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NOSTROMO  
NEXT-GENERATION OPEN SOURCE TOOLS FOR ATM PERFORMANCE 
MODELLING AND OPTIMISATION 

 

This deliverable  is part of a project that has received funding from the SESAR Joint Undertaking under 
grant agreement No 892517 under European Union’s Horizon 2020 research and innovation 
programme. 

 

 

Abstract  

This deliverable presents the third iteration of the development of the two micromodels Flitan and 
Mercury and the results obtained with them with the active learning process, as described in the 
deliverables D3.X. In this iteration, Flitan implemented concepts from PJ08.01 and PJ02.08, and 
Mercury implemented a module related to PJ07.02. Mercury also developed an additional module 
related to PJ01.01, which description is presented in Annex only, since no results could be produced in 
time with it for this deliverable. 

The development is presented in two different chapters for each simulator, with general descriptions 
referred to from D5.1. The modules related to each SESAR solution are described separately.  

The latest version of the meta-modelling process is described briefly, followed by the results obtained 
with the two simulators, in distinct sections. This chapter shows the performance of the meta-model 
with respect to approximating micro simulators. 
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1 Introduction 

This deliverable, which can be considered as an extension or an update on deliverable D5.1, is focused 
on the developments of the models that allow a meta-model to approximate the impact of some new 
concepts in the ATM system, with the help of microsimulators. In this third iteration of NOSTROMO, 
we implemented new concepts from three SESAR solutions, PJ07.02, PJ08-01, and PJ02.08, in the two 
microsimulators Flitan and Mercury.  

As with previous deliverable D5.1, we describe how we implemented the concepts in the 
microsimulators, in section 2. Compared to the previous deliverable, we implemented new advanced 
concepts inspired from these solutions, that may be considered as more futuristic than the previous 
ones.  

The metamodelling process is again explained in section Metamodelling process3, with the latest 
changes summarised there (while being fully reflected in D3.4. 

Section 4 presents results similar to what was presented in D5.1, i.e. focused on the efficiency of the 
meta-modelling approach and not on the domain interpretation per se (i.e. the impact of the concepts 
on the ATM system). 

In annex A, we copied the general description of the Mercury model, as presented in D5.1, which of 
course is still valid for this deliverable, since only new modules have been developed. 

Finally, in Annex B, we described a module developed for Mercury for PJ01.01, whose results could 
unfortunately not be included in the present deliverable due to time constraint. This module is almost 
operational at the time of the delivery of this report, and will be used in future scientific articles. 
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2 Micromodelling process 

2.1 FLITAN development 

2.1.1 Flitan Simulation Engine 

Flitan is a network-wide performance assessment model based on the concept of node and 
connector. Initially developed by ISA Software to support the turned-around analysis for a EU 
FP7 project called TITAN. Subsequently, Flitan has been adapted to investigate the FlightPath 
2050’s 4-hours door-to-door target. 

At its core, Flitan abstracts the ATM system as a network of nodes and connectors where 
flights travel safely and efficiently. At the highest level of abstraction, each node represents 
an ATM entity, be it an airport, sector, etc. A node is primarily characterised by its occupancy 
time distribution function, which defines the nominal time for the process it represents to be 
accomplished (e.g. the mean time to use a node) and the possible variance in that time. A 
Flitan connector is responsible for routing flights between adjacent nodes. 

A flight starts its journey at an origin node (e.g. departure airport) and passes through a series 
of nodes and connectors until it reaches the final node (e.g. arrival airport). At each node, its 
time distribution function is sampled to determine the time needed for the flight to use the 
node. The time distribution is defined for a city pair and a specific aircraft model. For example, 
all the flights with the same aircraft model travelling between the same city pair will share the 
same distribution functions. 

Since the implementation of SESAR solution PJ08-01, Flitan has used a full 4D trajectory flight 
model. Consequently, the time distribution function of a sector is precisely computed from 
the flight’s sector crossings profile. So, the time a flight will need to use a sector is the 
difference between the sector exit time and the sector entry time. 

The underlying Flitan simulation engine is based on a generic Business Process Modelling 
(BPM) capability and is seeded using a set of flight trajectories, airports and airspace data. 
Once active, each flight progresses through the network from node to the next node via 
connectors until it reaches its final destination. 

The simulation engine is designed using a discrete event simulation engine- a type of 
simulation engine where events within the simulation are scheduled to occur at a particular 
time in the future, and each event is tied to a piece of code to be executed once that time 
arrives. It is comprised of a clock, an event list and the event scheduling and dispatch system. 

The scheduling-dispatch system acts upon the head of the event list, which is always equal to 
the current time. Each piece of code tied to the event being processed can create new events 
on the schedule either at the current time or at some time in the future. Once all events at 
the current time are exhausted, the clock steps to the next discrete point in time (the next 
position in the list) and events that are scheduled at this new time in the simulation are 
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executed. A simulation continues to run until there are no events left in the system to 
dispatch, at which point the simulation is considered to be complete. 

2.1.2 Flitan Enhancement in support of NOSTROMO project 

In the framework of the NOSTROMO project, two SESAR Solutions have been selected to be 
implemented and used to feed the NOSTROMO metamodel: PJ-08.01 “Dynamic Airspace 
Configurations” and PJ02-08 “Traffic optimisation on single and multiple runway airports”.  

In implementing the two SESAR solutions, Flitan targets three specific objectives: 

1. Enhance Flitan simulation engine by adding modules that support both runway and airspace 
configurations 

2. Enhance Flitan input and output data objects 
3. Train the metamodel through the assessment of a large set of possible combinations of 

configurations 

2.1.3 PJ08-01 SESAR Solution 

The main objective of this solution is to allow Air Navigation Service Providers (ANSP) to 
organise, plan and manage airspace configuration in a flexible manner that increases capacity 
and reduces delays without impacting traffic trajectories. SESAR solution PJ08-01 is articulated 
around four key concepts: 

1. Dynamically designed sectors tailored to specific flow patterns, 
2. Dynamic sector configurations adapted to respond flexibly to available air traffic controller 

(ATCO) resources, changes to traffic demand, and performance objectives, 
3. Dynamic mobile areas, which are temporarily reserved volumes of airspace designed to 

segregate military activities from civil air traffic, 
4. Fully integrated CDM process between civil and military actors enabled by automated support 

tools. 

The scope of the PJ08-01 implementation in Flitan is essentially focused on the second key 
concept, “Dynamic sector configurations”, and their assessment. Dynamic sector design and 
sector capacities computation are not part of the Flitan implementation of PJ.08-01. 

2.1.4 PJ02-08 SESAR Solution 

The main aim of this solution is to enhance airport throughput operations by ensuring that 
runways operate at their optimum capacity. SESAR solution PJ02-08 is focused on two key 
concepts: 

1. An integrated runway sequence function to balance arrival flights and departure flights on a 
single runway, dependent runways or parallel runways 

2. Use of a runway manager for airports with more than one runway to plan the optimal runway 
configuration 

 

https://www.sesarju.eu/


D5.2 -  ATM PERFORMANCE METAMODELS - FINAL RELEASE  

 
  

 

Page I 10 
 

  
 

 

2.1.5 NOSTROMO SCENARIO 

Opening Schemes 

In support of SESAR Solution PJ08-01, twelve Flow Management Positions (FMP) have been 
selected to train the metamodel: 

1. LECBCTAE (Barcelona East, Spain) 
2. LECBCTAW (Barcelona West, Spain) 
3. LECMCTAN (Madrid North, Spain) 
4. LECMCTAS (Madrid South, Spain) 
5. LECSCTA (Sevilla, Spain) 
6. LECPCTA (Palma de Mallorca, Spain) 
7. LFBBCTAE (Bordeaux East, France) 
8. LFBBCTAN (Bordeaux North, France) 
9. LFBBCTAS (Bordeaux South, France) 
10. LFMMCTAE (Marseille East, France) 
11. LFMMCTAW (Marseille West, France) 
12. LPPCCTA (Lisbon, Portugal) 

 

 

Figure 1: NOSTROMO experiment regions. 

 

Runway Configurations 

In support of PJ02-08, three Spanish airports have been chosen: 
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1. Josep Tarradellas Barcelona-El Prat Airport: LEBL 
2. Adolfo Suárez Madrid–Barajas Airport: LEMD 
3. Palma de Mallorca Airport: LEPA 

Traffic and environment data 

Traffic and environment data is sourced from NM archives. The environment data uses the 
DDR2 format and is stored for each AIRAC cycle corresponding to a 28 days period.  

Regarding air traffic, Flitan uses ALL-FT+ data format to construct its flight object model. For 
the sake of callsign uniqueness, Flitan constructs the callsign of each flight by concatenating 
the aircraft identifier (field #3) and IFPS identifier (field #7) using “-” as a separator. ALL-FT+ 
traffic data is sourced from NM archives. Traffic data spans from 2019-06-20 to 2019-07-17. 
The average daily traffic count is around 30000 flights. 

2.1.6 Third iteration 

In the previous simulation experiment set-up, we were assessing each solution at local levels 

• Constructing metamodels at the level of local FMPs (solution PJ08-01) 

• Constructing metamodels at the level of local airports (solution PJ02-08) 

In the third iteration, we will assess both solutions globally at the level of the integrated 
Network Operation Plan (NOP) and Airport Operation Plan (AOP): 

• AOP is composed of three airports 

• NOP is composed of 12 control centres 

In this objective, two directories have been created under the evaluated scenario as follows: 

1. opening_schemes directory - This directory contains twelve sub-directories where each sub-
directory corresponds to a specific FMP and is filled with their opening scheme files. For 
example, the sub-directory LECMCTAN contains the set of possible opening scheme files that 
may be deployed in a single day in Madrid North. 

2. runway_activation_plans directory - This directory contains three sub-directories: LEBL, LEMD 
and LEPA. Each sub-directory contains all the possible runway activation plans for the 
corresponding airport. 

Now that the simulation environment is set up, to run the third iteration, ISA Software 
developed a python script that automatically generates both airspace configuration opening 
schemes for the twelve FMPs and runway configurations for the three airports mentioned 
above, as well as extracts the adequate traffic data. The script will draw an opening scheme 
randomly from each FMP and merge them into a single opening scheme to be evaluated by 
Flitan. It does the same for the airport runway activation plans. Once the input is ready, the 
script runs Flitan automatically to assess both SESAR Solutions at the level of the combined 
FMPs and airports. 
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2.2 Mercury development 

In D5.1 we gave a general description of the Mercury simulator, than we reproduce in annex 
XXX for convenience. The purpose of this section is thus to describe the additional 
development carried out for NOSTROMO. 

We describe the module related to PJ07.02, where we implemented a new algorithm destined 
to improve the efficiency of ATFM hotspot resolution processes while taking into account 
specific information from the airspace users.  

The project has also developed a new module related to PJ01.01, with both a baseline and a 
more advanced extended arrival manager, taking into account cost of airspace users and 
probability of arrival. However, this module could not be included in the last release of the 
binaries to DTU due to on-going integration issues. As a a results, no result with this module 
are included in this deliverable. Nevertheless, Annex XXX describes the algorithm behind the 
optimisation process. Some considerations related to this module will be included in 
deliverable D6.2, and the NOSTROMO team has already planned to publish some results later 
in the year using this module in Mercury. 

 

2.2.1 General description of Mercury 

For a general description of Mercury, please refer to D5.1, or to Annex XXX. 

2.2.2 PJ07.02 - Airspace user prioritisation for hotspots 

Hotspot solving 

For a general description of the hotspot solving process, please refer to D5.1. Below we only 
summarise the main points. 

The goal of PJ07.02 is to solve more efficiently ATFM hotspot (for instance due to congestion), 
mainly at arrival airports, by taking into account airspace users preferences linked to the type 
of flights that are involved in the regulation. These mechanisms can take several forms, but 
the core of them is to try to exchange slots across different airlines while adequately 
compensate the airlines that lose from the new allocation. In the next 

 

Mechanisms tested in the third iteration of NOSTROMO 

In the third iteration of NOSTROMO, we are considering the previous algorithms developed 

from the second iteration, plus an additional one, described thereafter: 

• FPFS: serves as baseline to compare the other mechanisms. 
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• UDPP: optimal allocation intra-airlines. It represents the efficiency in the current 
situation, if all airlines use the UDPP tools in an efficient way. 

• ISTOP: developed in BEACON, it uses information akin to what is passed to UDPP to 
rebuild an approximated normalised cost function and suggests suitable slot swaps 
among airlines. 

• NNBound: uses the true cost functions of the airlines, it finds the best allocation, given 
that no airline loses in terms of cost. This is used for benchmarking, since it represents 
the maximum efficiency if local 'fairness' is enforced (nobody loses). 

• GlobalOptimum: uses the true cost functions from the airlines, it finds the best 
allocation overall. This is used for benchmarking, since it represents the maximum 
theoretical efficiency reachable by any mechanism. 

• Credit Mechanism (NEW): developed in BEACON, this mechanism allows airspace user 
to buy approximated cost functions that are then used in a central optimiser in order 
to find the best overall solution. Cost functions have higher prices with they put more 
strain on the system, and are paid in virtual credits. 

 

Abbreviation / 
acronym 

Full 
expression 

Main principles 

FPFS First planned, 
first served 

Serves as baseline to compare the other mechanisms; current 
mechanism in use, minimises the total delay assigned to flights in a 
regulation 

UDPP  User-Driven 
Prioritisation 
Process 

Optimal allocation intra-airlines. It represents the efficiency in the 
current situation, if all airlines use the UDPP tools in an efficient way. 

ISTOP   Developed in BEACON, it uses information akin to what is passed to 
UDPP to rebuild an approximated normalised cost function and 
suggests suitable slot swaps among airlines. 

NNBound  Non-negative 
bounded 
optimum 

Uses the true cost functions of the airlines, it finds the best allocation, 
given that no airline loses in terms of cost. This is used for 
benchmarking, since it represents the maximum efficiency if local 
“fairness” is enforced (nobody loses). 

GlobalOptimum  Unbounded 
optimum 

Uses the true cost functions from the airlines, it finds the best 
allocation overall. This is used for benchmarking, since it represents 
the maximum theoretical efficiency reachable by any mechanism. 

Credit 
mechanism 
(NEW) 

 For each flight, the airline approximates the cost function with a step 
function. The parameters of the step function fix the price that the 
airline has to pay in virtual credits for this flight. 

Table 1: Main principles. 
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The new algorithm was designed to extend naturally the ISTOP mechanism while getting 
closer to the global optimum. Indeed, while in ISTOP airlines give normalised cost functions to 
the central optimiser (see D5.1 for more details), in this mechanism the airlines can provide 
absolute cost functions. To mitigate the issue of airlines inflating their cost in order to have a 
better allocation, airlines need to pay for these cost functions. 

More specifically, each cost function is approximated by a step function, with two parameters: 
the position and the size of the step (in minutes and euros respectively). These parameters, if 
they deviate from default “free” parameters, may require the airline to spend some of its 
virtual credits, endowed at the beginning of the simulation to each airline. For instance, the 
higher the jump (i.e. the higher the cost of the flight if this flight is allocated in this time region), 
the higher the price is going to be for the airline.  

The airlines can also gain some credits by “relaxing” their cost parameters, for instance 
reducing the size of the jump. This should allow in particular airlines with a small number of 
flights in the regulation to gain some credits from the mechanism, in order to convert it into 
an advantage in a future hotspot. This particular point is crucial and was flagged by the project 
PJ07.02 as a desirable future requirement for new mechanisms. 

Note that this mechanism was also designed to be fairly close to ISTOP, which is turn signed 
to be close to ‘current’ mechanisms like Margins. Indeed, it was found to be quite intuitive for 
airlines to set time limits after which their cost explode, as well as the cost incurred. 

2.2.3 PJ01.01 - Flight Arrival Coordination 

For a description of the algorithm developed during the third iteration of NOSTROMO, but 

whose results are not included in the present deliverable, please see Annex XXX. 

2.2.4 Simulations 

We use the 12th of September 2014 to calibrate the model. Just like for the second iteration, 
we consider only the flights to and from Charles De Gaulle airport – with all corresponding 
information on passenger connections and turnaround times.  

In order to answer the research questions and find interesting relationship between variables 
– harder to model and thus more interesting from the metamodelling point of view – we 
selected the input variables shown in Table 2 to be studied by the metamodelling process. The 
table includes the possible values, practical range, and default values of the parameters, all 
used during the metamodelling process. 

Note that some of these parameters are calibration parameters, i.e. that they should be fixed 
at some point before a potential user runs the simulations. We included them to assess how 
active learning could help calibrating this sort of parameters in the model. 
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Variable Name in 
model 

Description Theoretical range Practical 
range 

Default 

Mechanism 
for hotspot 
solving 

hotspot_solver Type of 
mechanism in 
the hotspot 

['UDPP', ‘UDPP+ISTOP’, 
‘UDPP+ISTOP_TRUE’,‘CM’, 
‘NNOUND_TRUE’, 
‘NNOUND_APPROX’, 
‘GLOBAL_TRUE’, 
‘GLOBAL_APPROX’, ‘CM’] 

NA 'UDPP' 

Initial 
number of 
credits 

initial_credits Initial numbers 
of credits for 
CM 

[0, Infty] [0, 2000] 200 

Price jump price_jump Price of one 
euro of jump 
in CM 

[0, infty] [0, 0.1] 0.01 

Price margin price_margin Price of one 
minute of 
margin in CM 

[0, infty] [0, 10] 1 

Default 
margin 

default_margin Free margin in 
CM 

[0, infty] [0 - 60] 15 

Default jump default_jump Free jump in 
CM 

[0, infty] [0 - 20000] 3000 

Reinjection reinjection Ratio of credits 
reinjecting 
into CM on top 
of honest 
parameters 

[0, 1] [0, 1] 0.1 

Fuel price fuel_price Price of one kg 
of fuel - 
Continuous 

[0, infty) [0, 5] 1 

Turn-around 
time scale 

alpha_tat_mean Scaler of mean 
of the 
distribution of 
turn-around 
times 

[0, infty) [0, 10] 1 

Minimum 
connecting 
time scale 

alpha_mct Scaler of mean 
of the 
distribution of 
passenger 
minimum 
connecting 
times 

[0, infty) [0, 10] 1 

Claim rate claim_rate Proportion of 
passengers 

[0, 1] [0, 1] 0.14 
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claiming 
compensation 

Table 2: input variables. 

 

The performance indicators used for the third iteration are shown in Table 3. They are very 
much focused on the performance of the mechanism with regard to the hotspot resolution. 

 

Variable Name in model Comment Priority 

Saved REAL cost in 
regulation w.r.t. FPFS 
allocation 

ratio_cost Average of ratio 1 

Saved DECLARED cost in 
regulation w.r.t. FPFS 
allocation 

ratio_cost_approx  3 

Absolute equity: 1 - 
average of pair-
differences in cost saved 
w.r.t to FPFS 

equity  1 

Relative equity: 1 - 
average of pair-
differences in ratio cost 
saved w.r.t to FPFS/cost 
in FPFS 

equity 2  2 

Number of credits in 
average at the end of the 
simulation 

credits  2 

Gini coefficient for the 
distribution of credits at 
the end of the simulation 

credits_gini  2 

Table 3: output variables. 
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3 Metamodelling process 

This section briefly reviews the metamodelling process underlying NOSTROMO’s methodology for ATM 
performance assessment, including the core concepts and features essential to its understanding. We 
collect revised material from the previous deliverables, including D3.1 Preliminary Metamodeling 
Methodology [3], D3.2 Metamodels Requirements Specification [4], D3.3 NOSTROMO Framework API 
+ Associated Documentation [5], and D5.1 ATM Performance Metamodels - Preliminary Release [1].  

Due to their overwhelming complexity, most ATM systems can only be modelled and studied through 
simulation. Despite the well-known advantages and features in modelling complex and stochastic real-
world systems and their evolution over time, simulation-based solutions are not exempt from 
shortcomings.  

As pointed out in [6], besides being traditionally highly costly to develop (depending, of course, on the 
degree of detail, realism and objectives), for every computer run, stochastic simulators only generate 
output estimates for a given set of input/parameter values. It is often the case where several 
independent runs are required to obtain a more reliable description of the full output distribution. 
Thus, different combinations of input/parameter values inevitably and accordingly lead to the 
systematic repetition of the entire experimental process so that statistical significance can be attained. 
Furthermore, suppose the simulation average computation time per single run is non-negligible (e.g. 
several minutes). In that case, we can trivially see that the exploration process of the entire 
input/parameter space, followed by observing the corresponding output behaviour, can be easily 
hindered. Even within magnitudes of several minutes, a simple study can be extremely time-consuming 
if not, in some extreme cases, virtually impossible to conduct in a timely manner. 

To tackle the challenges mentioned above, simulation metamodels [7,8,9] can be employed to 
functionally approximate simulation models and then used as fast modelling proxies for the latter. 
Often characterized by mathematical simplicity and computational speed, metamodels allow for a 
reasonable number of expensive and/or redundant computer experiments to be bypassed, thereby 
leading to considerable time savings during the simulation exploration process. Additionally, the 
challenges generally posed by expensive simulation runs are akin to those where labelled data is not 
readily available and expensive to acquire. In such scenarios, active learning [10,11] emerges as a 
powerful learning paradigm aiming at attaining high prediction performance with as few data points 
as possible. Within it, a tuple encompassing the simulation input values and the output result (label) 
can be regarded as a single labelled data point. For simplicity, even though we only address 
metamodelling from a regression point of view, we decided to maintain the same terms traditionally 
used in the active learning community, which mostly focus on class label classification problems [12]. 

In NOSTROMO, we adopt an integrated approach that employs active learning strategies on top of 
simulation metamodelling processes to reduce the overall computational burden often associated 
with time-consuming and systematic simulation analysis. Eventually, our ultimate goal is to provide 
ATM researchers and practitioners with a parsimonious auxiliary tool to explore the output behaviour 
of simulation models in a more insightful and computationally efficient manner. For more details on 
this methodology and its elementary constituents, please refer to the deliverables D3.1 [3] and D3.4 
[2]. Note, however, that we do not seek, nor it would be wise, to completely dismiss the simulation 
model after the corresponding metamodel is obtained. On the contrary, our ultimate goal is to deploy 
active learning metamodelling along with the simulator as a bundled modelling framework, as both 
models play a crucial and complementary role within this integrated approach. 
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Figure 2 depicts an overview of the metamodelling process underlying the results presented in the 
following sections. 

 

 

Figure 2: Active learning-based metamodelling process overview for ATM performance assessment. 

Several requirements should be satisfied before proceeding with this methodology. The first step is to 
define the research questions and the case study, which are inevitably linked to the SESAR Solutions 
we aim to assess. From a modelling perspective, this will lead to the specification of the simulation 
input variables and performance KPI (outputs) of interest and, consequently, the input domain of 
applicability in which we want to explore the simulator’s behaviour. Additionally, due to the iterative 
nature of active learning, an initial training data set should be built, essentially comprising a small set 
of simulation results generated according to a certain sampling strategy (e.g. Latin hypercube [13]) and 
based on the set of simulation variables we choose to work with. 

Despite not being highlighted in Figure 1, it is equally crucial to define what kind of metamodel we plan 
to use, as it represents the modelling core of our approach. The Gaussian Processes (GP) regression 
framework [14], also known as Kriging [15], is a common choice for metamodelling [9], ultimately being 
our own within the project. 

As we can observe from Figure 1, the NOSTROMO methodology can be essentially split into two 
alternating phases, namely, active learning and metamodelling, and globally comprised of four 
essential and sequential steps as follows: 

1. Training: the metamodel is fitted to the simulation data. In the first iteration, this data 
corresponds to what we previously deemed as the initial data set. 

2. Prediction: the fitted metamodel is used to predict over the simulation input region 
of interest. 

3. Request: based on some acquisition criteria (e.g. maximum predictive variance), new 
unlabelled input data points are selected to be run by the simulator. Remember that 
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these points are comprised of simulation input points for which the corresponding 
true output values are unknown. 

4. Response: the simulator provides new simulation output results corresponding to the 
points from step 3, which are then added to the current training set. 

Steps 1-4 are repeated cyclically until a stopping criterion is satisfied. This criterion can be defined, for 
example, as a function of the metamodel’s performance, such as accuracy or error reduction, or simply 
the number of iterations to be performed with respect to the available time, budget and resources. 

Remember that the approximative nature of the metamodel calls for careful handling of the trade-off 
between speed, accuracy and computational budget. It is important to recognize and identify the 
performance threshold from which the mere addition of new training points will not significantly 
improve the ability of the metamodel to approximate the simulation results. In those cases, and 
especially from a metamodelling perspective, requesting more simulation results might be a waste of 
computational resources. 

As a final note, it is always important to reiterate that is it not our objective to discard the underlying 
simulation model under study but instead to complement it with an additional auxiliary tool that is 
able to efficiently explore its behaviour across its input-output space and easily identify and 
highlighting important relationships between the involved variables. 
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4 Metamodelling results 

4.1 FLITAN 

In this section, we detail the translation layer for Flitan’s categorical variables and present 
some results regarding the integration of SESAR Solutions PJ.08-01 and PJ02-08. It is 
worthwhile mentioning that the metamodel has no connection to the combination of both 
solutions, whose implementation was independently conducted within Flitan prior to the 
metamodelling process. From a modelling perspective, the integration of these Solutions ends 
up, in practice, corresponding to a new version of Flitan, i.e., to a new simulator with 
additional variables. 

 

4.1.1 Data Encoding 

 

As previously mentioned and discussed in D5.1 [15], most machine learning metamodels are 
not adequate to model Flitan’s input data due to its categorical (string-based) type. 
Furthermore, the data used by Flitan is scattered across multiple log files. For these reasons, 
important extra steps encompassing data collection, conversion, and merging are required 
prior to the metamodelling itself. We can see these steps as part of the design of “translation 
layer” mentioned in D3.3 [3] and D3.4 [15]. 

Although both mentioned SESAR Solutions have now been combined and integrated, their 
data conversion processes, especially concerning their corresponding input data, are similar 
and can be addressed separately. 

PJ.08-01 Solution 

This Solution regards the implementation of Dynamic Airspace Configuration (DAC). At the 
core of this Solution is the concept of the opening schemes - daily schedules of airspace sector 
configurations - and their corresponding flight delays as an output performance indicator. For 
a single operation day and fixed traffic demand, the idea was to establish a relationship 
between the opening scheme and configuration delay via metamodel and eventually predict 
the latter and allow a more efficient exploration of the simulator’s behaviour while minimizing 
the corresponding computational burden. 

An arbitrary airspace configuration can be broken down into a set of combined sectors, each 
of which is further composed of elementary sectors, as presented in Table 4. 
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Cent
er 

Unit Configuati
on Name 

Configur
ed 
Sectors 

Elementary Sectors 

LECB LECBCT
AE 

1A LECBBKE LECBCCL+LECBCCU+LECBMMS+LECBMNL+LECBMNU+LECB
VNI+LECBVVS 

LECB LECBCT
AE 

2A LECBCVN 
LECBMVS 

LECBCCL+LECBCCU+LECBVNI 
LECBMMS+LECBMNL+LECBMNU+LECBVVS 

LECB LECBCT
AE 

3A LECBCCC 
LECBMMI 
LECBVVI 

LECBCCL+LECBCCU LECBMMS+LECBMNL+LECBMNU 
LECBVNI+LECBVVS 

LECB LECBCT
AE 

3B LECBCCC 
LECBMNI 
LECBVMS 

LECBCCL+LECBCCU LECBMNL+LECBMNU 
LECBMMS+LECBVNI+LECBVVS 

Table 4: Example from the Josep Tarradellas Barcelona-El Prat Airport, East Air Traffic Control, relating the 
name of the configuration, configured sectors and elementary sectors. 

 

The basic idea behind PJ.08-01’s encoding within Flitan is that we assume each configuration 
can be mapped into a set of possible configured sectors. This set does not comprise all the 
theoretically possible combinations of elementary sectors but those most frequently used 
within the historical data acquired explicitly for this project. As expected, each cntrol unit is 
associated with a distinct set of configured sectors and, consequently, we propose each be 
separately modelled by a different metamodel. Additionally, each unit has its own pre-defined 
activation time periods across which the different available configurations can be permutated. 

The conversion process from categorical to dummy variables, regarded as a feature 
engineering step, has been described previously in D5.1 [15]. For more details, please refer to 
this deliverable.  

PJ02-08 Solution 

To implement this Solution, Flitan introduced a runway configuration manager and runway-
dependent operations functions into the simulation engine for optimal runway configuration 
planning while enhancing its sequencing functions to balance arrival flights and departure 
flights on single, dependent or parallel runways. The delay is also used as a performance 
metric as in the previous Solution. 

Table 5 presents a data log sample produced by Flitan at the runway configuration level for 
airports LEBL, LEMD and LEPA. The different configurations available per airport are named 
after the main cardinal directions. Within the same airport, only one configuration can be 
active for a given time period. The departure and arrival delays, and their sum, are used as 
throughput performance metrics.  
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Airport Configuration Start time End time Depart. 
delay 

Arrival 
delay 

Sum 
delay 

LEBL WEST 2019-06-

23T05:05 

2019-06-

23T22:46:59 

43136 65635 108771 

LEBL NORTH 2019-06-

23T22:47 

2019-06-

23T23:59:59 

0 7609 7609 

LEBL NORTH 2019-06-

23T00:00 

2019-06-

23T05:04:59 

4409 0 4409 

LEMD NORTH 2019-06-

23T00:00 

2019-06-

23T08:56:59 

1331 0 1331 

LEMD SOUTH 2019-06-

23T08:57 

2019-06-

23T23:59:59 

11535 12686 24221 

LEPA WEST 2019-06-

23T14:16 

2019-06-

23T18:06:59 

10641 14622 25263 

LEPA EAST 2019-06-

23T18:07 

2019-06-

23T23:59:59 

2246 6732 8978 

LEPA EAST 2019-06-

23T00:00 

2019-06-

23T14:15:59 

29243 21480 50723 

Table 5: An example of a runway configuration data log produced by Flitan. 

Combination of PJ.08-01 and PJ02-08 Solutions 

The metamodel is agnostic to how the solutions were combined and implemented within the 
simulator. From the metamodelling perspective, this new version of Flitan (3dr iteration), 
integrating both PJ.08-1 and PJ02-08, is regarded as a different simulator with a refreshed set 
of input and output variables. The new input data is a combination between the encoded 
opening schemes at the FMP level and the runway configurations at the airport level. Because 
time is an important component of Flitan’s input data, we concluded that, from a 
metamodelling perspective, it would make sense to use the same activation timeslots for both 
DAC and runway configurations. By default, Flitan’s input data was using different timeslots 
per control centre and airport runways. Moreover, we have concluded that, from a 
metamodelling perspective, it would not make sense to integrate control centres with airports 
that are not contained within them (for example, combining runway configuration plans from 
Lisbon airport with Barcelona’s DAC). To this end, we forced the control centers' DAC 
timeslots, which are independently fixed, into the corresponding airport runway configuration 
activation plans. Therefore, we ended up focusing on the following combination of centres 
and airports: 

• LECPCTA (Palma de Mallorca, Spain) + LEPA (Palma de Mallorca Airport) 
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• LECMCTAN (Madrid North, Spain) + LEMD (Adolfo Suárez Madrid–Barajas Airport) 

• LECMCTAS (Madrid South, Spain) + LEMD (Adolfo Suárez Madrid–Barajas Airport) 

• LECBCTAE (Barcelona East, Spain) + LEBL (Josep Tarradellas Barcelona-El Prat Airport) 

• LECBCTAW (Barcelona West, Spain) + LEBL (Josep Tarradellas Barcelona-El Prat 
Airport) 

This yields five different metamodels, each modelling a different control centre-airport pair. 
Table 6 shows an illustrative sample of the integrated data used by the metamodels.  

 

Center

/Unit 

 

Air 

Sp

ace 

Co

nf. 

Start 

time 

End 

Time 

LECP

GIX 

LECP

F2X 

LECP

L2E 

LECP

APR 

… DA

C 

Del

ay 

RW 

Co

nfi

g 

Arr

iv 

Del

ay 

Dep

art 

Del

ay 

Su

m 

Del

ay 

LECPCT
A 

2A 09/07/
2019 
03:05 

09/07/
2019 
03:59 

0 0 0 1  166 EAS
T 

0 0 0 

LECPCT
A 

6A 09/07/
2019 
04:00 

09/07/
2019 
04:59 

0 1 0 0  339 WES
T 

139
3 

0 139
3 

Table 6: Illustrative sample used by the metamodels integrating the encoded data from PJ.08-01 and PJ02-08, 
using control until LECPCTA and the corresponding airport LEPA. 

Remember that, as seen in D5.1 [15], the airspace configurations were not processed via one-
hot encoding. Instead, the used process translates the idea that an arbitrary air space 
configuration, for a given centre, is defined as a fixed and unique combination of active 
configured sectors (LECPGIX, LECPF2X, etc.). Those configured sectors that are active (or open) 
are represented by “1“, and “0” is trivially assigned to those that are inactive (or closed). Since 
a certain air space configuration is described as a combination of at least one active configured 
sector, the sum of all “1”s is always equal to or greater than 1. Similarly, the runway 
configuration must also be converted to numerical values. One-hot or ordinal encoding can 
be easily adopted as conversion methods. 

Note that this integrated encoding presented herein is not unique and merely pertains to a 
proposal within this project. Other encodings could have been considered and should be 
explored in the future. Ultimately, any adopted encoding will be conditioned by the nature of 
the simulation data and the underlying simulators, as well as on the objectives of the 
simulation study. 
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4.1.2 Results 

This section focuses on the results obtained for LECPCTA (Palma de Mallorca, Spain) + LEPA 
(Palma de Mallorca Airport). Within this experimental setup, each simulation day is, in terms 
of input data, comprised of 17 fixed and predefined timeslots, 25 DAC-related variables (total 
number of configured sectors), two variables encoding the runway configuration (East and 
West), and the date itself. In our setting, an individual data point is defined as an entire 
simulation day with 17 timeslots, encompassing both the opening scheme and the runway 
configuration daily plans, along with the corresponding delays. The simulation time window 
spans from 20/06/2019 to 17/07/2019. The resulting search input space is quite large and 
sparse due to the one-hot representations. Figure 1, Figure 4, and Figure 5 depict some results 
originating from three different experimental settings. 

Contrary to the case of Mercury, the results obtained for Flitan were not as clear so far. 
Although overall, there is a clear increasing tendency as the number of active learning 
iterations increases, both random and variance-based strategies behaved similarly. We 
believe that one of the causes for this is indeed the sparsity of the (encoded) input space 
associated with high variance in the output space. Another reason might lie in the “artificially” 
generated output metric (DAC Delay + Sum Delay) inspired by the integration of both 
Solutions. Nevertheless, further investigation is required for future work. 

Note, however, the difference in the RRSE scale when only the date is used (see Figure 4). This 
only strengthens the potential importance of including the total number of daily flights 
(demand) as an additional input feature. 

 

Figure 3: Gaussian Process as metamodel starting with 10 data points. 
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Figure 4: Gaussian Process as metamodel starting with 50 data points and using only the date variable. 

 

Figure 5: XGBoost as metamodel starting with 100 data points, and Greedy Sampling in the input space (GSx) 
using query batches of size 10. 

4.2 Mercury 

In this section, we report the active learning metamodelling results focused on two output metrics, 
namely, Absolute Equity and Saved Real Cost in regulation w.r.t. FPFS allocation. For regularization ad 
scaling purposes, both output variables were log-transformed by the function log(x+1). The used input 
variables are briefly described in Section 2.2. Figure 6 and Figure 7 summarize the evolution of 
metamodelling as the number of iterations increases. Within the two reported experimental settings, 
both random and variance-based active learning strategies were employed. We can conclude that, as 
expected, the metamodels' performance increases as more points are added to the training set. The 
greatest difference between the two strategies is twofold. The variance-based active learning 
metamodelling yields a much more significant and faster performance improvement in the first few 
iterations when compared to the random approach. Moreover, the performance variances associated 
with the metamodel within each iteration are clearly greater in the case of the latter. Note that 
individual metamodels were developed for each output, although both share the same input space 
comprised of 11 input variables. 

 

Figure 6: Active learning metamodelling performance for Absolute Equity. 
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Figure 7: Active Learning metamodelling performance for Saved Real Ratio Cost. 
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6 Acronyms 

Acronym Definition 

ATM Air Traffic Management 

BPM Business Process Modelling 

ANSP Air Navigation Service Providers 

ATCO Available Air Traffic Controller 

FMP Flow Management Positions 

AOP Airport Operation Plan 

NM  

DDR Demand Data Repository 

AIRAC Aeronautical Information Regulation and Control 

ATFM Air Traffic Flow Managament 

IFPS Integrated Initial Flight Plan Processing System 

KPI Key Performance Indicator 

FMP Flow Management Positions 

NOP Network Operation Plan 

GP Gaussian Process 
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Appendix A Mercury Simulator 
Mercury is a simulator developed over several years which is able to produce detailed 
network-wide performance assessment, in particular regarding passenger mobility in Europe. 

Mercury is implemented as an event-driven simulator. The underlying model can be seen as a 

Monte Carlo simulation, sampling distributions (delays, missed connections, etc.) based on 

causal rules representing actual processes of the air transportation system (e.g. if passenger 

delay is bigger than a given threshold, an airline incurs costs for compensation and assistance 

to the passenger). It can also be seen as an agent-based model, and this paradigm has been 

followed closely when it was designed. A series of agent instances sends messages back and 

forth and reacts to events. Their memory is private, i.e. they have attributes that cannot be 

accessed by other agents. This opens the way to modelling imperfect knowledge and eases 

the implementation of rules of thumb and approximated decision-making processes, more 

realistic than full ‘hyper-rational’ agents in general. 

The scope of the simulator is to model individual aircraft throughout one day of operation, 

including turnaround processes, tracking the passengers on board, as well as passenger 

connections. The passengers in Mercury are modelled through passenger processes, 

simulating for instance connecting times for individual passengers, connecting options, etc. 

The flight is described in terms of times it takes to complete different processes (taxi, take-

off, cruise, etc). The simulation of the en-route phase is approximated using actual flight plans 

and delay distributions. The fuel consumption can be assessed with quite a good precision, 

thanks to BADA models, but a full trajectory optimiser is not included in this version. Hence, 

the simulator relies heavily on historical flight data to sample navigation times FOOTXXX. 

 FOOTXXX: a trajectory optimiser is in general required when one wants to modify an aircraft 

trajectory. For instance, modifying the speed of the aircraft in general changes the descent 

profile. In NOSTROMO we are relying on past data instead (for this second iteration), using 

similar aircraft that underwent similar changes in order to rebuild trajectories. Note that in 

the third iteration of the model, another process will be used, based on BADA4 model 

sampling. 

Different types of agents are present in the system, sometimes instantiated multiple times 

(e.g. airline operating centre), sometimes once (e.g. network manager). We describe the most 

important ones succinctly in the following. 

Airline Operating Centres (AOC) 

This agent is the most important in the simulation and the most advanced. It is tasked with 

following its flights and passengers, making decisions when disruptions hit, providing 

information to the Network Manager agent if needed, etc. 

AOC decision making-process is based on usage of detailed cost functions, estimated using 

[13] and representing the best guess we have on the costs to airlines. The costs include fuel, 
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explicit passenger direct costs (compensation/duty of care), implicit maintenance and crew 

costs, curfew costs, etc. The cost function of a flight (the cost as a function of the arrival time 

for instance) is deterministic and features typically various ‘jumps’, corresponding to 

passengers missing their next connections or curfew infringement (potentially on the next 

rotations). 

The cost function is used for different processes, like the two mechanisms described 

thereafter. 

Flight 

The flight agent is tasked with estimating different phases of flights, drawing randomly delays 

where needed, based on historical distributions. It is mainly communicating with its AOC. For 

instance, the AOC may provide to the flight its cost function to be able to make informed 

decision on speed in advanced mechanisms. 

Ground Airport 

The ground airport takes mostly care of two processes. First, it manages the connecting 

passengers, drawing random values for their connecting times, sampled from a distribution 

calibrated on past data. This connecting time is compared to the minimum connecting times, 

available for each airport and type of connection (national-international, international-

international, national-national). Second, it does the same for the aircraft, drawing at random 

values for their turnaround times. This distribution is also calibrated on past data. The 

departure delay is then applied to the next flight if the turn-around time is too high. 

DMAN and AMAN 

These agents track explicitly the departures and arrivals at their airport and ask for ATFM 

regulations if the traffic needs to be regulated. Depending on their nature (see new 

mechanisms thereafter), they may communicate to the flights en-route to ask them to change 

their speed. 

Network Manager 

The network manager is responsible for considering flight plan submissions from the airlines 

and managing ATFM regulations. It checks with DMAN and AMAN if the estimated traffic 

would surpass the capacity in their respective airports and arranges for flights to be delayed, 

according to different rules (see mechanisms thereafter). Note that on top of regulations for 

traffic, regulations can be randomly sampled from historical data, to simulate loss of capacity 

due to other events, like weather. 

Other considerations 
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Passengers are bundled in groups that share common itineraries, and these groups are 

handled by the other agents, like the AOC and the ground airport. These groups are dynamic, 

i.e. in case of missed connections they can be split if their respective passengers need to board 

different planes. Note that in this simulator the passengers do not have to make any decision, 

and are thus not considered as agents. 

Finally, we highlight two important limitations of the simulator: 

The crew is not explicitly considered by the model. In other words, the airline does not take 

into account crew rotations. It only considers an approximated cost for the airline to operate 

with delay, which takes into account the average cost of dealing with disrupted crew 

processes. This is due to the difficulty to get historical crew rosters from airlines. 

Apart from the runways themselves, there is no explicit model of the airspace. In other words: 

the model does not track through which sectors a flight is going, and thus cannot issue 

regulations based on traffic on these pieces of airspace. En-route ATFM regulations are thus 

simulated as random delays. 

no tactical traffic control takes place. We do not model controllers, and the trajectory is not 

modified based on their potential actions. Instead, we used distribution of “delays”, which 

modify the flight times between navigation points, extracted from historical data. 

As highlighted above, the simulator relies heavily on historical data, that it uses in particular 

to create and then sample various distributions. The results in this deliverable have been 

obtained with a calibration of the model on the 12th of September 2014, for which we have 

all the required data, and the data sources are shown in table XXXXX. 

 

Data source Main usage Reference 

DDR2 Used to get the set of flights, origin-destination, routes, aircraft 

type, estimated cruise wind, distributions on climb and descent 

profiles, requested nominal cruise speeds and flight levels, 

companies, alliances, airspace structure, ATFM regulations 

[12] 

Cost of delay report Used to compute cost of delay function [13] 

IATA Summer Season 

2010 from CODA 
taxi times [14] 

DDR2 minimum turnaround times, minimum connecting times [15] 

CODA non-ATFM delays [16] 

Paxis, GDS For passenger itineraries, including fares and class [15] 
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Data source Main usage Reference 

Innovata (Cirium) Flight schedules, for scheduled times of arrival and departure - 

 

For the third iteration of the model (presented in D5.2), the project will use the same kind of 

data, updated to match the 14th of September 2018, thus provided a more up to date 

estimation of the KPIs. 

More details on the Mercury simulator can be found in [10]. 
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Appendix B Flight arrival coordinator 
 

This section develops new mathematical models for the fight arrival coordinator problem. The 
objective is trying to start arrival traffic sequencing earlier than is the case by AMAN in the 
concept of E-AMAN. The E-AMAN extends the horizon to have smoother traffic management 
near the airport area. This process would reduce the delay, operational costs, CO2 emission, 
and smooth delivery of arrival traffic to the runways. We suggest dividing the space near the 
airport into three different horizons as follows (see Fig 1): 

  

• Data Horizon (DH) = 600 NM 

• Command Horizon (CH) = 500 NM 

• Tactical Horizon (TH) = 100 NM 

 

Fig 1: Three different horizons near an airport 

Here we propose an E-AMAN model that extends to 500NM for CH. When the flights hit Data 
Horizon (DH), those flights' intentions are sent to the E-AMAN. Once the target flight enters 
Command Horizon (CH), the mathematical model (or optimiser) is run to find an optimal slot 
for that flight at the runway. Here, we consider the other flights within DH in optimising. 
Compared to previous optimisation processes, the E-AMAN takes into account the cost of 
delay and fuel for the airline instead of delay alone and uses information on the distribution 
time of arrival to manage uncertainty (e.g., due to wind). Based on the optimal slot assigned, 
the E-AMAN issues a command to the flight to maintain “Initial Speed”, “Speed Up”, or “Slow 
Down”. It also assigns minutes of holding if the delay cannot be absorbed during the cruise 
phase. 
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Basic model description 

In the basic model, we suppose that each slot's size equals two minutes. This part aims to 
demonstrate the trade-off between two different objectives that could be considered in the 
objective function. The first one is "Delay", and the second one is "Imbalance", which is the 
sum of flight probabilities that arrive in a specific slot. We use the information on different 
flights via the website of http://www.flightradar24.com 

. We record the arrivals to London Heathrow Airport on several days. Then select 395 flights 
and 538 slots as an instance. We record the probability distributions of different flights. 

We develop the basic models below to solve the problem: 

 

Here the parameter E(i) is the number of the first slot where the probability distribution of 
flight i starts. We assume that each flight can take one slot at the start of its distribution. Also, 
in the right-hand model, the sum of delays must be lower than a threshold value for the delay, 
while in the left-hand model, the imbalance factor must be lower than the threshold value, 
and we assume that a certain value is equal to one here. 

The decision variables, Y(i,j), determine the optimal probability distribution for flight i in slot 
j. The parameter is equal to the initial probability of flight i arriving at slot j, which we 
calculated through http://flightradar24.com 

. We run the model on a laptop with the specification of the AMD Ryzen 7, 3700U, 2.30 GHz 
CPU, 16 GB RAM, and Python 3. 
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Scenario Threshold 
value 

Objective 1: 

Delay 

Objective 2: 

Imbalance 

Run time (s) 

1 0 0 18.73 336 

2 5 5 17.43 360 

3 8 8 16.76 368 

4 12 12 16.03 375 

5 20 20 14.9 395 

6 30 30 13.83 399 

7 40 40 12.96 943 

8 50 50 12.13 1707 

9 140 140 7.4 - 

10 300 300 2.89 - 

Table 7: Total results of basic model 

 

We define ten scenarios to demonstrate that we face two conflicting objective functions: 
“Delay” and “Imbalance” indicators. In the curves below, the results are shown: 

 

 

Fig 2: First objective function (Delay) under ten scenarios 
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Fig 2 shows the results of the basic model under the objective function of delay. From 
scenarios 1 to 10, we are increasing the threshold values. From the perspective of “Delay”, 
the best scenario is the first one, and the objective function is equal to 0, but the worse 
scenario is the last one with 300 slots of delay. In Fig 3, we analyse the model under the second 
objective function, the “Imbalance” indicator: 

 

 

Fig 3: Second objective function (Imbalance) under ten scenarios 

  

Here we assume the certain value is equal to one, which means that in the second objective 
function, Imbalance, we count the sum of probabilities of flights if that is greater than one in 
each slot. As mentioned in Fig 3, the best scenario is scenario ten, and the worse scenario is 
the first one we face, the more flights in each slot. These results demonstrate that the two 
objectives of “Delay” and “Imbalance” are conflicting objectives. 

In the next part, we explain how we model the advanced model for the problem. 
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Formulation of Advanced model 

In this section, we develop new mathematical models for the fight arrival coordinator 
problem, explain how the mathematical model is developed, and optimiser works. Firstly, the 
sets, parameters and decision variables are introduced as follows: 

Sets: 

 

Parameters: 

 

  

Decision Variable: 

 

  

The parameters of the model a(i,h) and w(i,j,t), are computed based on the parameter 
prob_matrix(i,j). We define these two parameters because when a target flight is issued 
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commands such as “Speed Up” or “Slow Down”, the distribution will be changed if the size of 
different slots is not equal. Therefore, firstly we normalised the probabilities based on the unit 
of minutes (matrix a) and then found a new matrix (matrix w) that could be used in the 
optimiser (see Fig. 4). 

 

 

Fig 4: Calculate the probability distribution of Flight 1 after issuing the command “Slow 
Down” 

  

In Fig. 4, the process of computing the matrix w is shown, and we supposed that flight i takes 
optimal slot 3 as the start of its distribution and is issued the command “Slow Down”. As the 
slot numbers between {0-4} and {3-6} are different in terms of size, the probability distribution 
is changed as input of the optimiser. Therefore, in the optimiser, we work with matrix w 
instead of parameter prob_matrix(i,j). 

  

In following the new mathematical model for the flight arrival coordinator problem is 
presented: 
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In equation (1), the sum of the cost function of flights between DH and CH is minimised. The 
cost function is defined as the flight's cost matrix at each slot multiplied by the probability of 
arriving at that slot in equation (2). In equation (3), we guarantee that each flight takes one 
slot as the start of its distribution, and the sum of probabilities must be equal to one for each 
flight between DH and CH regarding equation (4). The probability distribution for each flight 
is computed in equations (5-6). Based on these two equations, when the start of the 
distribution is determined, the probabilities are computed, taking their values from matrix w. 
equation (7) defines finding out the holding for each flight which happened when that flight 
could not take the slot only with the "Slow Down" command. Therefore, we consider holding 
as waiting for that flight. Regarding equation (8), we guarantee that sum of probabilities for 
each slot must be lower than the threshold value. At the same time, we consider those flights 
is issued in the optimiser's previous run as parameter demand. Finally, the decision variables 
are mentioned in the last equation, equation (9). 

Here we present some examples of how the optimiser works. 

Example 1) The probability distributions of two flights are shown here. We compute the sum 
of probabilities of two flights as below: 
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Fig 5: Sum of probabilities of two flights and the threshold value 

 

With their probability distributions, two flight numbers, 1 and 2, are shown on the left side of 
Fig 5. If we issue the “Initial Speed” and suppose the threshold value is equal to one, the sum 
of probabilities would be greater than the threshold value in slot 1 (Fig 5, right up). However, 
if we issue the “Slow Down” command to flight 1 like Fig 4, the sum of probabilities would be 
lower than the threshold value (Fig 5, right down).  

In the proposed model, we minimise the total cost considering the sum of probabilities of 
flights in each slot is lower than the threshold value. 

  

Example 2) Suppose seven flights exist between DH and CH and Flight 6 (target flight) hits the 
CH. We run the optimiser to find out the optimal slots for these flights. In Fig 6, their 
probability distributions of them are indicated. 
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Fig 6: Probability distributions of seven flights between DH & CH 

 

Here we suppose that the maximum allowed holding is 10 minutes, and the cost matrix for 
the first available and last available (with holding) slots are as follows: 

  

Slot 

number 

Flight 0 Flight 1 Flight 2 Flight 3 Flight 4 Flight 5 Flight 6 

  Flight 0 Flight 1 Flight 2 Flight 3 Flight 4 Flight 5 Flight 6 

0 843.3146      577.0506 

1 79.40954      624.9372 

2 24.62053      656.5097 

3 27.86043      596.644 

4 28.9612      588.321 

5 30.07312 5.950961     595.6829 

6 31.45583 6.97452     607.8146 

7 32.60369 7.930028     623.6344 

8 33.76431 8.889472     639.4523 

9 34.93806 9.853     655.267 

10 36.1253 10.82076     671.0772 

11  11.79288     686.8819 

12  12.76952     702.6798 
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13  13.75078     718.4699 

14  14.73681      

15  15.84731      

16  16.84827      

17  17.85439      

18        

19        

20     5.841493   

21     6.803682   

22    21.32351 7.726176   

23    22.52733 8.650965   

24    23.74359 9.578138   

25   25.41603 24.97236 10.50778   

26   44.90242 26.59115 11.43996   

27   64.39418 27.85732 12.37478 1249.689  

28   83.89168 29.13576 13.3123 1249.689  

29   103.3952 30.42627 14.25259 1249.689  

30   123.0437 31.7286 15.2655 653.8528  

31   142.5669 33.04244 16.21451 276.8866  

32   162.0971 34.36742 17.16653 99.31297  

33   181.6347 35.70311 18.1216 28.20443  

34   201.1797 37.04901  5.382184  

35   220.7325 38.89292  4.033688  

36   240.2932   4.991423  

37   259.862   5.953183  

38      7.013563  

39      7.98888  

Table 8: Total cost of flights regarding the first and the last available slots 

https://www.sesarju.eu/


D5.2 -  ATM PERFORMANCE METAMODELS - FINAL RELEASE  

 
  

 

Page I 43 
 

  
 

 

 

  

We use these inputs as a parameter in the mathematical model. We run the model in a laptop 
with the specification of the AMD Ryzen 7, 3700U, 2.30 GHz CPU, 16 GB RAM, and Python3 is 
used for running the optimiser. The result of the optimiser is indicated in Fig 7: 

 

Fig 7: optimal slot assignment to seven flights and their new distribution 

 

The result of the optimiser shows that the target flight (no. 6) must start from slot 0 instead 
of starting its distribution from slot 2. Therefore, the “Speed Up” command has been issued, 
taking the new speed of 7.464 instead of the previous speed of 7.157. The new speed is 
selected in the range of acceptable minimum and maximum speeds. The cost function for the 
target flight is equal to 609.7. Although we calculate the optimal slot assignment for all flights 
between DH and CH in each run of the optimiser, we issue the command only to the target 
flight. The reason behind that is the possibility that in the next run of the optimiser (when a 
new target flight hits CH), the previous optimal slot for a flight is not optimal anymore. 
Therefore, we count the flights between DH and CH in each optimiser run and issue the 
command to target flights. 

 

  

https://www.sesarju.eu/


D5.2 -  ATM PERFORMANCE METAMODELS - FINAL RELEASE  

 
  

 

Page I 44 
 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 
 

https://www.sesarju.eu/

