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Abstract
The accurate 3D reconstruction of organs from radiological scans is an essential tool in computer-aided diagnosis (CADx)
and plays a critical role in clinical, biomedical and forensic science research. The structure and shape of the organ, combined
with morphological measurements such as volume and curvature, can provide significant guidance towards establishing
progression or severity of a condition, and thus support improved diagnosis and therapy planning. Furthermore, the
classification and stratification of organ abnormalities aim to explore and investigate organ deformations following injury,
trauma and illness. This paper presents a framework for automatic morphological feature extraction in computer-aided 3D
organ reconstructions following organ segmentation in 3D radiological scans. Two different magnetic resonance imaging
(MRI) datasets are evaluated. Using the MRI scans of 85 adult volunteers, the overall mean volume for the pancreas organ is
69.30±32.50cm3, and the 3D global curvature is (35.23 ± 6.83)×10−3. Another experiment evaluates the MRI scans of 30
volunteers, and achieves mean liver volume of 1547.48± 204.19cm3 and 3D global curvature (19.87 ± 3.62) × 10−3. Both
experiments highlight a negative correlation between 3D curvature and volume with a statistical difference (p < 0.0001).
Such a tool can support the investigation into organ related conditions such as obesity, type 2 diabetes mellitus and liver
disease.
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Introduction

Computer-aided diagnosis (CADx) or detection (CADe)
systems are readily employed in life sciences, biomedicine
and forensic science [1], to process medical image data
for analytical purposes. For example, the computer-aided
segmentation and classification of differences in organ
morphology for patients with type 2 diabetes mellitus [2],
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polycystic liver disease [3], renal disease and obesity [4]
has played a key role in supporting biomedical research.
Moreover, recent literature reports that the measure of
abnormal curvature growth can be used to stratify the
severity and stages of Peyronie’s disease [5, 6]. The mean
curvature of liver is used as an estimator for predicting
the probability of suffering from and the severity of
steatohepatitis [7]. Data about the structure and volume of
psoas muscle can act as a predictor of outcomes for patients
treated by chemotherapy for bladder cancer [8] and ovarian
cancer [9].

Recent literature reports that the 3D brachial plexus
reconstruction [10] determines the individual brachial
plexus anatomy with maximum accuracy. Similar tech-
niques are used to investigate craniocerebral trauma [11].
Furthermore, thin slice 3D reconstruction improves the
detection of tumour margins in breast cancer patients com-
pared to 2D CT images [12].

Considering the above successful applications of 3D ren-
dering, the enhanced accuracy of 3D organ reconstruction
in combination with morphological feature-based classifica-
tion, may reveal previously unknown correlations between
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factors such as volume, curvature, spatial dimensions,
anthropometry and health status. Although there are pub-
lications about varying correlations between organ-related
morphological features and associated medical conditions,
there are limitations to such studies, including a small
patient dataset.

Recently, the relationship between nonalcoholic fatty
liver disease (NAFLD) in type 2 diabetes has been
investigated [13–15] together which increases the likelihood
of developing complications of diabetes as well as
augmenting the risk of more severe NAFLD [16]. Given the
rising prevalence of type 2 diabetes [17, 18] and the broad
clinical spectrum of the condition, there is a driving need
for an improved understanding between morphology and
function: this could provide objective measurements that
help to establish progression, severity and remission.

Contributions

In order to investigate the possible relationship between
organ morphology and anthropometry, this paper proposes
a framework for automatic morphological feature extraction
in 3D organ reconstructions in 3D radiological scans.

Current research literature, to the best of our knowledge,
has not reported a generalisable framework for morpho-
logical feature extraction and correlative analysis. Thus,
the proposed framework expands on the methodology pre-
sented in [19] by integrating an automatic organ segmen-
tation approach [20], and furthermore, employs multiple
case studies to analyse the relationship between computed
morphological features. Moreover, the proposed tool pre-
sented in this paper can easily integrate into medical image
analysis systems, and provide a potential “second opinion”
before a final diagnosis. The analysis of organ curvature
could provide quantitative guidance towards the assessment
and stratification of a medical condition, thus enabling an
improved therapy plan.

This novel approach produces detailed boundary trac-
ing (contouring) for every protrusion and indentation as
opposed to an approximate rating of the organ, as veri-
fied by an independent senior radiologist and radiographer.
Two diverse MRI datasets are evaluated for the pancreas
and liver, demonstrating the effective generalisability of the
proposed segmentation approach. Computing morpholog-
ical features following 3D organ reconstruction highlight
a negative correlation between 3D curvature and volume
with a statistical difference (p < 0.0001). The imple-
mentation will be available at https://github.com/med-seg/
morph-feat-extract.

Section “Methods” details the methodology for auto-
matic organ segmentation, reconstruction and morpholog-
ical feature computation. Section “Results and discussion”
presents and discusses two sets of computations.

Section “Conclusions” provides a conclusion for the
proposed framework, including probable future work.

Methods

The proposed framework consists of four stages: (1) an
organ of interest is automatically segmented in an MRI
volume; (2) an accurate 3D reconstruction of the organ of
interest is generated; (3) rich organ features relating to the
shape, surface (texture) and dimension are extracted; (4)
these extracted features represent key imaging biomarkers
that can be utilised for enhanced classification and study
of the organ [21, 22]. A schematic representation of the
sequence of stages in the proposed framework is provided
in Fig. 1.

Every stage in the framework can be treated as an
independent process, potentially incorporated into another
framework or pipeline. Replacing any stage in the frame-
work will not significantly impact the complexity of a
previous or later stage. The high modulatory enables a
smooth substitution of different segmentation approaches
without affecting the connections of subsequent stages.
Moreover, the automatic segmentation stage is scalable
depending on training data availability and capable of com-
bining data augmentation. Both the 3D reconstruction and
morphological-feature extraction stage can employ either
manual or automatic segmentation using the target objects
of interest.

Automatic organ segmentation

The automatic organ segmentation methodology exploits
a training dataset of expert-led manually annotated MRI
volumes, that is, a dataset of contours for each organ
of interest. The methodology of this technique [20, 23]
progresses through three main stages. Firstly, a digital
contrast is applied to a test MRI volume to enhance the
organ tissue against background classes of non-organ tissue;
furthermore, a bounding region is generated to identify
(and isolate) the major organ area for every 2D slice
in the test volume. Secondly, 3D image segmentation is
performed via continuous max-flow and min-cuts approach
[24, 25] to generate distinct segments of detailed boundary
tracing. In order to retain organ tissue and eliminate
maximum surrounding tissue, the boundaries or contours
of segmented tissue are detected using structured forests
[26–28]. Measures of similarity between segmented tissue
contours and the manually annotated contours are computed
using modified Hausdorff distance [29] and structural
similarity index [30, 31] to yield a rough segmentation
outcome as a volume. Thirdly, any remaining tissue deemed
as non-organ of interest is eliminated via morphological

https://github.com/med-seg/morph-feat-extract
https://github.com/med-seg/morph-feat-extract


Journal of Medical Systems          (2019) 43:334 Page 3 of 10   334 

Automatic
Organ
Segmentation

3D Organ
Reconstruction

Feature 
Extraction:
Volume, 
Curvature

Organ 
Classification and 
Stratification via: 

Volume, 
Curvature,

Spatial Dimension

100

90

80

70

260

240

220

200

180
180 170 160 150 140 130 120

100

90

80

70

60
280

260
240

220
200

180 160
140

120
100

z

z

y

x

x
y

Fig. 1 Overview of stages described in proposed framework. The organ is segmented, reconstructed and analysed to extract, classify and stratify
morphological information

operations including area, curvature and position between
distinct tissue in the segmented organ volume.

Reconstructing the organ

A 3D binary volume is generated from the segmented MRI
volume. In attempt to reduce image noise, the reconstruction
process employs a Gaussian smoothing algorithm that is
applied to the 3D interpolated data. Using such a smoothing
technique enhances image structures at varying scales of
visualisation [32] as a pre-processing stage in computer
vision. The equation of a 3D Gaussian function is

G(x, y, z) = 1

2πσ 2
exp

(
− x2+y2+z2

2σ 2

)
(1)

where x, y and z are the distances from the origin in the
horizontal axis, vertical axis and depth axis, respectively,
and σ is the standard deviation of the Gaussian distribution.
The values from the Gaussian distribution are used to
build a convolution array that is applied to the original
organ data. The Gaussian-based smoothed organ data is
described as an isosurface by a set of points, for which
the function represented by that data takes on a standard
isovalue. In order to construct the isosurface, the marching
cubes algorithm initially takes eight neighbour locations at
a time, generates an imaginary cube and then determines
the polygons needed to embody the part of the isosurface
passing through this cube. Next, the individual polygons
are fused into the desired surface by creating an index
to an array of 256 possible polygon configurations in
the imaginary cube. Each one of the eight scalar values
represents 1-bit in an 8-bit integer: this bit is set to 1 if the
value of the scalar is higher than the isovalue; otherwise,
the bit is set to 0. Once all eight scalars have been analysed,
the final value is the actual index to the polygon indices
array. Each vertex of the created polygons is placed on the
appropriate position along the edge of the imaginary cube
by performing linear interpolation on the two scalar values
connected by that edge.

Laplacian smoothing is then applied, producing the
Laplacian of the rectangular 3D grid-based mesh. The
implementation of a Laplacian algorithm returns an array

of vertices coordinates: a new position is chosen for each
vertex in the mesh using local information that relates to
the position of neighbouring vertices. For each vertex, the
smoothing operation is

vi = 1

N

N∑
j=1

vj (2)

where N is the number of adjacent vertices to node i, vj

is the position of the j -th adjacent vertex and vi is the new
position for node i. Once the 3D reconstruction process is
complete, the 3D organ model can be visualised against
a slice (2D image) from the original non-annotated MRI
volume.

Computing the volume and curvature

The total organ surface area of each slice is calculated as its
respective segmented pixel area, and the organ volume per
section is calculated as the product of each organ slice area
and the MRI section thickness.

The 3D curvature of the organ is calculated on a
triangular mesh [34], in which the curvature of a surface
describes the local shape of that surface. A regular surface
S is represented by d(x, y) in Fig. 2, in which the point
q lies on this surface. The orientation of S at q is the unit
length normal, N . Also, R describes a regular curve on S,
parameterised by β(a) = d(x(a), y(a)) and where a is the
arc length of R and β(0) = q. Every curve that lies on the
surface S at a given point of q ∈ S has the same tangent line

Fig. 2 A point q is at a surface S with unit length normal N [33]. A
regular curve R on the surface S passes through point q
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and the same normal curvatures. Consequently, the normal
curvature is referred to along a given direction at q.

If q1 with unit length surface normal N1 is another
different point on the surface very close to q, and t is
the normalised projection of the vector

(
q1 − q

)
onto the

tangent plane at q, the normal curvature, cn(t), along the
tangent direction t can be approximated as

cn(t) = −< q1 − q, N1 − N >

‖q1 − q‖2 (3)

where,

t =
(
q1 − q

) − < q1 − q, N > N

‖ (
q1 − q

) − < q1 − q, N > N‖ (4)

A triangular mesh, M = (P , C), is employed in the
next stage and viewed as an approximation of an unknown
smooth surface. Consider P as representing a set of data
points, and therefore, C can be described as the connection
of P to construct edges and faces in M . The motivation
is to estimate the principal directions and curvatures at the
vertices of M . Firstly, the normal vectors at the vertices
of the triangular mesh are estimated. Let the triangular
face in M be f . Secondly, each of these faces fi has
a corresponding unit length normal vector Nfi

, and the
triangular mesh is positioned so that the normal vectors
point to the same side of the surface. The normal, N , at
vertex q of M is a weighted average normal to the triangular
faces adjacent to q, as

N =
∑m

i=1 wiNfi

‖∑m
i=1 wiNfi

‖ (5)

where Nfi
are the unit length normal to the triangles in the

“one-ring” neighbourhood of q and wi is the weight, which
is chosen based on the centre of the triangle face, fi . The
number of points in a set of one-ring neighbour vertices of
q is represented by m. For each neighbour q i of q, t i can be
defined as the unit length projection of the vector

(
q i − q

)
onto the tangent plane as

t i =
(
q i − q

) − < q i − q, N > N

‖ (
q i − q

) − < q i − q, N > N‖ (i = 1, ..., m)

(6)

From here, it is possible to approximate the normal
curvature cn(t i ) as

cn(t i ) = −< q i − q, N i − N >

< q i − q, qi − q >
(i = 1, ..., m) (7)

Thus, the curvature of the organ is calculated on a
triangular mesh that is based on local neighbourhood
elements and vertices. The size of the neighbourhood
can heavily affect results, and therefore increasing the
neighbourhood size provides less sensitivity to noise [35],
whereas a smaller neighbourhood size delivers better

curvature estimates for less noisy data. From here, a global
curvature Cg is computed as the mean value of all local
curvatures, j = [1, ..., Ng], such that

Cg = 1

Ng

Ng∑
j=1

cj (8)

The value of Cg can be used as a guide to estimate the
roughness and smoothness of the organ surface.

Results and discussion

The proposed approach employs two datasets of T2-
weighted (fat-suppressed) abdominal MRI image volumes,
obtained using a Siemens Trio 3T scanner. The organ of
interest, either the pancreas or liver, has been manually
annotated by an expert-operator in every image volume. It
is noted that the volunteers who underwent MRI scanning
were aged over 18 and displayed early signs of type
2 diabetes. The pancreas dataset consists of 185 image
volumes, split into 100/85 for training/test evaluation. Every
image volume in the dataset consists of 80 slices with 2.0mm
spacing, with each slice of spatial size 320 × 260 and
1.3128mm pixel interval in the axial and sagittal direction.
The liver dataset consists of 50 image volumes, split into
20/30 for training and testing. Every image volume in the
dataset consists of 370 slices with 3.0mm spacing, with each
slice of spatial size 224 × 173 and 2.2321mm pixel interval
in the axial and sagittal direction.

For the pancreas, the automatic segmentation method
achieves a mean Dice Similarity coefficient (DSC) ±
standard deviation (SD) of 81.14 ± 6.54%, and a mean
Jaccard Index (JI) ± SD of 68.60 ± 7.68%. Analysing
the liver segmentations produces a mean DSC ± SD of
92.17 ± 4.42%, and the mean JI ± SD is 85.73 ± 6.63%.
The automatically segmented contours are elaborated to
generate an image volume and an approximated surface
using the techniques described in Sections “Introduction”
and “Methods”. A number of 50 neighbouring points is
chosen to calculate the curvature.

Organ contouring

Figures 3 and 4 display the segmentation contouring (green)
against the ground-truth (red) contouring in eight distinct
slices in eight different pancreata and livers, respectively.
The top row in Fig. 3 displays relatively smoother
contouring in comparison to the bottom row. Furthermore,
as verified by a senior radiologist and a senior radiographer,
the segmentation output captures detailed protrusions and
dents of the pancreas’ boundaries in comparison to the
ground-truth.
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(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 3 a, b, c and d display the segmentation (green) against ground-truth (red) contouring for eight slices in eight different pancreata, with a
“smooth” surface. e, f, g and h the segmentation (green) against ground-truth (red) contouring for two slices in another two different pancreata,
with a “ragged” surface

Aiming to investigate and thus derive a possible organ
classification model, the volume and 3D global curvature
are calculated for each MRI scan (case). The extraction
and potential classification of parameters, relating to
shape and texture, can help to tackle fundamental clinical
questions about organ changes associated with obesity and
type 2 diabetes mellitus, which are coexisting conditions
frequently associated with NAFLD disease. Furthermore,
since NAFLD is an increasingly recognised condition that
could progress to end-stage liver disease [36] improved
image guidance systems could potentially help to assist final
diagnosis.

Figures 5 and 6 illustrate six diverse volumetric
pancreas and liver reconstructions, respectively, with the

segmentation (green) overlapping the ground-truth (red).
Notice the visibly high variation in pancreatic structure
and curvature, which is also reflected in a higher curvature
standard deviation (6.83 × 10−3) compared to the standard
curvature deviation for the liver dataset (3.62 × 10−3)
(Figs. 7 and 8).

Analysis of automatic segmenation results

The following evaluation is based on automatic segmenta-
tion outcomes. The 3D reconstruction presented in Fig. 9
illustrates the depth of the pancreas curvature, with the
“ragged” surface concentrated at the higher threshold with
varying shades of yellow. Differences in pancreas volume

(a) (b) (c) (d)

(e) (f) (g) (h)
Fig. 4 a–h display the segmentation (green) against ground-truth (red) contouring in eight slices from eight different livers
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Fig. 5 A list of six pancreas 3D reconstructions in six different MRI scans (volumes). The segmentation outcome (green) overlaps the ground-truth
(red)

may also be associated with age, gender and health sta-
tus of the participants [37], and a wide variation in organ
shape, size and curvature are established from this sam-
ple of 85 image volumes: the mean volume is 69.30 ±
32.50cm3 and the mean 3D global curvature is (35.23 ±
6.83) × 10−3. Figure 7 provides a statistical representation
of these computations. Interestingly, Fig. 10 illustrates rela-
tively less variation in curvature compared to the curvature
of the pancreas. Analysing the results from 30 image vol-
umes achieves a mean volume of 1547.48 ± 204.19cm3

and a mean 3D global curvature of (19.87 ± 3.62) ×
10−3. A statistical representation of the data is provided
in Fig. 8.

When comparing the automatic segmentation results to
respective the ground-truth for evaluation purposes, Table 1
displays the MAE (mean absolute error), RMSE (root
mean square error) and MAP (mean absolute percentage
error) computations for volume and curvature in respect to
corresponding ground-truth values of 85 pancreas and 30
liver image volumes.

300

280

260

240
100

80
60

40y
0

20

40

x

z

300

280

260
240
100

80
60

40y x
0

20

40

z

300

280

260

240
100

80
60

40 0

20

40

y x

300
280

260

240
100

50

z

0 0
20

40

z

300

280

260

(a)

320

100

50

0 0
20

40

300

280

260

320

100

50

0 0
20

40

y x y x

z z

y x

(d)

(b) (c)

(e) (f)

Fig. 6 A list of six liver 3D reconstructions in six different MRI scans (volumes). The segmentation outcome (green) overlaps the ground-truth
(red)
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Table 1 MAE (mean absolute error), RMSE (root mean square error)
and MAP (mean absolute percentage error) computations for volume
and curvature

Pancreas MAE RMSE MAP (%)

Volume (cm3) 8.56 11.28 15.16 ± 13.17

Curvature (×10−3) 4.23 5.93 13.20 ± 13.46

Liver MAE RMSE MAP (%)

Volume (cm3) 68.81 81.32 4.65 ± 2.94

Curvature (×10−3) 1.09 1.56 5.43 ± 4.83
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Analysis of morphological features

In order to demonstrate the reliability of the pro-
posed framework, the relationship between ground-truth
morphological features is analysed alongside the morphol-
ogy of automatic segmentation results. Figures 11 and 12
illustrate the relationship between pancreas volume and cur-
vature for both the ground-truth (red) and the automatic seg-
mentation (blue), respectively. As highlighted in both plots,
the pancreas curvature versus volume displays a weak, but
significant, negative correlation. Similarly, Figs. 13 and 14
illustrate a slight negative correlation for liver curvature
and volume. For each dataset, the Wilcoxon signed-rank is
computed using the differences between paired ground-truth
volume and curvature values, and the differences between
paired segmentation volume and curvature values. All four
tests reveal a correlation that is statistically significant from
zero (p < 0.0001).

Analysing the results presented in this paper, if the mor-
phology of the pancreas can be described by the global
curvature of the organ shape, then increasing values of
global curvature are to be anticipated with decreasing organ
size and thus giving rise to shape irregularities. Previous
literature [38] reports that, for some patients with type 2
diabetes, there was an observed change in pancreas volume
and morphology, in which the organ displayed an involuted
morphology with serrated borders. Given the increase in
global incidences of type 2 diabetes [17], there is a sig-
nificant need to better understand the relationship between
morphology and function. Furthermore, since NAFLD and
type 2 diabetes mellitus frequently coexist and share the
abnormalities of excess adiposity and insulin resistance,
it can be necessary to compute objective measurements
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Fig. 11 Ground-truth pancreas curvature in relation to volume a
displays negative correlation
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Fig. 12 Automatic segmented pancreas curvature in relation to volume
displays a negative correlation

to stratify condition progression and remission, especially
where changes in organ morphology have been observed but
not quantified. Consequently, there is an apparent demand
for objective methodologies that produce reliable morpho-
logical characterisations of the pancreas, liver and other
major organs.

The segmentation program ran via a workstation with i7-
59-30k-CPU at 3.50 GHz, and the mean time for segmenting
the pancreas and liver is 25 and 32 minutes, respectively.
Also, the computation of morphological measurements of
volume and curvature is approximately 3 minutes. Using a
GeForce Titan X GPU could potentially result in a tenfold
decrease in run-time.
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Fig. 13 Ground-truth liver curvature in relation to volume displays a
slight negative correlation
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Conclusions

Accurate 3D organ reconstruction, coupled with the anal-
ysis of size and structure, can support medical profes-
sionals perform clinical detection, diagnosis and planning
of treatment. This paper describes a computing tool that
automatically extracts and analyses organs based on mor-
phological features using anonymised volunteer data from
magnetic resonance imaging (MRI) volumes. In addition
to offering radiologists a 3D organ reconstruction view
and a “second opinion”, the proposed computational tool
can easily integrate into forensic science and biomedical
research. Although the case studies in this paper focus on
MRI modality, the proposed framework is extendable to
computer tomography (CT) and ultrasound (US). Due to
differences in the imaging acquisition of MRI, CT and US,
the automatic segmentation approach may differ, but since
the framework is modular, it is also adaptable to other
anatomical structures. Future work aims to utilise the pro-
posed framework in a large cohort of abdominal image
volumes, and, explore the potential correlations between
corresponding anthropomorphic and environmental factors,
and organ structure and shape.
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