferation/diversification, during which the pool of NSCs
is expanded and becomes heterogeneous; (iii) commitment to
a specific fate (such as neuronal or glial); (iv) migration and
finally; (v) differentiation. During stage (iii) NSCs become, or
give rise to, neural progenitors, and overall migration can be
minimal or absent.

GENERALIZATIONS

The In Vitro Life of NSCs
Neural stem cell culture protocols (iPSCs, primary cells, cell
lines) have proven that all stages in the life of a NSC can be
recapitulated in vitro. Embryonic or induced stem cells can be
programmed to adopt NSC fate and can be differentiated into
a range of neuronal and glial cell types. This, obviously, does
not exclude the possibility that BVs or their ancestral systems
are necessary in vivo, especially as cell culture media are rich in
components that are provided by BVs in the tissue. Endothelial
cells have been found to enhance neurogenesis in many cell
culture assays, but few studies have gone the extra mile to directly
link these in vitro results to the role of endothelial cells in the live
organism (Shen et al., 2004; Androutsellis-Theotokis et al., 2010).

Main Mechanisms of NSC-BV Interaction
NSC-BV interaction can be achieved through three different,
but possibly co-operating, mechanisms. First, via direct contact
between NSCs and BV components, such as endothelial cells
and perivascular extracellular matrix (Javaherian and Kriegstein,
2009; Ottone et al., 2014). Second, via diffusible signals generated
by vascular and perivascular cells, such as in the case of
endothelium-derived neurotrophin-3 (Delgado et al., 2014).
Third, via diffusible signals that BVs transport but don’t
generate themselves. In small organisms, such as planarians,
nutrients can be diffused directly from the environment, and in

insects NSCs are directly bathed in the hemeolymph (Limmer
et al., 2014; Spéder and Brand, 2014). In larger animals blood
circulation is required for necessary factors to reach their target
areas. One such example, crucial for NSCs, is insulin (Masjkur
et al., 2012). Recently we have identified a possible fourth
mechanism, in which the function of NSCs is controlled by
platelets (a circulatory element), possibly via active mediation
by endothelial cells (elements of the BV structure; Kazanis et al.,
2015).

What is the Nature of a NSC?
It remains challenging to define what a NSC is and when
it is reduced to neural progenitor status (exhibiting a more
restricted potential). Here, we adopt an extended version of
the unified hypothesis (Alvarez-Buylla et al., 2001), according
to which the cardinal NSC properties are found equally
in primitive/early NSCs with a neuroepithelial-like phenotype,
in more developed cells with a radial glial phenotype and in
some species (mostly in mammals), in mature cells with an
astroglial phenotype (Figure 1). A surprising deviation was
recently reported in the adult crayfish brain, in which the
neurogenic stem cell pool does not contain bona fide NSCs
but is constantly replenished from the hematopoietic system.
Vascular extensions of the cerebral artery facilitate this process
and this is an intriguing example of vessel-dependent support
of neurogenesis (Chaves da Silva et al., 2013; Benton et al.,
2014).

THE ROLE OF THE VASCULATURE

Specification
The in vitro (e.g., from iPSC differentiation or trans-
differentiation experiments) and in vivo (e.g., from early
embryonic developmental stages, or from evolutionary evidence
based on zoological observations) data currently available
indicate that the specification of pluripotent stem cells towards
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a neural identity does not depend on any form of interaction
with some type of vasculature. The first neuron-like sensory cells
and primitive nervous systems appeared in species that lacked
BVs (Jékely et al., 2015) and the specification of neuroectoderm
and of neuroepithelial cells in mammals marginally precedes
the angiogenic specification of mesoderm in the forebrain
(Vasudevan et al., 2008; Javaherian and Kriegstein, 2009).
Nevertheless, after the closure of the neural tube, the primitive
neuroepithelium remains in contact with a CSF-like fluid that is
partly constituted by the early BV network of deeper layers (Lun
et al., 2015).

Proliferation/Diversification
As soon as NSCs become specified the processes of self-
renewal and expansion are initiated. Low levels of proliferation,
adequate for the generation of single neurons and glia and for
the construction of primitive neuronal networks and of the
early neural tube, can occur in the absence of vascularization
(Rodriguez Celin et al., 2015). The emergence of larger and
more complicated nervous systems required higher levels of
proliferation in embryonic neural stem and progenitor cells,
and this was partly achieved through their diversification.
The evolution of the neocortex was facilitated by the appearance
of radial glial-type NSCs (see ‘‘What is the Nature of a NSC?’’
Section) that exhibit high self-renewing potential and generate
transit amplifying progenitors that significantly increase the cell-
generation capacity per initial NSC. Gyrenecephalia—mainly
observed in primates—is also correlated with the addition of
outer subventricular zone progenitors (Florio and Huttner,
2014). This evolutionary process of expansion of the embryonic
NSC pool through diversification has not been cell-autonomous,
with the embryonic microenvironment (the extracellular matrix,
for example) playing a crucial role (Garcion et al., 2004;
Loulier et al., 2009; Fietz et al., 2012; Pollen et al., 2015).
However, only limited evidence exists to suggest a contribution
of the vasculature. The chicken germinal cortical zones remain
largely a-vascular (Rodriguez Celin et al., 2015) and in
mice, even though BVs appear at the time of expansion of
the neuroepithelial cell pool, only transit amplifying neural
progenitors proliferate in close proximity to them (Vasudevan
et al., 2008; Javaherian and Kriegstein, 2009). Nevertheless,
in both examples the long basal processes of radial glia
remain in constant contact with BVs positioned deeper in
the tissue (Vasudevan et al., 2008; Rodriguez Celin et al.,
2015) a feature shared by adult NSCs (Mirzadeh et al.,
2008).

In the postnatal mammalian brain active NSCs survive
in specialized NSC niches (Kazanis, 2013) and accumulating
evidence points to the vasculature as an important element
of these microenvironments (Goldman and Chen, 2011). The
BV bed in the NSC niche of the subependymal zone (SEZ-
located at the lateral walls of the lateral ventricles) is different
from all neighboring areas: the density of BVs is higher and
vessels are positioned differently in respect to the plane of
the ventricle (Figures 2C,E; Kazanis et al., 2010; Culver et al.,
2013). Furthermore, BVs are more leaky (Tavazoie et al., 2008)

and blood flow is slower, suggesting the existence of hypoxic
conditions (Culver et al., 2013). This finding is consistent
with reports revealing enhanced efficiency in culturing neural
progenitors under hypoxia (Stacpoole et al., 2013). On the
other hand, we have shown that in evolution—for example,
when comparing rodent brains of different sizes—the number
of adult NSCs that populate the niche correlates strictly with
the number of ependymal cells and not with the volume of the
niche that would reflect the volume of the vasculature (Kazanis
and ffrench-Constant, 2012). This strengthens the hypothesis
that during evolution/development the role of the vasculature
becomes crucial for NSCs after they have been established in the
system. Adult NSCs remain in a stage of quiescence (Doetsch
et al., 1999). We have shown that NSCs are preferentially
positioned next to the ependyma (Kazanis et al., 2010; Kazanis
and ffrench-Constant, 2012), which produces pro-neurogenic
signals such as noggin (Lim et al., 2000). However, recent
experimental work revealed that NSC quiescence is controlled
via direct cell-to-cell contacts with endothelial cells (Ottone
et al., 2014) and via the activity of diffusible endothelium-
derived factors such as neurotrophin-3, angiopoietins 1 and 2
and placental growth factor 2 (PlGF-2; Masjkur et al., 2012;
Delgado et al., 2014; Crouch et al., 2015; see also reviews
of Goldman and Chen, 2011; Ottone and Parrinello, 2015).
In contrast, the mitotically active transit amplifying progenitors
are physically located in close proximity to BVs and specifically
in domains void of astrocytic endfeet and pericytes (Mirzadeh
et al., 2008; Shen et al., 2008; Tavazoie et al., 2008). However,
our work also indicates that the proximity to BVs cannot
be the only factor controlling adult neural progenitor activity
because within the narrow architecture of the niche mitotic
cells are often positioned only at the side of BVs facing
the lateral ventricle (Kazanis et al., 2010) while numerous
proliferating progenitors can be also found away from BVs
(Figures 2A,B).

In homeostatic conditions the majority of cells generated in
adult niches die via apoptosis (Morshead and van der Kooy, 1992;
Morshead et al., 1998). An alternative pathway is senescence:
the exit from the cell cycle without differentiation. Senescence
has not been properly investigated in adult NSCs, with the
exception of one report on oligodendrocyte progenitor cells
entering senescence during ageing (Kujuro et al., 2010). We and
others have observed that a small fraction of adult NSCs show
signs of senescence when cultured in vitro (Figure 2; Ross
et al., 2008). We have also reported that senescent cells can be
detected in the ventral domain of the SEZ even in young adult
rats (Kazanis et al., 2013) and that in the same area normal
mitotic activity and response of NSCs to injury are significantly
weaker when compared to dorsal domains (Kazanis et al., 2013).
Furthermore, the occurrence of senescent cells spreads dorsally
over time (Figure 2), a phenomenon that seems to correlate
with the gradual age-related shrinkage of the SEZ (Shook et al.,
2012). So far there is no evidence that the BV network shows
significant structural or functional variation among different
domains of the niche (for example, in the ventral areas) or that
this might be crucial in the occurrence of senescence. However,
the observation that mitotically active progenitors are located
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FIGURE 2 | Proliferation and senescence in the subependymal zone
(SEZ). (A,B) High magnification photographs of domains of the SEZ (dorsal in
A, middle in B) taken from young adult mouse brain tissue immunostained for
PCNA (to mark proliferating cells) and laminin (to mark blood vessels, BVs).
Note the existence of multiple proliferating cells around the long BV running in
parallel to the lateral ventricle in (B), but also the existence of high proliferative
activity in areas distant from BVs in (A). (C–E) High magnification photographs
of domains of the SEZ (middle in C,D and ventral in E) taken from young
(in C,E) and aged (in D) rat brain tissue immunostained for laminin and
chemically stained for senescence-associated β gal (in blue). Arrowheads
indicate BVs and arrows senescent cells. Note the significantly lower density
of BVs at the non-neurogenic side of the lateral ventricle (at the left of C), the
existence of senescent cells along BVs outside the SEZ and the existence of
high numbers of senescent cells in the ventral domain of the young-adult rat
SEZ (in E). (F) High magnification of adult mouse NSCs isolated from the SEZ
and kept in culture. Note the existence of senescent cells (nuclei are
counterstained with nuclear fast red). [Antibodies used: rabbit anti-laminin:
1/500 (Abcam), mouse anti-PCNA: 1/500 (Abcam). Alexa goat anti-rabbit 568
and goat anti-mouse 488 (Invitrogen). Biotinylated goat anti-rabbit and DAB
staining kit (Vector laboratories). Senescence-associated β gal staining kit
(Millipore). Adult NSCs cultured in DMEM/F12 supplemented with B27 (Gibco),
FGF2 (20 ng/ml) and EGF (20 ng/ml). All animal work was performed in
accordance with the UK Animals (Scientific Procedures) Act 1986 and was
approved by the University of Cambridge Animal Welfare and Ethical Review
Body].

proximal to BVs can lead to the hypothesis that remoteness
from BVs might be correlated with senescence, or even cell
death of NSCs.

Commitment and Differentiation
It could be hypothesized that as the brain became larger and
more complicated during evolution, the contribution of BVs
in controlling the commitment and differentiation of NSC
increased. Interestingly, similarly to diversification, there is no
strong evidence on the existence of such dependance. The single
example of a vessel-derived factor regulating cell fate decisions is
pigment epithelium-derived factor (PEDF) that acts to instruct
adult NSCs of the SEZ to switch mode of division from
asymmetric differentiating to self-renewing (Ramírez-Castillejo
et al., 2006). More specific to differentiation is the role of
PlGF-2, diffused from endothelial cells and pericytes, that was
recently shown to bias cell fate of adult NSCs and transit
amplifying progenitors towards neurogenesis, at the expense of
astrogliogenesis (Crouch et al., 2015). Enhanced neurogenesis
was also observed in co-cultures of human NSCs and endothelial
cells; albeit via unknown mechanisms (Chou et al., 2014).
The available evidence suggests that cell fate choices are primarily
controlled in a cell-autonomousmanner, as has been shown from
in vitro cultures of isolated embryonic and adult NSCs (Okano
and Temple, 2009; Ortega et al., 2013). It should be noted that
BV-derived signals might not be essential for instructing cell-fate
of neural stem and progenitor cells, but for the survival of certain
types of newborn neurons (Kirschenbaum and Goldman, 1995;
Leventhal et al., 1999), a ‘‘selection’’ role that can give the illusion
of an effect on cell-fate instruction.

Migration
During embryonic development neural stem and progenitor cells
migrate using radial glial processes, while adult SEZ-derived
neuroblasts use chain-migration to exit the niche and reach their
target area via an extracellular matrix-rich corridor, the rostral
migratory stream. The first solid evidence that BVs also play a
role inmigration of neural progenitors came from animal models
of cerebral ischemia, in which neuroblasts were shown tomigrate
towards the area of infarction along BVs (Yamashita et al., 2006;
Thored et al., 2007; Kojima et al., 2010). Subsequently, vessel-
supported migration was also found to be part of the homeostatic
movement of neural progenitors, either in the granular cell layer
in the hippocampus (Sun et al., 2015), or along the rostral
migratory stream (Bovetti et al., 2007) and within the olfactory
bulbs (Bovetti et al., 2007). Even more recently, BVs were
shown to facilitate migration of oligodendroglial progenitors
from the SEZ to the corpus callosum (Cayre et al., 2013) and
the invasion of glioblastoma tumour cells into neighboring areas
of the brain (Dubois et al., 2014). In the SEZ, SDF1/CXCL12
acts to attract neuroblasts expressing the CXCR4 receptor toward
BVs (Kokovay et al., 2010), while endothelial-derived BDNF has
been implicated to the attraction of neuroblasts to ischemic areas
(Grade et al., 2013) and netrin-1 is necessary for the migration of
oligodendroglial progenitors to the corpus callosum (Cayre et al.,
2013). Overall, accumulating evidence indicates that migration
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is one phase in the life of NSCs that is highly dependent on the
vasculature.

COUPLING OF NEUROGENESIS AND
ANGIOGENESIS; WHO NEEDS WHOM?

A strong correlation between angiogenic and neurogenic
events has been observed but the functional substrate remains
elusive; hence, the term ‘‘coupling’’ has been adopted. Such
coupling events have been described in the developing rodent
nervous system, in which endothelial cells share expression
of transcription factors with surrounding NSCs according
to the anatomical location (Vasudevan et al., 2008) and in
the plastic areas of the adult song-bird. Moreover, in the
post-stroke recovery in the adult rodent brain, induction
of angiogenesis and of NSC-driven cytogenesis seem to be
co-ordinated (Thored et al., 2007; Plane et al., 2010; Zhang
et al., 2014), while pulses of synchronous NSC proliferation
in the SEZ induce increased blood flow (Lacar et al., 2012a).
Although some architectural and structural specializations
of the adult NSC niche vasculature have been described,
leading to the use of the term ‘‘neurovascular’’ niche,
the absence of a functional specialization in BVs outside
the niche has not yet been proven. Recent experimental
work demonstrated that isolated endothelial cells from
non-neurogenic areas of the adult brain exhibit equal, if
not superior, potential in promoting NSC proliferation
and differentiation when compared to endothelial cells
from neurogenic areas (Crouch et al., 2015). In addition,
mitotically active oligodendrocyte progenitors in the brain
parenchyma have been reported to cross-talk with endothelial
cells within ‘‘oligovascular niches’’ (Arai and Lo, 2009;
Pham et al., 2012). Notably, in experimental animal models
of stroke or multiple sclerosis, transplanted NSCs form
‘‘atypical neurovascular niches’’ using BVs outside the
established stem cell areas (Pluchino et al., 2010). Finally,
accumulating evidence suggests that dormant NSCs exist
in the non-neurogenic brain parenchyma of rodents (Sirko
et al., 2013), possibly next to BVs (Bardehle et al., 2013),
and that in the human brain such progenitors might not be
dormant at all (Ernst et al., 2014). On the other hand, we
have observed that, in response to a demyelinating lesion
in the corpus callosum, platelets accumulate specifically
in the vasculature of the SEZ, suggesting an underlying
specialization of BVs (Kazanis et al., 2015). Furthermore,
by staining for senescence-associated markers we have also
observed that although a high number of endothelial cells

in BVs spread throughout the adult rat brain are senescent,
the niche vasculature remains senescence-free (Figure 2),
a possible indication of higher vascular plasticity potential in the
specific area.

Another significant aspect of the cross-talk between BVs and
NSCs is the transport of factors that might be important to NSCs
but are not produced by vascular and perivascular cells. Two
examples have already been mentioned: oxygen (Lacar et al.,
2012a; Culver et al., 2013) and insulin (Masjkur et al., 2012).
Recent experimental work has also revealed that blood-derived
factors, such as GDF11, can act to rejuvenate aged neural stem
and progenitor cells (Ruckh et al., 2012; Katsimpardi et al., 2014).
In other words, by feeding the aged brain with young blood,
scientists were able to reverse some of the effects of ageing on
NSCs. However, it still remains unknown if the effect was direct
to NSCs or if it was dependent on rejuvenating the vasculature
or macrophages. A final and intriguing aspect is the possible
instructive role of NSCs on the vasculature. The dominant
hypothesis is that the vasculature directs NSCs, exemplified
by the observation that grafted NSCs are ectopically homed
perivascularly (Pluchino et al., 2010). However, SEZ NSCs can
influence the function of BVs, for example, the blood flow
(Lacar et al., 2012b), and oligodendrocyte progenitors can control
angiogenesis through hypoxia-inducible factors (Yuen et al.,
2014). These are in concert with evidence that embryonic cortical
NSCs are important for the establishment of the developing
vasculature (Gerhardt et al., 2004; Ma et al., 2013) and that
in many cases vascularization tightly follows the maturation
of the nervous system (Rodriguez Celin et al., 2015). Recently
published work with human NSCs also showed that they provide
the necessary juxtacrine and paracrine signals to drive human
endothelial cells to form ‘‘vasculature-like structures’’ (Chou
et al., 2014) and promote angiogenesis in the rodent brain (Hicks
et al., 2013). Therefore, the bidirectional cross-talk between
NSCs and BVs is a line of research that needs to be developed
further.
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