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ABSTRACT 

Osteoarthritis (OA) is the most common rheumatic disease and is predominantly a 
disease of the elderly and middle aged characterized by a loss of joint mobility and pain. 
OA is manifested by a loss of articular cartilage (AC) which is thought to occur as a 
result of the apoptotic death of the chondrocytes which normally maintain the cartilage 
matrix. Certain stimuli such as NO and TNF-a have been shown in vivo to contribute to 
accelerated damage of articular tissue and to amplify the inflammatory process. This 
study focuses on the effects of these stimuli on chondrocyte death and endogenous 
mechanisms which exist to protect against that death. 

C-20/A4 cells treated with SNAP (NO donor) and TNF-a demonstrated an increased 
level of apoptosis when analysed by TUNEL and Annexin V/PI staining and necrosis 
analysed by LDH release. One of these stimuli, SNAP was shown to induce the 
production of UCN, a CRH-like cytoprotective peptide implicated in the prevention of 
cell death in many systems. TNF-a did not induce UCN production. UCN depletion and 
the addition of a helical CRH resulted in increased cell death suggesting a role for UCN 
in chondrocytes as an autocrine/paracrine endogenous cytoprotective agent. This was 
further supported by the observation that exogenous UCN administration at a 
concentration of 10-8M protected chondrocytes further against pro-apoptotic stimuli and 
was observed to be more protective against SNAP than TNF-a. 

The data presented here would indicate that UCN cytoprotection may be mediated via 
the P13K, P38 MAPK and P42/P44 MAPK pathways as determined using the selective 
inhibitors LY294002 (P13K), SB202190 (P38 MAPK) and PD98059 (P42/P44 MAPK), 
but P42/P44 MAPK would appear to be the most important. This was further confirmed 
by Western blotting which showed that in the presence of UCN, P42/P44 MAPK 
activation increased significantly. Caspase 3 cleavage was observed in SNAP treated 
cells but was reduced in cells treated with SNAP+UCN. Caspase 8 and 9 failed to show 
consistant results. 

This research is the first to report the existence of endogenous UCN in human 
chondrocytes and also suggests a chondroprotective role for UCN. This, along with the 
identification of other possible areas of intervention, such as the P13K and MAPK 
pathways implicated in UCN activity may indicate potential future therapeutic avenues 
in OA. 
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CHAPTER I 

INTRODUCTION 



1.1 The skeletal system 

The skeletal system is composed of a large number of bones of various shapes and sizes 
linked together by a variety of joints also known as articulations or arthroses, where 
they meet. Joints are classified either as synarthroses (immovable joints), 

amphiarthroses (slightly movable joints) or diarthroses (freely movable joints), also 
known as synovial joints. 

Whilst all diarthroidal joints generally have a related structure, the shapes of the 

articulating surfaces differ. Synovial joints are therefore divided in 6 subtypes: Gliding 

(or planar) joints, where articulating surfaces are flat and allow movement from side to 

side and back and fourth, (e. g. intercarpal joints); Hinge joints where the convex oval 

surface of one bone fits into the concave surface of another bone, (e. g. knee joints); 

Pivot joints, where the rounded surface of one bone articulates within a ring made partly 
by another bone, (e. g. condyloid joints); Ellipsoidal joints where the convex oval shaped 

projection of one bone fits into the oval shaped hollow of another bone (e. g. wrists); 

saddle joints where the articular surface of one bone is `saddle' shaped and the articular 

surface of the other bone fits into the "saddle" (e. g. carpometacarpal joint); ball and 

socket joint where a ball-like surface of one bone fits into a cuplike hollow of another 

bone (e. g. hip joints) (Rosen, 2000). 

The main focus of this thesis is the mechanisms involved in the pathogenesis of 

osteoarthritis (OA), a degenerative joint disease which can affect virtually all the joints 

of the skeletal system but is predominantly found in the larger synovial joints. 

1.2 Joint composition, chondrocyte function and the extra cellular 

matrix 

Diarthroidal joints consist of bone, articular cartilage (comprising chondrocytes and 

extracellular matrix) and other associated connective tissues. Articular cartilage is a thin 

layer of tissue that covers the articulating ends of the bones comprising the diarthrodial 

joint and acts as a shock absorber and wear resistant surface within the joint (Archer et 

al, 1994). Cartilage tissue does not contain components of the nervous, lymphatic or 

vascular systems and possesses only one cell type, the chondrocytes, which are related 

to fibroblasts and occupy small chambers called lacunae within the extracellular matrix 

2 



(ECM). Chondrocytes account for only 2-3% of the total tissue volume and are 
completely enclosed by their ECM hence they do not form cell-to-cell contacts 
(Buckwalter and Mankin, 1998). Chondrocytes from articular cartilage live in a largely 

anoxic environment and utilize anaerobic metabolic pathways. Cartilage can be divided 
into four zones. From the surface inward, these zones are the superficial, middle and 
deep zones and the calcified zone (Blanco et al, 2004) and the chondrocytes in each 

zone vary in morphology, metabolic and biochemical activity (Mobasheri et al, 1998; 

Aydelotte et al, 1996). Chondrocytes are responsible for the biosynthesis, maintenance 

and repair of the articular cartilage and contain abundant endoplasmic reticulum & 

Golgi apparatus needed for the production of ECM components and the enzymes that 

degrade or build the matrix (Buckwalter and Mankin, 1998). 

Maintenance of the articular cartilage requires continual replacement of degraded matrix 

components and may need changes in the macromolecular framework of the matrix in 

response to joint usage. In order for this to occur, the chondrocyte must recognize 

changes in matrix composition that takes place as a result of macromolecule degradation 

including changes induced by the day-to-day strain placed on the articular surface. The 

cells must then respond by synthesizing appropriate types and amounts of 

macromolecules (Buckwalter and Mankin, 1998). 

The ECM of articular cartilage is composed mainly of water (60-70% of the tissue wet 

weight) and matrix macromolecules which interact with the water to determine the 

mechanical properties of the tissue. The matrix macromolecules include proteoglycans, 

collagen fibres and a complex network of link proteins, which help organize and 

stabilize the macromolecular framework of the matrix (Dharmavaram et al, 1993; 

Rucklidge et al, 1996). Proteoglycans are highly hydrophilic and swell to expand the 

collagen network contributing to the hydrodynamic properties of cartilage giving the 

tissue its typical elasticity, strength and ability to resist mechanical stress (Archer et al, 

1994). 

Normal articular cartilage contains six of the 27 known types of collagen, types II, V, 

VI, IX, X, and XI, with type II collagen being the most abundant constituting 90-95 % of 

the proteins in adult cartilage (Rucklidge et al, 1996). Type II collagen forms the 

primary component of the cross-banded fibrils with smaller amounts of collagen IX and 

XI. Type IX collagen molecules covalently bind to the superficial layers of the cross 
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banded fibrils and project into the matrix, where they also bind covalently to other type 
IX collagen molecules, whilst type XI collagen acts to control processing of type II 

collagen and fibrillogenesis (Upholt and Olsten, 1991). Both type IX and XI collagens 
also help to stabilize the collagen fibrils (Buckwalter and Mankin, 1998). 

The matrix surrounds the chondrocytes and protects them from mechanical injury 

during normal joint movement, helping in the maintenance of their phenotype. The 

delivery of nutrients, substrates for the synthesis of matrix molecules and newly 

synthesized molecules, occurs via diffusion through the ECM (Blanco et at, 2004). 

Similarly, degraded matrix molecules and metabolic waste products diffuse out of the 

matrix (Buckwalter and Mankin, 1998). Other molecules that help to regulate cell 
function, such as cytokines and growth factors also move to and from the cells by 

diffusion through the ECM (Blanco et al, 2004). 

Cartilage remodeling is triggered by endogenous cytokines (e. g. tumour necrosis factor- 

alpha and interleukin- I beta) produced by activated synoviocytes (cells in the synovial 

membrane), or articular chondrocytes themselves (Fernandes et at, 2002) and locally 

produced growth factors (e. g. IGF-I, BMP, NGF and TGFO) (Poiraudeaud et al, 1996), 

which influence chondrocyte function by inducing two main functional programs: the 

catabolic and the anabolic processes. The up-regulation of catabolic processes is 

induced by pro-inflammatory stimuli and distinguished by the secretion of proteases, 

suppression of matrix synthesis, and inhibition of chondrocyte proliferation. The 

anabolic program seems to be a reaction to structural requirements of the matrix and/or 

stimuli such as local growth factors and mechanical loading of the tissue and includes 

the synthesis of protease inhibitors, production of extracellular matrix and cell 

replication (Blanco, 1999). 

Several stimuli may be involved in the regulation of the anabolic/catabolic processes. It 

has been suggested that chondrocytes may react to the existence of fragmented matrix 

molecules, enhancing their synthetic activity in order to replace the degraded 

components of the ECM (Burrage et al, 2006). Another factor which may be involved 

in the manipulation of the equilibrium between synthetic and degradative activity is the 

frequency and intensity of joint loading. A decrease in joint loading alters chondrocyte 

activity such that degradation exceeds synthesis of at least the proteoglycan content 

matrix and it seems likely that the opposite also occurs (Buckwalter and Lane, 1996). 
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Dysregulation of cartilage maintenance can result in irreversible joint damage and the 
associated clinical symptoms of osteoarthritis. 

1.3 Osteoarthritis 

The arthritides are a group of the most common and best known of all joint disorders 

characterized by joint inflammation. The three most common classes of arthritis are (i) 

arthritis associated with metabolic & endocrine diseases, gouty arthritis (ii) diffuse 

connective tissue diseases, rheumatoid arthritis (RA) and (iii) degenerative joint disease, 

osteoarthritis (OA). Gouty arthritis (gout) occurs when there is an increase of uric acid 
in the blood resulting in sodium urate crystals being deposited in the soft tissues and 
joints (Tortora and Grabowski, 2000). Rheumatoid Arthritis (RA) is an autoimmune 
disease distinguished by synovial inflammation resulting in the destruction of the 

cartilage and bone (Kim et al, 2005). Osteoarthritis is a result of joint `wear and tear' 

and as such is more common in older or more active individuals where the joints have 

experienced more accumulated damage. Loading can also be affected by obesity and 

joint injury, both of which can increase the likelihood of developing OA (Hunter and 

Felson, 2006). 

Osteoarthritis (OA) is the most common rheumatic disease and affects 190 million 

people worldwide, and its occurrence is expected to climb as the age of the population 

increases (Tortorella and Malfait, 2003). OA is predominantly a disease of the elderly 

and middle aged, characterized by a loss of joint mobility and pain (Buckwalter and 

Mankin, 1998). OA can occur in any synovial joint in the body, but is most common in 

the knees, hips, hands and vertebrae (Hunter and Felson, 2006). OA affects females 

more than it does males (ratio of 10: 1), especially OA of the hand and knee, where, after 

the age of fifty, the prevalence and incidence of disease in these joints is significantly 

greater in women than in men. Hip OA however, occurs at the same rate in both 

genders, although progression tends to be more rapid in females (Arden and Nevitt, 

2006). The cause of OA is most likely multi-factorial, although, a hereditary factor 

appears to play an important role. Currently, there is no complete cure for OA, although 

early detection followed by efficient therapy can slow its detrimental effects (Ishihara et 

al, 2005). One of the main clinical observations of OA is that it predominantly affects 

the larger joints. OA can also affect small joints such as at the fingers but this generally 

occurs later in the disease process resulting in the formation of hard bony enlargements, 
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known as Heberden's nodes, which significantly limit the movement of the fingers 
(Dharmavaram et q 1993). 

OA manifests as morphological, molecular, and biochemical changes of both 

chondrocytes and matrix. In a healthy individual, articular cartilage covers the opposing 
surfaces within synovial joints where it forms a smooth shock-absorbing surface 
essential for normal function of the joint and also absorbs energy from the shock of 
physical movement (Dharmavaram et al, 1993). In OA the surface layer of cartilage 
breaks down and wears away. This allows bones under the cartilage to rub together, 

causing pain, swelling, and loss of motion of the joint and over time, the joint loses its 

normal shape (Micane and Huether, 1994). Figure 1.1 illustrates the structural 
differences between normal and OA joints. 

Normal Joint 

Muscle 
Bone 

Bursa Synovial 
membrane 

Synovial 
: 

apsuie 

Tendon 
Cartilage 

Bone ends 
rub together 

Oste oa rth ritis 

Thinned 
cartilage 

Figure 1.1: Structural Differences between normal and osteoarthritic joints. 

(www. medicinenet. com/osteoarthritis/pacie2. htm) 

OA affects not only the cartilage, but also the entire joint structure, including the 

synovial membrane, bone, ligaments and periarticular muscles (Abramson and Yazici, 

2006). The onset of OA occurs with trauma or irregular pressure to the joint. As 

cartilage is damaged, it becomes thinner and proteoglycan synthesis declines. The 

chondrocytes release lysosomal proteases, leading to cartilage loss and exposure of the 

underlying bone (McCarberg and Herr, 2001). This results in the two opposing bones 

rubbing over one another and they become smooth (eburnation). As the disease 

progresses, crimped cartilage (cartilage containing hydroxyapatite crystals) is released 

into the synovial fluid (fluid that lubricates the joint) of the joint causing more pain and 

damage. Although the exact etiology of OA is unknown, the onset of this disease is 

6 



generally divided into three stages: Stage I is the proteolytic breakdown of the cartilage. 
Stage II is when cartilage swells and gross surface defects, known as fibrillation and 
erosion occur on the cartilage surface which is followed by a release of breakdown 

products into the synovial fluid. During the third and final stage, synovial inflammation 
becomes apparent which is largely a result of the ingestion of cartilage breakdown 

products by phagocytes resulting in the production of proteases and pro-inflammatory 

cytokines (Blanco et al, 2004). Synovitis is also common in advanced OA, with 
infiltration of activated B and T lymphocytes (Goldring and Goldring, 2004). 

The breakdown of the cartilage matrix in OA results in the eventual thinning of the 

cartilage with a loss of shock absorption. In early OA the cartilage can actually become 

thicker as a result of chondrocyte replication. As OA develops however, the cartilage 
becomes thinner, softer and surface breaks occur resulting in vertical clefts. The 

underlying bone starts to thicken in response to the increasing stress and bone spurs 

known as osteophytes or osteochondrophytes are formed within the affected joint, 

which results in increased pain and decreased mobility. The presence of such 

osteophytes in the joints differentiates OA from other arthritides. Osteophyte formation 

is an example of new cartilage and bone development in the joints and occurs from 

tissue linked with the chondro-synovial junction. The physiological significance of 

osteophyte growth remains uncertain, but it is possible that osteophytes may actually 

help to stabilize joints affected by OA (Sandell and Aigner, 2001). It appears likely that 

both mechanical and humoral factors are involved in stimulating the production of 

osteophytes. 

Martin and Buckwalter (2003) reported that chondrocytes (in both genders) begin to 

lose their capability to carry on restoring articular cartilage well before they reach 

replicative senescence. Research has shown that chondrocyte proliferation is unusual in 

normal adult cartilage and a reduction in the number of active chondrocytes occurs with 

age (Vignon et l 1976; Horton et al 1998; Hashimoto et al 1998b) along with a 

reduction in their response to anabolic cytokines (Guerne et al, 1995). Increasing age is 

also linked with changes in ECM proteoglycans, collagens and deterioration of the 

mechanical properties of articular cartilage. The standard size of the proteoglycan 

aggregates decreases in mature cartilage, as does the water content, and there are 

increased amounts of proteolytically cleaved link proteins, the biglycans and 

hyaluronans present are of shorter chain length. Age related decline in the number of 
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chondrocytes present to synthesize normal matrix proteins, muscle strength, and joint 

movement may also affect mechanical stresses in aging joints (Blanco et al, 2004). It is 

believed that such an increase in chondrocyte cell death may be involved in the 

pathogenesis of OA and when chondrocytes are lost due to cell death they are unlikely 

to be replaced (Loeser and Shakoor, 2003). 

As well as chondrocyte loss, changes in chondrocyte phenotype may also be partly 

responsible for the cartilage damage observed in OA. In particular, changes have been 

noted in the expression of various catabolic enzymes in osteoarthritic cartilage 

especially the matrix metalloproteinase (MMP) family of enzymes. Increased 

expression of several MMPs, especially, MMP-1, MMP-2, MMP-3, MMP-9, MMP-13 

and MMP-14 has been demonstrated in OA cartilage (Bramono et al, 2004). MMP-1 

and MMP-13 mainly cleaves type II collagen, and MMP-3 (stromelysin-1), breaks 

down proteoglycan and activates other proenzymes. These MMPs are produced by 

chondrocytes and synoviocytes (cells in the synovial membrane) especially when 

stimulated by both isoforms of IL-1 ((x and ß) (Nakamura et l 2006). Imbalance 

between MMPs and tissue inhibitors of MMPs occurs and may be mainly responsible 

for cartilage matrix degradation (Blanco, 1999). The activity of MMPs is normally 

controlled by endogenous MMP inhibitors, known as tissue inhibitor of 

metalloproteinases (TIMPs) (Smith, 1999). Human joint tissue contains TIMP-1, TIMP- 

2, and TIMP-3 and the expression of these metalloproteinases (TIMP-1 especially) is 

differentially down regulated by tumour necrosis factor-a in OA (Hui et al, 2001). 

Breakdown of these proteoglycans by the aggrecanases, ADAMTS (a disintegrin and 

metalloproteinase with thrombospondin motifs) 4 and 5 is thought to be an early step in 

the loss of cartilage in OA (Bonfanti et al, 1998). These enzymes appear to be 

responsible for aggrecan degradation without MMP participation (Malfait et al, 2002). 
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1.4 Cell death 

There are several different types of cell death pathways (13 in total) (for review, see 
Melino et al, 2005) but in general cell death occurs in two distinct forms, necrosis and 
apoptosis, which are characterised by different morphological, molecular and 
biochemical features (Los et al, 2002). As well as differences in their characteristics 
these two types of cell death occur in different circumstances in different tissues 

throughout the body. 

1.4.1 Necrosis 

Necrotic cell death is a pathological cell death mechanism usually associated with an 

insult or injury of some nature. Necrosis occurs with an impairment of the cells ability 

to maintain homeostasis, leading to an influx of water and extracellular ions. Necrotic 

cell death is characterized by cell swelling, deterioration of organelles (most notably the 

mitochondria) and disruption of the cell membrane (Ward et al, 1999; Los et al, 2002). 

This process results in the release of cytoplasmic content, including lysosomal enzymes 

into the extracellular fluid (Fiers et al, 1999) and such degradative enzymes may 

subsequently damage adjacent cells. Therefore, in vivo necrotic cell death is often linked 

with extensive tissue damage, which triggers an inflammatory response resulting from 

the release of the cellular materials (Bonventure, 1993). 

1.4.2 Apoptosis 

The definitive description of apoptosis or programmed cell death is credited to Kerr, 

Wyllie and Currie (Kerr et al, 1972) who recognised that cells can die via two different 

mechanisms, necrosis and apoptosis. The concept of apoptosis began however, in 1858 

and was originally defined by Rudolph Virchow who called the process `necrobiosis', in 

order to distinguish it from necrosis (Virchow, 1989; for review, see Conti et al, 2005). 

Apoptosis is morphologically, biochemically and molecularly distinct from necrosis, the 

main differences between the two are shown in Table 1.1. Apoptosis occurs naturally in 

all tissues and plays an important physiological role in tissue remodeling during 

development, cell transformation and inflammation (Stockwell, 1991). Unlike necrosis, 

apoptosis represents a controlled, energy dependent, mechanism of cell death where 

components are removed without damage to neighbouring cells. Apoptosis is a 
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physiological process for maintaining homeostasis in both embryogenic and adult 

tissue, but abnormalities in apoptosis i. e. insufficient apoptosis triggers the onset of 

cancer (Thompson, 1995) whilst high levels of apoptosis triggers neuro-degenerative 

and ischaemic diseases which may also have a role in various disease states including 

those involving articular cartilage degeneration, such as OA (Kouri et al, 1996). 

In eukaryotic multi-cellular organisms, apoptosis eliminates unwanted cells through a 

program of changes within the targeted cell (Weil et al, 1996). Apoptosis can occur 

when a cell is damaged beyond repair, infected with a virus or simply no longer 

required e. g. during development. The apoptotic stimulus can arise from the cell itself, 

from neighbouring cells in the tissues or from a cell that is part of the immune system. 

Physiological/pathological stress and/or damage to the cell's DNA from toxicity or 

exposure to ultraviolet or X-rays may also initiate the apoptotic process. During 

apoptosis, a cell activates an intrinsic `suicide' mechanism where the chromatin in the 

nucleus condenses (called pyknosis). The DNA is then degraded into oligonucleosome- 

sized fragments (multiples of approx. 200 base pairs, a result of specific cleavage 

between nucleosomes) a process known as karyorrhexis. This is effected by activation 

of a calcium dependent endogenous endonuclease, e. g. caspase-activated 

deoxyribonuclease (CAD), (Wyllie et al, 1986) which is discussed later, that leads to 

shrinkage of the cytoplasm and condensation of the nucleus resulting in the break up of 

the cell into discreet membrane bound blebs called apoptotic bodies. These apoptotic 

bodies are normally taken up by neighbouring phagocytic cells or cells of the immune 

system without any inflammatory reaction (Verschure et al, 1994; Lotz et al, 1995). 

Once started, apoptosis proceeds quickly and cells may completely disappear in minutes 

to hours. If apoptotic bodies are not phagocytosed however, they will eventually swell 

and lyse (known as secondary necrosis). If this occurs in vivo, damage to neighbouring 

cells may result from the release of their contents. 
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Table 1.1: Principal features of apoptosis and necrosis (Hetts, 1998; Vermes et l 2000) 

Features Necrosis Apoptosis 

Cellular role Abnormal, accidental Usually normal 

Energy requirement Passive, results from ATP-dependent 

Stimuli Sudden transfer of energy, 

specific toxins, and 

major ATP depletion 

Histology Cellular swelling, disruption 

of organelles, death of patches 

of tissue 

lack of ATP 

DNA breakdown pattern 

Plasma membrane 

Phagocytosis of dead cells 

Tissue reaction 

Nuclear Changes 

Metabolic/Synthetic 

Changes 

Random DNA cleavage 

Loss of integrity, with spilling 

of cell constituents 

Local phagocytes 

Inflammation 

Pattern conserved 

Disordered structure 

Physiological and 

pathological conditions 

minor ATP depletion 

Chromatin condensation 

apoptotic bodies, death 

of single isolated cells 

Ladder of fragments in 

internucleosomal 

multiples of 185 base 

pairs. 

Integrity preserved, 

blebbing of intact 

plasma membrane 

Neighbouring cells and 

local phagocytes 

No inflammation 

Condensation, DNA 

fragmentation, 

segmentation. 

Active changes in gene 

expression (e. g. Bcl-2, 

Bax); active protein 

synthesis; protease 

activation. 
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Chondrocyte death by apoptosis has been implicated as one of the possible mechanisms 
involved in the pathogenesis of OA. A decreased number of active chondrocytes will 

result in decreased maintenance of the articular cartilage ECM and, eventually cartilage 
destruction (Blanco et al, 2004). The duration of chondrocyte apoptosis in cartilage is 

unknown. If clearance of apoptotic bodies in cartilage is slow, secondary necrosis may 

occur resulting in damage to other chondrocytes and the matrix itself leading to 

increased extracellular matrix degradation. Such mechanisms may therefore account for 

the damage seen in OA with a lack of chondrocyte activity resulting in a lack of repair 

of the damaged matrix and the release of the contents of apoptotic bodies following 

secondary necrosis having the potential for further active destruction. 

It has been established that articular chondrocyte apoptosis increases with age in both 

humans and rodents (Adams and Horton, 1998; Caswell et al, 1987). In situ studies on 

normal and osteoarthritic human cartilage have demonstrated increased chondrocyte 

apoptosis in OA tissue lending support to this hypothesis (Kim et al, 2000) and this 

apoptosis is linked with the breakdown of the matrix and accumulation of apoptotic 

bodies in chondrocyte lacunae. Apoptotic bodies most probably remain at these sites 

because articular cartilage does not usually contain phagocytic cells. This increased rate 

of chondrocyte apoptosis may also explain abnormal calcium crystal deposition in the 

articular cartilage of OA patients. Hashimoto et al (1998a) showed that chondrocyte- 

derived apoptotic bodies contribute to the pathological calcification of OA cartilage 

observed in humans and other mammalian species. A link between chondrocyte 

apoptosis and calcification has been observed in menisci from human OA joints where 

apoptotic cells were co-localized with strong expression of enzymes that mediate 

calcium pyrophosphate dehydrate deposition (Johnson et al, 2001). 

Studies have shown that human chondrocyte apoptosis is greater in OA cartilage than in 

normal cartilage (Blanco et al, 1998) and a linkage between the rate of chondrocyte 

apoptosis and the severity of cartilage damage has also been reported (Hashimoto et al 

1998a). Chondrocyte apoptosis can be induced in vitro by a variety of agents, such as 

nitric oxide (NO), oxygen free radicals (Blanco et al, 1995), tumour necrosis factor a or 

P (TNF-(x or TNF-ß) (Rath and Aggrawal, 1999), and interleukin-1 13 (IL-1 P) (Stadler et 

al, 1991), and the existence of all of these factors has been reported in OA synovium. 
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There is some debate concerning the exact nature of chondrocyte apoptotic death, and 

recently, Roach et l (2004) proposed the term `chondroptosis' to reflect the fact that 

these cells are enduring apoptosis in a non-classical way which appears to be 

characteristic of programmed chondrocyte death in vivo. They suggested that unlike 

normal apoptosis, chondroptosis shows increases in the endoplasmic reticulum (ER) and 
Golgi apparatus, which enhances protein synthesis. These elevated ER membranes then 

section the cytoplasm and form the compartments where the cytoplasm and organelles 

are digested. This leads to destruction within autophagic vacuoles and cell remnants are 

blebbed into the lacunae. Simultaneously these developments lead to total self 

destruction of the chondrocyte as evidenced by the presence of empty lacunae. 

Regardless of the cell type involved, the process of apoptotic cell death from early 

events such as phosphatidylserine (PS) exposure, through to later events such as nucleic 

acid fragmentation, is a complex one. Many families of regulatory proteins (e. g. the 

Bcl-2 family) and active enzymes (e. g. the caspases) are involved and the mechanism 

will be discussed further in the next section. 

1.5 Mechanisms of apoptosis 

1.5.1 The Caspases 

The genetics and molecular mechanisms of apoptosis were initially established in the 

late 1980s and early 1990s in studies of the nematode worm Caenorhabditis elegans (C. 

elegans) (Yuan et al, 1993; Reddien and Horvitz, 2004). Programmed cell death during 

C. elegans development is precise and predictable: from the 1090 somatic cells 

produced in the development of the adult worm, 131 go through apoptosis. Studies of 

the worm showed that apoptosis consists of 4 chronological steps: 

" Commitment to death by extracellular or intracellular triggers 

" Cell killing by activation of intracellular proteases 

" Engulfment of the cell corpse by other cells 

" Degradation of the cell corpse within the lysosomes of phagocytic and 

neighbouring cells 
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These stages, and the genes that control them (known as ced genes in C. elegans), are 

extremely well conserved during animal evolution, from worm to human. The 

mammalian genes involved in the apoptotic pathway have to a large extent been 

identified as homologues of the C. elegans genes originally associated with apoptotic 

control. In C. elegans, three proteins act early in the apoptotic pathway: ced-3, ced-4 

and ced-9. Whilst ced-3 has an effector function in the destruction of target cells, the 

cytoplasmic protein ced-4 was identified as an adapter protein which activated ced-3. 

The mitochondrial protein ced-9 in turn controls the activation of ced-4 (Seshagiri et al, 

1998) by binding to pro-ced-4 and preventing its activation and so that of pro-ced-3, 

possibly also anchoring ced-4 away from cytoplasmic pro-ced-3. Consequently, ced-3 

and ced-4 cause apoptosis, and ced-9 protects against apoptosis. Ced-3 was the first 

member of this family to be discovered with mutations in the gene encoding ced-3 

preventing the death of the cells programmed to die during development. ced-3 was 

subsequently found to be homologous to a mammalian protein named caspase 3. 

The caspases (cysteinyl aýartate-specific proteases) are a family of protease enzymes 

involved in the process of apoptosis in mammals (Los et al, 2002). The binding of 

certain ligands to their appropriate receptors results in the biochemical activation of one 

or more of these caspases which exist as dormant zymogens/proenzymes in normal 

healthy cells. These pro-caspases are generally activated through proteolytic processing 

to form the active caspase (Thornberry and Lazebnik, 1998). Different members of the 

caspase family may be found confined to the nucleus, cytoplasm or mitochondrial 

intermembrane space and some may also be translocated to the plasma membrane 

receptors through adaptor proteins (Mancini et al, 1998). 

Caspases cleave their target proteins at specific aspartate residues generally resulting in 

activation of that target protein. Caspases themselves are activated by proteolytic 

cleavage at cysteine residues in their active sites, usually by another caspase. Those 

caspases that are activated later in the processing cascade, termed effector caspases, 

(e. g. caspase 3) finally cleave many substrates (for review, see Fischer et al, 2003), 

resulting in biochemical and morphological changes that are features of apoptotic cells. 

Such features include cell membrane blebbing, external exposure of phosphatidylserine, 

cell shrinkage, nuclear condensation and DNA fragmentation (Lawen, 2003). 
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There are a total of 14 caspases recognized in mammalian cells which are partially 

structurally homologous to each other (Bonventure, 1993). These caspases are generally 

classified into initiators (2,8,9,10) which cleave upstream of the apoptotic pathway 

and are activated in response to the initial pro-apoptotic signal. Effector caspases (3,6, 

7) which are normally activated by the initiator caspases and cleave downstream targets 

to effect the apoptotic process and form apoptotic bodies (Thornberry and Lazebnik, 

1998) and caspases involved in cytokine maturation (1,4,5 and 13). The initiation of 

this cascade reaction is usually blocked by endogenous caspase inhibitors. Induction of 

apoptosis thus means overactivation of the initial caspases, overcoming the inhibition. 

Caspases 8,9, and 3, are discussed later, as these are the major initiator (8 and 9) and 

final effector (3) caspases studied in this piece of work. 

Caspase 8 (also known as FLICE, MACHal, Mch5) is one of the two main initiator 

caspases and is associated with the induction of apoptosis by cell surface receptors 

where it is activated as part of a complex with the receptor and Fas associated death 

domain (FADD). The complex is formed when a cell surface receptor (e. g. TNF 

receptor) binds its ligand (e. g. TNF-a) and then recruits FADD (an adaptor protein) and 

pro-caspase 8. The inactive form of caspase 8 is cleaved to produce the 20kDa active 

peptide. Caspase 8 contains two N-terminal stretches homologous to the death effector 

domain (DED) of adapter proteins, (these are discussed later). The over activation of 

this protease induces apoptosis, but the co-activation of some of its isoforms blocks cell 

death (Chinnaiyan et al, 1995). There are 8 different isoforms (a-h), of caspase 8. 

Caspase 8a and 8b are the complete forms known to mediate apoptosis. However, the 

physiological role of other isoforms has yet to be clarified. 

Caspase 9 (also known as ICE-LAP6, Mch6) is a member of the ced-3 subfamily and 

has similarities to caspase 3, but they differ in the active-site pentapeptide. The inactive 

form of caspase 9 is cleaved to produce the 34kDa active peptide. The active site 

pentapeptide of caspase 9 is different from that of the other family members (being 

QACGG instead of QACRG). The key requirement for caspase 9 activation is its 

association with a dedicated protein cofactor, Apaf-1 (discussed in detail later in this 

thesis). Caspase 9 has a longer N terminal prodomain than other caspases with high 

similarity to the prodomains of ced-3, which contains caspase activation and 

recruitment domains (CARDs) (Duan et al, 1996). The proenzyme form is activated by 

caspase 3 in vitro (Li et al, 1997). 
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Caspase 3 (also known as CPP32, Yama, apopain), is one of the key effectors of 

apoptosis and is activated during the late stages of apoptosis. Caspase 3 belongs to the 

ICE subfamily of caspases. The inactive form of caspase 3 is first cleaved at Asp-175- 

Ser-176 to produce the 17 and 12kDa peptide. The active caspase 3 proteolytically 

cleaves significant targets in the cytoplasm (e. g. cytokeratin 18) and in the nucleus (e. g. 

poly (ADP-ribose) polymerase (PARP)). PARP is an enzyme involved in DNA repair 

and the regulation of several vital cellular processes such as differentiation and 

proliferation. This enzyme is largely located in the nucleus and is found in all 

eukaryotic cells except yeast. It is a polypeptide of about 118kD and when activated is 

cleaved into two fragments of 89kD and 24kD (Ruf et al, 1996). The effect of PARP 

cleavage by caspase 3 in apoptoisis is as yet unclear but there is evidence to suggest 

that, after an initial burst of PARP activity (Zaniolo et al, 2005) cleavage of the 

molecule results in de-activation, presumably interfering with DNA repair (Simbulan- 

Rosenthal et al, 1999). 

Caspases are activated via controlled protein-protein interactions with upstream 

regulators. Caspase 8 contains a DED, while caspase 9 contains a CARD. These two 

domains share little sequence identity, but fold into almost identical 3D structures, 

comprising six antiparallel a-helices (Hoffman, 1999) which are also found in the death 

domain (DD), a third protein interaction module present in several upstream apoptotic 

regulators (e. g. CD95 and FADD). It appears likely that DD, DED and CARD are 

derived from a common ancestral domain (Hoffman, 1999). The death adaptor 

molecules normally trigger DD/DD, DED/DED and CARD/CARD interactions and 

structural analyses suggest that there is sufficient surface area on DDs, DEDs and 

CARDs to allow interaction with other proteins. Death adaptor proteins may act as 

integration platforms, binding to several proteins resulting in caspase activation 

(Hengartner, 2000). 

Caspases are activated via two main pathways: the death receptor pathway (relying on 

the stimulus of cell surface receptors, e. g. TNF-a or Fas-L) and the mitochondrial 

pathway (relying on the stimulus of mitochondrial proteins, such as cytochrome c and 

smac/diablo due to cellular stress or DNA damage). The initiator caspases are generally 

activated by autoactivation, which occurs when several procaspase proteins are 

transported into close proximity. 
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1.5.2 Death receptor pathway 

Death receptors are a family of cell surface receptors which instigate the process of 
apoptosis, but also promote proliferation and differentiation when activated by specific 
ligands. Induction of apoptosis through this mechanism is extremely rapid. Death 

receptors belong to the superfamily of tumour necrosis factor receptors (TNF-R), which 
include TNF-R1 (p55), TNF-R2 (p75) CD95 (also known as Apo-1 or Fas), decoy 

receptors (Dc I, Dc2 and Dc3), TRAIL-R1/DR4 (TNF-related apoptosis-inducing ligand 

receptors) and TRAIL-R2/DR5 as well as DR6 (Rudner et al, 2005). 

TNF is produced by TH cells (CD4+) and activated macrophages in response to 

infection. Binding of TNF with TNF-R1 may have many effects and appears to proceed 

via two sequential signaling complexes. Complex I, the initial plasma membrane bound 

complex, consists of TNF-Rl, TNF receptor associated death domain (TRADD), 

receptor interacting protein-1(RIP-1) and TRAF-2 and rapidly signals (in most cell 

systems) activation of nuclear factor-kappa B (NF-KB), a transcription factor that 

regulates the expression of a variety of anti-apoptotic proteins and usually therefore 

mediates cell survival signals (discussed later) and AP-1 (activating protein-1). The 

second step consists of TRADD and RIP-1 which are linked with FADD and caspase 8, 

forming a cytoplasmic complex, complex H. The activation of complex II results in cell 

death. In some cells however, TNF-a induces complex II-mediated apoptosis only and 

the complex I-initiated pro-survival pathway (i. e. NF-KB) fails to be activated (Micheau 

and Tschopp, 2003). 

NF-KB has been documented as playing a key role in apoptosis. In dormant cells, NF- 

'KB is stored in the cytoplasm in an inactive form via its interaction with numerous 

inhibitory proteins, e. g. IKB-a, IKB-ß, IKB-F,, p105 and p100. NF-KB activation takes 

place via the formation of an intracellular complex (complex I) comprising several 

adaptor proteins, TRADD and RIP-1 (which interact with the DD of TNF-R1) and 

TRAF2. Following TNF-R1 activation, RIP-1 chiefly interacts with and activates the 

inhibitory KB kinase (IKK) signalosome (involving IKK1, IKK2 and IKKy/NEMO). 

This sequentially results in phosphorylation, polyubiquitination and breakdown of the 

NF-KB inhibitor IKBoc (Figure 1.2). This process allows translocation of the NF-KB 

p50-p65 heterodimer to the nucleus to bind DNA and induce anti-apoptotic gene 

expression. The anti-apoptotic pathway then activates c-FLIPL (cellular flice inhibitory 
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protein) which is a caspase-8 inhibitor, leading to the suppression of the cell death 

pathway (for review, see Chen et al, 2001). 

FLIP (flice like inhibitory protein), is an enzymatically inactive homologue of caspase 8 

and has recently been considered as a controller of cellular sensitivity to apoptotic cell 
death. FLIP was originally identified as a viral protein, which inhibited Fas mediated 

apoptosis when overexpressed in cells. Two isoforms were also identified FLIPL (long) 

and FLIPS (short). In particular, the FLIPL isoform appears to be a stronger inhibitor 

than the FLIPS isoform at similar expression levels (Irmler et q1,1997). FLIPL and 
FLIPS are catalytically inactive and possess the capacity to block procaspase 8 

recruitment and activation at the complex called the death inducing signaling complex 

(DISC) when overexpressed in vivo (Scaffidi et al, 1999). Grassi et al, (2004) reported 

that immunoblotting of cultured chondrocytes treated with interferon-y revealed an 

increased expression of cFLIP, at both the mRNA and protein levels. 
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Figure 1.2: TIN-induced cell survival and cell death pathways 

(Adapted from www-ermm. cbcu. cam. ac. uk/05009762h. htm, with slight modifications) 
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When NF-KB is not activated upon TNF-R1 mediated signaling, the lack of inhibition 

by c-FLIPL results in activation of the apoptotic pathway through caspase 8 (Figure 1.2). 

The death domain binds adapter proteins such as FADD, TRADD, and RIP-1 (Fraser 

and Evan, 1996). FADD possesses a DD that interacts either with the DD of death 

receptors, or indirectly through TRADD. TRADD can recruit several adaptor protein 
including FADD, TNF-receptor-associated factor (TRAF) and RIP1. RIP1 interacts 

with caspase 2 and RIP associated protein with death domain (RAIDD), to transduce 

death signals. 

FADD contains a DED, which interacts with a comparable domain on the weakly active 

procaspase 8 (complex II), to form an intracellular multi-protein complex called the 

death inducing signaling complex (DISC) (Boatright et al, 2003). Once formed the 

DISC facilitates activation of caspase 8, which is further processed via an auto- 

proteolytic mechanism (Salvesen and Dixit, 1999). Active caspase 8, whether bound to 

the DISC or free in other cellular compartments then activates caspase 3 (an effector 

caspase), resulting in the breakdown of the nucleus and other intracellular structures and 

the eventual formation of apoptotic bodies (Peter and Krammer, 2003) (Figure 1.3). 

This smaller effector caspase does not have the N terminal homoaffinity domains, 

which allow interactions with other caspases (e. g. DD's, DED's and CARDS) 

(Hoffman, 1999), but rather it degrades various cellular components such as the nuclear 

lamins (Rao et al, 1996), the cytoskeletal proteins fodrin and gelsolin (for review, see 

Fischer et al, 2003) and the inhibitor of caspase-activated deoxyribonuclease (ICAD) 

(Liu et al, 1997). This direct mechanism of caspase-dependent cell execution, which is 

independent of mitochondria, is known to take place in certain cell types such as 

hepatocytes and neuronal cells (Boatright et al, 2003). 

Whilst the death receptor and mitochondrial apoptotic pathways are often regarded as 

separate entities they are connected via the pro-apoptotic Bcl-2 family (discussed later) 

member Bid which may be cleaved by both activated caspase 8 and caspase 3 (Degli 

Esposti et al, 2003). Following cytosolic Bid cleavage by caspase 8, a p15 carboxy- 

terminal fragment is generated that translocates to the mitochondria, where it interacts 

with multidomain Bel-2 family members to rapidly release cytochrome c from the 

mitochondria into the cytoplasm (Li et al, 1998; Liang et al, 2005), a central event in 

the mitochondrial mediated apoptotic pathway (Jiang and Wang, 2000). Figure 1.3 
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shows a diagram of the two main apoptotic pathways; the death receptor pathway and 
the mitochondrial pathway and the role of Bid in connecting the two pathways. 
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Figure 1.3: The intrinsic (mitochondrial) and extrinsic (death receptor) pathways to caspase activation 
(reviewed in Danial and Korsmeyer, 2004; and Macfarlan and Williams, 2004), with slight 

modifications. 

1.5.3 Mitochondrial pathway 

Mitochondria are now considered to be the central intracellular organelles which take 

part in mediating the majority of apoptotic pathways in mammalian cells (Reed, 2000). 

The mitochondrial pathway can be initiated by several stress stimuli including UV 

radiation, heat and DNA damage to name a few. These types of stress are perceived or 

translated by multiple cytosolic or intra-organellar molecules, which then transduce the 

signals to mitochondria resulting in changes in the outer mitochondrial membrane. This 

change leads to an increased permeability to proteins which are generally trapped 

between the outer and inner mitochondrial membrane, hence allowing these proteins to 

escape the mitochondria and diffuse into the cytosol (Saelens et al, 2004). 

Amongst the proteins which are released from the mitochondria, some (e. g. cytochrome 

c) play a vital role in encouraging the caspase cascade of cell death, and are collectively 
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referred to as `apoptogenic factors'. There seems to be a hierarchical release (Hill et al, 
2003) of apoptogenic factors during cell death signaling, with cytochrome c, 
Omi/Htr2A (high temperature requirement protein A2) and Smac/Diablo (second 

mitochondrial-derived activator of caspase/direct IAP binding protein with low pI) 

primarily released with similar kinetics (Penninger and Kroemer, 2003). Also released 

are AIF (apoptosis inducing factor) and endonuclease G which are associated with more 

severe damage of mitochondrial membranes, including inner mitochondrial membrane 

change (Penninger and Kroemer, 2003), and will be discussed later. 

Caspase 9 is the main initiator caspase associated with the mitochondrial pathway and 

activates the disassembly of apoptotic cells in response to agents or insults that trigger 

the release of cytochrome c from the mitochondria. Pro-caspase 9 is activated by 

combination with a high molecular weight caspase activating complex called the 

apoptosome which is a complex of dATP, apoptotic protease activity factor-1 (APAF- 

1), and extramitochondrial cytochrome c (Li et al, 1997). APAF-1 recognises and binds 

to cytosolic procaspase-9 through a CARD and induces processing and activation of this 

enzyme which activates the downstream caspase cascade. After activation, caspase 

9/apoptosome complex is a stable and potent structure which stays intact during 

apoptosis and results in higher caspase enzymatic activity than the caspase alone (Jiang 

and Wang, 2000). The primary target of the caspase 9/apoptosome complex is 

procaspase 3. This complex is also known to allow caspase 3 entry into the nucleus 

which then cleaves the inhibitory subunit of ICAD resulting in CAD activation and 

DNA fragmentation, as for the death receptor pathway (Lorenzo et al, 1999) 

The apoptosome does however require extra regulatory factors to completely activate 

the caspase cascade. These factors include Smac/Diablo which is released from the 

mitochondria alongside cytochrome c in response to apoptotic stimuli and binds to 

inhibitor of apoptosis proteins (IAPs) preventing inhibition of caspase 9 and 3 activation 

by these proteins (Baliga and Kumar, 2003). The IAPs are a family of anti-apoptotic 

proteins that are conserved across numerous species. Their main role is to bind and 

inhibit the activation and activity of specific caspases (Schimmer, 2004). 

Bid is a member of a large family of proteins known as the Bcl-2 family which are 

involved in the control of apoptosis, chiefly via the mitochondrial pathway. 
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1.5.4 The Bcl-2 family of proteins 

The B cell leukaemia/lymphoma proto-oncogene 2 (Bcl-2) family of proteins are vital 

regulators of apoptosis in mammalian cells. The Bcl-2 family consists of, both anti- 

apoptotic, and pro-apoptotic proteins, located mainly in the outer mitochondrial 

membrane, the endoplasmic reticulum and the outer nuclear envelope. At least 15 Bcl-2 

family members have been identified in mammalian cells (Gross et al, 1999) and 

several others in viruses (Chao and Korsmeyer, 1998), which can indirectly control the 

activity of caspases by changing mitochondrial events during apoptosis. Pro-apoptotic 

members of the Bcl-2 family increase mitochondrial membrane permeability, whereas 

anti-apoptotic members of the family act to oppose this increase and prevent the release 

of pro-apoptotic mitochondrial proteins into the cytoplasm. Bcl-2 family proteins are 

classified into three subfamilies (for a recent detailed review, see Danial and 

Korsmeyer, 2004), which share some regions of homology known as Bcl-2 homology 

(BH) regions. The three families are: 

" The Bcl-2 subfamily (including Bcl-2, Bcl-xL, Bcl-w, Mcl-1, Al, ced-9), are 

anti-apoptotic, and promote cell survival. These proteins are present on several 

intracellular membranes and link both the inner and outer mitochondrial 

membranes. Their main action is to prevent increases in mitochondrial 

membrane potential by preserving the integrity of the membranes. Bcl-2 directly 

or indirectly inhibits the release from mitochondria of cytochrome c, which 

(along with ATP) could facilitate a change in APAF-1 structure permitting 

procaspase 9 recruitment and processing. They possess up to four conserved 

Bcl-2 homology (BH) domains designated BH1, BH2, BH3 and BH4, which 

correspond to a helical segments (Reed, 1997) 

" The BH3-only subfamily (including Bad, Bmf, Bik, Bid and BimL), are pro- 

apoptotic and promote cell death. These are present in subcellular locations other 

than the mitochondria on which they function and require activation before they 

can translocate to the mitochondria where they interact with multi-domain Bcl-2 

family members. For example, Bad forms heterodimers with Bcl-2 and Bcl-xL 

(anti-apoptotic) preventing them from exerting their anti-apoptotic action. Bid, 

which is freely present in the cytosol of live cells, is cleaved by caspase 8 to 
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form a 15 kDa N-truncated derivative (tBid) which moves to the mitochondria 

and causes cytochrome c release by changing the conformation of Bax. 

" The Bax subfamily (including Bax, Bak, and Bok) are also pro-apoptotic and 

promote cell death (Gross et al, 1999). The Bax subfamily is structurally similar 

to the Bcl-2 subfamily but without the functional BH4 domain. Bax and Bax- 

like proteins may mediate caspase-independent death via channel forming 

activity that may trigger the mitochondrial permeability transition by penetrating 

the outer mitochondrial membrane and allowing cytochrome c release. 

The balance of pro-apoptotic and anti-apoptotic members of the Bcl-2 family of proteins 

in a cell partially determines the fate of that cell: cells with more pro- apoptotic proteins 

are prone to death; cells with a large amount of protective family members are generally 

resistant to death. For example, chondrocyte apoptosis is associated with 

downregulation of Bcl-2 expression (Feng et al, 1998) resulting in alterations in ECM 

proteins and cartilage degeneration (Kim et al, 2002). 

1.6 Pro-apoptotic Stimuli 

1.6.1 Nitric Oxide 

Nitric oxide (NO) is a potent inducer of apoptosis and is the product of NO synthases 

(NOS) (NADPH-dependent cytosolic enzymes) (Blanco et al, 1995; Stadler et al, 1991) 

and as well as being a pro-apoptotic stimulus is involved as a regulator and effector 

molecule in diverse biological systems. 

NO is a short lived (0.5-5s) inorganic free radical gas, that is labile and quickly 

metabolized to nitrate and nitrite in the presence of oxygen. NO behaves as an 

intercellular messenger at a low physiological level but is thought to have 

pathophysiological relevance when it is produced in large amounts by the inducible 

form of NOS (iNOS). NO is synthesized by the oxidation of the amino acid L-arginine 

to NO and L-citrulline via a complex reaction using the cofactor tetrahydrobioterin, and 

molecular oxygen as cofactors and catalysed by three isomeric forms of the synthetic 

enzyme NOS. Of these three isoforms, two are constitutive and one inducible. The two 

constitutive forms are calcium/calmodulin dependent and were originally named for the 
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tissues in which they were first isolated NOS-1/nNOS (neuronal) and NOS-III/eNOS 

(endothelial). The inducible form of NOS is calcium independent and known as NOS 

IUiNOS. The three NOS isoforms share approximately 60% homology and fall into the 

cytochrome P450 reductase-like family (Crane et al, 1997). In addition to these well 

established NOS isoforms, a distinct isoform has recently been described in 

mitochondria, named mtNOS (Giulivi et al, 1998). This isoform is calcium dependent, 

and appears to play an important role in the regulation of respiration, matrix pH and 

transmembrane potential in mitochondria (Ghafourifar and Richter, 1999). 

The NO produced by neuronal, NOS-I and endothelial NOS III isoforms performs the 

biological roles of regulating the cardiovascular and nervous system (Amin and 

Abrahamson, 1998) and release NO for short time periods in response to receptor 

stimulation (Moncada et al, 1991). The Cat /calmodulin dependence of NOS I and NOS 

III permits stimulation via first messengers or agents which enhance intracellular Ca 2+ 

levels resulting in the increase of other Cat dependent enzymes. NOS II (iNOS) is 

usually however only expressed in response to an immune challenge or cell/tissue 

damage (Gellar et al, 1993), and once expressed, this enzyme binds to calmodulin (at 

normal intracellular Ca 2+ levels (30-70nM)) and constantly produces a considerably 

greater amount of NO than the constitutive isoforms. 

NO, is a highly diffusible, highly reactive second messenger molecule which can 

readily diffuse through cell membranes to exert its biological actions through interaction 

with a variety of proteins (Beckman and Koppenol, 1996). These include: 

" Haemproteins, leading to activation of guanylate cyclase (discussed later) 

interaction with hemoglobin and modulation of cyclooxygenases; 

" Iron-sulphur enzymes, leading to inhibition of aconitase, ribonucleotide 

reductase and mitochondrial complexes following blockade of electron transport 

chains; 

0 Poly (ADP-ribosyl) polymerase (PARP), whose indirect activation leads to a 

dramatic fall in energy store resulting in cellular death. 

" Nitrosoproteins and nitrosoglutathione interact through its high affinity for thiol 

functions resulting in prolonged cellular effects despite its short half life 

NO is also known as an inhibitor of cell proliferation and many of the biological actions 

of NO are mediated when soluble guanylate cyclase is stimulated and acts on guanylate 
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triphosphate (GTP) to generate intracellular cyclic guanylate monophosphate (cGMP) 

(Mcdonald and Murad, 1995). Increased cGMP can then activate several kinases that 

subsequently lead to alterations in intracellular calcium content and protein de- 

phosphorylation by activating phosphatases (Koppal et al, 1999), thus linking the NO- 

induced increase in guanylate cyclase activity to other known second messenger system 
in a number of cells. 

NO changes the biological action of many proteins by reacting directly with their iron 

centres and also by S-nitrosylating cysteine residues to form S-nitrosothiols. It was 

originally expected therefore that NO might block apoptosis through S-nitrosation of the 

active site cysteine residue in caspases. This does in fact occur and S-nitrosation and 

inactivation of processed caspases can take place in vitro (Bernassola et al, 2001), 

however the exogenous addition of NO generated from chemical NO donors (discussed 

later) has been shown to induce apoptosis in a variety of cells (Blanco et al, 1995). As 

NO is capable of influencing several biological activities, apoptosis induction by NO is 

dependant on both the type of cell and the cellular redox state, the concentration and 

release of NO are also important (Heigold et al, 2002). NO has a toxic effect and causes 

cell death (Sandau et al, 1997), it may play a role of intercellular messenger; when cell 

capacities to neutralize the NO with reactive oxygen species (like superoxides) are 

exhausted. Sandau and Bruene, (2000) later reported that the apoptosis inducing effect 

of NO was completely blocked by the simultaneous presence of superoxide anions. A 

more direct mechanism for NO-mediated apoptosis is reported by Nguen et l (1992) 

who showed that NO may deaminate purine and pyrimidine bases in DNA and enhance 

DNA strand breaks. 

NO is produced by both synoviocytes and chondrocytes and has been implicated in the 

pathophysiology of OA (Stefanovic-Racic et al, 1994; Castro et al, 2006). Farrell et l 

(1992) and Hilliquin et al (1997) have demonstrated increased levels of nitrite, nitrate 

and nitrosoproteins (used as a measurement of NO) in both serum and synovial fluid 

samples from OA patients. NO release stimulates chondrocyte apoptosis (Del Carlo and 

Loeser, 2002) and inhibits aggrecan synthesis, as well as activating MMPs (Taskiran et 

al, 1994), and therefore may be a factor in disease pathogenesis in a number of ways. 

Elevated production of NO by either synovial cells or chondrocytes in OA would also 

encourage increased vasodilation and permeability (Mayhan, 1992), and the possibility 

of TNF and IL-1 release by leukocytes (Leibovich et al, 1994). NO synthesis is 
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triggered by many cytokines which exist in OA joints, such as IL- lß, TNF-a and IL-17 

and there is increased evidence that NO may be an important second mediator of IL-1 P 

and TNF-a activity in the inhibition of chondrocyte proteoglycan synthesis. Conversely, 

McInnes et al, (1996) reported that synoviocytes and macrophage cell lines, cultured 

with the NO donor, s-nitrosoacetyl penicillamine, generated increased concentrations of 
TNF-a, indicating that NO may mediate pathology by the induction of TNF-a and vice 

versa. NO may also be produced in cartilage in response to various mechanical and 

chemical stresses (Buckwalter and Mankin, 1997). Normal cartilage however, does not 

produce NO or express NOS unless stimulated with cytokines like IL-1p, TNF-a or 

lipopolysaccharide (LPS). Van de Loo et al, (1998) showed that in mice, NO synthesis 

by iNOS plays a vital role in the inhibition of proteoglycan synthesis caused by IL-10 

and experimental joint inflammation. The work of Amin et al, (1995) however studied 

chondrocytes isolated from patients with OA and proposed that the osteoarthritic NOS 

expressed in chondrocytes resembled nNOS rather than iNOS, both from its immuno- 

reactivity and from its apparent molecular mass. A correlation has also been reported, 

between the level of NO production and the prevalence of apoptotic cells in cartilage 

(Blanco et al, 1995). 

Human articular chondrocytes can actively produce reactive oxygen species (ROS), 

including, superoxide anion, the hydroxyl radical, and hydrogen peroxide (Hiron et al, 

1997). Many of the vital biological reactions involving NO appear to be those with 

oxygen, transition metal ions and free thiols (Stamler et al, 1992). Since NO can 

combine with superoxide (OZ-'), these two radicals undergo a rapid, diffusion-limited, 

reaction leading to the production of peroxynitrite (ONOO-), a powerful oxidant with 

potent biological effects (Fukai et al, 2000), which can decompose into inactive 

compounds, or generate hydroxyl radicals or nitrate tyrosine residues in proteins to form 

3-nitrotyrosine (3-NT). The presence of 3-NT, can act as a marker for oxidative damage 

and in a recent study 3-NT was detected in the articular cartilage of older nonarthritic 

monkeys and humans and in OA cartilage, but not in normal cartilage from young 

adults (Loeser et al, 2002). Peroxynitrite and related NO species encourage nitrosative 

and oxidative stress, and thus may be responsible for much NO-dependent cytotoxicity 

(Wink et al, 1996), possibly by changing the mitochondrial membrane potential (Li et 

al, 1999). The initiation of experimentally induced arthritis in animal models can be 

blocked by the NOS inhibitor NG-monomethyl-L-arginine (L-NMMA) (Stefanovic- 

26 



Racic et al, 1994) and the addition of a NOS II inhibitor reduces cartilage damage and 
chondrocyte apoptosis (Pelletier et al, 1999). 

NO also regulates chondrocyte function in various other ways including the inhibition 

of (31 integrin dependent adhesion to extracellular matrix, synthesis of cartilage-specific 
ECM molecules such as type II collagen and proteoglycan, and provoking 
dedifferentiation of chondrocytes (Cao et al, 1997). NO modulation of matrix 

metalloproteinases also occurs causing further degradation of the cartilage matrix 
(Sabatini et l 2000). 

1.6.1.1 NO donors 

The growth of interest in the physiology of NO since the mid 1980s has led to the 

development of a range of chemicals known as NO donors which release NO when 

added into aqueous systems. There are a number of NO donor molecules with different 

chemical properties which are used to supply NO to cells for potential therapy and 

research purposes and, to evaluate the biological activity of exogenously produced NO. 

The biological effects of the different NO donors vary (Uehara et al, 1999) but they are 

generally toxic and produce changes in cell morphology consistant with the induction of 

apoptosis. The effects of NO donors appear to be largely dependent on the redox state of 

the NO related species released; NO, nitrosonium ions, or nitroxyl anions (Lipton et al, 

1998). Common NO donors include sodium nitroprusside (SNP), S-Nitroso-N-acetyl-D- 

L-penicillamine (SNAP), NOC18, S-nitrosoglutathione (GSNO) and 3- 

morpholinosyndonimine (SIN-1). However, the main two types of NO donors used are: 

the NONOates, which are allegedly `pure' NO donors and the -S-nitrosothiols, which 

may liberate NO, as well as transfering the NO' group to a range of proteins which 

contain reduced thiol groups (a process referred to as transnitrosylation) (Feelisch et l 

1995). Most research on NO-induced apoptosis has been performed using nitrosothiols 

like SNAP and GSNO as NO donors (Hortelano et al, 1997; Balakirev et al, 1997; Jia et 

al, 1996; Shen et al, 1998). Whilst these reagents will certainly induce apoptosis the 

exact mechanism is not always clear as they can cause glutathione depletion and may 

transnitrosylate nearby thiols in many if not most proteins, resulting in changes in 

protein function (Ji et al, 1999). 
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It seems likely that the cartilage damage observed in OA may be a result of the 

combined effects of NO and other stimuli including the cytokines TNF-a and IL-10. 

Murakami et al, (2000) showed that all three of these stimuli are present in human 

osteoarthritic cartilage but not in normal cartilage and have been shown to cause 

suppression of chondrocyte function and induction of apoptosis (Sakurai et al, 1995). 

1.6.2 Cytokines 

Cytokines are small multifunctional proteins with short half lives that act as intercellular 

signaling molecules. They are actively secreted by immune cells and other cell types in 

response to a variety of stimuli and generally exert their effects through either a 

paracrine, or autocrine mechanism (Goldring and Goldring, 2004). Cytokines act by 

binding to specific cell membrane receptors each of which triggers a distinct signal 

transduction cascade that eventually will lead to biochemical and phenotypical changes 

in the target cell. 

In terms of chondrocyte function, it is feasible to categorize the cytokines which control 

cartilage changes as anabolic cytokines (that behave as growth and differentiation 

factors on chondrocytes to enhance synthetic activity) or as catabolic cytokines (which 

promote matrix degradation) (Goldring, 2000). Many of these biological mediators 

appear to be released by synoviocytes in the synovial membrane and diffuse into the 

cartilage where they activate the chondrocytes (Wang et al, 2001). The pro- 

inflammatory cytokines TNF-a, IL-1(3, IL-6, IL-8, and IFN-7 are associated with 

inflammation in synovial joints and destructive mechanisms in the joint such as 

prostaglandin and metalloproteinase production and cartilage resorption (Kacena et al, 

2001). IL-I1 is known to be involved in preventing excessive ECM degeneration 

induced by synovial inflammation (Yao et al, 1995), whilst, IL-17 is known to increase 

the production of NO in chondrocyte cultures (Attur et al, 1997). 

Tumour necrosis factor-alpha (TNF-a) and Interleukin-Ibeta (IL-113) are two of the 

most prominent pro-inflammatory cytokines that initiate various biological responses 

involved in tissue damage and repair (Kobayashi et al, 2005) and have been implicated 

in many inflammatory disorders (Symons et al, 1992; Woolley and Tetlow, 2000; 

Marks and Donaldson, 2005). TNF-a and IL-1 ß have also been implicated as two of the 

main catabolic factors in osteoarthritic cartilage. 
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1.6.2.1 TNF-a 

TNF-a (also referred to as cachectin or lymphotoxin), was first isolated by Carswell et 
l (1975) as a soluble factor released by host cells that caused necrosis of a transplanted 

tumour `sarcoma Meth A'. TNF-a is produced by a wide variety of cells including 

neutrophils, activated lymphocytes, macrophages, natural killer cells, astrocytes, 

endothelial cells, smooth muscle cells and some transformed cells (Aizawa et al, 2001). 

TNF-a occurs as both a secreted, soluble form (17kDa) and as a membrane-anchored 

form (26kDa), both of which are biologically active. The naturally occurring form of 

TNF-a is glycosylated, but non-glycosylated type II recombinant TNF-a has 

comparable biological activity, (Ah-Kim et al, 2000; Tartaglia and Goeddel, 1992). 

TNF has been implicated in the pathogenesis of a variety of diseases including arthritis, 

infection and malignancy (Aggarwal and Natarajan, 1996). Both TNF-a and the closely 

related TNF-(3 mediate similar biological activities to each other and to that of IL-1, 

although TNF and IL-1 are not structurally related (Ah-Kim et al, 2000). Recent 

research suggests that both TNF-a and IL-10 may play a role in the cartilage loss seen 

in OA, and, in particular, in post traumatic OA where a more marked increase in TNF-a 

and IL-lß than their inhibitors has been demonstrated. This possible imbalance between 

cartilage damaging and cartilage-preserving factors may therefore lead to progressive 

cartilage loss over time (Marks and Donaldson, 2005). Other authors have however, 

reported low levels of TNF-a in OA articular tissue (Fernandes et al, 2002). 

As mentioned earlier, TNF-a binds to two specific receptors present on the cell 

membrane of numerous cell types (Eger et al, 1999) but not erythrocytes (Tartaglia and 

Goeddel, 1992). The two TNF receptors have molecular masses of 55 to 60kD and 75 to 

80kD and are often referred to according to their molecular weight TNF-R55 (TNF-RI) 

and TNF-R75 (TNF-RII). TNF receptors are members of a large family of homologous 

receptors (currently 30 different members) with cysteine rich extracellular motifs that 

also include Fas and CD40 (Gaur and Aggarwal, 2003). Both receptors have significant 

homologies but the cytoplasmic domains of TNF-R55 (414 amino acids) and TNF-R75 

(461 amino acids) are distinct, indicating these receptors may use different signal 

transduction pathways to enhance a specific subset of TNF-a activities (Howard et al, 

1993; Alsalameh, et al, 1998). In articular tissue cells, TNF-R55 appears to be the main 
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receptor responsible for mediating TNF-a activity and enhanced expression of TNF- 

R55 has been reported in OA chondrocytes and synovial fibroblasts (Alaaeddine et al, 
1997). TNF-R55 initiates signals for cytotoxicity, fibroblast proliferation, cell adhesion 

and the induction of several other genes whereas TNF-R75 may regulate the amount of 
TNF-a binding to TNF-R55 (Tartaglia et al, 1993) and specifically takes part in the 

control of cell proliferation and cytokine secretion (Alsalameh et al, 1998). As well as a 

general increase in TNF-R expression in OA cartilage, focal loss of articular cartilage in 

OA joints is linked with local upregulation of the TNF-R55 (Webb et al, 1997). The 

expression of TNF-R on human articular chondrocytes is upregulated by OA synovial 

fluid and TNF-a itself (Webb et al, 1998). 

Whilst TNF-a is produced by a variety of cells it is possible that the chondrocytes 

themselves are the most likely source of TNF-a in OA joints. OA chondrocytes and 

synoviocytes show high expression of this cytokine with increased messenger RNA 

levels of TNF and the TNF convertase enzyme as compared with those of normal 

cartilage (Melchiorri et al, 1998; Amin, 1999) resulting in an enhanced production of 

functional TNF-a. Treatment of primary OA cartilage explants with soluble TNF-a 

receptors (as specific inhibitors) inhibited the sudden release of IL-8 by chondrocytes 

further suggesting that OA cartilage generates functional TNF-a, and that this TNF-a 

plays a role in the regulation of cytokine production by osteoarthritic chondrocytes (van 

der Kraan and van den Berg, 2000). 

TNF-a may mediate cartilage loss by two mechanisms. First, it induces the production 

of metalloproteases, free radicals, and other cytokines that directly destroy the cartilage 

matrix. Second, it prevents the chondrocyte from repairing the damaged articular 

matrix, and over time these two mechanisms result in cartilage loss. TNF-a inhibits 

collagen synthesis, induces prostaglandin synthesis and also stimulates the production 

of colony-stimulating factors by connective tissue cells. The TNF-a mediated increase 

in prostaglandin synthesis by synovial cells may be related to the clinical symptoms of 

OA such as pain and joint swelling (Ah-Kim et al, 2000). TNF-a involvement in 

arthritis is also supported by data from animal models where the potency of TNF-a in 

initiating inflammation in the collagen induced arthritis mouse model was clearly 

observed (Mukherjee et al, 2003). It has also been shown that a single intra-articular 

injection of TNF-a in rats triggered the onset of arthritis, but a combined injection of 
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TNF-oc and IL-1 j3 triggered a more serious inflammatory response than when the 

cytokines are given separately (Tonussi and Ferreira, 1999). 

1.6.2.2 IL-1 ß 

IL-1 is a member of the interleukin family of cytokines that are expressed by white 
blood cells and other cell types as a way of communication. IL-1 plays an important 

role in the inflammatory response but is also known to exert effects on bone formation 

and remodeling, insulin secretion, appetite regulation, fever induction and neuronal 

development (Goldring and Goldring, 2004). IL-1 exists in two forms, IL-1 a and IL-1(3 

which are 30% homologous to each other, bind to the same cell surface receptors and 

mediate the same biological activities (Martel-Pelletier et al, 1992). A role for IL-1(3 in 

OA is suggested by the demonstration of this active form of IL-1 in synovial membrane, 

synovial fluid and cartilage of OA joints (Pelletier et al, 1999). 

IL-1 is primarily synthesized as a 31 kilodalton (kD) precursor and proteolytically 

cleaved by IL-1 ß converting enzyme (ICE/caspase 1) to yield the active form of IL-10 

at 17.5kDa and the smaller cleaved product, IL-la (Siders, et al, 1993). ICE was the 

first member of the mammalian caspase family to be described (Stellar, 1995). The 

biological activity of cells by IL-1 is mediated via association with two specific cell 

surface receptors (IL-1R), named type I and type II (Slack et al, 1993). Type I receptor 

binds IL-1(3 more than EL-la and is mostly accountable for signal transduction as well 

as being expressed in almost all cell types (Martel-Pelletier et al, 1992). Type II IL-1R 

has a greater affinity for IL-la than IL-lß and is expressed predominantly on B 

lymphocytes but, may be induced on other cell types. Its major function appears to be to 

act as a `decoy' receptor and competitively inhibit IL-lß binding to the type I signaling 

receptor. Type I IL-1R is increased significantly in OA chondrocytes and synovial 

fibroblasts and may be responsible for the hypersensitivity of these cells to stimulation 

by IL-1 (Martel-Pelletier et al, 1992). Interleukin 1 receptor antagonist (IL-lra) has also 

been established, and its known action is the competitive inhibition of the binding of 

interleukin 1 (IL-1) to its receptor. 

IL-lß is known to play an important role in the inflammation and joint destruction 

which are typical features of both RA and OA (Ysuhara et al, 2005). IL-lß is produced 
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in significant quantites in OA joints, by OA chondrocytes, and induces an increased 

production of destructive proteases (Pelletier et al, 1995). The first description of IL-1 

as a regulator of chondrocyte function comes from the studies of Fell et al (1977). In an 
in vitro model, Fell et al cultured normal, noninflamed porcine synovial tissue with 

cartilage fragments. They observed cartilage matrix breakdown by local chondrocytes 

and established that the synovial tissue was producing a soluble factor, catabolin that 

encouraged chondrocytes to breakdown their surrounding cartilage matrix. The two 

isoforms of catabolin detected were later identified as IL-1 P and IL-1 a (Saklatvala et al, 

1984). IL-1ß is also known to suppress cartilage-specific collagen (Goldring et al, 1988) 

and proteoglycan (Yaron et al, 1989) production in cartilage explants, primary 

chondrocyte cultures and immortalized human chondrocyte cultures (Goldring et al, 

1994). Goldring et al, (1988) have also reported the up-regulation of the production of 

non-cartilage collagen types by chondrocytes subjected to IL-1ß. This cytokine may 

also take part in normal development, as it has been demonstrated in the cartilage 

resorption zone during endochondral ossification of immature mouse bone (Takacs et 

al, 1988). IL-10 is considered to be the major cytokine inducing catabolic processes in 

cartilage and stimulates the expression of metalloproteinases (MMPs). It is also a potent 

inhibitor of chondrocyte proliferation (Knott et al, 1994). 

1.6.3 Other Pro-apoptotic Stimuli 

The Fas (CD95)/Fas ligand (CD95L) system is the other main initiator of apoptosis. Fas 

is a 48kDa transmembrane receptor glycoprotein, which belongs to the TNF-R 

superfamily and is present on many cell types including chondrocytes. Fas is activated 

by the binding of Fas ligand (FasL) which may be membrane bound or in a soluble 

form. Fas activation, in common with other TNF-R mechanisms, induces apoptosis via 

a caspase 8 mediated signaling pathway. Fas/FasL induction of chondrocyte apoptosis 

leads to defective cartilage homeostasis and joint destruction as described earlier 

(Hashimoto et al, 1997). Large quantities of Fas-L have been reported in the serum and 

synovial fluid of patients with OA and RA (Renoux et at, 1996). Moreover, Fas 

expression near OA cartilage lesions was discovered to be enhanced compared to areas 

also away from the lesion (Kim et al 2000) and was also found to be in older cartilage 

(Todd Allen et al, 2004). Fas expression is mainly a feature of chondrocytes in the 

superficial and upper midzone of articular cartilage, but other groups have shown 

similar levels of Fas expression in OA cartilage as compared to normal joints. These 
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data would indicate that expression of Fas is not upregulated in OA and suggests that 
increases of Fas-L expression, or sensitization of Fas pathways, may be accountable for 

the increase in apoptosis noticed in OA (Hashimoto et al, 1997). The Fas/FasL system 
has been shown to be present in growth plate chondrocytes in vivo suggesting that it 

also plays a role in chondrocyte apoptosis during endochondral development. NO 

synthesis is not stimulated in Fas-L induced chondrocyte apoptosis suggesting there are 

several apoptotic pathways working in chondrocytes (Aizawa et al, 1997). 

1.7 Urocortin and other related CRH family peptides 

1.7.1 The CRH family of peptides 

Corticotropin-releasing hormone or factor (CRH/CRF) is a 41 amino acid (aa) residue 

neuropeptide which effects various behavioural, neuroendocrine, and autonomic 

responses by inducing secretion of adrenocorticotrophic hormone (ACTH) from the 

hypothalamic-pituitary axis (HPA) (Porcher et al, 2006). The paraventricular nucleus 

(PVN) of the hypothalamus is the primary source for synthesizing CRH that controls 

stress-induced pituitary-adrenal activation in the brain (Konishi et al, 2003). Following 

its initial isolation in 1981, CRH was subsequently isolated in the placenta, and found to 

be identical to CRH in the hypothalamus (Shibasaki et al, 1982). It has since been 

reported in extrahypothalamic sites in the brain (Swanson et al, 1983) and other tissues 

in the periphery, such as the adrenal gland, testis, placenta, gut, spleen, thymus and skin. 

CRH is a highly conserved molecule with human and rat CRH identical to one another 

and ovine CRH differing only by seven amino acids. All are produced by proteolytic 

cleavage of the C terminus of the 196 as precursor pre-pro CRH. 

CRH is also known to stimulate IL-1 f3, TNF-a and IL-6 production by peripheral blood 

mononuclear cells (Kohno et al, 2001) and is found in peripheral inflammatory sites 

where, in comparison to its indirect systemic immunosuppressive effects, it actually acts 

as an autocrine or paracrine inflammatory peptide. Kohno et al, (2001) have reported 

the native production of immune CRH in various inflammatory sites including 

streptococcal cell wall and adjuvant induced arthritic joints in rats (Donaldson et al, 

1996; Bamberger et al, 1998) and it has also been demonstrated in the joints of RA and 

OA patients (Bamberger et al, 1998). 
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In 1995, research guided by Vale (Vaughan et al, 1995) cloned and established a new 
mammalian member of the CRH related peptide family by probing a rat midbrain 
cDNA library Urotensin I (fish) which was named urocortin (UCN). Two further 

peptides closely related to UCN have been more recently isolated, urocortin II (Reyes et 

al, 2001), and urocortin III (Lewis et al, 2001). These three peptides are now considered 
to comprise the urocortin family of CRH like peptides. 

1.7.1.1 Urocortin 

Urocortin (UCN) shares 45% sequence homology with CRH (Vaughan et al, 1995) and 

is expressed in both the central nervous system and periphery (Poliak et al, 1997) and 

was the second member of the CRH family to be identified in humans. As well as CRH, 

it showed close homology to other members of the family discovered in non human 

species such as urotensin I (URO I) from fish, and sauvagine (SVG) from amphibia 

(Latchman, 2002). 

Human UCN possesses only about 44-59% sequence identity with the URO I (41 aa) 

isolated from various fish species (Lovejoy and Balment, 1999) and the UCN mRNA 

shows a series of truncations relative to that in URO mRNA. Rat UCN possesses about 

40% sequence similarity with the primary structure of sauvagine and about 50% with 

URO. Although SVG and URO were initially thought to be CRH homologs in fish and 

amphibians, the cloning of CRH from fish and frogs determined that many vertebrates 

possesses additional members of the CRH peptide family (Zhao et al, 1998). 

Regardless of species, the UCN genes hold two exons (with all the coding information 

contained within the second exon) and a short intron (260 bp) with only subtle 

differences between the various mammalian genes (Zhao et al, 1998). The mRNA 

created from this gene translates into a protein with 122 amino acids containing an N- 

terminal methionine and signal peptide which is then processed by proteolytic cleavage 

to form the 40aa active peptide (Latchman, 2002). 

UCN is expressed centrally in the Edinger-Westphal nucleus, the lateral superior olive, 

the lateral hypothalamus, and the supraoptic nucleus of rat brain (Vaughan et al, 1995) 

and has also been observed in many sites other than the CNS, such as peripheral blood 

lymphocytes, placenta, heart, GI tract, spleen, testis and kidney (Kageyama et al, 1999). 
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In keeping with its wide distribution, UCN has been reported to have many modes of 
action. UCN affects the cardiovascular system and when given systemically, those 

effects exceed those elicited by CRH i. e. UCN is more potent than CRH. It has been 

reported that UCN activates the immune system in both a corticosterone-dependent and 
independent manner, and the presence and function of UCN in peripheral inflammatory 

sites has been reported (Reyes et al, 2001). UCN has however been recognized in 

macrophages in the lamina propria of human colonic mucosa, where it may be taking 

part in the control of the inflammatory response (Muramatsu et al, 2000). Central 

administration of UCN to rats results in a reduction in feeding (Spina et al, 1996) and an 
increase in anxiety-like behaviour (Moreau et al, 1997). 

The most interesting action of UCN with regard to this study is its cytoprotective 

properties first reported by Brar et al, (1999) who showed a protective effect of UCN 

against hypoxia mediated apoptosis in cardiomyocytes. It is therefore possible that UCN 

may perform a similar function in chondrocytes preventing or ameliorating the 

pathogenesis of OA. In the presence of a CRH antagonist, a helical CRH, it has been 

shown that cardiomyocytes cell death is increased when subjected to ischaemia 

indicating that an endogenous CRH family peptide, (specifically UCN), protects cells in 

an autocrine/paracrine fashion. This protective response of UCN is dependent upon its 

ability to activate the PI-3 kinase/Akt pathway and the P42/P44 MAPK pathway in 

cardiomyocytes as demonstrated by inhibition of these pathways with the chemical 

inhibitors LY294002 and PD98059 respectively (Brar et al, 2000; Brar et al, 2002a). 

These data are further supported by Parkes et al (1997), who showed that UCN 

protected neonatal rat cardiomyocytes in vitro when given before hypoxia or at the point 

of reoxygenation and protecting the adult rat heart ex vivo, lowering the infarct size of a 

perfused intact rat heart exposed to local ischaemia. Many of the CRH peptides appear 

to be cytoprotective but relative potencies with which they protect cells from ischaemia 

induced necrotic and apoptotic death is UCN > URO I> CRH (Parkes et al, 1997). 

UCN was also shown to be protective against thermal injury and hypoxia (Okosi et al, 

1998) with protective effects occurring through the cAMP dependent protein kinase A 

(PKA) pathway and the MAPK-dependent pathway (Ikeda et al, 1998). The Latchman 

group (Lawrence et al, 2002a) have analysed global changes in gene expression in 

cardiomyocytes after UCN treatment using gene chip technology. These experiments 

established that UCN specifically induces enhanced expression of the Kir6.1 cardiac 

potassium channel subunit, and showed that the cardioprotective effect of UCN, both in 
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isolated cardiac cells and in the intact heart, is specifically blocked by generalized and 
mitochondrial- specific KATP channel blockers (Lawrence et al, 2002b). The other main 
gene product modulated by UCN is the calcium-insensitive phospholipase A2 (iPLA2) 

enzyme, which was thought to be localized to cardiomyocyte mitochondria. In their 
latest study (Lawrence et al, 2005), they demonstrated that protein kinase C epsilon 
(PKCE) activation is important for cardioprotection against ischaemia and reperfusion 
injury and UCN cardioprotection is dependent on PKC8 activation (Lawrence et al, 
2005). 

Since hypoxic damage is linked with excess intracellular calcium, these cardiovascular 

effects may imply that calcium channels could play some roles in UCN's 

cardioprotection. Tao et l (2004) demonstrated that UCN exerted an inhibitory effect 

on the L-type calcium channels of adult rat ventricular myocytes, which was not 

reversed by a CRH antagonist implying that such effects are not mediated via CRH 

receptors. This inhibition of L-type calcium channels by UCN may be mediated by 

decreasing excess calcium influx through the voltage-gated calcium channels, a 

hypothesis further supported by Scarabelli et l (2002) who verified that UCN 

protection of the cardiomyocytes against apoptosis, was linked with intracellular 

calcium overload. 

The concept that UCN may be involved in inflammatory conditions is further supported 

by findings that the expression of UCN mRNA is increased in synovium of patients 

with RA and OA (Kohno et al, 2001; Uzuki et al, 2001), indicating that UCN may play 

an important role as an autocrine and/or paracrine regulator of synovial inflammation. 

However, the source of the UCN detected in these studies was not investigated. 

Recently two new mammalian neuropeptides of the CRH peptide family, stresscopin 

related peptide (SRP/UCN II) (38 aa) and stresscopin (SCP/UCN III) (38 aa) have been 

identified which have N-terminally shortened sequences (38aa) compared to UCN 

(40aa) (Reyes et al, 2001; Lewis et al, 2001). UCN II mRNA has been found in the 

heart, hypothalamus, spinal cord, adrenal gland and peripheral blood cells (Hsu and 

Hsueh, 2001). UCN II has been shown to produce delayed decreases in feeding and 

2003), and mild motor suppressive and delayed anxiolytic like drinking (Inoue et at 

effects in rats (Valdez et al, 2002) suggesting that UCN II may play a role in 

behavioural and neuroendocrine responses (Reyes et al, 2001). UCN III mRNA is 
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significantly less abundant than UCN II mRNA, but increased quantites of UCN III 

mRNA expression have been found in the gastrointestinal tract, muscle, hypothalamus 

adrenal gland and skin (Lewis et al, 2001). Accordingly, UCN III stimulated cAMP 
production in cells expressing CRH-R2 but not in cells expressing CRH-R1 (Hsu and 
Hsueh, 2001). Recent studies have confirmed that UCN II and UCN III are selective for 

CRH-R2 (Martinez et al, 2002). Both UCN II and UCN III have also been reported to 

possess cytoprotective attributes and these appear to be mediated exclusively through 
CRH-R2 receptors. UCN however, can act on both CRH-R1 and CRH-R2 (Brar et al, 
2004) or perhaps through non CRH receptor routes (Lawrence et al, 2002). 

1.7.2 The CRH receptors 

The CRH family of peptides including UCN exert their effects by binding to receptors 

which are coupled to the stimulatory class B subtype of G protein-coupled receptors 

(GPCR). These show significant homology to vasoactive intestinal 

polypeptide/calcitonin family of GPCR that are positively linked to adenylate cyclase 

and increased cAMP levels (Perrin et al, 1995). Prior to cloning of UCN in mammals, a 

variety of studies has helped to identify different CRH receptor subtypes. A comparison 

of the relative pharmacological potencies of ovine CRH (oCRH), sauvagine, and 

urotensin I on mesenteric vasodilation in the dog showed the existence of two distinct 

classes of high affinity binding sites (MacCannell et al, 1982). The two receptor 

subtypes were named CRH-R type 1&2 (which share 69% sequence homology) and 

have since been cloned and characterized from various species. The two receptors are 

identical except for a 29 amino acid insert present in the first intracellular loop of the 

type 1 receptor but have diverse anatomical distribution, pharmacology and affinities for 

the different CRH family peptides. Structurally, the CRH-R1 (415-420 as polypeptide) 

and CRH-R2 (397-438 as protein) are highly conserved, the majority of divergence 

occurring in the putative signal peptide and the extracellular N terminal, the second and 

third receptor domain, as well as in the N terminus juxtamembrane region which has 

been shown to be important in establishing ligand binding and receptor specificity 

(Klose et al, 2005; Brauns et al, 2002). In contrast, the intracellular and transmembrane 

domains are more homologous (80-85% as identity) with the third intracellular loop 

being totally alike in all cloned CRH receptors (Ariai et al, 2001). As both CRH-R1 and 

CRH-R2 receptors signal through cAMP as a second messenger, the stimulatory G 
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protein (GS) is most likely to link to this intracellular loop (Dautzenberg and Hauger, 
2002). 

Pharmacological studies have shown that UCN is a more potent activator than CRH of 
both types of CRH receptor, but in general the difference in potencies is greater for 

CRH-R2 (Hillhouse et al, 2002). Cells expressing mammalian CRH-R1 can be activated 
by CRH, sauvagine and UCN, to produce cAMP with similar half maximally effective 

concentrations (EC50) (Dautzenberg et al, 1997). Cells expressing CRH-R2 generate 

cAMP especially in response to sauvagine and UCN, as indicated by low EC50 values 

and high affinity binding of these peptides (Brauns et al, 2002). 

CRH-R1 and CRH-R2 are generated via distinct genes and possess many splice variants 

which are expressed in several central and peripheral tissues (Bale and Vale, 2004). 

Alternatively spliced forms or subtypes of the CRH-R1 (named a, b, c, d, e, f, g, h, v) 

are produced by differential splicing of exons 3-6 and 10-13, and have been detected in 

human and rodents. The CRH-R2 receptor exists as three known subtypes (named 

CRH-R2(x, CRH-R2ß and CRH-R2y) which have been reported to be 70% identical in 

amino acid sequence (Hauger et al, 2003). These are produced by the use of alternate 5' 

exons and hence differ only at the N terminus that forms part of the first extracellular 

domain (Klose et l 2005). CRH-R2a and CRH-R2ß are detected in human and rodents 

(Lovenberg et al, 1995a), whereas CRH-R2y has so far only been detected in humans, 

and is expressed in limbic regions of the CNS (Kostich et al, 1998). CRH-R2a is the 

dominant variant expressed both in the mammalian brain and in peripheral tissues of 

humans (Hauger et al, 2003). 

UCN is known to bind to both CRH-R1 and CRH-R2 with high affinity (KI = 0.2-1 nm) 

(Behan et al, 1996) and is thought to be an endogenous ligand for CRH-R2 

(approximately 40 fold higher activity than CRH) (Latchman, 2002; Bruijnzeel and 

Gold, 2005). UCN II binds CRH-R2 selectively and with high affinity (1000 fold more 

UCN). UCN III also specifically binds and has high affinity for CRH-R2. Both peptides 

activate cAMP production only in cells containing this receptor (Brauns et al, 2002) and 

both peptides are much less active on the CRH-R1 receptor (Hoare et al, 2005). It is 

currently known that the CRH/UCN system is composed of four ligands, two receptors, 

and one binding protein, CRH-binding protein (CRH-BP) (Dautzenberg and Hauger, 

2002). CRH-BP expressed in rodent, primate brain, pituitary (Potter et al, 1994) and in 

38 



humans is found in the liver and in the circulation. CRH-BP binds CRH and UCN (but 

not UCN II and UCN III), therefore inhibiting their ability to activate their receptors 
(Kemp et al, 1998), and preventing pituitary-adrenal stimulation when CRH plasma 
levels are high (Potter et al, 1991). Woods et al, (1997) measured plasma CRH-BP 

levels in arthritic patients using immunoassays directed against the N- and C terminals 

of the CRH-BP and demonstrated an elevated level of N terminally immunoreactive 

material, indicating heterogeneity and perhaps truncation of the CRH-BP. With its high 

affinity for CRH-BP, UCN may control CRH levels within the brain by displacing CRH 

from the binding protein (Kahl et al, 1998) but CRH-BP has also been detected in brain 

regions and periphery not linked with CRH activity, suggesting that it may also have 

CRH independent actions (Bale and Vale, 2004). 

1.7.3 CRH receptor antagonists 

Several CRH pharmacological receptor antagonists are available, some selective for the 

different isoforms and some not. Following the detection of these CRH family 

members, several small molecule CRH-R1 antagonists (e. g. Antalarmin, CP-154.526) 

and CRH-R2 antagonists (e. g. Astressin-2B, anti-sauvagine 30) have been produced in 

recent years along with some which bind to both CRH-R1 and CRH-R2 (e. g. Astressin, 

a-helical CRH) (Bale and Vale, 2004). Many of these novel antagonists were derived 

through deletion of N-terminal residues (Braun et al, 2002) resulting in small molecular 

weight molecules that can diffuse easily. 

These peptide CRH antagonists have been used mainly to distinguish the physiological 

role and mode of action of the CRH family of peptides. The first CRH antagonist to be 

described (and one of the most available) was a-helical CRH(9_4l). a-helical CRH(9_41), is 

a non specific CRH receptor antagonist binding to both CRH-RI and R2 but has been 

shown to have greater affinity for CRH-R2 and has been used throughout this study as it 

has been shown to inhibit the cardiac and vasorelaxant effects of UCN (Terui et al, 

2001; Huang et al, 2004). 

39 



1.8 Intracellular signal transduction and the kinases 

Signal transduction networks allow cells to receive external stimuli and respond to those 

signals in an appropriate manner. Eukaryotic cells have mitogen activated protein kinase 

(MAPK) signaling cascades which are activated as a result of growth factors, cytokines, 

stress stimuli (e. g. viral infection and ultraviolet irradiation), inflammatory responses, 

extracellular matrix components and both osmotic and heat shock (Cooray et al, 2005). 

MAPKs are specific protein kinases which regulate various cellular activities such as 

gene expression, mitosis, differentiation, and cell survival/apoptosis. MAPKs are 

generally activated by dual phosphorylation on tyrosine and threonine residues of the 

kinase sub-domain VII (sequence pTXpY), and are all proline directed serine/threonine 
kinases with numerous substrates. Dephosphorylation of either residue results in 

inactivation of the enzyme, indicating that both threonine and tyrosine phosphorylation 

are important for maximal activation (Khokhlatchev et al, 1997). 

Extracellular stimuli lead to activation of a MAPK via a signaling cascade composed of 

MAPK, MAPK kinase (MAPKK or MEK'1 /2), and MAPKK kinase (MAPKKK or 

MEKK). A MAPKKK that is activated by extracellular stimuli phosphorylates a 

MAPKK on its serine and threonine residues, and this MAPKK in turn activates a 

MAPK via phosphorylation on its tyrosine and threonine residues. This MAPK 

signaling cascade has been evolutionarily well-conserved from yeasts through to 

mammals and is shown overleaf in figure 1.4. 

In mammalian cells, three MAPK pathways are well studied, two of which, the P42/P44 

MAPK (also known as ERK 1/2) and the P38 MAPK will be discussed in detail here. 

Another kinase pathway of relevance to this study is the phosphoinositide 3-kinase 

(PI3K)-Akt pathway which participates in phosphorylation of phosphatidylinositol 

lipids (Cooray et al, 2005) and will also be discussed. 
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Figure 1.4: Activation of different MAPK signaling cascades by different extracellular stimuli. 
(Adapted from focosi. altervista. org/mapkmap. html, with slight modifications) 

The P42/P44 MAPK (above) signaling pathway is preferentially activated in response to 

growth factors and phorbol esters, and is involved in the regulation of cell proliferation 

and differentiation. The stress activated protein kinases/c-jun N-terminus kinases 

(SAPKs/JNKs) and P38 signaling pathways are responsive to stress stimuli, and 

involved in cell differentiation and apoptosis. MAPK activity is down regulated by a set 

of dual specificity phosphatases (known as MAPK phosphatases (MKPs) that remove 

phosphate from both threonine and tyrosine residues. MKP family members are 

triggered in response to growth factors and take part in the reduction of the constant 

activation phase of P42/P44 MAPKs (Sun et al, 1994). 

The protein MAP-2 kinase was first reported by Sturgill and Ray, in 1986, as a 42-kDa 

protein kinase which became phosphorylated after insulin exposure, and in turn 

phosphorylated the cytoskeletal protein MAP-2. A further 44-kDa isoform of this 

enzyme, was reported by Boulton and Cobb in 1991 and named ERK I whilst, the 42 

kDa protein was renamed ERK 2. Since the discovery of these proteins several growth 

factors and mitogens have been shown to activate these enzymes and the acronyms for 

these enzymes were consequently altered to P42/P44 MAPK (Dent et al, 2003). 

P42/p44 MAPK activation can be initiated via activation of transmembrane receptors 
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with intrinsic or associated protein tyrosine kinase (PTK) activity. The MAPK kinases 

also known as (MEK1 and MEK2), are phosphorylated and activated by Ras/Raf and 
then dually phosphorylate the P42/P44 enzymes at sites corresponding to Thr183 and 
Tyr185 of P42. Phosphorylation of these residues causes closure of the kinase active site 

and induces conformational changes resulting in a 1000 fold increase in activity over 

the basal or monophosphorylated forms (Zhang et al, 1995; Robbins et al, 1993). 

Control of P42/P44 MAPK activity is achieved by phosphatases whereby removal of 

one or both phosphates by phosphatases radically decreases this MAPK activity (Todd 

et al, 1999). Once activated, P42/P44 MAPK generally exhibit their effects by 

regulation of the activating protein 1 (AP-1) family of transcription factors. Activated 

P42/P44 MAPK translocates inside the nucleus where it activates a variety of AP-1 

transcription factors such as c-jun and Elk-1, which bind to DNA and contribute to the 

control of cell cycle reactions (Pearson et al, 2001). Even though transcription factors 

are vital MAPK targets, only some of the active MAPK pool translocates to the nucleus 

and mostly stays in the cytoplasm and other subcellular compartments (Chen et al, 

2000). 

The P38/HOG (high osmolarity glycerol) MAPK pathway was originally described as a 

mammalian homologue of a yeast osmolarity sensing pathway (Han et al, 1994) and at 

least four isoforms of P38 MAPK exist; P38 MAPK a, ß, y, and 6 (Kyriakis and 

Avruch, 2001). P38 MAPK belong to a family of stress kinases, and, when activated, 

phosphorylate transcriptional factors resulting in changes in gene expression in response 

to many extracellular stimuli such as cytokines (TNF-a and IL-1ß), increased 

osmolarity (Han et al, 1994), nutrient defiency, increased mechanical loading, and 

decreased oxygen tension (Chang and Karin, 2001), all conditions which occur in OA 

cartilage. 

P38 MAPK is activated by dual specificity MAP kinase kinases, including MKK3 

(activator for P38 b and a isoforms) and MKK6 (activator for all P38 isoforms) 

(Raingeaud et al, 1996). The P38 pathway has been implicated as playing a critical role 

in apoptosis (Xia et al, 1995) and is activated by several cytokines and other cell surface 

binding ligands. Signals are transmitted from cell membrane bound receptors via 

several small GTP-binding proteins (e. g. Ras, Raf) to the level of the MKK kinases 

(MKKK 1/2/3). An MKKK then activates MKK3/6, which in turn, activates the P38 

MAPK, which phosphorylates transcription factors (e. g. ATF-2) (Conrad et al, 1999). 
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Whilst the activation of P38 has been correlated with the induction of apoptosis in many 

cell types MKK signaling may not be that simple. Huang et al, (1997) showed that 

expression of constitutively activated MKK3 or MKK6 (both are upstream P38 

activators) was able to induce apoptosis in T lymphocyte Jurkat cells, but surprisingly, it 

was found that P38 was not activated, suggesting that MKK3 and MKK6 may induce 

apoptosis via activation of other unknown substrates (Huang et al, 1997). The role of 
P38 MAPK signaling in cellular responses is varied, depending on the cell type and 

stimulus. P38 MAPK signaling has been observed to both encourage cell death and 
increase cell growth and survival (Juretic et al, 2001). The capability of ionizing 

radiation to control P38 MAPK activity is shown to be extremely unpredictable with 

different groups reporting either no activation (Kim et al, 2002), weak activation (Taher 

et al, 2000) or strong activation (Lee et al, 2002). These reports suggest that the action 

of P38 in the apoptotic cascade depends on the cell type, method of stimulation, and the 

timing of injury. 

Both the P42/P44 MAPK and P38 MAPK pathways have been shown to be important in 

chondrocyte survival and function. Kim. et al, (2002) demonstrated that NO induced 

chondrocyte differentiation and apoptosis were mediated through both P42/P44 MAPK 

and P38 MAPK pathways, whilst Zhen et al, (2001) demonstrated that P38 MAPK is 

important in controlling apoptosis in growth plate chondrocytes during endochondral 

ossification (replacement of cartilage with bone tissue). P38 MAPK signaling has also 

been demonstrated to be important for the differentiation of mesenchymal precursor 

cells to chondroblasts during cartilage development (Lee et l 2002). The role of P38 in 

the later stages of chondrocyte growth and proliferative differentiation, has not been 

studied significantly, nor has P38 signaling in mature chondrocytes. Stanton et al, 

(2004) have however established a requirement for P38 signaling in the hypertropic 

differentiation of chondrocytes and the work of Wei et al, (2006) indicates a strong link 

between P38 MAPK activity and cell death in human OA chondrocytes. 

Alongside the MAPK signaling pathways, the phosphatidylinositol 3 kinase (PI3K) 

signaling pathway represents one of the other ubiquitous, multifunctional signaling 

pathways. P13K is a vital intracellular signaling enzyme that takes part in 

phosphorylation of phosphatidylinositol lipids, thus influencing a variety of cell 

functions including growth, migration and survival (El-kholy et al, 2003). P13K 

enzymes have two subunits, a catalytic P110 subunit and a regulatory and localizing 
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P85 subunit, (Vanhaesebroeck and Alessi, 2000). The major catalytic function of the 
P13K is to phosphorylate membrane inositol phospholipids (PIP2: phosphatidyl inositol 
4,5 bis-phosphate), at the 3' position within the inositol sugar ring. These 3' 

phosphoinositides recruit the proteins Akt and phosphoinositide dependent kinases 1 

and 2 (PDKI/2) to the plasma binding membrane through their pleckstrin homology 

domains (Vanhaesebroeck et al, 2001), when PDKI/2 activates Akt via phosphorylation 
473 308 at Serand Thr (Datta et al, 1999), activated Akt influences cell survival by 

phosphorylating and inhibiting a range of pro-apoptotic proteins including BAD, 

caspase 9, GSK-3ß and Forkhead transcription factors (Cardone et al, 1998). 
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1.9 Aims 

The aims of this project are to establish the cell death pathway and intracellular 

signalling cascades that operate in chondrocytes in response to agents already 
implicated in chondrocyte apoptosis in OA and to investigate a possible protective 

mechanism involving the CRH like peptide UCN. 

Greater understanding of the mechanisms involved is a step towards the possible 

controlled pharmacological inhibition of key stages in this process with the recent 

discovery of a possible endogenous protective agent, UCN, and may reveal further 

potential therapeutic pathways to be explored. 

The aims of the present study were to: 

" Evaluate the relative roles of the pro-apoptotic stimuli, NO and TNF-a on C- 

20/A4 chondrocyte cell death 

" establish if NO and TNF-a induce chondrocyte apoptosis or necrosis 

9 investigate the effect of CRH receptor antagonists on UCN mediated 

cytoprotection 

" evaluate the chondroprotective efficacy of UCN in preventing chondrocyte 

apoptosis and 

" the stimuli that result in UCN expression 

" investigate the signal transduction pathway(s) involved in the chondroprotective 

effect of UCN. 

0 identify the initiator caspase involved in chondrocyte apoptosis following 

administration of TNF-a and NO donor SNAP 

In the long term, it is hoped that data gathered in this study may help to suggest novel 

therapeutic strategies so that appropriate clinical studies may be formulated for the 

treatment and cure of OA. 
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CHAPTER 2 

MATERIALS AND GENERAL METHODS 
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2.1 Materials 

2.1.1 Cell culture 

C-20/A4 human chondrocyte cell line (derived from Juvenile coastal chondrocytes 
immortalized with the origin-defective Simian virus 40 containing large T-antigen 

(SV40-Tag) vector) (Goldring et al, 1994). Dulbecco's Modified Eagles Medium 

(DMEM) with lg/L glucose, without L-glutamine (Cambrex, Wokingham, UK), 

Dulbecco's phosphate buffered saline (DPBS) containing no Calcium or Magnesium 

(Cambrex). Heat inactivated fetal calf serum (FCS) (Biowest, Ringmer, UK), Penicillin 

(10,000U/ml) / Streptomycin (10,000µg/ml) solution (Cambrex), L-Glutamine Solution 

(200mM in 0.85%(w/v) NaCl) (Cambrex). Dimethyl Sulphoxide (DMSO), (Sigma, 

Poole, UK), liquid nitrogen (BOC Ltd Speciality gases, London, UK), tumour necrosis 

factor-a (TNF-a) and interleukin-1(3 (IL-1(3) (R &D Systems, Abingdon, UK), SNAP 

(S -nitro so-N-acetyl-D-L-penicillamine) (Calbiochem, Lutterworth, UK), a helical 

CRH(9_41) (Sigma), Urocortin (UCN) (Sigma), PD98059 (P42/P44 MAP Kinase 

inhibitor) (Calbiochem, UK), SB202190 (P38 MAP Kinase inhibitor) (Calbiochem, 

UK), LY294002 (Phosphatidylinositol 3-kinase (P13K) inhibitor) (Calbiochem, UK). 

Plastic tissue culture flasks, pipettes, 0.2µm filters, centrifugal tubes, (Triple Red, 

Thame, UK). 

2.1.2 Analysis of cell death 

Ethanol (Merck, Leicester, UK), chloroform (Merck), 4%(w/v) paraformaldehyde 

solution in PBS (Sigma), blocking solution - 0.3%(v/v) hydrogen peroxide (H202) 

(Sigma) in methanol (Merck), permeabilization solution - 0.1 %(w/v) Sodium citrate + 

0.1%(v/v) Triton x-100 (t-Octyl phenoxypolyethoxyethanol) (Sigma) in distilled water. 

In situ cell death detection, peroxidase kit (Roche diagnostics, Lewes, UK), polysineTM 

microscope slides (Merck). TACSTM Annexin V-FITC kit (R &D Systems, Abingdon, 

U. K), HEPES (Sigma), NaCI (Merck), KCl (Merck), MgCl,? (Merck). TOX 7 
. 
in vitro 

Toxicology assay kit lactate dehydrogenase based (Sigma). 1M HCL, Neutral Red dye 

(Sigma), CaC12 (Merck), Formaldehyde (Merck) acetic acid (Merck), 96 well plates 

(Triple Red). AF1 glycerol/PBS mounting solution (Citifluor, London, U. K), improved 

Neubauer haemocytometer (Hawksley, Lancing, Sussex, U. K), 0.25% (w/v) trypan 

blue, in PBS (Sigma, U. K. ). Anti-human urocortin antibody (Sigma, Dorset, U. K), anti- 
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human albumin antibody (Sigma), Sephadex nick columns (Amersham Pharmacia, 
Chalfont, U. K), 

2.1.3 Molecular biology techniques 

Tri-reagentTM (Sigma), Propan-2-ol (Merck), DEPC (diethyl pyrocarbonate) 
(0.01%v/v) (Sigma) treated UHQ water, ethanol (Merck), Oligo - dt (18) (Sigma 

Genosys, Gillingham, UK), Moloney-murine leukemia virus-reverse transcriptase (M- 

MLV-RT) (Promega, Southampton, UK), 5x RT buffer (Promega), RNasin® 

ribonuclease inhibitor (Promega), BIOTAQ polymerase (Bioline, London, UK), dNTP 

mixture (dATP, dTTP, dGTP, dCTP) (Bioline), magnesium chloride (MgCl, )) (Bioline), 

10x ammonium buffer (NH4') (Bioline), oligonucleotide primers (UCN, ß-actin, 

GAPDH) (Sigma Genosys), mineral oil (Sigma). Agarose (Bioline), Tris acetate EDTA 

(TAE) 50x buffer (24.2%(w/v) glacial acetic acid (Merck), 5.7%(w/v) Trizma® base 

(Sigma), 0.0372%(w/v) sodium EDTA (Merck), distilled water, 0.01 %(w/v) ethidium 

bromide (Sigma). Ready-Load 2 Kilobase (Kb) DNA ladder (Sigma), ready-Load 1 

Kilobase (Kb) DNA ladder (Invitrogen Life Technologies, Paisley, UK), ready-Load 1 

Kilobase (Kb) hyperladder IV (Invitrogen Life Technologies). Xylene cyanol FF dye 

(XCFF) (Sigma), bromophenol blue dye (BPB) (Sigma) and ficoll (Merck). Spin Prep TM 

PCR clean up kit (Calbiochem). TaqMan reverse transcription reagent kit®, assay-on- 

demand kits for UCN (Cat no. HS0017020-ml) and GAPDH (Cat no. HS99999905-ml), 

TaqMan universal PCR mastermix®, 96 well optical reaction plates, optical adhesive 

covers (all from Applied Biosystems, Warrington, U. K. ). 

2.1.4 Electrophoretic techniques and Western blotting 

30%(w/v) (37: 1) bis-acrylamide mix (Sigma), tris(hydroxymethyl)aminomethane base 

(Sigma), sodium dodecyl sulphate (SDS) (Merck), ammonium peroxodisulphate 

(persulphate) (Merck), lOx PBS (12.2%(w/v) sodium chloride (Merck), 26.8%(w/v) 

potassium chloride (Merck), 1.92%(w/v), disodium hydrogen orthophosphate-2-hydrate 

(Merck), TEMED (N, N, N', N' - tetramethylethylenediamine) (Sigma), lx transfer 

buffer (w/v), (39mM glycine, 48mM tris base, 0.037%(w/v) SDS, 20%(v/v) Methanol), 

5x SDS polyacrylamide gel electrophoresis (SDS PAGE) running buffer (25mM Iris, 

192mM glycine, 0.1 %(v/v) SDS), SDS-PAGE gel loading buffer (10 %(v/v) glycerol, 

3 %(v/v) SDS, 0.1 %(w/v) 2-mercaptoethanol, 0.1 %(w/v) bromophenol blue). Picric acid 
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coomassie blue stain - solution 1 (0.5%(w/v) coomassie brilliant blue R-250,45%(v/v) 

methanol, 10%(v/v) glacial acetic acid), solution 2- (132g damp picric acid in 2L 

distilled water neutralized to pH 7 with 1M NaOH, until picrate was dissolved. Final 

staining solution was prepared from 750ml solution 1 with all of solution 2, and 

adjusted to 3L final volume with UHQ water), picric acid coomassie washing solution- 
(45%(v/v) methanol, 10%(v/v) glacial acetic acid in distilled water), picric acid 

coomassie destain-(10%(v/v) methanol, 7%(v/v) glacial acetic acid in water). Ponceau S 

staining solution-(2%(w/v) Ponceau S, 30%(w/v) trichloroacetic acid, 30%(w/v) 

sulfosalicyclic acid), Protease inhibitor cocktail (Sigma), CeILyticTM-Mammalian cell 
lysis buffer (Sigma), Polyoxyethylenesorbitan monolaurate (Tween-20) (Sigma). Low- 

Range Rainbow Molecular Weight marker (Amersham, Little Chalfont, U. K. ), Pre- 

stained protein marker, Broad Range (6-175kDa) (Biolabs, Hitchin, Hertfordshire), 

HybondTm C nitrocellulose Transfer membrane (Amersham), anti-caspase 3 antibody 

(Cell signaling, Hitchin, Hertfordshire, U. K. ), anti-caspase 8 antibody, anti-caspase 9 

antibody, anti-p-ERK (E-4): se-7383, p-ERK (Tyr 204): sc-7976 (all from Santa Cruz, 

supplied by Autogen, Calne, U. K), Polyclonal rabbit anti-mouse Ig HRP (Dako 

Cytomation, Ely, U. K), Polyclonal goat anti-rabbit Ig HRP (Dako), GAPDH, 4%(w/v) 

powdered milk. 
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2.2 General Methods 

2.2.1 Cell Culture 

Since its discovery in the 1940's and 1950's, several developments in cell culture have 

contributed to its greater feasibility and current widespread use. Some of the more 

notable advances include the development of antibiotics to avoid contamination 

problems, the use of trypsin (for the continuous culture of adherent cells) and the 
development of standardized, chemically defined culture media (Galbraith, 2004). Two 

basic culture systems are used for growing cells which depend on the nature of the cells 
being cultured. Some cell types grow attached to a glass or treated plastic substrate 
(Monolayer Culture Systems) (including the C-20/A4 cells used in this research) whilst 

others grow floating free in the culture medium (Suspension Culture Systems). 

The main problem encountered in cell culture is contamination. Contamination is 

mainly of two types: chemical or biological. Chemical contamination is the most 

difficult to detect since it is caused by agents such as endotoxins, plasticizers, metal ions 

or traces of chemical disinfectants, which are invisible to the naked eye during cell 

culture. Biological contaminants in the form of fast growing yeast, bacteria and fungi 

usually have visible effects on the culture (changes in medium turbidity or pH) and are 

thus easier to detect, especially if antibiotics are absent from the culture (Lincoln and 

Gabridge, 1998). To ensure optimal cell growth, cultures should be examined daily, 

observing the cell morphology, the colour of the medium and the density of the cells. 

Important factors affecting cell growth include appropriate temperature (usually 37°C), 

a suitable substrate for attachment (glass or specially treated plastics) and the provision 

of the correct balance of essential gases (02 and C02). The selection of the culture 

medium is also critical in order to meet the basic nutritional requirement of the cells, to 

provide necessary growth factors (usually supplied by a 5-20% supplement of animal 

serum or serum free medium supplements) and to regulate pH and osmolality (MacLeod 

et al, 1999). 

When cells grown in monolayer have covered all of the available culture substrate, they 

must be subcultured to give them room for continued growth. This is performed by 

releasing them as gently as possible from the substrate. Some cell types may be released 

from the culture flask simply by tapping the side of the flask, others require enzymatic 
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(e. g. trypsin) release. Once released, the cell suspension can then be subdivided and 
placed into new culture flasks. 

2.2.1.1 Growth and maintenance of C-20/A4 cell line 

In this work, in vitro experiments were performed on an adherent human chondrocyte 

cell line (C-20/A4), which displays morphological and biochemical characteristics of 
the chondrocyte phenotype. The C-20/A4 human chondrocyte cell line was derived 

from Juvenile costal chondrocytes immortalized using the origin defective Simian Virus 

40 containing large T antigen (SV40 Tag) (Goldring et al, 1994) and were the kind gift 

of Professor Mary Goldring, Harvard Medical School, USA. This cell line has been 

routinely and extensively used as a reproducible in vitro model for the investigation of 

cartilage cell biology requiring large numbers of cells for health and disease by several 

groups (Goldring et al, 1994; Moulton et l 1997; Finger et al, 2004 ). 

C-20/A4 cells were cultured in Dulbecco's Modified Eagles Medium (DMEM), 

supplemented as detailed in table 2.1, and maintained in a Galaxy S humidified 

incubator (Wolf Laboratories, York, U. K. ) at 37°C and 5% CO2. All culture handling 

was performed in an Aura 2000 class II cabinet (Bioair Instruments, UK). Complete 

media was sterilized prior to use by passing through a 0.2µM syringe filter and pre- 

warmed to 37°C, in a water bath. When a fully confluent monolayer was achieved 

(usually 3-4 days), cells were passaged by treatment with sterile Ca 2+ & Mg2+ free PBS 

pre-warmed to 37°C. A volume of 10ml of PBS was added to each 75cm2 flask and the 

cells replaced in the incubator for 5 minutes. Cells were released by banging the side of 

the flask against the palm of the hand, then pelleted by centrifugation at 2500g at 20°C 

for 5 minutes. Pellets were then re-suspended in fresh medium and used as required. 

Chondrocytes were continuously cultured in order to ensure availability and cycled into, 

or out of, storage as appropriate. Experiments were undertaken on cells between 

passages 3 to 15. 
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Table 2.1: Composition of growth medium employed for culture of C-20/A4 human chondrocytes 

Components 

DMEM 

Foetal calf serum (FCS) 

Penicillin-Streptomycin solution (10000 units m1-1 Penicillin G 

Sodium + 10000µg ml-1 Streptomycin Sulphate in 0.85% saline) 

L-Glutamine 200mM (100x) 

Concentration 

88.0% (v/v) 

10% (v/v) 

1.0% (v/v) 

1.0% (v/v) 

2.2.1.2 Storage and revival of the C-20/A4 cell line 

C-20/A4 cells were routinely stored as frozen aliquots in liquid nitrogen (-196°C), 

which allows for long term storage with good viability. The process of freezing can 
however be detrimental to cell viability due to the effects of ice crystal formation, 

dehydration and changes in pH. In order to minimise these effects, cells destined for 

storage were centrifuged and the pellets re-suspended in a freezing medium composed 

of 10% (v/v) of the cryoprotective agent DMSO in the complete media. The cells were 

first slow frozen at -80°C overnight, at a rate of 1-3°C/minute in a `Mr. Frosty' 

container (Merck, Leicester, U. K. ) (filled with 200ml isopropranol). Following slow 

freezing, the vials were removed and transferred to liquid nitrogen storage (-196°C) for 

longer durations to stabilize the cells and minimize ice crystal growth, which is retarded 

below -130°C (Freshney, 1987). To maximise recovery of the cells when thawing, vials 

are warmed very quickly by hand and the thawed cell suspension diluted immediately 

into 20m1 of pre-warmed complete medium and centrifuged at 2500g 20°C for 5 

minutes. This procedure was repeated twice prior to transfer of cells into tissue culture 

flasks. 

2.2.2 Analysis of cell death 

The increasing interest in mechanisms of cell death has resulted in the development of a 

variety of different methods for its detection and characterisation. Several methods have 

been routinely used, including the characteristic 180bp DNA ladder banding pattern on 

agarose gels, the TUNEL (TdT mediated dUTP nick-end labeling) assay, Annexin V 

assay, DNA fragments ELISA, LDH release and vital dye staining. Assays for activity 

of the caspase family of cysteine proteases, common mediators of apoptotic cell death 
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pathways, have also been developed for characterising apoptosis. Apoptosis assay 
systems have been categorised as measuring `early' or `late' events in the overall 
process of apoptosis with some combined tests assessing both (Vermes et al, 2000). 
Necrotic cell death can be conveniently measured by the assessment of cytoplasmic 
enzyme activity (e. g. lactate dehydrogenase (LDH)) released into culture medium 
following cell lysis. 

Apoptotic induction caused by insults such as TNF-a and NO, can be conducted both 

via receptor ligation and by the release of cytochrome c from the mitochondria leading 

to a breakdown of the mitochondrial membrane potential (q). Subsequent activation of 

caspases then leads to cleavage of apoptosis-related proteins such as PARP, which is 

implicated in DNA repair. The exact mechanisms involved are dependent on the nature 

of the insult and the cell or tissue type involved. An early event in this process is the 

exposure of phosphatidylserine from the inner leaflet of the cell membrane to the outer, 

leading to morphological changes resulting in cell shrinkage and blebbing. The final 

stages of the apoptotic process include DNA fragmentation before cell death and 

phagocytosis of its remains. 

In this research, apoptosis has been assessed with a combination of Annexin V binding 

to exposed phosphatidylserine (early apoptosis) and terminal deoxynucleotidyl 

transferase biotin dUTP nick end labeling (TUNEL) (late apoptosis). Necrosis has been 

assessed by LDH release. 

2.2.2.1 Preparation of cell slides 

In order to assess cell morphology and death, cells were cytospun onto poly-L-lysine 

coated microscope slides. Using a cytospin 3 cytocentrifuge (Shandon, Manchester, 

U. K. ), chondrocyte cell suspensions of approximately 3x104 cells/ml were prepared in 

DPBS and cytocentrifugation was carried out at 500 rpm for 3 minn using 100µi (-. 3000 

cells) per slide. Multiple slides were prepared for each experiment then used for 

TUNEL and Annexin analysis. The prepared slides were air dried after preparation and 

either used immediately or stored at -80°C (in aluminium foil) until required. 
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2.2.2.2 Annexin V assay 

One of the earliest features in the apoptotic process is the externalisation of the lipid 

phosphatidyl serine (PS), from the inner to the outer leaflet of the plasma membrane, 
(Kuypers et al, 1996). Annexin V is a 35-36 kDa, Ca2+ dependent, phospholipid binding 

protein which specifically binds PS with a Kd of -5 x 10"2 (Vermes et q I, 1995). 

Fluorescent labeling of Annexin V enables the detection of externalisated PS, and hence 

apoptotic cells. Annexin V binding was first demonstrated in model membranes 
(Andree et al, 1990) and later in blood platelets, which expose PS at their surface under 

certain activating conditions (Thiagarajan and Tait, 1990; Dachary-Prigent et qI, 1993), 

but is now in routine use for the detection of cellular apoptosis. Necrotic cells also 

expose PS, but tend to lose membrane integrity soon after cell injury (Koopman et qI, 

1994), whereas, in the initial stages of apoptosis, the cell membrane remains intact. 

Measurement of Annexin V binding to the cell surface is usually therefore performed in 

conjunction with a dye exclusion test (e. g. propidium iodide (PI) to establish integrity of 

the cell membrane, and distinguish between apoptosis and necrosis (Fadok et al, 1992) 

Figure 2.1 shows the distribution of phosphatidylserine in normal and apoptotic cells, 

and the principles of the Annexin V/PI assay. 
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Figure 2.1: Annexin V-FITC/Propidium iodide assay principle. 

(Adapted from www. dundee. ac. uk/lifesciences/ FACS/ceII_death. htm, ) 
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This combination of Annexin V and PI allows the investigator to distinguish between 

viable cells which are Annexin V and PI negative, early apoptotic cells (Annexin V 

positive; PI negative) and late apoptotic cells or necrotic cells (both Annexin V and PI 

positive). This assay does not however, differentiate between cells that have already 
undergone apoptotic death and those that have died due to a necrotic pathway because 
in either case, the dead cells will stain with both Annexin V and PI. Annexin V-FITC is 

detected as a green fluorescence and PI as a red fluorescence. 

Whilst Annexin V binding is robust when used to assay cells growing in suspension 
(Koopman et al, 1994), there are difficulties when assessing apoptosis in adherent cells. 
The most common method used to detach adherent cells is trypsination with or without 
EDTA, both of which can affect the assay. Trypsinising can affect both membrane 
integrity and PS localisation and EDTA will remove calcium, which is essential for 

Annexin V binding. To avoid such problems, PBS was used to detach cells in this 

research, rather than trypsin-EDTA treatment. 

2.2.2.2.1 Annexin V-FITC / Propidium Iodide methodology 

The Annexin V-FITC assay was performed on cytospin preparations of C-20/A4 cells 

using the TACS-Annexin V FITC kit (R+D systems) according to the manufacturer's 

protocol. The prepared slides were incubated in a cold (2-8°C) lx PBS wash for 10 mins 

gently blotted around the edges of the sample and then incubated with the Annexin V- 

FITC reagent (prepared as in table 2.2) for 15 mins at RT in a humidified chamber. 

Table 2.2: Preparation of the Annexin V/ Propidium iodide working reagent 

Component Concentration 

lOx Binding buffer 10.0% (v/v) 

Propidium Iodide (PI) 10.0% (v/v) 

Annexin V-FITC 1.0% (v/v) 

Distilled water 79.0% (v/v) 

The cytospin slides were then washed twice for 2 mins each with 50m1 lx binding 

buffer (100mM HEPES pH 7.4,1.5M NaCl, 50mM KCI, 10mM MgCl-), 18mM CaC12), 
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mounted in AF I fluorescent mounting medium and analyzed by fluorescence 

microscopy with an excitation wavelength between 450-500nm (blue) and detection 
between 515-565nm (green). Annexin V/PI positive cells are detected as a green 
fluorescence ring (Annexin V) with red, nuclear fluorescence (propidium iodide) as 
shown in Figure 2.2 (PI is not clearly detected in the picture). The total number of 

chondrocytes and the number of chondrocytes staining positively were quantified for 

100 cells in three different microscopic fields which were randomly chosen. The final 

result was expressed as the percentage of positive cells. The mean and SD of readings 
for each condition were calculated. 

Annexin V 

positive cell 

Figure 2.2: Microscopic appearance of Annexin V/PI positive apoptotic C-20/A4 cells after treatment 

with TNF-a (x 400 magnification). 

2.2.2.3 TUNEL assay 

As well as PS externalization, apoptosis is also characterized by a variety of other 

morphological and molecular changes, the most common of which is DNA 

fragmentation. DNA fragmentation takes place late in apoptosis and is easily detected 

by a variety of methods including TUNEL (terminal deoxynucleotidyl transferase biotin 

dUTP nick end labeling) (Enari et al, 1998). 

The central principle of the TUNEL assay is the in situ labeling of the DNA strand 

breaks which occur during apoptosis. This is effected by the integration of labeled 

dUTP into these strand breaks by the enzyme terminal deoxynucleotidyl transferase 

(TdT). The assay used here is a commercial variant of the original assay developed by 

Sgonc et al, (1996), and relies on the incorporation of FITC labeled dUTP at the free 3' 
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OH ends of DNA fragments and single strand breaks ("nicks"). This may then be 
analysed by fluorescence microscopy or `converted' to a peroxidase based detection 

method with the use of a supplied "POD Converter", (anti-fluorescein antibody fab 
fragments conjugated with horse-radish peroxidase (POD). Figure 2.3 shows the 
detection principle of the Roche TUNEL assay used in this research. 

(Adapted from www. roche-applied. -Science. com/fst/apoptosis. htm) 

2.2.2.3.1 TUNEL Methodology 

The TUNEL procedure was performed on cytospin preparations of C-20/A4 cells using 

the TUNEL assay in situ cell death detection Peroxidase (POD) kit (Roche diagnostics) 

according to the manufacturer's protocol. Cells were fixed with 4%(w/v) 

paraformaldehyde solution (prepared in PBS) for lhr at RT, washed twice with PBS 

then, blocked with 30%(v/v) hydrogen peroxide in methanol for 10 mins at RT (to 

inhibit endogenous peroxidase). Following blocking, slides were washed twice with 

PBS then permeabilized with 0.1 %(w/v) sodium citrate in 0.1 %(v/v) triton x-100 

solution for 2 mins on ice. Slides were again washed twice in PBS and incubated with 

50gl of TUNEL reaction mixture (5pl terminal deoxynucleotide transferase (TdT) in 

lox storage buffer and 45µl nucleotide mix in lx reaction buffer) in a humidified 
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chamber at 37°C for l hr. TUNEL assay slides were assessed by fluorescence 

microscopy, with an excitation wavelength between 450-500nm (blue) and a detection 

wavelength between 515-565nm (green) for FITC marked fragmented DNA of the 

apoptotic chondrocytes (TUNEL positive cells). TUNEL is detected as a bright green 
speckled nuclear fluorescence as shown in Figure 2.4. The total number of chondrocytes 

and the number of chondrocytes staining positively were quantified for 100 cells in 

three different microscopic fields which were randomly chosen. The percentage of 

normal cells against apoptotic cells was subsequently recorded and the mean and SD 

(standard deviation) of readings for each condition calculated. 

TUNEL 
positive cell 

TUNEL 
negative cell 

Figure 2.4: Microscopic appearance of TUNEL positive, apoptotic C-20/A4 cells after treatment with 

TNF-a (x 400 magnification). 

2.2.2.4 Lactate Dehydrogenase Release Assay 

During the course of cell viability research several methods have been developed to 

assess cell membrane integrity. Cell integrity may be assessed by pre-labelling with a 

radioisotope or fluorescing material that is released upon lysis of the cell, or may 

include the use of vital dyes and dye exclusion assays (Oldham et at, 1977). More 

recent methods involve the measurement of cytoplasmic enzymes released into culture 

supernatant following cell death, with enzyme activity in the supernatant being 

proportional to the level of cell death. Such methods are generally rapid and more 

economical, than procedures involving pre- or post-labeling of target cells (Decker and 
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Lohmann-Matthes, 1988). An assay of this type, measuring cytoplasmic lactate 
dehydrogenase (LDH) release, is used in this research. 

Whilst many cytoplasmic enzymes could be used in theory, many exist in low amounts 
(e. g. alkaline and acid phosphatase) or are unstable (e. g. creatine kinase) (Korzeniewski 

and Callewaert, 1983). LDH however, is a stable, abundant cytoplasmic enzyme present 
within all mammalian cells and is rapidly released into cell culture supernatant when 
damage occurs to plasma membranes. The normal intact, plasma membrane is 

impermeable to LDH (Rae et al, 1977). In vitro release of LDH from cells therefore 

provides an accurate measure of cell membrane integrity and therefore cell viability and 

as a result, has proved to be a popular and reliable test for cytotoxicity (Decker and 
Lohmann-Matthes, 1988; Korzeniewski and Callewaert, 1983). 

The kit used in this research to quantify necrotic cell death, the TOX 7 kit supplied by 

Sigma, is based on the LDH assays devised by Legrand et l (1992) and Decker et al, 

(1988) adapted to a 96 well plate format. The LDH assay is based on the reduction of 

NAD to NADH (by the action of LDH) which activates the stoichiometric conversion of 

a tetrazolium dye to its formazan derivative, the colour of which is analyzed 

spectrophotometrically (Legrand et al, 1992). The enzymatic activity of LDH and 

generation of NADH is shown below (Figure 2.5): 
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Figure 2.5: LDH catalysed conversion of lactate to pyruvate 

(Adapted from www. bmb. psu. edu/... / pratt/glycolysisreg. html with slight modifications) 

In the Tox 7 assay (Sigma) used in this research, formazan concentrations are 

determined by measuring optical absorbance at 492nm. To measure the red formazan 

product accurately, adequate controls need to be included to compensate for the 

presence of phenol red in the tissue culture medium and for any endogenous LDH 

activity arising from animal serum (FCS) supplements in the tissue culture medium. 
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2.2.2.4.1 Lactate Dehydrogenase Assay Methodology 

The LDH assay was performed on supernatant samples collected from control and 
treated cells. The supernatant was centrifuged for 4 minn at 2500 rpm at 4°C, to prevent 
cellular contamination and the TOX 7 assay (Sigma) conducted according to the 

manufacturers protocol. Briefly, the LDH assay mixture was prepared by mixing equal 
amounts of LDH assay substrate, enzyme and dye solutions. Microtitre 96 well plates 

were inoculated with 100µl of the supernatant to be tested and 50µl of the assay 

mixture, covered in aluminium foil (to exclude light) and incubated at RT for 30 mins. 
After such time, the reaction was terminated by the addition of 15µl of 1M HCL to each 

well and the absorbance measured spectrophotometrically at 490nm with background 

absorbance measured at 690nm. 

2.2.2.5 Trvnan Blue Dve Exclusion Assa 

Trypan blue is one of several stains used in dye exclusion methods for assessing cell 

viability. The trypan blue dye only enters cells with impaired plasma membranes and is 

excluded from viable cells allowing both stained and unstained cells to be visualized 

and counted under a light microscope using a haemocytometer. This method is quick, 

inexpensive, and requires only a small fraction of total cells from a cell population. 

2.2.2.5.1 Trypan Blue Assay Methodology 

The trypan blue assay was performed by mixing 100µl of cell suspension (in PBS) with 

100µl of 0.25%(w/v) trypan blue solution in PBS, incubating for 5 mins at room 

temperature, and then counting the cell populations in a haemocytometer. Cell numbers 

were counted in the 1 mm centre square and four I mm corner squares (not including 

cells touching the bottom and right-hand side lines of each square) and an average cell 

number for the squares counted calculated. With the coverslip in place, each large 

square of the haemocytometer represents a total volume of 0.1mm3 or 10-4 ml. Cell 

number was therefore calculated using the following equation: 
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cell number = Cells counted x dilution factor x104 
5 

The percentage cell viability can be determined using the following calculation: 

% cell viability = Total viable cells (unstained) x 100 

Total cells (stained and unstained) 

For improved accuracy, the count for cell viability was repeated using at least 3 

samples. 

2.2.2.6 The Neutral Red dye uptake assay 

The Neutral Red (3-amino-m-dimethylamino-2-methyl-phenazine hydrochloride) (NR) 

assay was developed as an in vitro cytotoxicity assay using mammalian cells in culture 

(Babich and Borenfreund, 1990; Babich and Borenfreund, 1993). This assay is based on 

the ability of viable, uninjured cells to uptake and bind neutral red, a supravital dye. NR 

is a weak cationic dye that readily penetrates cell membranes by non-ionic diffusion, 

accumulating intracellularly in lysosomes, where it binds with anionic sites in the 

lysosomal matrix of viable cells and hence can be used to demonstrate both increases 

and decreases in viable cell number (Babich et al, 1991). Damage to the plasma or 

lysosomal membrane decreases the uptake and subsequent retention of the dye. 

Following dye uptake, cells are washed and fixed and NR is then extracted from the 

lysosomes and measured spectrophotometrically. The intensity of dye colour following 

extraction has been shown to be linearly proportional to cell number both by direct cell 

counts and by protein determination of cell populations (Borenfreund and Puerner, 

1986). 

2.2.2.6.1 Neutral Red assay methodology 

The neutral red assay was performed as follows: A neutral red working solution of 40µg 

ml-1 was freshly prepared each time by diluting the neutral red dye solution in culture 

media and centrifuging prior to use to remove fine dye crystals. Following treatment of 

cultured cells with exogenous agents, media was aspirated from the cultured cells and 

replaced with an equal volume of the neutral red containing medium. The cells were 
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then left to incubate for 3 hrs at 37°C, after which, the neutral red containing medium 
was aspirated and the attached cells rapidly rinsed and fixed with 100111 of 1 %(w/v) 
CaC12 0.5 %(v/v) formaldehyde. The fixative solution was then removed and the cells 

solubilized with l00µ1 of 1 %(v/v) acetic acid 50%(v/v) ethanol solution to release the 
NR incorporated into viable cells, yielding a red colour proportional to the number of 

viable cells. After a 10 min incubation period at RT, followed by 10 seconds of rapid 
agitation on a microtitre plate shaker, the absorbance of this final solution was measured 

at 540nm in a Dynatech MR5000 (Dynex Technologies Ltd. Worthing, U. K. ) 

microtitreplate reader. All absorbance values for treated wells were compared against 

untreated control wells on the same plate and processed to give a viability count 

expressed as a percentage of the control cell viability. 

2.2.3 Molecular Biology Techniques, RT-PCR and real time PCR. 

The polymerase chain reaction (PCR) technique was originally presented by Khorana et 

al as early as 1971, but at the time seemed impractical before the advent of gene 

sequencing or the discovery of a viable thermostable DNA polymerase. It was not until 

about 12 years later that it was independently developed by Mullis (1983) and is now 

one of the most widespread methods for the analysis of DNA. PCR is a series of 

temperature and sequence-specific reactions resulting in the exponential amplification 

of short DNA sequences (from around 100 bases to around 3 Kb). When a sequence of 

DNA is amplified and repeated through 20 cycles, theoretically more than 2 million 

copies are made from just one copy (Wiley et al, 2003). 

2.2.3.1 Reverse Transcription Polymerase Chain Reaction (RT-PCR) 

The PCR technique now in routine use requires several basic components, but the 

crucial component is the DNA template, which contains the region of interest to be 

amplified. A variant on the standard PCR technique is reverse transcription PCR (RT- 

PCR). This technique is an extension to the PCR protocol which allows the analysis of 

gene expression using messenger RNA (mRNA) as the initial target for analysis. mRNA 

is the molecule into which the DNA code is transcribed prior to the production of 

protein at the ribosomes by translation of the RNA 'message'. If mRNA can be isolated 

it can be reverse transcribed back into complementary DNA (cDNA) by the enzyme 

reverse transcriptase (RT), first discovered by Temin and Baltimore in the 1970s (Raju, 
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1999). This enzyme works on a single strand of mRNA, generating cDNA based on the 
pairing of RNA nucleotides (adenine (A), uracil (U), guanine (G), cytosine (C)) to their 
DNA complements (thymine (T), adenine (A), cytosine (C), guanine (G)). When 

eukaryotic DNA is transcribed into mRNA, any introns are spliced out and a poly A-tail 

and GTP cap added to the mature mRNA strand. In the process of RT-PCR this poly A 

tail of the mature mRNA template is targeted with an oligo dT nucleotide which 
hybridizes and forms a `starting point' for the process. The RT enzyme then synthesizes 

a sequence of DNA that complements the mRNA template, cDNA. 

Once cDNA has been generated, this can then form the template for subsequent PCR 

reactions. PCR is performed in an ammonium (N 14) buffer which provides a suitable 

environment for the DNA polymerase. The presence of magnesium (Mg'+) ions is also 

required, with an optimum concentration in the 1-10mM range. This should be 

optimized for each individual target nucleotide sequence, too low a concentration of 

Mg 2+ may result in no products, and an excess may result in a variety of unwanted 

products. The addition of nucleotides of the four bases (A, T, C, G), along with the 

DNA polymerase (which binds to single stranded DNA and synthesizes the 

complementary strand), completes the general PCR reagent cocktail. The DNA 

fragment to be amplified, is determined by the addition of specific, short DNA 

sequences that are complimentary to the beginning and end of the DNA fragment to be 

amplified. They anneal to the DNA template at these points, where the DNA 

polymerase also binds and begins synthesis of the complementary DNA strand. 

Primer design depends on a number of considerations. The optimum length of a primer 

is generally from twenty to thirty nucleotides, with a melting temperature around 60°C, 

and should ideally contain relatively balanced GC vs AT content (e. g. 45%-55% GC) 

with no long stretches of any one base. Primers should also be designed such that the 

primer pairs used do not have complementary structures (more than two bp) to avoid 

"primer dimer" formation resulting from annealing of the two primers (especially at 

their 3' ends). The target nucleotide sequence defined by the two primers should ideally 

be 200-400bp in length, with an upper limit of around 3Kb. 

The PCR process is effected by DNA polymerases obtained from thermophilic bacteria 

that grow at temperatures of above 110°C. The DNA polymerase from these organisms 

is thermostable and therefore is not degraded in the initial stage of the PCR reaction 
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when the reagent mixture is heated to 94°C to separate the double stranded DNA and 
produces the single stranded DNA template. One of the first themostable DNA 

polymerases isolated was Taq (obtained from Thermus aquaticus) and, although other 
thermostable polymerases have been used for example Pwo and Pfu, Taq remains the 
most popular. 

The PCR reaction is carried out in a thermal cycler, which heats and cools the reaction 
tubes within it to the exact temperature needed for each step of the reaction. To prevent 

evaporation of the reaction mixture, a heated lid is placed on top of the reaction tubes or 

a layer of oil is added on the surface of the reaction mixture. The PCR technique 

comprises of a series of twenty to forty cycles, each of which consists of three stages. 

Stage 1: The double stranded DNA is heated between 94°C-96°C for 1-2 minutes to 

denature the DNA (by breaking apart the hydrogen bonds that connect the two 

DNA strands) to yield single stranded DNA. Prior to the first cycle, the DNA 

is often denatured for an extended time to ensure that both the template DNA 

and the primers have completely separated and are single strand only. 

Stage 2: After separating the DNA strands, the temperature is decreased to promote 

primer binding to the single DNA strands, a process known as annealing. The 

temperature of this stage depends on the primer composition and is usually 2- 

5°C below their combined melting temperatures. This step normally takes 1-2 

minutes. 

Stage 3: Once primer annealing has taken place, the DNA polymerase synthesizes the 

complementary strand to the template DNA. This process starts at the primer 

binding site and is known as extension or elongation. The extension 

temperature used depends on the DNA polymerase (usually 72°C for Taq) and 

the time is dependent on both the DNA polymerase and the length of the DNA 

fragment to be amplified. This step normally takes approximately 1 minute per 

1 Kb. These stages are represented graphically in figure 2.6 overleaf. 
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Figure 2.6: Graphical representation of the PCR process. 
(Adapted from www. plantpath. wisc. edu/... / virus/virustech. htm) 

2.2.3.1.1 RNA isolation methodology 

In order to perform the process of RT-PCR, RNA must first be extracted from the cells 

under study. Total cellular RNA was isolated from 3x105 cultured C-20/A4 cells by the 
improved single step guanidium thiocyanate, phenol/chloroform method of 
Chomczynski (1993). All procedures were performed using ice cold reagents to reduce 
RNA degradation. Growth media was removed from cell cultures at approximately 95% 

confluency and cells were lysed with I ml Sigma Tri-reagent (total RNA isolation 

reagent) per 1Ocm2 of culture flask surface area. A sterile pipette was used to aliquot 

I ml of the lysate equally into sterile Eppendorf tubes and 200µl of chloroform added 

per ml of lysate. Samples were gently vortexed for 15 sec, incubated at room 

temperature for 15 min and then centrifuged at 12,000x g for 15 min at 4°C. Following 

centrifugation, the colourless upper aqueous phase (containing RNA) was transferred to 

a fresh tube, 500µl of isopropranol added, mixed gently and placed at -80°C for 30 min. 

After this time, the tubes were placed on ice for 5 min then centrifuged at 12,000 xg for 

10 min at 4°C. The resulting RNA pellet was washed with I ml of 75%(v/v) ethanol in 

0.01%(v/v) DEPC treated water and centrifuged at 7,500 xg for 5 min at 4°C. The 

supernatant was discarded and the pellet dried at 37°C for 4 min in an Eppendorf 5301 

Concentrator (Eppendorf, Cambridge, U. K), after which, the precipitated RNA was re- 

dissolved in 50µl 0.01% DEPC treated water. Agarose gel electrophoresis (AGE) was 
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performed to observe the quality of RNA and RNA concentration and purity were 
determined spectrophotometrically on a 1: 50 dilution (in DEPC water) of the samples. 
The RNA concentration was determined at 260nm and calculated by multiplying the 
absorbance reading by 40 (40µg/ml of single stranded RNA gives an optical density 
(OD) of 1.0 at 260nm) and, taking into account the dilution factor. The purity of the 

sample was estimated from the ratio of OD260 (RNA content) / OD280 (protein content). 
With a value greater than 1.5 indicating, low protein contamination and sufficient 
purity. Samples were either stored at -80°C or used immediately for cDNA generation. 

2.2.3.1.2 Synthesis of complementary DNA (cDNA) 

cDNA synthesis, was effected by reverse transcription from 2µg of RNA. A volume of 

lµ1 (0.5µg) of oligo dT(18) was added to 2µg of each sample, made up to a total volume 

of 12µl with UHQ water and heated at 70°C for 5 mins. Total cellular RNA was then 

converted to single stranded cDNA by adding 1µl (200 units) Moloney-murine 

Leukemia Virus reverse transcriptase (M-MLV-RT), 4µl Strand synthesis buffer (5x), 

2µl deoxynucleotide triphosphate (dNTP) mixture (12.5mM) and 1 i1 (40 units) of 

recombinant RNase inhibitor (RNasin) to the initial reaction mixture. Larger amounts 

were synthesized using multiples of these figures. The cDNA generation was carried out 

for ihr at 42°C followed by a further incubation period at 75°C for 10 mins to inactivate 

the M-MLV-RT. The cDNA generated was either used immediately for PCR or stored 

at -20°C until required. 

2.2.3.1.3 Polymerase chain reaction (PCR) methodology 

Target sequences in the cDNA were amplified by PCR, using published sequence 

specific oligonucleotide primers designed to amplify either urocortin (UCN), GAPDH 

or (3-actin (GAPDH and (3-actin are internal house keeping genes used as a reference 

control). PCR reactions were performed in an Eppendorf Master cycler gradient PCR 

machine (Eppendorf) using the primers and conditions documented in Table 2.3. 

The reaction was performed in a 50µ1 reaction mixture containing 5µl (0.5µg) cDNA, 

1µl MgC12 (5.0mM), 1µl (1.25mM) dNTP mix, 1µl (1µg) of each appropriate forward 

and reverse primer (UCN, GAPDH or ß-actin) 1µl (5 units) of Bio-Taq polymerase, 5 t1 

lox ammonium buffer (pH 8.8) made up to the volume with 35µl of autoclaved UHQ 
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water. Finally, 30µl of mineral oil was overlaid in each reaction tube to prevent 

evaporation. A negative control reaction containing no cDNA (replaced with UHQ 

water) was run along-side each set of PCR reactions. All amplifications were performed 

with a denaturation temperature of 94°C for 1 min and an extension temperature of 72°C 

for 1 min. Annealing temperatures (employed for 1 min) and cycle details are shown in 

table 2.3 for each primer pair. 
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2.2.3.2 Real-time, quantitative PCR 

During the course of this research, a more accurate and sensitive method of relative 
gene expression measurement has become available known as `Real Time PCR', which 

allows the investigator to view the increase in the amount of DNA as it is amplified. 
The method allows the detection and quantitation of amplicon accumulation since it is 

performed using fluorogenic probes or intercalating dyes such as FAM and TAMRA 

(Bustin, 2002). As there is no need for gel electrophoresis, analysis can be completed 

quickly permitting a large sample throughput. As well as this, there is less risk of 

amplicon carry over as reaction tubes are unopened. Real-time quantitation of amplicon 

accumulation also allows determination of reaction efficiency and therefore permits the 

choice of more sensitive assays (Peters et al, 2004). 

2.2.3.2.1 Real-time, quantitative PCR methodology 

Experiments were performed using Real Time PCR, to confirm the data documented in 

section 4.3.4.1.2 cDNA was prepared for real Time PCR from 0.5µg RNA using the 

TaqMan reverse transcription reagent kit (Applied Biosystems, Warrington, U. K), 

according to the manufacturers instructions. Briefly, total RNA was extracted from C- 

20/A4 cells, and cDNA was generated from 0.5µg RNA. This was performed with the 

RNA sample containing 0.51tg RNA which was made up to 34.75µl with DEPC-treated 

water. Following this, l0µ1 of IOxRT buffer, 22µl (25 MM) MgC12,20µ1 (10 mM) 

dNTPs, 5µl (50 [ M) oligo-dT, 2µl (20 units/µl) RNasin and 6.25µl (50 units/µl) 

MultiScribe RT were added. This complete mixture was incubated at 25°C for 10 

minutes, followed by a further incubation at 37°C for 1 hr and a final incubation at 95°C 

for 5 minutes, using a thermal cycler. 

Real Time PCR was carried out for the amplification of UCN and GAPDH using the 

TaqMan universal PCR mastermix kit (Applied Biosystems) and the appropriate Assay- 

on-Demand primer and probe combinations for UCN (Cat. no HS0017020-ml) or 

GAPDH (Cat. no HS99999905-m1) according to the manufacturers protocol. 20-µl of 

each reaction mixture (containing 1 pl of 20x Ucn or GAPDH Assay-on-Demand mix) 

9µl of cDNA (or 0.1% v/v DEPC-treated water for negative controls) and 10µ1 of 

2xTagMan universal mastermix were placed on a 96-well optical reaction plate and 

sealed using an optical adhesive cover. PCR was performed using an ABI Prism (model 
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7000) real-time PCR thermal cycler with the conditions shown in table 2.4. Results 

were plotted as mean ratio of Ucn cycle threshold (Ct) over GAPDH Ct ± SEM. 

Table 2.4: Real Time PCR conditions 

Stage Step Temperature Time Cycle 

(°C) (minutes) 

Initial Denaturation 1 95 °C 10 1 

Cycle Template Denaturation 2 95 °C 0.25 45 

Annealing/Extension 3 60 °C 11 

2.2.4 Electrophoretic and blotting techniques 

2.2.4.1 Agarose Gel Electrophoresis (AGE) 

Extracted RNA, and DNA products generated by PCR, are routinely assayed for quality 

and, in the case of PCR products, identified by size, using agarose gel electrophoresis 

with a TAE or TBE (Tris-acetate-EDTA / Tris buffered saline) buffer system. When an 

electric current is applied to nucleic acid molecules in an agarose gel, the negatively 

charged nucleic acids move through the gel matrix towards the anode. The rate of 

migration is affected by a number of factors including the concentration of agarose and 

the voltage applied to the gel. The voltage applied is usually in the range of 5-8 volts/cm 

with increases above this resulting in a decrease in resolution. Nucleic acid 

conformation is also a factor with RNA with the three main forms of DNA 

(superhelical, nicked and linear) running at different rates. 

The Nucleic acid is loaded onto the agarose gel in a loading buffer which `weights' the 

sample into the well and usually contains a visible, negatively charged indicator dye 

(e. g. Bromophenol blue (BPB), xylene cyanol FF), which give some indication of run 

progress. As the electrophoresis progresses, smaller molecules move towards the anode 

more rapidly than larger molecules (assuming all have the same conformation). The size 

of a PCR product can be estimated by comparison with a DNA ladder containing DNA 

fragments of known size, also loaded onto the gel. Nucleic acid molecules are 

visualized by the addition of ethidium bromide (EtBr) and observation under ultra violet 

(UV) light following EtBr intercalation into the nucleic acid structure. 
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2.2-4. 
.1 AGE methodology 

Extracted RNA was assessed for quality on 1%(w/v) agarose gels, whilst DNA PCR 

products were resolved on 2%(w/v) agarose gels. 1% agarose gels were prepared by 

heating 1.5g agarose in 150m1 1x TAE buffer in a 650w microwave for -2 min and then 

cooling to --45°C. Ethidium bromide, a fluorescent DNA intercalator was then added to 

the gel to a final concentration of 0.002%(v/v). The gel solution was set in a 10cm x 
15cm gel casting tray with a 14 well comb and placed in an electrophoresis tank with lx 

TAE running buffer. 2% agarose gels were prepared in a similar fashion using 3g 

agarose in 150m1 1x TAE. Molecular markers were included on all gels and loaded as 

supplied (31t1/well) whereas DNA samples were first mixed with loading buffer in a 

ratio of 10µl sample to 51tl buffer, prior to loading. The gel was electrophoresed at a 

continuous voltage of 100v for approximately 1 hour until the leading dye had migrated 

to midway of the gel. DNA was visualized under ultraviolet light with a Uvitec BTS-20 

(Uvitec, Cambridge, U. K. ) gel documentation system. 

2.2.4.2 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

Native polyacrylamide gel electrophoresis (PAGE) was first developed in 1964 by 

Ornstein as a replacement for the earlier support materials such as starch. The greater 

resolution and stability of polyacrylamide gels, enhanced by the introduction of the 

stacking gel, results in a much improved resolution with sample bands down to a few 

micrometres thick (Ornstein, 1964; Davis, 1964). A further development of the PAGE 

technique was the inclusion of sodium dodecyl sulphate (SDS), an ionic detergent 

which binds around the polypeptide backbone of protein molecules and allows for the 

separation of proteins according to their size (rather than a combination of both size and 

charge as occurs in native PAGE) (Weber and Osborn, 1969; Laemmli, 1970). 

The binding of SDS to the polypeptide backbone denatures secondary and non- 

disulphide-linked tertiary protein structure, resulting in every protein carrying a net 

negative charge. Without the use of SDS, proteins with similar molecular weights may 

migrate differently because of charge differences and variation in folding. By heating 

the protein sample to 100°C in the presence of excess SDS and a reducing agent such as 

2-mercaptoethanol or dithiothreitol, disulphide bonds are also cleaved, resulting in the 

complete dissociation of proteins and the removal of any remaining tertiary or 
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quaternary structure. As the intrinsic charges of proteins are small compared to the 
negative charges provided by the bound detergent, all SDS protein/polypeptide 
complexes have virtually the same negative charge and linear molecular shape. This 

results in all proteins migrating through the gel according to size only. The simplicity 
and speed of these methods, plus the fact that only µg quantities of proteins are 

required, has made SDS-PAGE one of the most widely used methods for the 
determination of molecular mass in a protein sample. 

Once denatured in the loading buffer containing SDS and 2-mercaptoethanol, samples 

are loaded at one end of a polyacrylamide gel in contact with a suitable buffer. An 

electric current is applied across the gel, causing the negatively charged proteins to 

migrate towards the anode. After about an hour (depending on gel size) the proteins will 
have differentially migrated, with smaller proteins, moving further down the gel, while 
larger ones remain closer to the point of origin. Thus proteins may be separated 

according to size (and therefore molecular weight). A tracking dye (usually 

bromophenol blue) is often added to the loading buffer to indicate sample progress 

during the electrophoretic run. 

PAGE/SDS-PAGE separations are typically performed using a discontinuous system 

composed of two distinct gels. Proteins migrate first through a low percentage stacking 

gel where they remain stacked, or unresolved, behind the moving boundary (dye front), 

until they reach a second, higher percentage resolving gel. At this point the proteins 

may unstack, or resolve, from the moving boundary. Unstacking can be achieved by; 

a) Slowing down the protein after it has been stacked, or 

b) Speeding up the trailing ions once the protein has been stacked. 

Slowing the protein is achieved as it enters the higher percentage resolving gel, where 

its mobility is reduced so that it runs more slowly than the glycine ions. This results in 

the protein escaping the stack and migrating as if it were in a continuous gel at a lower 

local field strength. Simultaneously, the change in pH from the stacking gel to the 

resolving gel results in the acceleration of the trailing glycine ions as their net negative 

charge increases. As a result of this, the glycine ions overtake some of the proteins and 

now migrate directly behind the chloride ions. 
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These factors combine in the original methods of Ornstein (1964) and Davis (1964), to 
improve protein resolution with the use of a low percentage stacking gel at pH 6.8 over 
a higher percentage separation gel at pH 8.8. This system was later adapted by Laemmli 
(1970) for SDS-PAGE separation of proteins, keeping essentially the same features, and 
the technique has altered little since. 

2.2.4.2.1 SDS-PAGE methodology 

In the Laemmli (1970) system for SDS-PAGE, proteins are loaded into an upper 
(stacking) gel, then begin to separate when they reach a lower (separating) gel of 
different composition. The discontinuous gel is therefore cast in two stages. Acrylamide 

polymerizes best in the absence of oxygen, therefore each stage of gel casting is 

overlayed with distilled water to exclude air. 

The glass plates and casting stand were assembled according to the manufacturers 

instructions and l0ml of gel mixture (prepared as in Table 2.5) added to each assembly. 

Prior to the pouring of the acrylamide solution, the Teflon comb was used to mark the 

glass plate for the stacking gel (the length of the comb teeth plus lcm). Once the gel had 

been poured (leaving sufficient space for the stacking gel), the acrylamide solution was 

carefully overlayed with distilled water (using a Pasteur pipette) to exclude oxygen and 

to ensure a smooth distinct surface at the top of the separating gel in order to achieve 

optimum resolution. 

Table 2.5: Composition of 15% resolving gels for Tris-glycine SDS-polyacrylamide gel 

Electrophoresis (PAGE). 

Component Volume 

Distilled water 2.6m1 

30 % (w/v) acrylamide/bisacrylamide (37: 1) mix 12m1 

1.5M Tris (pH 8.8) 5m1 

10% SDS 0.2m1 

10% Ammonium persulphate 0.2ml 

TEMED 0.008m1 
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The gel was allowed to polymerise at room temperature for 30 minutes after which the 
overlay water was drained completely and the stacking gel, prepared as in Table 2.6, 

poured directly on top of the polymerized resolving gel. A clean Teflon comb (washed 

with distilled water) was immediately inserted into the stacking gel solution, avoiding 
trapping any air bubbles under the teeth and the gel allowed to polymerise at room 
temperature for at least 30 minutes. After polymerisation, the Teflon comb was removed 

and the wells rinsed immediately with distilled water to remove any un-polymerized 

acrylamide. 

Table 2.6: Composition of 5% stacking gels for Tris-glycine SDS-polyacrylamide gel electrophoresis. 

Component Volume 

Distilled water 

30 % (w/v) acrylamide/bisacrylamide (37: 1) mix 

1. OM Tris (pH 6.8) 

10% SDS 

10% Ammonium persulphate 

TEMED 

3.4m1 

0.83m1 

0.63m1 

0.05m1 

0.05m1 

0.005m1 

Prior to sample loading the prepared gels were mounted and clamped in the 

electrophoresis apparatus and the SDS PAGE electrophoresis buffer prepared as in 

(Table 2.7) was added to the top and bottom reservoirs of the tank. Any bubbles trapped 

at the bottom of the gel between the glass plates were removed prior to commencing the 

electrophoretic run. 

Table 2.7: Composition of SDS PAGE electrophoresis buffer 

Component Concentration 

Trizma 0.025M 

Glycine 0.192M 

SDS 0.1 % (w/v) 

Prior to SDS-PAGE analysis cell extracts were prepared and their total protein content 

determined as detailed in section 2.2.5. Samples for SDS-PAGE analysis were 
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equalized for protein content then prepared for application by mixing with sample 
loading buffer (Table 2.8) in a 2: 1 ratio and heating at 100°C for 3 minutes to ensure 
denaturation 

Table 2.8: Composition of SDS PAGE electrophoresis loading buffer (20ml) 

Component Concentration 

Glycerol 10%(v/v) 

SDS 3 %(w/v) 

2-mercaptol-ethanol 0.5 %(v/v) 

Bromophenol blue 0.02%(w/v) 

All protein resolution was performed on 15% acrylamide gels with 3µl of low molecular 

weight rainbow marker (Amersham, U. K. )' or pre-stained protein marker (Biolabs, U. K) 

loaded into the second well of the gel and 2Oµ1 (equivalent to 30µg of whole cell 

extract) of each sample in loading buffer into other wells. The two outer wells were not 

used to eliminate `edge effects' on samples run in these wells. The gels were run at a 

constant current of 87 volts per gel and the separation continued until the bromophenol 

blue marker dye had reached -1cm from the bottom of the resolving gel (typically 1.5 

hrs). Following electrophoresis, gels were removed from the apparatus and one stained 

for protein with picric acid/coomassie blue (to confirm uniform protein loading) whilst 

the other was subjected to Western blotting procedures. 

2.2.4.2.2 Picric acid/Coomassie Brilliant Blue staining of SDS-PAGE gels 

SDS-PAGE gels were first pre-washed with three changes of a solution of 45% (v/v) 

methanol / 10% (v/v) glacial acetic acid in distilled water, over the course of 1 hr in 

order to remove detergent from the gel to improve staining. Proteins were then stained 

with a picric acid/coomassie brilliant blue stain which binds nonspecifically to virtually 

all proteins. The stain was prepared from two solutions; a 0.5%(w/v) coomassie brilliant 

blue R-250 solution in 45%(v/v) methanol, 10%(v/v) glacial acetic acid and a picrate 

solution prepared by adding 132g of damp picric acid to approximately 2L of distilled 

water. The latter solution was stirred constantly and neutralized to pH 7 with 1M NaOH 

until the picrate had completely dissolved. A volume of 750ml of the coomassie 
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solution was then mixed with the picrate and made up to 3L with distilled water. This 

solution was used to stain SDS-PAGE gels by immersion of the gel in - -150m1 of 
staining solution on a rocking platform for 1 hour at room temperature. The stain 
solution was then removed and stored in a Winchester bottle for future use and the gel 
de-stained. De-staining was performed by soaking gels in a 10%(v/v) methanol/ 
7%(v/v) glacial acetic acid solution (in distilled water) on the rocking platform until 
excess dye was removed, changing the de-staining solution as necessary. Once fully de- 

stained, gels were preserved for future reference by drying at 80°C for 2 hours on a 
BIO-RAD Model 583 gel dryer (BIO-RAD, Hemel Hempstead, U. K. ). 

2.2.4.3 Western Blotti 

Following electrophoretic separation it is often desirable to be able to identify a specific 

protein amongst those separated in the gel. This can be accomplished by a procedure 

known as Western blotting. Western blotting involves the use of a specific antibody to 

identify the protein of interest and is part of a family of blotting techniques including 

Southern blotting (for DNA) and Northern blotting (for RNA) (Burnette, 1981). 

During the Western blotting procedure, proteins in the SDS-PAGE gel are transferred 

on to a membrane to allow immunoprobing. Several different membrane materials are 

available for Western blotting (e. g. poly-vinylidene difluoride (PVDF), nitrocellulose) 

but, regardless of their composition, these membranes bind proteins nonspecifically 

based upon hydrophobic and charged interactions between the membrane and protein. 

Following electrophoretic separation (e. g. SDS-PAGE) a sandwich of gel and 

membrane is compressed in a cassette and immersed in buffer between two parallel 

electrodes. A current is passed at right angles to the gel which causes the separated 

proteins to electrophorese out of the gel and onto the membrane which is then 

commonly referred to as `the blot'. The efficiency with which a particular protein will 

be transferred is dependent on the protein binding capacity of the membrane used, the 

transfer method and conditions employed, as well as the nature of the proteins being 

transferred. Size and hydrophobicity are of particular importance with larger and more 

hydrophobic proteins generally transferring less well. Whilst the presence of SDS may 

be desirable for protein separation in the initial gel, it too can interfere with binding to 

the transfer membrane, especially for smaller proteins. 
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It is often desirable to have some visual confirmation of protein transfer to the 
membrane which may be simply achieved by the inclusion of a lane of pre-stained 
protein markers on the gel. Alternatively, a total protein stain such as Ponceau S may be 
used which is fast, reversible and does not interfere with subsequent immuno- detection. 

After transfer of the proteins from the gel, the remaining protein-binding sites on the 
membrane must be blocked to avoid non-specific binding of the detection antibodies to 
the membrane. This is usually achieved by placing the membrane in a solution of casein 
(or non-fat dried milk powder) in the presence of the detergent TweenTM 20. 

Following blocking, a primary antibody specific for the protein of interest is incubated 

with the membrane at an appropriate dilution to achieve high specificity, and low non- 

specific background. After washing the membrane to remove unbound primary antibody 

a secondary antibody is employed to detect the first and is usually produced in different 

species e. g. a goat anti-rabbit antibody might be used if the primary antibody was 

produced in rabbits. This secondary antibody is usually linked to an enzyme to allow 

detection of its binding location with the use of a suitable substrate. Secondary 

antibodies are typically conjugated with enzymes such as horseradish peroxidase (HRP) 

(as used in this research) or alkaline phosphatase (AP). Secondary antibodies may also 

be biotinylated, where a final stage with avidin HRP or AP complexes is necessary. The 

western blotting process is summarized in Figure 2.7 

2` Secondary Antibody 
Anti-mouse HRP 

Non-specific 
1' Primary Antibody 
Mouse 

Proteins `54t 

` Antigen 
Protein of 

interest Nitrocellulose 
Membrane 

Nan-specific 
Proteins 

HRP + Lurninol ECL 

Figure 2.7: Principles of the Western blotting technique 

(Adapted from www. google. com/western blotting) 
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2.2.4.3.1 Western blotting methodology 

On completion of the electrophoretic separation, gels were removed from the apparatus 
and washed in transfer buffer (Table 2.9) for 10 minutes to remove excess SDS from the 
gel surface. The transfer (blot) was performed using a mini Trans-Blot SB wet Transfer 
Cell apparatus (BIO-RAD) according to the manufacturers specifications, with the 

components assembled as follows: anode, `scotchbrite' sponge (pre-soaked in transfer 
buffer), 3 squares of filter paper (also pre-soaked in transfer buffer) the washed SDS- 

PAGE gel, HybondTM C membrane (pre-soaked in transfer buffer and added with 
tweezers), 3 further pre-soaked filter papers, an additional pre-soaked sponge pad, 

cathode. The complete `sandwich' was placed in the electrophoresis tank, topped up 

with transfer buffer, an ice pack added to keep the tank cool, and the proteins 

transferred at a constant voltage of 310 milliamps for 2 hours. 

Table 2.9: Composition of Transfer buffer (1L) 

Component Concentration 

Glycine 39mM 

Trizma 48mM 

SDS 0.037%(w/v) 

Methanol 20%(v/v) 

On completion of transfer, the apparatus was disassembled, the gel discarded and the 

membrane transferred to a container with PBS/tween (0.01 % (v/v)) and left to rinse for 

10 minutes at room temperature. 

2.2.4.3.2 Membrane staining with Ponceau S 

After electroblotting, transfer of proteins to the membrane was confirmed by Ponceau S 

staining. The membrane was transferred from the PBS/tween solution to a tray 

containing a solution of Ponceau S stain (Table 2.10). The membrane was incubated 

with Ponceau S for 5-10 minutes with gentle agitation. When protein bands were 

visible, the Ponceau S solution was poured back into its bottle and stored for future use. 

The membrane was then washed in several changes of PBS/tween solution at room 
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temperature, until membrane background staining was minimal. Protein transfer was 
confirmed by visual inspection. 

Table 2.10: Composition of Ponceau S stain (aqueous solution). 

Component 

Ponceau S 

Trichloroacetic acid 

Sulfosalicyclic 

Water made to 100m1 

2.2.4.3.3 Immunoprobing methodology 

Concentration 

2%(w/v) 

30%(w/v) 

30%(w/v) 

Prior to immunoprobing for specific proteins, the membrane was blocked with 2% (w/v) 

non-fat dried milk powder dissolved in 0.01 %(v/v) PBS/tween for 30 minutes at room 

temperature with continuous agitation. Following the blocking period, the milk was 

discarded and the membrane was probed with primary antibodies against the protein of 

interest (anti-phosphorylated P42/P44 MAPK and p-ERK (P42/P44 MAPK total, anti- 

caspase 3,8, or 9, and GAPDH) diluted 1: 500 in 2% nonfat milk at 4°C with gentle 

agitation overnight. Following incubation with the primary antibody, the membrane was 

washed three times (10 minutes per change) with PBS/tween, and was then immediately 

incubated for 2 hours at 4°C with the secondary antibody, polyclonal rabbit anti-mouse 

Ig HRP (Dako Cytomation, Ely, U. K. ) (for the MAP Kinase phosphorylated P42/P44 

antibody) or polyclonal goat anti-rabbit Ig HRP (for the caspases, GAPDH and p-ERK 

antibodies) both diluted 1: 500 in 2% milk. The membrane was then washed a further 

three times with PBS/tween, placed on saran wrap and remaining buffer drained off. 

Specific antibody binding was detected using lml of ECL (enhanced 

chemiluminescence) substrate solution (prepared according to the manufacturer's 

instructions) distributed evenly over the membrane. After 1 minute incubation at room 

temperature, the ECL substrate solution was drained off the membrane with a paper 

towel and wrapped in saran wrap, eliminating any visible air bubbles. The chemi- 

illuminescence reaction was detected using Kodak BioMax X-ray film exposed to the 

blot in a sealed cassette for 5-20 minutes at room temperature. 
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Following exposure, the film was developed and fixed using Kodak developing and 
fixing solutions according to the manufacturer's instructions. Subsequently, the film 

was washed with tap water and hung to dry. The relative intensities of the P42/P44 
MAPK protein bands of each sample were normalized by the intensity of the total 
P42/P44 MAPK protein band per lane were determined using densitometry, normalizing 
the P42/P44 MAPK with the total P42/P44 MAPK and caspase 3 with the GAPDH. 

2.2.4.3.4 Membrane stripping and re-probing 

One of the major advantages of chemiluminescent detection, is the ability to strip 

antibodies from a blot and then re-probe the same blot. A blot may be stripped and 

reprobed several times to visualize other proteins or to optimize detection of a protein 
(i. e. antibody concentrations), without the need to re-run gels. During the procedure, 

some antigen is lost from the membrane, but this maybe minimized by stripping the 

membrane as gently as possible. 

Where used, the HybondTm C membrane was stripped by subjecting it to three washes 

of 5 minutes each in 0.2M NaOH. After stripping, the membrane was washed three 

times in lx PBS/tween (5 minute intervals) and then blocked in 2% non fat milk and re- 

probed. 

2.2.5 Preparation of cell extracts and determination of protein concentration 

2.2.5.1 Preparation of cell extracts 

Cell lysis is the first step in cell fractionation and protein purification. Many techniques 

are available for the disruption of cells, including physical (sonication, French press or 

vortexing) and detergent-based methods. Physical lysis requires expensive, awkward 

equipment and involves protocols that can be difficult to repeat due to apparatus 

variability. Detergent-based lysis (as used in this research) has become the method of 

choice in recent years due to convenience, low cost and efficient protocols. Sigma 

CelLytic (as used in this research) is one such detergent based protein extraction 

reagent. 
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2.2.5.1.1 CelLyticTM methodology 

Prior to cell extract preparation, spent medium was removed from the cell culture, the 

adherent cells rinsed with cold DPBS (4°C) and then detached with a further volume of 
DPBS and pelleted by centrifugation. Following removal of the supernatant, 125µ1 of 
Sigma CelLytic buffer was added per 1x106 cells, the resulting suspension was 
transferred to an eppendorf tube and 10µl of protease inhibitor cocktail added to prevent 
the breakdown of protein during the procedure. This combination was then mixed on a 

rotary mixer (40 rpm) for 15mins at 4°C followed by centrifugation at 20,000xg for 

15mins at 4°C. Supernatants were collected and transferred to a fresh cold eppendorf 

tube and frozen immediately at -80°C. 

2.2.5.2 The Bradford protein assa 

The Bradford assay is a rapid protein assay which has been adapted to a microtitre plate 

format in order to use a minimum amount of sample. The assay is based on the 

observation that the absorbance maximum for an acidic solution of Coomassie Brilliant 

Blue R-250 shifts from 456nm to 595nm when binding to protein occurs. Both 

hydrophobic and ionic interactions stabilize the anionic form of the dye, causing a 

stable visible colour change. It is a very versatile assay since the extinction coefficient 

of a dye-albumin complex solution is constant over a wide concentration range and is 

recommended for the determination of protein content prior to gel electrophoresis 

(Stoscheck, 1990) 

2.2.5.2.1 Bradford assay methodology 

The Bradford reagent was prepared by dissolving 600mg of Coomassie Brilliant Blue 

R-250 in 1L of 2%(w/v) perchloric acid overnight followed by filtration to remove any 

undissolved dye. 

Prior to the assay, a set of BSA standards were prepared over the range of 0.005 to 

100mg ml-1 protein. These standards were analysed along with the treated samples to 

calibrate the assay each time. All standards and samples were run in triplicates in a 96 

well microtitre plate. The assay was performed by mixing 10µ1 of sample or standard 
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with 190µ1 of Bradford reagent and, following 5 minutes incubation at RT, the titre 

plate was read at 595nm to determine protein concentration of the samples. 

2.2.6 Statistical Analysis 

Data values shown in the figures are expressed as mean ± SD of n independent 

experiments. The experiments were repeated at least 9 times. All data were subjected to 

one way ANOVA with Bonferroni's correction for post hoc t-tests. Probabilities of P< 

0.05 were considered statistically significant. The Prism GraphPad software (San Diego, 

U. S. A) version 3 (5.1.2600.2180) for windows, was used to perform all the statistics 

described. Data analysis was performed using Microsoft Excel. 
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CHAPTER 3 

THE RESPONSE OF C-20/A4 CELLS TO PRO- 

APOPTOTIC STIMULI 

83 



3.1 Introduction 

Chondrocyte apoptosis, a potential factor in the pathogenesis of OA may be initiated in 

vitro by NO (Kim et al, 2002), TNF-a (Petterson et al, 2002) and EL-Iß (Singh et al, 
2003) as discussed more fully in chapter 1. Previous studies have linked increased levels 

of NO and cell death in arthritic cartilage, but its not known if NO is the primary 
inducer of chondrocyte apoptosis. Apoptotic cell death has been identified in 

chondrocytes in vitro following exposure to NO in the presence of oxygen radical 

scavengers (Blanco et al, 1995; Notoya et al, 2000). Experimental evidence is also 

emerging that pro-inflammatory, catabolic cytokines TNF-a and IL-1ß may be involved 

in the pathophysiology of many joint diseases and are mediators of joint damage in OA 

(Westacott and Sharif, 1996). Additionally, these cytokines IL-1(3 and TNF-a, have 

been reported to play important roles in cartilage and bone degradation (Kobayashi et 

al, 2005). 

In order to further investigate the response of chondrocytes to these stimuli in vitro, the 

experiments detailed in this chapter were designed to assess chondrocyte apoptosis 

when treated with a range of concentrations of the NO donor SNAP, TNF-a and IL-1ß. 

The concentrations of these stimuli used in these experiments were designed to cover 

normal levels through to the elevated levels of SNAP, IL-1 J3 and TNF-a which have 

been, reported in the synovial fluid in OA patients (Greisberg et al 2002). 
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3.2 Methods 

A chondrocyte cell suspension at a density of 3x106 cells/ml, was transferred to 6 well 
tissue culture plates. An equal volume of cells re-suspended in media were added into 

each well containing lml of 10% FCS complete medium. Cell monolayers were 
incubated for 24-48 hours (hrs) in this 10% FCS complete medium until they reached 

-80% confluency (Figure 3.1a). The cells were then `serum starved' for 24 hrs by 

substituting the 10% FCS complete medium for a growth medium containing 1% FCS. 

This has the effect of reducing cell division and promoting a more `metabolic 

phenotype' in the C-20/A4 chondrocytes (Figure 3.1b). The cultured cells were then re- 

supplied with the 1% FCS supplemented medium containing varying concentrations of 
SNAP (OmM- l OmM), TNF-a (0-100pg/ml) or IL-Iß (0-20pg/ml) for 6hours treatment. 

SNAP was chosen as the NO donor because it releases pure NO spontaneously, as 

opposed to other frequently used NO, donors like SNP, SIN-1 etc. which release the 

potentially toxic substances peroxynitrite and cyanide ions. TNF-a and IL-1(3 were 

chosen for these studies as they are pro-inflammatory and pro-apoptotic stimuli that 

have been implicated in the pathogenesis of OA. A six hour incubation time was 

employed for all stimuli as the optimum cell activation time for many cytokines has 

been established to be 6-8hours (Seid et al, 1993). These experiments were performed 

to establish `a dose response' curve for each of the stimuli and to determine the 

optimum concentration of these stimuli required to achieve suitable levels of 

chondrocyte death for future experiments. Control experiments with untreated cells 

were also run alongside all treated experiments. Chondrocyte cell death was quantified 

by Annexin V/PI and TUNEL assay for apoptosis and LDH release for necrosis as 

documented in chapter 2, section 2.2.2. 
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(a) 

(b' 

Figure 3.1: Microscopic photographs (400x magnification) demonstrating morphology of immortalized 

C-20/A4 chondrocyte cells grown in 10% FCS medium (a) and (b) I% FCS medium. 
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3.3 Results 

To determine whether apoptosis or necrosis was the underlying mechanism of SNAP, 
TNF-a and EL-10 induced cell death, chondrocyte apoptosis was determined by the 
Annexin V/Propidium Iodide (Annexin V/PI) and TUNEL assays and necrosis by LDH 

release. Annexin V/PI and TUNEL data are expressed as the percentage of positive cells 
and LDH release as optical density (OD) at 490nm. All results are the average of at least 

9 experiments with the standard deviation (SD) represented by the error bars. 

3.3.1 The effects of SNAP on C-201A4 cells. 

ýn 

N 
O 
a 0 a 
Q 
a) 
rn 

c 

ö 
a 

Control 0.1 1.0 

SNAP Concentration (mM) 

10.0 

® Annexin V/PI (n=9) ``yam TUNEL (n=9) ý LDH (n=18) 

1.0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0.0 

0 
I 

m 
m 
n) 
2 
ö 
v 

Figure 3.2: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following treatment of C-20/A4 cells with increasing SNAP concentrations. Data are 

presented as the mean values (± standard deviations) of nine independent experiments, each 

of which was performed in triplicate. 

Treatment with 0.1 mM SNAP showed a minimal but significant increase in the level of 

Annexin V/PI staining (P<0.05 vs control), but the increase in TUNEL positivity was 

not significant (P>0.05 vs control). As the dose of SNAP increased, apoptotic levels 

increased also, whilst necrotic cell death was unchanged from control levels. At 1mM 

SNAP a significant increase in apoptosis was also observed (26% Annexin VIPI and 

15% TUNEL positive cells) (P<0.001 vs control), with a further increase observed at 

10mM SNAP (35% Annexin V/PI and 33% TUNEL positive cells) (P<0.001 vs 

control). No significant difference in necrotic levels were observed through out the 

experiments (One way ANOVA, Bonferroni's correction, all P values >0.05). 
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3.3.2 The effects of TNF-a on C-20/A4 cells 
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Figure 3.3: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following treatment of C-20/A4 cells with TNF-a. Data are presented as the mean 

values (± standard deviations) of nine independent experiments, each of which was 

performed in triplicate. 

Treatment with a range of TNF-a concentrations showed minimal apoptotic and 

necrotic cell death with no significant difference at all concentrations tested up to 

40pg/ml (P>0.05 vs control). When the dose was increased to 60pg/ml and 80pg/ml a 

significant increase in C-20/A4 chondrocyte apoptosis was observed in TUNEL stained 

cells (P<0.001,60pg/ml vs 80pg/ml), but not Annexin V/PI stained cells (P>0.05, 

60pg/ml vs 80pg/ml). At greater concentrations (100pg/ml) a significantly decreased 

level of apoptosis was observed (P<0.05 80pg/ml vs 100pg/ml) but this was still 

significantly greater than the control (P<0.001). LDH release (necrosis) remained 

minimal throughout and was not significantly different from the control at any 

concentrations tested (P>0.05). 
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3.3.3 The effects of IL-1 on C-20/A4 cells 
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Figure 3.4: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following treatment of C-20/A4 cells with II, -lß. Data are presented as the mean 

values (± standard deviations) of nine independent experiments, each of which was performed 
in triplicate. 

Treatment with various concentrations of IL-10 showed a significant increase in 

Annexin V/PI assay positive cells up to lOpg/ml (P<0.001 vs control). The TUNEL 

assay also showed significant increases but these were small up to 6pg/ml (22% 

Annexin V/PI and 11 % TUNEL) (P<O. 001 vs control). As the dose increased between 

6- l Opg/ml a significantly higher level of TUNEL positivity was observed with each 
increase when compared to the previous concentration (P<0.001). At greater 

concentrations between 12-20pg/ml a significant decrease occurred up to 16pg/ml in 

both Annexin V/PI and TUNEL positive cells (P<0.001) after which no further 

significant reduction was demonstrated. Necrotic cell death remained minimal with 

increasing concentrations of IL-10 and were not significantly different from the control 

(P>0.05). 
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3.4 Discussion 

Cell death is generally studied by measuring parameters such as DNA degradation, 
disintegration of lipid bilayers, mitochondrial activity or, in the case of adherent cells, 
cell detachment. Using a single technique is sometimes insufficient to correctly 
differentiate between apoptosis and necrosis. For example, alterations in membrane 
integrity that are linked with the release of cytosolic components occur during late 

apoptosis as well as during the early stages of necrosis. The binding of Annexin V to 

phosphatidylserine residues can be seen in apoptotic as well as necrotic or oncotic cells 

with partially disintegrated plasma membranes (Lecoeur et al 2001). For this reason the 

chondrocyte death measured here has been assessed by Annexin V/PI, TUNEL and 
LDH release. 

A decline in cartilage deposition and in chondrocyte numbers are hallmarks of OA. 

Blanco et al, (1998) reported that changes in OA cartilage lesions are directly related to 

in situ apoptosis and indeed apoptosis has been suggested to be one of the mechanisms 
for increased level of cell death in ageing and osteoarthritic cartilage (Stockwell, 1991; 

Loeser and Shakoor, 2003; Blanco et al 2004). There are many mediators that will 

induce apoptosis in chondrocyte cultures, however very few are likely to be 

physiologically significant in vivo (Goggs et al, 2003). The mediators that may be 

significant in OA include NO (Blanco et al, 1995), TNF-a (Rath and Aggarwal, 1999) 

fas L (CD95L) (Hashimoto et al, 1997) and IL-1ß (Pelletier et al, 1999). 

Nitric oxide (NO), TNF-a and TL-1(3 are all present in osteoarthritic cartilage and may 

be important mediators involved in osteoarthritis (Archer et al, 1994). NO in particular 

is produced in large amounts in osteoarthritic cartilage when compared with the normal 

state, both spontaneously and in proinflammatory cytokine-stimulated conditions. TNF- 

a, IL-1 f3, IL-6, IL-17 have been found in the middle or deep layers of the cartilage, 

suggesting that the chondrocytes themselves may produce them and NOS II/iNOS is 

expressed by a variety of cells, including chondrocytes, following exposure to cytokines 

like TNF-a and IL-1 P. NOS II is a high output enzyme capable of generating elevated, 

sustained levels of NO which is known to contribute to chondrocyte death in two ways 

either by directly inducing apoptosis or promoting necrosis (Spina et al, 1996). 
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This study examined the effects of NO, TNF-a and IL-1(3 exposure on apoptosis and 
necrosis levels in monolayer culture of a human chondrocyte cell line (C-20/A4). The 
data presented here shows that all three of these major mediators of cartilage destruction 
induced apoptosis in phenotypically normal cells. 

Several studies have demonstrated that NO is able to induce apoptosis in a large number 

of cell types, which include mouse and human chondrocytes (Blanco et al, 1995). 

Hayashi et al, (1997) demonstrated that larger amounts of NO may be produced by 

superficial chondrocytes than by their deep counterparts, showing the important role of 
NO at the cartilage-synovial membrane interface. In order to investigate this 

phenomenon further, NO was delivered to cells in culture by exposing them to 

millimolar concentrations of an NO releasing compound (NO donor) SNAP. 

Chondrocytes were treated with increasing concentrations (0.1-10mM) of the stable S- 

nitrosothiol NO donor SNAP, a dose range based on preliminary, wider dose response 

experiments (data not shown). These concentrations were shown to be effective in this 

human chondrocyte cell line and demonstrated increasing levels of apoptosis. Low, but 

significant levels of apoptosis were observed in cells treated with 0.1mM SNAP 

(P<0.05 vs control) indicating that even the low NO levels generated by this 

concentration of SNAP are capable of inducing chondrocyte apoptosis. Apoptotic cell 

death was more significant however when 1mM and 10mM SNAP were used (P<0.001 

vs control for both concentrations) and moreover a dose dependent increase in Annexin 

V/PI and TUNEL positive FITC staining was observed, as the dose increased so did the 

level of apoptosis. Annexin V/PI staining showed significantly higher levels of 

apoptotic cell death than TUNEL following treatment with 1 mM SNAP (26% Annexin 

V/PI and 15% TUNEL), whilst at 10mM SNAP, both assays showed almost the same 

level of cell death (35% Annexin V/PI and 33% TUNEL). These apparent differences 

are due to the fact that Annexin V/PI measures both early and late apoptosis whereas 

TUNEL only measured late apoptosis, resulting in lower TUNEL positivity than 

AnnexinV/PI positivity. Necrotic cell death, however was not significantly different 

(P>0.05) throughout the experiments (as measured by low LDH leakage into the 

medium), indicating that SNAP/NO induces chondrocyte apoptosis only with minimal 

necrotic cell death. These data have demonstrated that SNAP treatment of human C- 

20/A4 chondrocytes induced apoptotic cell death in a dose dependent manner at SNAP 

concentrations between 0.1mM and 10mM (Figure 3.2). This is in agreement with the 

data of several authors (Blanco et al, 1995; Kim and Chun, 2003; Kim et al, 2005; 
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Maneiro et al, 2005) who demonstrated that at 1mM NO treatment of primary articular 
chondrocyte culture results in apoptosis and dedifferentiation. This data is also in 

agreement with the data of Kühn et al, (2004) who showed that the application of an 
NO donor (SNP) resulted in a dose dependent increase in chondrocyte apoptosis and 
was most significant above 1 mM. The data presented here is also comparable to that of 
Borderie et al, (1999) who showed that the treatment of synoviocytes (cells in the 

synovial membrane) with 0.5mM SNAP resulted in a 20% induction of apoptosis as 

measured by TUNEL. The differences between the data of this study and that of 
Borderie et al, (1999) would appear to indicate that synoviocytes may be more 

susceptible to NO-induced apoptosis than chondrocytes. 

The level of biological activity of an NO donor is dependent on the total amount of NO 

delivered, the rate of NO delivery, and the exposure time to NO. Once released, the 

probability of NO reaching a target cell is dependent on the activity of chemical species 

that can protect it, (e. g. superoxide dismutase) and the activity of chemical species that 

can scavenge it, such as 02, superoxide, transition metals and thiols (discussed in 

chapter 1). In any event, various factors regulate the cytotoxicity of a NO donor, with its 

half life value being only one of a large number of variables (Babich and Zuckerbraun, 

2001). Following these dose-response experiments it was decided that the concentration 

of SNAP to be used for all future experiments would be 1mM as this results in a 

significant induction of apoptosis that may be easily monitored for change when co- 

treatments are introduced. Matthews et al, (1996) reported at 1mM concentration, 

SNAP releases 60nM free NO, indicating that millimolar concentrations of 

pharmacological NO donors are required to generate sub-micromolar concentrations of 

free NO in cells. SNAP is however one of the more productive NO donors and in 

support of this, Kim et al, (2005) reported that the NO produced by SNAP is 8.9 fold 

higher than other NO donors. 

Fernandes et al, (2002) showed that at certain clinical stages of OA, proinflammatory 

cytokines such as TNF-a and IL-1ß, which are produced by activated synoviocytes and 

chondrocytes, are vital factors for the progression of morphological changes. TNF-a is 

a well characterized cytokine that mediates a wide range of cellular inflammatory 

responses to stress, infection, or injury. In the early stages of injury, TNF-a plays an 

important role in inflammation, although if the stimulus for the injury is not eliminated 

or the cytokine network becomes dysregulated, prolonged or excessive levels of TNF-a 
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result in significant inflammatory pathology and cell death. TNF-cc has been shown in 

vitro to contribute to accelerated damage of articular cartilage and to amplify the 
inflammatory response in developing OA (Horton et al, 1998). 

C-20/A4 chondrocytes were treated with various concentrations of TNF-a in the range 

of 0-100pg/ml. These concentrations were based on the work of Bellometti et al, (1997) 

who reported TNF-a levels of this magnitude in OA synovial fluid. Treatment of C- 

20/A4 cells with these various concentrations of TNF-a failed to reveal any significant 
degree of TUNEL positive cells at concentrations between 0-40pg/ml (P>0.05). This 

observation is also supported by the data from the Annexin V/PI assay which also 
detected low levels of apoptosis up to this dose. This would indicate that these 

concentrations of TNF-a are too low to induce significant cell death in these cells, 

although very small increases in Annexin V/PI staining indicating a possible induction 

of early apoptosis, were observed. These were not however significant when compared 

to the control (P>0.05). In contrast, concentrations of 60pg/ml and 80pg/ml TNF-a 

induced significantly high levels of apoptotic cell death (24% Annexin V/PI, 8% 

TUNEL and 29% Annexin V/PI, 33% TUNEL respectively) (P<0.001 vs control). The 

level of apoptotic cell death detected by the Annexin V/PI and TUNEL assays varied, 

however at these concentrations. At 60pg/ml, higher levels of early apoptosis (as 

demonstrated by Annexin V/PI binding), than late (TUNEL) were observed whereas at 

80pg/ml TUNEL results are similar to Annexin V/PI indicating a higher number of 

apoptotic cells in the later stages of apoptosis. At 100pg/ml apoptotic levels had 

decreased to 17% Annexin V/PI and 21 % TUNEL positive cells, and were observed as 

significantly different compared to chondrocytes treated at 80pg/ml (P<0.05). Necrotic 

cell death remained minimal throughout and was not significantly different to the 

control (P>0.05). Whilst these results at first appear contradictory they demonstrate a 

known phenomenon whereby TNF-a activity is mediated via two separate pathways, an 

apoptotic pathway and an anti-apoptotic pathway (Aizawa et al, 2001). 

Whilst TNF-a is known to induce cell death via TNF-R1 binding and activation of 

caspase 8 it can also activate NF-KB, a ubiquitously expressed transcription factor that 

has been implicated in suppression of apoptosis, and promotion of cell 

survival/proliferation (Garg and Aggarwal, 2002). NF-KB activation usually follows the 

pro-apoptotic effects of TNF-cc, and as TNF-a activates NF-KB in all cell types, it rarely 
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induces apoptosis in the absence of other pro-apoptotic stimuli. The binding of TNF-a 

to TNF-R1, activates TRAF-2 and TRAF-6 which then interact with MAPKKK, also 
known as NF-KB-inducing kinase (NIK). NIK phosphorylates IKB kinase B (IKK-B) 

resulting in IKB degradation and the release of NF-KB, which translocates into the 

nucleus and activates its target genes, some of which play a role in mediating the anti- 
apoptotic effect of NF-KB (Escobar et al, 2006). Lianxu et al, (2006) reported that 

exposure of IOng/ml of IL-1(3 and TNF-a in rat cartilage significantly increased NF-KB 

binding, and the effect of TNF-a was greater than that of IL-10. The authors clarified 
that other transcriptional factors, including signal transducer and activator of 
transcription (STAT)-1 and AP-1 took part provoking inflammatory factors in 

chondrocytes stimulated with IL-lß. The data presented here and that of Lianxu et al, 
indicates that at high concentrations TNF-a induces the NF-KB survival pathway and at 
lower concentrations TNF-a induces the death receptor pathway. 

TNF-a may also influence chondrocyte survival by inducing chondrocyte cell surface 

adhesion molecule expression, of which the a1ß1 integrin is the major collagen receptor 

that is expressed by chondrocytes (Loeser et al, 2000). There is evidence to suggest that 

the presence of matrix components such as collagen (and possibly also cell-cell contact) 

may provide chondrocyte survival signals as in vitro chondrocyte death may be 

prevented by the presence of collagen (Kuhn et al, 2004). Chondrocyte survival has also 

been shown by others to be dependent on integrins containing the a2, a3 or ßl subunits 

(Pulai et al, 2002). This may occur as a result of integrin initiated NF-KB activation. 

Integrins can activate, by tyrosine phosphorylation, many cytoskeleton-associated 

proteins at focal adhesion sites, including focal adhesion kinase and the src family 

protein tyrosine kinases. Focal adhesion kinase in particular is strongly associated with 

a link between integrin receptors and the activation of downstream targets including 

P42/P44 MAPK which in turn will activate NF-KB. C-20/A4 cells are known to have a 

10-fold increased expression of 01 integrins, increased a2, a3 and highly increased a5 

integrin subunit (Loeser, 2002). 

Based on the data from the TNF-a experiments, it was decided that the optimum 

concentration for TNF-a to be used in future experiments would be 70pg/ml as a 

suitably elevated level of apoptosis was observed between 60-80pg/ml as indicated by 

the TUNEL and Annexin V/PI assays. The level of apoptosis observed at 70pg/ml TNF- 

a are of a suitable magnitude to allow easy detection of any changes during co- 
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treatment experiments. Similarly to the SNAP experiments, the dose response of 
chondrocytes to TNF-a has not previously been demonstrated, but these observations 
are supported by Meldrum et l (1998) who demonstrated induction of TNF-a during 

simulated ischaemia-reperfusion where a level of 67 ± 3.6 pg/ml TNF-a was observed 

with corresponding apoptotic renal cell death. The data presented in this thesis is also 

supported by that of Kim et l (2002) who reported that treatment of human OA 

chondrocytes with high concentrations of TNF-a (l Ong/ml) did not result in any 

significant level of cell death (8.2 ± 4.3) as compared to the control (7.2 ± 2.6) when 

assessed by Annexin V/PI FACS. This data fits with that presented here in that higher 

levels of TNF-a (100pg/ml) result in decreases in apoptosis. Lopez-Armada, (2006) 

also reported that at lOng/ml TNF-a did not induce significant levels of cell death, 

which was measured by the 3-[4,5-dimethylthiazol-2yl] 2,5-diphenyl tetrazolium 

bromide (MTT) assay. Schuerwegh et l (2003) demonstrated in their in vitro studies 

that 100 ng/ml TNF-a induced apoptosis (24%) of bovine chondrocytes which was 

measured by the TUNEL and Annexin V assays. 

Interleukin-1 (IL-1) is a cytokine produced mainly by activated mononuclear 

phagocytes but also by OA chondrocytes, and functions in mediating host inflammatory 

responses and has a major catabolic effect on chondrocytes. IL-1 stimulates resorption 

of cartilage both in vivo and in vitro and may contribute to the pathogenesis of OA 

(Yasuhara et al, 2005). The two forms of IL-1 (a and (3) bind to the same receptors and 

have identical biological effects. However, IL-lß is the predominant circulating isoform 

in humans (Bazan et al, 1996). IL-1ß also stimulates chondrocytes and synoviocytes to 

generate other cytokines (TNF-a, IL-10, IL-6, IL-8, and IFN-y) that stimulate the 

inflammatory response leading to more cartilage loss. It has been shown that the gradual 

release of cytokines in OA, especially IL-10 and TNF-a, may be due to micro- 

inflammation or local involuntary damage of the cartilage (Blanco et al, 2004). 

Immunohistochemical studies of normal cartilage indicated the presence of IL-lß in a 

small number of chondrocytes present in the superficial layer. However, a strong 

positive staining for IL-10 and TNF-a is observed in the upper half of OA cartilage for 

both chondrocytes and the ECM. 

An in vitro study by Verschure and Van Noorden, (1990) showed that IL-10 increases 

the synthesis and release of many proteases capable of breaking down the cartilage 
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matrix in human articular chondrocytes. This was also observed similarly in bovine 

articular cartilage (Tattersall et al, 2005). Synthesis of collagen type II (the major 
collagen in cartilage) is decreased after exposure to IL-113 in healthy articular cartilage, 
whilst synthesis of collagen types I and III is increased and proteoglycan synthesis is 

decreased (Goldring, 2000). All of these factors would suggest that IL-lß may mediate 

aspects of OA pathogenesis. 

To determine whether C-20/A4 chondrocyte apoptosis is inducible by IL-lß and what 

form that induction may take, chondrocyte cultures were exposed to various 

concentrations (0-20pg/ml) also based on levels reported by Bellometti et al, (1997) for 

6 hrs. C-20/A4 cells have been previously shown to exhibit responses to IL-1 similar to 

those described in primary human chondrocytes (Goldring et al, 1994) but no detailed 

study of its apoptotic effects has been made. 11L-lß induced significant increases in 

Annexin V/PI and TUNEL positive cells up to a concentration of lOpg/ml. Cells 

exposed to 2pg/ml showed a significant increase in apoptosis (17% Annexin V/PI, 8% 

TUNEL) when compared to control treated cells (P<0.001), which increased further 

with increasing IL-10 concentration (P<0.01,4pg/ml vs control and P<0.001,6pg/ml vs 

control). A further significant increase in apoptosis compared to control cells was 

observed at concentrations between 8pg/ml (29% Annexin V/PI, 25% TUNEL) 

(P<0.001 vs control) and 10pg/ml (33% Annexin V/PI, 34% TUNEL) (P<0.001 vs 

control). The increase in cell death at lOpg/ml were significant when compared to 8 

pg/ml with respect to TUNEL staining (P<0.01) but not for Annexin V/PI staining 

(P>0.05). Annexin V/PI staining was generally higher than TUNEL staining due to its 

increased sensitivity for early apoptosis except at 10pg/ml where they were similar. 

Induction of apoptosis peaked at lOpg/ml, and then decreased dose-dependently to 

almost control level as the dose increased up to 20pg/ml. The gradual decrease in 

apoptosis was observed up to 14pg/ml, after which no further significant changes were 

detected. Necrotic cell death (as measured by LDH release) remained low throughout. 

Our experiments documented a dose dependent increase in chondrocyte apoptosis up to 

l Opg/ml, after which apoptotic levels decreased with high IL-10 concentrations, 

possibly indicating chondroprotection at higher concentrations. Oliver et al, (2005) have 

similarly demonstrated that exposure of immortalized chondrocytes to high levels of 

extracellular IL-1(3 (1 ng/ml) induces a stress response that is protective against 

apoptosis adding support to our data. Concentration dependent IL-10 activation of 
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chondrocytes may be important in the context of actual concentrations of IL-1(3 present 
in normal or diseased joints. OA synovial fluid, concentrations averaging 28pg/ml have 
been reported (Westacott et l 1990), but no information exists at present about the 

actual concentration of IL-10 in articular cartilage (Fan et al, 2005). Martel-Pelletier et 

al, (1992) reported that the levels of IL-10 receptor type I expressed in OA 

chondrocytes are higher than in normal chondrocytes, and Palmer et al, (2002) have 

shown that IL-1 Ra (IL-1 receptor antagonist) is produced by C-20/A4 human 

chondrocyte cells in response to IL-1 ß treatment. IL-1 Ra would prevent the interaction 

between IL-1 and its cell surface receptors, and competitively inhibit the biological 

effects of IL-1. The induction of this endogenous antagonist may well explain the 

results obtained in this research and local production of IL-1 Ra might thus be part of a 

negative feedback mechanism initiated by these cytokines in vivo. Such a mechanism 

may exert a chondroprotective effect against IL-1 mediated cartilage lesions during 

physiologic and pathological processes (inflammatory and catabolic), including RA and 

OA. 

This data disagrees with that of Schuerwegh et l (2003) who showed that IL-1 induced 

apoptosis of bovine chondrocytes in a dose dependent manner at concentrations from 

0.1-100ng/ml and Heraud et al, (2000) who showed that IL-1(3 treatment of normal 

human chondrocytes induced apoptosis at concentrations of 1,3 and lOng/ml. This may 

be explained however by the work of Guerne et al (1994), and Fan et al, (2005) who 

showed that the response of IL-1 in primary and sub-cultured chondrocytes and 

chondrocyte cell lines are different in terms of TNF-a and IL-lß stimulation. The data 

presented in this thesis is however in agreement with these authors in so far as EL-10 

treatment induced chondrocyte apoptosis and not necrosis. These data indicate that the 

cell type and culture conditions should be considered when interpretating data. 

Similar to TNF-a, IL-1(3 has also been reported to prevent apoptosis in chondrocytes 

(Kothny-Wilkes et al, 1998), osteoclasts (Schmidt et al, 1999), and other cell types via a 

mechanism that probably involves activation of NF-KB (Tatsuna et al, 1996) and it is 

possible that NF-icB activation may, at least in part be responsible for the anti-apoptotic 

effect of IL-1(3 (Grutkoski et al, 2002). This suggests that cytokines which trigger ECM 

breakdown could also protect chondrocytes against apoptosis when survival promoting 

effects of ECM are reduced during the matrix remodeling process (Fischer et al, 2000). 
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Both EL-lß and TNF-a also appear to induce quick activation of transcription factors, 

such as NF-KB and AP-1, and potentiates MAP kinase phosphorylation and activation in 

synovial fibroblasts, although TNF-a and IL-lß bind to distinct cellular receptors 
(Ogura et al, 2005). Recently, Barchowsky et al, (2000) showed that IL-1(3 is more 
effective than TNF-a at inducing MMP-1 gene expression in rabbit primary synovial 
fibroblasts. They thought that this maybe because TNF-a is less effective than IL-10 at 

activating the MAPK/AP-1 pathway. Anti-apoptotic effects of IL-10 in chondrocytes by 

the involvement of the P38 MAPK pathway and NF-KB has also been reported by Kühn 

et al, (2000; 2003). Interestingly, Aigner et at (2005) showed that IL-10 (ing/ml) 

treatment of articular chondrocytes up-regulates IAP 1 which may also explain the lack 

of cell death at high concentrations of IL-1(3. 

Based on this data, the optimum concentration for IL-1(3 induction of apoptosis in future 

experiments would be 8pg/ml as maximum apoptosis was observed between 8-l0pg/ml 

by TUNEL and Annexin V/PI staining although this data also represents a full study of 

the dose response of human C-20/A4 chondrocytes to a range of IL-10 concentrations 

not previously documented. 

Based on the data in this chapter, it is reported that apoptosis is the major form of cell 

death in C-20/A4 human chondrocytes treated with SNAP (NO), TNF-a and 11L-1P as 

shown by two independent parameters, Annexin V/PI binding and DNA fragmentation, 

which reflect early and late phases of programmed cell death. None of these stimuli, at 

the concentrations tested, induce significant levels of necrosis. The optimum 

concentrations of SNAP, TNF-a and IL-1(3 for use in subsequent experiments detailed 

in this thesis were determined to be ImM, 70pg/m1 and 8pg/ml respectively. IL-10, will 

not, however be investigated further in these studies, largely due to time constraints. It 

is also expected that there would be similarities in the mode of action of these two 

(2000) suggest that TNF-a, and IL-lß act through a stimuli, indeed Fischer et at 

common cell death pathway in human articular chondrocytes. The rest of this study will 

therefore concentrate on the role of NO and TNF-a in chondrocyte cell death and the 

survival factors which may counter these stimuli. 
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CHAPTER 4 

THE PROTECTIVE ROLE OF UCN IN C-20/A4 

CHONDROCYTE 
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4.1 Introduction 

In order to study further the involvement of chondrocyte death in OA, along with 
possible endogenous mechanisms that may be manipulated to reduce/prevent that death, 

the role of UCN in chondrocytes has been investigated. Production of UCN has been 

shown in other cell types (Brar et al, 1999; Latchman, 2002; Lawrence et al, 2005) and 
has been recognized as a cytoprotective peptide inhibiting apoptotic cell death (Brar et 

al, 2002; Chanalaris et al, 2003), as discussed in more detail in chapter 1. It is therefore 

possible that such a mechanism may also exist in chondrocytes. If so, this may represent 

an endogenous mechanism for preventing chondrocyte death and perhaps therefore an 

opportunity for therapeutic intervention to prevent/ameliorate disease progression in 

OA. 

Studies were first conducted to determine if UCN is endogenously produced by 

chondrocytes (using the RT-PCR technique documented in section 2.2.3.1) and then the 

effects of various stimuli on the level of UCN production were investigated. The 

optimum concentrations of SNAP and TNF-a established in chapter 3 were used to treat 

C-20/A4 cells both alone, and in the presence of the CRH antagonist a helical CRH(9_41), 

to determine the role of endogenously produced UCN. These experiments were 

supplemented with UCN depletion studies and then extended with the addition of 

exogenous UCN. 
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4.2 Methods 

4.2.1 The endogenous production of UCN by C-20/A4 chondrocytes 

4.2.1.1 Optimisation of PCR conditions 

Initial RT-PCR experiments, using published primer sequences and conditions, proved 

unreliable for the experiments performed here with the C-20/A4 chondrocyte cell line. 

Following the determination of initial PCR conditions by empirical means, it was 
therefore deemed necessary to further optimize annealing temperature, cycle number 

and magnesium content of the reaction mixture. For each pair of primers, PCR was 

performed at various annealing temperatures either side of the calculated average 

melting point of the two primers. The mean melting temperatures were calculated as 

64°C for all primer pairs used (UCN, GAPDH and ß-actin) and the Eppendorf master 

cycler gradient PCR machine was set as follows (Table 4.1): 

Table 4.1: PCR programme for establishing the annealing temperature for UCN, GAPDH and ß-actin 

Stage Annealing Temperature Time Cycle 

(°C) (rains) 

Initial 94°C 31 

Denaturation 

Denaturation 94°C 1 30 

Annealing 54°C-74°C 1 30 

Extension 72°C 1 30 

Final 72°C 10 1 

Extension 

30 cycles were employed for the temperature gradient studies and after establishing the 

optimum annealing temperatures for UCN, GAPDH and (3-actin primers, multiple PCR 

reactions were performed to establish the optimum cycle number for each set of 

primers. In order to establish the number of amplification cycles necessary to detect 

basal levels of UCN expression, PCR experiments were performed at the optimal 

annealing temperature for 20-40 cycles and the intensity of the resulting product band 

was analysed by densitometry following 2% agarose gel electrophoresis. This was 

repeated for all three target nucleotide sequences. 
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Once the optimum annealing temperature and cycle number were established for each 
target sequence, PCR's were performed under these conditions with varying MgCl--) 

concentrations (1 -5mM) to establish the optimum Mg2+ concentration to be used in 
future PCR experiments. The final PCR conditions used for all subsequent experiments 
are shown in table 4.2 below (collated from data presented in section 4.3.1). 

4.2.1.2 RT-PCR analysis of UCN expression by C-20/A4 cells following treatment with 

pro-apoptotic stimuli 

C-20/A4 cells grown in 6 well tissue culture plates were treated with the pro-apoptotic 

stimuli SNAP (NO donor) and TNF-a for six hours at concentrations of I MM and 

70pg/ml respectively (based on the data documented in chapter 3). Cells were also 

treated with 10-8M a helical CRH for 6 hours (similarly determined as the optimum 

concentration for use, described later in this chapter). Once these treatments were 

complete, the media were removed and cellular RNA extracted and processed for RT- 

PCR as documented in chapter 2 section 2.2.3.1.1. The cDNA generated from treated 

and control cells was then used to perform PCR to determine the expression of TJCN 

and the `house keeping genes' (3-actin and GAPDH using the conditions detailed in 

Table 4.2. These results were further confirmed by real time PCR as detailed in chapter 

2, section 2.2.3.2. 

Table 4.2: PCR program for the amplification for UCN, GAPDH and fi-actin 

Gene Time Annealing Cycle Mg`+ 
(minutes) Temperature Concentration 

UCN 1 64°C 33 1 mM 

GAPDH 1 58°C 30 1mM 

(3-actin 1 63°C 32 1mM 

102 



4.2.1.3 Real-time PCR analysis of UCN expression by C-20/A4 cells following 

treatment with pro-apoptotic stimuli 

Real time PCR amplification for UCN and GAPDH was performed as detailed in 

section 2.2.3.2.1 using the following ABI `Assay-on-Demand' primer and probe 
combinations for UCN (HS0017020-ml) and for GAPDH (HS99999905-ml). 

4.2.1.4 Purification of PCR products. 

The PCR products generated were purified using the Spin Prep TM PCR clean up kit 

(Novagen, U. K. ) according to the manufacturer's instructions. Briefly, 40µl of each of 

the completed PCR reactions was transferred to a clean 1.5m1 microcentrifuge tube, and 

400µl of Spin Prep bind buffer added. This was vortexed, transferred to a Spin Prep 

PCR filter in a 2m1 receiver tube and centrifuged at 10,000 xg for 1 minute. Following 

centrifugation, the filtrate in the receiver tube was discarded, a further 400µl of Spin 

Prep bind buffer added, and the unit centrifuged again at 10,000 xg for 1 minute. The 

filtrate was again discarded and 500µl of reconstituted Spin Prep wash buffer was 

added. Following a further centrifugation step (10,000 g for 1 minute) the supernatant 

was discarded and the spin unit centrifuged again at 10,000 xg for 2 minutes to remove 

residual Spin Prep wash buffer. The Spin Prep filter was then transferred to a 1.5m1 

Eluate receiver tube, a volume of 50µl of pre-warmed (70°C) Spin Prep Elute buffer 

added onto the Spin Prep filter membrane, the cap closed and the unit incubated for 3 

mins at 65°C. After the incubation period, the tube was immediately centrifuged for 1 

minute to collect the eluted PCR product. A recovery of 60-90% of the input material is 

typical for this method. 

4.2.1.5 Sequencing of purified PCR samples 

Representative PCR products for each target nucleotide sequence (UCN, GAPDH and 

(3-actin) were purified as documented in 4.2.1.4 and sent to The John Innes Centre, 

Norwich, U. K. for sequencing. Sequencing was performed using a standard automated 

protocol on the PRISM 7000 3730 DNA analyzer. The returned sequence data were 

analysed using BLAST (basic local alignment search tool) nucleic acid database 

searches from the National Centre for Biotechnology Information 

(www. ncbi. nhn. nih. gov/BLAST/). 
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4.2.2 CRH antagonist studies 

4.2.2.1 The effects of a helical CRH(9_41 on C-20/A4 cells 

C-20/A4 cells were serum starved in 1% FCS media for 24 hours (as detailed in section 
2.2.1.1) then treated with various concentrations of a helical CRH(9_41) (10-6 - 10-12M) 

for 6 hours exposure. This procedure was performed to establish if CRH receptor 
blockade would induce cell death and to assess if a helical CRH(9_41) induced cell death 

was dose dependent. Control experiments with untreated cells were also run alongside 

treated experiments. 

4.2.2.2 Co-treatment of C-20/A4 cells with a helical CRH(9_41) and pro-apoptotic stimuli 

Experiments were performed with a helical CRH(9_41) at a concentration of 10-8M 

(established in section 4.2.2.1 above) along with the pro-apoptotic stimuli (SNAP or 

TNF-a). Cells were cultured as described previously, transferred from a 75cm2 flask to 

6 well plates, and allowed to grow to -80% confluency. Prior to treatment, cells were 

cultured and starved of serum (1% FCS media) for 24 hrs, then re-supplied with 1% 

FCS DMEM containing the appropriate stimulus for a6 hour exposure. Cells were 

treated with 1mM SNAP alone (the optimum concentration established in section 3.2), 

10-8 a helical CRH(9_41) alone (the optimum established concentration in section 4.2.2.1) 

or SNAP and a helical CRH(9_41). A similar procedure was repeated for TNF-a but with 

the SNAP being replaced by 70pg/ml TNFa, (also established in section 3.2). 

4.2.3 Endogenous UCN depletion studies 

UCN specific depletion was performed by the addition of 100µg/ml rabbit anti-human 

UCN antibody and the effects on chondrocyte cell death compared to an isotype control, 

anti-human albumin antibody. Prior to experimentation, the UCN antibody and albumin 

antibody were first desalted (due to the presence of sodium azide) using the Sephadex 

G50 nick columns. Chondrocytes were starved of serum (1% FCS media) for 24 hours 

which is detailed in section 2.2.1.1. Chondrocytes were then treated with anti-human 

UCN antibody, anti-human albumin antibody, and helical CRH(9_41) (10-8M) for a6 hour 

exposure. 
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4.2.4 Preconditioned media studies 

Prior to these experiments three types of preconditioned media were generated and 
designated PC, PS and PT. PC represents media in which a culture of -80% confluent 
C-20/A4 cells had grown for 6 hours in the absence of any exogenous pro-apoptotic 
stimuli. PS represents media from -80% confluent C-20/A4 culture that had been 

exposed to 1mM SNAP for 6 hours. PT represents media from an 80% confluent C- 

20/A4 culture that had been exposed to 70pg/ml TNF-a for 6 hours. These pre- 

conditioned media were then used to treat fresh cultures of C-20/A4 cells under a 

variety of conditions. 

4.2.4.1 100% preconditioned media treatment of C-20/A4 cells 

100% preconditioned media studies were performed similarly to the experiments 
detailed in section 4.2.2.2 but with the complete exchange of normal growth medium for 

the preconditioned medium (PC, PS or PT) for the duration of the experiment. The 

preconditioned media used was dependent on the subsequent stimulus applied to the 

second culture, i. e. cells treated with SNAP were cultured in PS preconditioned medium 

and those treated with TNF-a were cultured in PT preconditioned medium. For both 

stimuli a further set of cells were treated in the presence of PC pre-treated medium to 

act as a control 

4.2.4.2 10% preconditioned media treatment of C-20/A4 cells 

Preconditioned media studies were carried out corresponding to the experiments 

mentioned in the a helical CRH(9_41) studies (4.2.2.2). With the prior exchange, of 

normal growth medium for the 10% preconditioned medium (preconditioned (PC), pre- 

conditioned SNAP (PS) or preconditioned TNF-a (PT)) for the duration of the 

experiment. Experiments were performed as described in 4.2.4.1 where cells were 

grown for 6 hrs, in the presence and absence of pro-apoptotic stimuli (SNAP or TNF- 

a). The neat preconditioned media (PC, PS or PT) were then diluted to 10% with 

normal media (90%) to treat additional cell cultures. 
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4.2.5 Exogenous UCN studies 

4.2.5.1 The effects of exogenous UCN on C-20/A4 cells 

Serum starved C-20/A4 cells were treated with human UCN at various concentrations 
(10-6 - 10-12M) for a6 hour exposure. This was performed in order to establish the 

optimum concentration of UCN for achieving suitable levels of cell protection. Control 

experiments with untreated cells were also carried out alongside treated experiments. 

4.2.5.2 The competitive inhibition of exogenous UCN by oc helical CRH(9_41) 

Whilst a concentration of 10-8M a helical CRH(9_41)was used for all other experiments, 

a lower concentration of 5x10-10M was used here. The data presented in section 4.3.2 

shows that levels of apoptosis start to increase with concentrations of cc helical CRH(9.41) 

between 10-9M and 10-10M. 5x10-10M represents a midway point between these 

concentrations and was used in conjunction with various concentrations of UCN (10-6M 

to 10-12M) to determine if a competitive CRH-R binding occurred between these two 

peptides and to observe the effect on cell death. The procedure followed was similar to 

that in 4.2.5.1, but with the addition of 5x10-10M a helical CRH(9.41)- 

4.2.5.3 The effects of exogenous UCN co-treatment on C-20/A4 cells subjected to pro- 

apoptotic stimuli 

Experiments were performed with exogenous UCN at the established concentration of 

10-8M alone and in conjunction with the stimuli (SNAP & TNF-(X). Cultured cells were 

transferred from a 75cm2 flask to 6 well plates, each plate representing each condition. 

Cells were treated with 1 mM SNAP alone, SNAP with 10-8 M UCN, and SNAP, 10-8 M 

UCN and 10-8 M (x helical CRH(9_41). Cells were treated as described previously in 

2.2.1.1 The procedure was repeated for TNF-a with SNAP being replaced by 70pg/ml 

TNF-a. 
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4.2.5.4 The effects of exogenous UCN pre-treatment on C-20/A4 cells subjected to pro 
apoptotic stimuli. 

Prior to treatment, cells were cultured and starved of serum for 24 hrs, re-supplied with 
1% FCS DMEM media for a6 hour exposure. Once the optimum concentration of UCN 

was established to be 10-8 M, this concentration was then used to treat C-20/A4 cells at 

various time intervals prior to the addition of the pro-apoptotic stimuli. Cells were 

subcultured as described previously (section 2.2.1.1) and then pre-treated with UCN at 0 

min, 30 min, 1 hour and 2 hour interval after which pro-apoptotic stimuli (SNAP or 
TNF-(x) were added. 

4.2.6 The effects of exogenous UCN on cell proliferation 

The neutral red assay was used in these experiments to investigate any change in cell 

number over time following treatment with various concentrations of exogenous UCN 

(10-6M, 10-8M and 10-1°M). Experiments were performed as described in 2.2.1.1. A 

volume of 100µl of chondrocyte cell suspension was inoculated to individual wells of 

sterile 96 well microtitre tissue culture plates and allowed to grow to 60-70% 

confluency (approx. 48 hrs). At this point, the growth medium was replaced with media 

containing 10-6M, 10-8M and 10-10M UCN concentrations. Sixteen replicate wells were 

used per concentration and half the plate (48 wells), were used as control. This 

procedure was repeated for time periods of 6hr, 12hr, 24hr, 48hr and 96hr. After 

exposure, to UCN for the appropriate time period, cell number was assessed by the NR 

assay as described in 2.2.2.6.1. 
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4.3 Results 

4.3.1 The endogenous production of UCN by C-20/A4 chondrocytes 

RT-PCR was used to establish the possible existence of the CRH-like peptide UCN in 

C-20/A4 cells. PCR conditions for UCN were first optimized with regard to annealing 

temperature, cycle number and magnesium (Mg'+) concentration. This was also 

performed for the housekeeping genes (3-actin and GAPDH. 

4.3.1.1 Optimisation of PCR conditions for UCN amplification 

4.3.1.1.1 Optimisation of annealing temperature. 

Figure 4.1 shows AGE analysis of PCR products generated using an annealing 

temperature gradient for UCN primers. Annealing temperatures ranged from 54°C-74°C 

(lane 3-12) and amplification was performed for 30 cycles. UCN bands at 172 bp were 

observed from 54°C - 69°C, after which no bands were observed. 

+-172bp 

Lanes 123456789 10 11 12 

Figure 4.1: PCR annealing temperature gradient for UCN amplification. 

Lane 1- 2Kb ladder (Sigma), lane 2- Negative Control, lane 3-54°C, lane 4-55°C, 

lane 5-56°C, lane 6-58°C, lane 7-61°C, lane 8-64°C, lane 9-66°C, lane 10-69°C, lane 

11-71°C, lane 12- 74°C. 
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4.3.1.1.2 Optirnisation of cycle number 

Figure 4.2a shows AGE analysis of PCR amplification of UCN over 20-40 cycles at 
64°C annealing temperature. UCN bands at 172 bp were observed from cycle 25 (lane 
8) onwards with band intensity increasing with cycle number. Figure 4.2b represents the 
densitometry analysis of the UCN band for each cycle. 

-172bp 

4-172 bp 

Figure 4.2a: Gel photograph depicting UCN PCR products at varying cycle number. 

Lane 1- 2Kb ladder (Sigma), lane 2- Negative Control, lane 3 (cycle 20)-12 

(cycle 29), lane 13-2Kb ladder (Sigma), lane 14 (cycle 30)-24 (Cycle 40). 
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Figure 4.2b: Densitometric analysis of agarose gel electrophoresis of UCN PCR products at 

corresponding cycle number. Data are presented as the mean values (± standard 

deviations) of five independent experiments. 

4.3.1.1.3 Optimisation of Mg2+ concentration 

Figure 4.3a represents an AGE analysis of RT-PCR of UCN (at 172 bp) with 33 cycles 

at 64°C annealing temperature with varying magnesium concentration. Figure 4.3b 

represents the densitometry analysis of the UCN band for each cycle. 

-172bp 

Figure 4.3a: Gel photograph depicting UCN PCR products, at varying Mgt+concentrations of 

C-20/A4 cells. Lane 1- 1Kb ladder (Invitrogen), lane 2- Negative Control, lane 3- 1mM, lane 

4- 2mM, lane 5- 3mM, lane 6- 4mM, lane 7- 5mM. 

110 

Lanes 123 ýý e 



100000 

A 

U) 
C 

C 
cß 
m 

v 

1 mm 2mM 3mM 4mM 5mM 
Magnesium Concentration of UCN (mM) 

Figure 4.3b: Densitometric analysis of agarose gel electrophoresis of UCN, PCR products at 

varying Mg2+ concentrations of C-20/A4 cells. Data are presented as the mean 

values (± standard deviations) of three independent experiments. 

Based on data obtained for the experiments documented in section 4.3.1.1, the optimum 

annealing temperature for the UCN primers was determined to be 64°C (as this 

temperature gives a good amplification of the target gene with lower levels of non- 

specific amplification). The optimum cycle number determined from the studies was 33 

cycles as the amount of UCN product produced at this cycle number is clearly within 

the linear part of the amplification curve and therefore suitable for expression analysis 

in future experiments. The optimum magnesium concentration was determined to be 

1 mM for the UCN primers although higher Mg 2+ concentrations resulted in a more 

intense UCN band, as multiple products were also observed at concentrations above 

this. 
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4.3.1.2 Optimisation of PCR conditions for ß-actin amplification 

4.3.1.2.1 Optimisation of annealing temperature 

In keeping with the previous experiment, Figure 4.4 shows AGE analysis of PCR 

products generated using an annealing temperature gradient for (3-actin primers. 
Annealing temperatures ranged from 54°C-74°C and amplification performed for 30 

cycles. ß-actin bands were observed at 532 bp between 54°C - 66°C after which no 

bands were observed. 

- 532 bp 

Lanes 123456789 10 11 12 

Figure 4.4: PCR annealing temperature gradient for ß-actin amplification. 

Lane 1- 2Kb ladder (Sigma), lane 2- Negative Control, lane 3- 54°C, lane 4- 55°C, 

lane 5- 56°C, lane 6- 58°C, lane 7- 61°C, lane 8- 64°C, lane 9- 66°C, lane 

10-69°C, lane 11- 71°C, lane 12- 74°C. 
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4.3.1.2.2 Optimisation of cycle number 

Again, in keeping with the previous experiments, Figure 4.5a shows AGE analysis of 
PCR amplification of ß-actin over 20-40 cycles at 63°C annealing temperature. 13-actin 

bands at 532 bp in length (Figure 4.5a) was observed from cycle 27 (lane 10) onwards 

with band intensity increasing as cycle number increased. Figure 4.5b represents the 
densitometry volume of each cycle. 

123456789 10 11 12 

+- 532 bp 

- 532 bp 

Figure 4.5 a: Gel photograph depicting ß-actin PCR products at varying cycle number. 

Lane 1- 1Kb ladder (Sigma), lane 2- Negative Control, lane 3 (cycle 20)-12 (cycle 

29), lane 13- 1Kb ladder (Sigma), lane 14 (cycle 30)-24 (Cycle 40). 
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Figure 4.5b: Densitometric analysis of agarose gel electrophoresis of ß-actin PCR products at 

corresponding cycle number. Data are presented as the mean values (± standard deviations) 

of five independent experiments. 

4.3.1.2.3 Optimisation of Mg 2+ concentration 

Figure 4.6a represents an AGE analysis of RT-PCR of ß-actin (at 532 bp) with 32 

cycles at 63°C annealing temperature with varying magnesium concentration. Figure 

4.6b represents the densitometry analysis of the ß-actin band for each cycle. 

532 bp 

Figure 4.6a: Gel photograph depicting ß-actin PCR products, at varying Mgt+concentrations of 

C-20/A4 cells. Lane 1- 1Kb ladder, lane 2- Negative Control, lane 3- 1mM, lane 4- 2mM, 

lane 5- 3mM, lane 6- 4mM, lane 7- 5mM. 
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Figure 4.6b: Densitometric analysis of agarose gel electrophoresis of ß-actin PCR products at varying 
Mg2+ concentrations of C-20/A4 cells. Data are presented as the mean values (± standard 
deviations) of three independent experiments. 

Overall, from data obtained from the experiments detailed in section 4.3.1.2, the 

optimum annealing temperature for the ß-actin primers was established to be 63°C 

(since this temperature provides a good amplification of the target gene with minimal 

contaminating bands). The optimum cycle number established from the studies was 32 

cycles as the amount of 0-actin product generated at this cycle number is within the 

linear part of the amplification curve and consequently suitable for expression analysis 

in future experiments. The optimum magnesium concentration established for 0-actin 

was 1 mM, because above this concentration, extra bands in the products were observed, 

which are not visibly clear from the gel picture. 
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4.3.1.3 Optimisation of PCR conditions for GAPDH amplification 

4.3.1.3.1 Optimisation of annealing temperature 

In keeping with the previous experiments, Figure 4.7 shows AGE analysis of PCR 

products generated using an annealing temperature gradient for glyceraldehyde-3- 

phosphate dehydrogenase (GAPDH) primers. Annealing temperatures ranged from 

54°C-74°C and amplification performed for 30 cycles. Bands were observed between 

54°C - 61°C at 437 bp. GAPDH bands after 61°C were not observed. 

E- 437 bp 

Figure 4.7: PCR annealing temperature gradient for GAPDH amplification. 

Lane 1- 1Kb ladder (Invitrogen), lane 2- Negative Control, lane 3- 54°C, lane 4- 55°C, 

lane 5- 56°C, lane 6- 58°C, lane 7- 61°C, lane 8- 64°C, lane 9- 66°C, lane 10- 69°C, lane 

11- 71°C, lane 12- 74°C. 
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4.3.1.3.2 Optimisation of cycle number 

Again, in keeping with the previous experiments, Figure 4.8a shows AGE analysis of 
PCR amplification of GAPDH over 20-40 cycles at 58°C. GAPDH bands at 437 bp in 

length were observed from cycle 25 (lane 8) onwards with band intensity increasing as 

cycle number increased. Figure 4.8b represents the densitometry volume of each cycle 

number. 

437 bp 

- 437 bp 

Figure 4.8a: Gel photograph depicting GAPDH PCR products at varying cycle number. 

Lane 1- 1Kb ladder (Invitrogen), lane 2- Negative Control, lane 3 (cycle 20)- 

12 (cycle 29), lane 13-1Kb ladder (Invitrogen), lane 14 (cycle 30)-24 (Cycle 40). 
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Figure 4.8b: Densitometric analysis of agarose gel electrophoresis of GAPDH PCR product at 

corresponding cycle number. Data are presented as the mean values (± standard deviations) 

of four independent experiments. 

4.3.1.3.3 Optimisation of Mg2+ concentration 

Figure 4.9a represents an AGE analysis of RT-PCR of GAPDH (at 437 bp) with 30 

cycles at 58°C annealing temperature with varying magnesium concentration. Figure 

4.9b represents the densitometry analysis of the GAPDH band for each cycle. 
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Figure 4.9a: Gel photograph depicting GAPDH PCR products, at varying Mgt, concentrations 

of C-20/A4 cells. Lane 1- 1Kb ladder (Invitrogen), lane 2- Negative Control, lane 3- 1mM, 

lane 4- 2mM, lane 5- 3mM, lane 6- 4mM, lane 7- 5mM. 
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Figure 4.9b: Densitometric analysis of agarose gel electrophoresis of GAPDH PCR products at varying 
Mg2+ concentrations of C-20/A4 cells. Data are presented as the mean values (± standard 

deviations) of three independent experiments. 

Overall, data gathered for the experiments reported in section 4.3.1.3, shows that the 

optimum annealing temperature for the GAPDH primers was 58°C (since this 

temperature provides a good amplification of the target gene). The optimum cycle 

number established from the studies was 30 cycles as the amount of GAPDH product 

produced at this cycle number is visibly within the linear part of the amplification curve 

and consequently suitable for expression analysis in future experiments. The optimum 

magnesium concentration determined for GAPDH was 1 mM, because above this 

concentration a gradual decrease in GAPDH in the products were observed. 
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4.3.1.4 RT-PCR analysis of UCN expression by C-20/A4 cells following treatment ýy ith 

pro-apoptotic stimuli 

4.3.1.4.1 Using (3-actin as an internal control 

Once the optimum annealing temperatures, amplification cycles and Mg2+ concentration 

for RT-PCR analysis of UCN, (3-actin and GAPDH had been determined, these 

parameters were used to investigate UCN expression in C-20/A4 cells treated with 

SNAP (NO donor) and TNF-a. NO and TNF-a are both pro-apoptotic stimuli that have 

been demonstrated to be present in OA joints. A CRH antagonist, a helical CRH(9_41) 

was also included to investigate the effects of CRH receptor blockade. 

-172bp 

F-- 532 bp 

Figure 4.10: RT-PCR analysis of UCN and ß-actin (as a house keeping gene control) expression in 

C-20/A4 chondrocytes. Lane 1- Hyperladder IV molecular size marker (Invitrogen), lane 2 is 

the negative control, lanes 3-6 shows expression of UCN (top) and ß-actin (bottom) in 

Control, SNAP, TNF-a, and a helical CRH(9_41) treated cells respectively. 

Densitometric analysis (data not shown) of the agarose gels shown in Figure 4.10 shows 

an increased expression of UCN (172 bp product, top) following SNAP and TNF-a 

treatment of C-20/A4 cells. It is also clear from these results however that ß-actin gene 

expression (532 bp, bottom) is also variable, making this `house keeping' gene 

unreliable for these experiments. (3-actin expression should be consistent in all 
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conditions as expected from a control `housekeeping' gene (Figure 4.10). This 

observation prompted the use of an alternative housekeeping gene, GAPDH. GAPDH is 

also one of the best known and most extensively used housekeeping genes (along with 
(3-actin), with a constant level of transcription (Hanauer and Mandel, 1984). 

4.3.1.4.2 Using GAPDH as an internal control 

Figure 4.11 a shows the results of an experiment analogous to that shown in figure 4.10 

with the substitution of GAPDH for ß-actin as a house keeping gene. 

+- 172 bp 

- 437 bp 

Lanes 

Figure 4.11 a: RT-PCR analysis of UCN and GAPDH (as a house keeping gene control) expression in 

C-20/A4 chondrocytes. Lane 1- Hyperladder IV DNA markers (Invitrogen), lane 2- 

negative control, lanes 3-6- expression of UCN (top) and GAPDH (bottom) in Control, 

SNAP, TNF-a, and (x helical CRH(9_41) treated cells respectively. 

Densitometric analysis of the data in Figure 4.11a demonstrates variable UCN 

expression under the different treatment regimes but constant GAPDH expression. 

This allows the confident calculation of expression ratios of UCN gene against the 

GAPDH housekeeping gene as shown in Figure 4.1 lb. 
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Figure 4.1 lb: Ratio of UCN/GAPDH expression in pro-apoptotic stimuli treated C-20/A4 cells. Data are 
presented as the mean values (± standard deviations) of nine independent experiments. 

Figure 4.11 a and 4.1 lb show that SNAP treated cells exhibited an increased expression 

of UCN as compared to control, TNF-a and a helical CRH(9_41) treated cells. The area 

under curve (AUC) ratio of UCN-GAPDH expression for SNAP was significantly 

different as compared to the control (P<0.01), whereas TNF-(X, and a helical CRHt9.41) 

were not significantly different to the control (P>0.05). Control cells demonstrated an 

expression ratio of 0.88 (UCN: GAPDH) whilst SNAP treated cells showed a ratio of 

1.42 (UCN: GAPDH) clearly indicating that NO treatment stimulates the production of 

UCN in C-20/A4 cells, whilst TNF-a treatment does not. 
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4.3.1.5 Real-time PCR analysis of UCN and GAPDH expression by C-20/A4 

cells following treatment with pro-apoptotic stimuli 

Towards the end of this project, real-time PCR facilities became available to the author 
and these were used to confirm the densitometric data presented in Figure 4.12. Figure 
4.12 shows the ratio of UCN expression to GAPDH expression in C-20/A4 cells treated 

with the pro-apoptotic stimuli and a helical CRH(9_4l) as analysed by real-time PCR. 
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Figure 4.12: Ratio of UCN/GAPDH expression in PCR products of pro-apoptotic stimuli treated C-20/A4 
cells using real time PCR Data are presented as the mean values (± standard deviations) of 
four independent experiments. 

It is worth noting here that interpretation of real-time PCR data is somewhat counter- 

intuitive. A decrease in the cycle threshold (ct) of gene expression, and also therefore 

any calculated ratios, indicates an increased expression of the gene of interest. With this 

in mind, Figure 4.12 shows that C-20/A4 cells treated with SNAP exhibited a 

significant increase in expression of UCN (P<0.01, SNAP vs control) whereas those 

treated with TNF-a and a helical CRH(9_41), actually showed a decrease which were 

both significant compared to control (P<0.001). The control cells presented a ratio of 

1.54. These data support to a certain extent that shown in Figure 4.11b but, with the 

exception of the a helical CRH(9 4l) data (P<0.001) compared to the control. 
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4.3.1.6 Sequence analysis of purified PCR samples 

Sequence analysis confirmed the identity of all of the PCR products when sequence data 

were analysed using BLAST nucleic acid database searches from the National Centre 
for Biotechnology Information (www. ncbi. nlm. nih. gov/BLAST/). The relevant 

accession numbers for matching nucleotide sequences are given in table 4.3 and full 

sequencing data is found in Appendix 1. 

Table 4.3: Confirmation for PCR amplification of cDNA in C-20/A4 chondrocytes. 

Gene Size bp NCBI Accession Number 

UCN 172 NM 003353 

GAPDH 437 BC014861.1 

ß-actin 532 BC083511.1 
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4.3.2 CRH antagonist studies 

4.3.2.1 The effects of a helical CRH(941) on C-20/A4 cells 
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Figure 4.13: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following treatment of C-20/A4 cells with concentrations of a helical CRH(941). 

Data are presented as the mean values (± standard deviations) of three independent 

experiments, each of which was performed in triplicate. 

Treatment with a range of a helical CRH(94l) concentrations showed minimal level of 

Annexin V/PI and TUNEL staining up to 10"11M and low levels of necrotic cell death 

both of which were not significant compared to the control (P>0.05). As the dose of a 

helical CRH(941) increased from 10'10M however, the level of both early and late 

apoptotic cell death had gradually increased significantly (P<0.001 10"10M vs 10"9M), 

whilst necrotic cell death remained constant and shown not to be significant (P>0.05). 

The optimum concentration of a helical CRH(9-41) for use in further experiments was 

established to be 10'8 M as a suitable level of apoptosis was observed between 10-9 M- 

10-6M. No significant difference in the level of apoptosis between these concentrations 

was noted (P>0.05). 
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4.3.2.2 Co-treatment of C-20/A4 cells with a helical CRH, 941) and pro-apoptotic stimuli 

Experiments shown in sections 4.3.1.4 clearly demonstrated the production of the CRH 
family peptide, namely UCN by C-20/A4 chondrocytes especially after SNAP 

treatment. To investigate further whether endogenous UCN exerts protective effects in 

cells are exposed to apoptotic stimuli, a CRH receptor antagonist, a helical CRH{9-4lp, 

was employed. This molecule has been shown to abolish the protective effects of UCN 

in cardiomyocytes (Brar et q I, 1999), and data shown in section 4.3.1.4 clearly indicates 

that CRH receptor inhibition blocks UCN production in C-20/A4 cells. In these 

experiments, a helical CRH(9_41), was used in the presence of SNAP and TNF-a to 

observe whether apoptotic levels were further increased in C-20/A4 chondrocytes as 

compared to that induced by the pro-apoptotic stimuli alone. The results of this study 

are shown in Figure 4.14 and Figure 4.15. 

4.3.2.2 Co-treatment of C-20/A4 cells with a helical CRH(941) and pro-apoptotic stimuli 
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Figure 4.14: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following co-treatment of C-20/A4 cells with 1 mM SNAP and 10$M a helical 

CRHy9-4, ). Data are presented as the mean values (± standard deviations) of three independent 

experiments, each of which was performed in triplicate. 

Control cells showed minimal level of apoptosis and necrosis (8% Annexin V/PI, 6% 

TUNEL and 0.100 LDH release), whilst the addition of a helical CRHt941) alone 

resulted in significantly higher (P<0.001 vs control) levels of apoptosis (25% Annexin 

V/PI and 24% TUNEL). Treatment with 1 mM SNAP alone also resulted in a 

significantly increased (P<0.01 vs control) level of apoptosis (20% Annexin VIPI and 
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15% TUNEL) but treatment with both SNAP and a helical CRHý9.41) showed maximum 

apoptosis (30% Annexin V/PI and 25% TUNEL), which was significantly different 
(P<0.05) from that induced by SNAP alone. Necrosis remained low in all experiments 

and was not significantly different from the control (P>0.05). 
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Figure 4.15: Percentage of Annexin VPropidium Iodide and TUNEL Positive cells and cellular LDH 

release following co-treatment of C-20/A4 cells with 70pg/ml TNF-a and a-helical CRH(9-41) 

Data are presented as the mean values (± standard deviations) of three independent 

experiments, each of which was performed in triplicate. 

The potential protective effect of endogenous UCN was also investigated in TNF-a 

treated cells. In untreated cells basal apoptotic cell death was observed to be 8% 

Annexin V/PI and 6% TUNEL staining and necrosis was low (0.080 LDH release). As 

before, treatment with a helical CRH(9_41) alone also resulted in significantly increased 

(P<0.001 vs control) levels of apoptosis with 20% Annexin V/PI and 23% TUNEL 

positive cells. The concentration of 70pg/ml TNF-a alone showed a significant increase 

in apoptotic death at 18% Annexin V/PI and 19% TUNEL positive cells (P<0.001 vs 

control). However, for 70pg/ml TNF-a with a helical CRH{9-4, ) co-treatment, apoptosis 

was shown to be further increased at 25% Annexin V/PI and 24% TUNEL (P<0.01 vs 

TNF-a alone). Necrotic levels remained low throughout all experiments and were not 

significantly different from the control (P>0.05). 
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4.3.3 Endogenous UCN depletion studies 

In these experiments an anti-human UCN antibody was used to investigate the 
endogenous production of UCN in C-20/A4 cells. An isotype control antibody (anti- 
human albumin) and the CRH antagonist, a helical CRH(9-41) were included for 

comparison. 
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Figure 4.16: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following treatment of C-20/A4 cells, with a helical CRH(941), anti-UCN antibody 

and anti-albumin antibody. Data are presented as the mean values (± standard deviations) of 

three independent experiments, each of which was performed in triplicate. 

In untreated cells, a low level of basal apoptotic cell death was recorded (10% Annexin 

V/PI and 5% TUNEL), with minimal necrosis as measured by LDH release. Treatment 

with a helical CRH(9.4l) resulted in a significant (P<0.001 vs control) increase of 

apoptotic cell death (23% Annexin V/PI and 23% TUNEL) with an even greater 

increase noted on the addition of an anti-UCN antibody, significantly greater than (X 

helical CRHt9.41) (P<0.01) to 37% Annexin V/PI and 33% TUNEL. However, anti- 

albumin antibody did not produce any increased apoptosis compared to the control with 

9% Annexin V/PI and 5% TUNEL (P>0.05). Necrotic cell death remained constantly 

low in all conditions. These data support a role for endogenous UCN as an 

autocrine/paracrine growth factor for C-20/A4 cells, as well as endogenous UCN having 

a cytoprotective effect when the cells are exposed to apoptotic stimuli. 
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4.3.4 Preconditioned Media Studies 

The data presented in this section are the results of a series of experiments designed to 
investigate whether a protective agent is released into the cell growth medium which 
enhances chondrocyte survival. 

4.3.4.1 100% preconditioned media studies 

4.3.4.1.1 Co-treatment of C-20/A4 cells with SNAP / TNF-a and preconditioned media 

from control cells 

In these experiments C-20/A4 human chondrocytes were treated with 100% 

preconditioned media (PC) from control cells not exposed to any form of pro-apoptotic 

stimulus in conjunction with the pro-apoptotic stimuli SNAP and TNF-a. These 

experiments were primarily designed to investigate the release of protective agents 

under basal conditions but also serve as controls for the experiments detailed in 

4.3.4.1.2 and 4.3.4.1.3. 
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Figure 4.17a: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following co-treatment of C-20/A4 cells with SNAP and preconditioned medium 

from control cells unexposed to stimulus (PC). Data are presented as the mean values (± 

standard deviations) of three independent experiments, each of which were performed in 

triplicate. 
(C-control, S-1mM SNAP, PC-Preconditioned Control Medium) 
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In untreated C-20/A4 cells apoptosis was observed at 5% for both Annexin V/PI and 
TUNEL assays with low LDH release. SNAP alone (S) treatment resulted in a 
significant increase in apoptotic cell death (P<0.05) but not necrosis when compared to 
the control. The addition of preconditioned control medium (PC) alone also showed a 
significant increase in apoptosis (P<0.05 vs control) but not necrosis (P>0.05 vs 
control). Combinations of preconditioned control and SNAP (PC+S) resulted in a 
significant increase in cell death compared to preconditioned control alone (PC) 
(P<0.01) but no significant change over SNAP alone (P>0.05). 
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Figure 4.17b: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following co-treatment of C-20/A4 cells with TNF-cc and preconditioned media 

from control cells unexposed to stimulus (PC). Data are presented as the mean values 

(together with the ± standard deviations) of three independent experiments, each of which 

was performed in triplicate. 

(C-control, T-70 pg/ml TNF-a, PC-Preconditioned Control Medium) 

C-20/A4 human chondrocytes were treated with preconditioned medium from control 

cells not exposed to any form of pro-apoptotic stimulus. At basal level apoptotic cells 

were distinguished at 10% Annexin V/PI and 5% TUNEL positive cells with little 

necrosis (0.180 LDH release). TNF-a alone (T), treatment resulted in a significant 

increase in apoptosis (P<0.001) but not necrosis when compared to the control. 

Preconditioned control (PC) treated cells indicated a slightly higher level of apoptosis as 

compared to control, which was especially noted for late apoptosis. Minimal necrosis, 

was observed which was not statistically significant (P>0.05). Combinations of 

preconditioned control and TNF-a (PC+T) resulted in a significant increase in apoptotic 

death (especially Annexin V/PI staining) compared to preconditioned control (PC) alone 
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(P<0.001) and TNF-a alone (T) (P<0.01). Necrotic level in preconditioned control and 
TNF-a (PC+T) treated cells was significantly increased compared to preconditioned 
control and TNF-cc (P<0.001 respectively). 

4.3.4.1.2 Co-treatment of C-20/A4 cells with SNAP and preconditioned media from 

cells subjected to SNAP 
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Figure 4.18: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following co-treatment of C-20/A4 cells with SNAP in preconditioned media from 

SNAP treated cells (PS). Data are presented as the mean values (± standard deviations) of 

three independent experiments, each of which was performed in triplicate. 

(C-control, S-1mM SNAP, PS-Preconditioned SNAP Medium) 

Preconditioned SNAP medium (100%) from cells exposed to SNAP was used to treat 

additional C-20/A4 cells (PS). At basal level, apoptosis was noticed at 5% for Annexin 

V/PI and 5% TUNEL positive cells. The effect of preconditioned SNAP media (PS) 

alone revealed 16% Annexin V/PI and 12% TUNEL positive cells, which were 

observed to be significantly lower than SNAP alone (P<0.05), especially TUNEL 

staining. Combinations of preconditioned SNAP + SNAP (PS+S) showed a significant 

increase in TUNEL staining, but not Annexin V/PI staining and shown to be 

significantly different against preconditioned SNAP (PS) (P<0.05) but not significant 

against SNAP (S) alone (P>0.05). 
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4.3.4.1.3 Co-treatment of C-20/A4 cells with TNF-a and preconditioned media from 

cells subjected to TNF-a 
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Figure 4.19: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following co-treatment of C-20/A4 cells with TNF-a in preconditioned media from 

TNF-a treated cells (PT). Data are presented as the mean values (± standard deviations) of 

three independent experiments, each of which was performed in triplicate. 

(C-control, T-70pg(ml TNF-a, PT-Pre-conditioned TNF-a, Medium) 

Preconditioned TNF-a medium (100%) from cells exposed to TNF-a was used to treat 

additional C-20/A4 cells. Control experiments showed minimal level of apoptosis at 

10% for Annexin V/PI and 5% TUNEL positive cells. The results of preconditioned 

TNF-a media (PT) were observed at 32% Annexin V/PI and 25% TUNEL (P<0.001) 

positive cells with low necrotic death, which was significantly increased (P<0.05) 

against TNF-a alone (T). A significantly increased level of Annexin V/PI staining was 

observed in preconditioned TNF-a + TNF-a (PT+T) compared to preconditioned TNF- 

a medium alone (PT) (P<0.05) and in TNF-a alone (T) (P<0.001). 
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4.3.4.2 10% Preconditioned media studies 

As all the experiments in section 4.3.4.1 show an increase in cell death on the addition 
of the preconditioned medium alone it was decided to investigate the effect of adding 
diluted (1 in 10) preconditioned medium instead. Other than this dilution of the 

preconditioned medium all experimental conditions were the same as those used in the 
100% preconditioned media experiments. The preconditioned media used in these 

experiments was diluted to 10% with fresh medium and then used to treat other cells in 

conjunction with SNAP, TNF-a and a helical CRH(94l). 

4.3.4.2.1 Co-treatment of C-20/A4 cells with SNAP / TNF-a and preconditioned media 
from control cells 
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Figure 4.20a: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following co-treatment of C-20/A4 cells with SNAP in preconditioned media from 

control cells (PC). Data are presented as the mean values (± standard deviations) of three 

independent experiments, each of which was performed in triplicate. 

(C-control, S-1mM SNAP, PC-Preconditioned Control Medium) 

The experiments shown in Figure 4.20a indicated similar levels of apoptosis as 

observed with the preconditioned 100% media studies. In untreated C-20/A4 cells 

(control), apoptosis was observed at 12% for Annexin V/PT and 5% TUNBL positive 

cells. SNAP alone (S) treatment had resulted in a significant increase in apoptotic cell 

death (P<0.05) but not necrosis when compared to the control. Whilst, preconditioned 

control media (PC) showed 14% Annexin V/PI and 15% TUNEL positive cells and low 
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necrosis (P<0.001), this was shown to be significantly different as compared to control 
treated cells. High apoptotic and low necrotic levels were also observed in 
preconditioned control media + SNAP (PC+S) and shown not to be significantly 
different against SNAP (S) alone (P>0.05), but was significant against preconditioned 
control media (PC) (P<0.01), especially with Annexin V/PI treated cells. Whilst, 

necrotic levels were significant as compared to SNAP (S) alone (P<0.001). 
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Figure 4.20b: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following co-treatment of C-20/A4 cells with TNF-a in preconditioned media from 

control cells (PC). Data are presented as the mean values (± standard deviations) of three 

independent experiments, each of which was performed in triplicate. 

(C-control, T-70pg/ml TNF-(x, PC-Preconditioned Control Medium) 

The experiments shown in Figure 4.20b showed similar levels of apoptosis as observed 

with the preconditioned 100% media studies. At basal level apoptotic cells were 

observed at 11% Annexin VIPI and 3% TUNEL positive cells with little necrosis. 

Preconditioned control media (PC) treated cells indicated a significantly higher 

(P<0.001) level of TUNEL staining but not Annexin V/PI staining (P>0.05) as 

compared to control cells, with low necrosis. TNF-a alone (T), treatment resulted in a 

significant increase in apoptosis (P<0.001) but not necrosis when compared to the 

control. Significantly increased apoptotic and low necrotic levels were observed in 

preconditioned control media and TNF-a (PC+T) as compared to preconditioned 

control (PC) alone (P<0.05) and TNF-a (T) (P<0.05), which was especially noted for 

Annexin V/PI treated cells. 
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4.3.4.2.2 Co-treatment of C-20/A4 cells with SNAP and preconditioned media from 

cells subjected to SNAP 
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Figure 4.21: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following co-treatment of C-20/A4 cells with SNAP in preconditioned media from 

SNAP treated cells (PS). Data are presented as the mean values (t standard deviations) of 

three independent experiments, each of which was performed in triplicate. 

(C-control, S-1mM SNAP, PS-Preconditioned SNAP Medium) 

Preconditioned SNAP medium (10%) from cells exposed to SNAP was used to treat 

additional C-20/A4 cells. At basal level, apoptotic cell death was low. Significantly high 

apoptotic and low necrotic levels were observed in preconditioned SNAP media (PS) 

alone as compared to control (P<0.01). High levels of apoptosis was observed in 

preconditioned SNAP+SNAP (PS+S), but shown not to be significantly different 

against SNAP alone (P>0.05) or preconditioned SNAP (PS) alone (P>0.05), whilst 

necrotic levels were high and observed as significantly different against SNAP alone 

and control (P<0.001 respectively). 
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4.3.4.2.3 Co-treatment of C-20/A4 cells with TNF-a and preconditioned media from 

cells subjected to TNF-a 
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Figure 4.22: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following co-treatment of C-20/A4 cells with TNF-a in preconditioned media from 

TNF-a, treated cells (PT). Data are presented as the mean values (f standard deviations) of 
three independent experiments, each of which was performed in triplicate. 

(C-control, T-70pg/ml TNF-a, PT-Preconditioned TNF-(x Medium) 

Preconditioned TNF-a medium (10%) from cells exposed to TNF-a was used to treat 

additional C-20/A4 cells. These experiments showed similar levels of apoptosis as 

observed with the preconditioned TNF-a media (100%) studies with the difference of 

lower apoptotic levels observed with 10% preconditioned TNF-a than 100%. 

Preconditioned TNF-a media (PT) revealed significantly increased (P<0.05) apoptotic 

level as compared to the control, but was not significant in comparison to TNF-a alone 

(P>0.05). Combinations of preconditioned TNF-a and TNF-a (PT+T) resulted in 

further significant increases in apoptotic death when compared to TNF-a alone 

(P<0.001) especially noted for Annexin V/PI stained cells and preconditioned TNF-a 

alone (P<O. 001). 

4.3.5 Exogenous Urocortin studies 

Experiments detailed in sections 4.3.2 demonstrated that in the presence of a CRH 

receptor antagonist, a helical CRH(9.41), apoptotic levels increased significantly in C- 

20/A4 cells, indicating that this antagonist may be abolishing the protective effect of a 

CRH-R binding peptide on these cells. Experiments documented in section 4.3.3 

indicate that UCN is a strong candidate for this putative, protective CRH-R binding 
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peptide. To further investigate this possibility a series of experiments were performed 
adding exogenous UCN to C-20/A4 cells in the presence and absence of pro-apoptotic 
stimuli to observe whether any protection against cell death occurred. 

4.3.5.1 The effects of exogenous UCN on C-20/A4 cells 
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Figure 4.23: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following treatment of C-20/A4 cells with increasing concentrations of exogenous 

UCN. Data are presented as the mean values (± standard deviations) of three independent 

experiments, each of which was performed in triplicate. 

UCN was used at various concentrations to treat C-20/A4 cells. Firstly, we assessed 

whether a range of concentrations of exogenous UCN influenced basal cell death. While 

significant increases in Annexin V/PI and TUNEL staining were seen with 10-12M to 10" 

'°M concentrations, no significant changes in cell death parameters were seen with 

lower concentrations. The optimum concentration for UCN was established to be 10"8M 

as a suitable level of protection was observed between 10"9M-10-6M and showed no 

significant apoptosis as compared to control up to 10-6M UCN (P>0.05). 
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4.3.5.2 The competitive inhibition of UCN by a helical CRH(9.41) 
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Figure 4.24: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following treatment of C-20/A4 cells with increasing concentrations of UCN and 

the addition of 5x 10-10 Ma helical CRH(941 ). Data are presented as the mean values 
(± standard deviations) of three independent experiments, each of which was performed in 

triplicate. A-5 x 10"10 Ma helical CRH(941), U-10'UCN. 

The concentration for a helical CRH(941) used for most experiments was 10-8M, a 

concentration which induced high levels of apoptosis. Figure 4.13 had shown that a 

more modest level was observed between 10'9 M-10"10 M. A concentration in the middle 

of this range, 5x 10"10 M was used to investigate the ability of various concentrations of 

UCN to lower the apoptotic cell death in a helical CRH(9.. 41) treated C-20/A4 cells to 

determine if UCN and (x helical CRH(9-4l) were competitively occupying CRH 

receptors. 5x 10"10 Ma helical CRH(9-41) produced a modest, but significant increase in 

Annexin V/PI but not in TUNEL staining, which was, however, not significantly 

reduced (P>0.05) by addition of 10-12 M to 10'10 M exogenous UCN. Whilst at 10"10 M 

U+A - 10"9 M U+A, a significant decrease (P<0.01) in apoptosis was observed for 

Annexin V/PI staining only, after which no significant changes in cell death parameters 

was observed (P>0.05). 

138 

Control 5x10-10M+A 10-17M+A 10011M+A 10-10h4+A 10-9M+A 10$M+A 10 7M+A 10"6M+A 
UCN Concentration with 5x 10-10M a helical 

c"°19.41) 

Annexin V/PI (n=9) TUNEL (n=9) LDH (n=18) 



4.3.5.3 The effects of UCN co-treatment on C-20/A4 cells subjected to pro-apoptotic 
stimuli 
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Figure 4.25: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following treatment of C-20/A4 cells with SNAP and TNF-a with/without 
UCN. Data are presented as the mean values (± standard deviations) of three independent 

experiments, each of which was performed in triplicate. 

Figure 4.25 shows the results of UCN treatment of C-20/A4 cells in the presence of 

1 mM SNAP and 70pg/ml TNF-a. 10`8M UCN was added together with the pro- 

apoptotic stimuli for 6 hours. Treatment with UCN alone showed a minimal level of 

apoptosis (14% Annexin V/PI and 6% TUNEL) which, although slightly increased 

compared to control treated cells was not significantly different (P>0.05). C-20/A4 cells 

treated with both UCN and SNAP showed significantly lower levels of apoptosis (16% 

Annexin V/PI and 11% TUNEL) compared to those treated with SNAP alone (P<0.001) 

indicating a degree of protection. Co-treatment of UCN and TNF-a however did not 

show any significant difference in apoptotic cell death compared to TNF-a alone. 
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4.3.5.4 The effects of UCN pre-treatment on C-20/A4 cells subjected to pro-apoptotic 
stimuli. 

4.3.5.4.1 SNAP treatment 
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Figure 4.26: Percentage time course of Annexin V/Propidium Iodide and TUNEL positive cells and 
cellular LDH release after pre-treatment of C-20/A4 cells with UCN prior to 2 mM SNAP 

treatment Data are presented as the mean values (± standard deviations) of three 
independent experiments, each of which was performed in triplicate. 

30 min + SNAP - UCN pre-treated 30 minutes prior to the addition of SNAP 
1 hr + SNAP - UCN pre-treated 1 hour prior to the addition of SNAP 
2 hr + SNAP - UCN pre-treated 2 hour prior to the addition of SNAP 

As shown in Figure 4.25, co-treatment of C-20/A4 cells with SNAP and UCN results in 

a degree of protection against apoptosis induced by SNAP alone. The experiments 

shown in Figure 4.26 were designed to assess if pre-treatment with UCN before the 

addition of SNAP results in increased levels of protection. UCN co-treatment of TNF-a 

did not however induce any significant protection (Figure 4.25) and so a similar pre- 

treatment study was performed for TNF-a to see if this conferred protection (Figure 

4.27). Treatment with SNAP alone demonstrated a significant increase in apoptotic 

death compared to untreated cells (P<0.001). A 30 minute exposure to UCN showed a 

significantly lower level of TUNEL but not Annexin V/PI staining compared to SNAP 

alone (P<0.001) and was also significant compared to control (P<0.05). At 1 hour 

treatment with SNAP, apoptotic levels remained unchanged and were not significantly 

different to the 30 minute treatment (P>0.05), but significant against control (P<0.05). 

Whilst at 2 hour treatment apoptotic levels slightly increased, but were not significantly 

different to 30 minute treatment (P>0.05) or lhr treatment (P>0.05), but significant 
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against control (P<0.05). Since pre-treatment of UCN had made no significant 
difference in protection of C-20/A4 cells, it was decided that UCN would be added to 
cultures at the same time as SNAP in future experiments. 

4.3.5.4.2 TNF-a treatment 
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Figure 4.27: Percentage time course of Annexin V/Propidium Iodide and TUNEL positive cells and 

cellular LDH release after pre-treatment of 10$M UCN followed by 70pg/ml TNF-a in C- 

20/A4 cells. Data are presented as the mean values (± standard deviations) of 
three independent experiments, each of which was performed in triplicate. 

30 min + TNF-oc - UCN pre-treated 30 minutes prior to the addition of TNF-a 
1 hr + TNF-a - UCN pre-treated 1 hour prior to the addition of TNF-a, 
2 hr + TNF-oc - UCN pre-treated 2 hour prior to the addition of TNF-a, 

Control experiments showed minimal level of apoptosis and necrosis. Treatment with 

TNF-a alone showed a significantly higher level of apoptotic and low necrotic death as 

compared to basal level (P<0.001). Pre-treatment for 30 minutes did not show decrease 

apoptotic death for both Annexin V/PI and TUNEL staining compared to control 

(P<0.001) but was still observed to be significant. Whilst significantly decreased levels 

(30 min + TNF-a) were observed in TUNEL staining compared to TNF-a alone 

(P<0.01). Pre-treatment for 1 hr did not result in low apoptotic levels compared to 

control, but was observed to be significant (P<0.01). However, a significant reduction in 

apoptosis was observed in TUNEL staining (P<0.01) as compared to TNF-a alone with 

no significance observed for Annexin V/PI (P>0.05). Pre-treatment at 2 hr again did not 

result in low apoptotic cell death compared to control (P<0.01). Although apoptotic 

levels were significantly decreased with TUNEL staining (P<0.01) compared to TNF-a 
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alone, with no significance observed with Annexin V/PI (P>0.05) even though apoptotic 
levels were higher. Due to the fact that UCN pre-treatment made no significant 
difference in protection of C-20/A4 cells as compared to Figure 4.25, it was decided that 
UCN would be added to cultures at the same time with TNF-a in future experiments. 

4.3.5.5 The effects of UCN co-treatment on C-20/A4 cells subjected to pro-apoptotic 

stimuli in the presence of a helical CRH(9-41) 

4.3.5.5.1 SNAP treatment 
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Figure 4.28: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following co-treatment of C-20/A4 cells with SNAP, UCN and a helical CRH(9. a1). 
Data are presented as the mean values (± standard deviations) of three independent 

experiments, each of which was performed in triplicate. 

As shown in Figure 4.28, and confirming previous data (Figure 4.25) significantly 

decreased levels of apoptosis (14% Annexin V/PI and 10% TUNEL) were observed 

with the co-treatment of both SNAP and 10-8 M UCN (P<0.001). This cytoprotective 

effect however was reversed when a helical CRH(941) was added to the cultures with 

levels of 24% Annexin V/PI and 27% TUNEL staining, a significant increase when 

compared to SNAP+UCN (P<0.001). 
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4.3.5.5.2 TNF-a treatment 
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Figure 4.29: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following co-treatment of C-20/A4 cells with TNF-cc UCN and a helical CRH(941). 

Data are presented as the mean values (± standard deviations) of three independent 

experiments, each of which was performed in triplicate. 

As observed in Figure 4.29, TNF-a alone treated cells showed a significant increase in 

apoptosis (P<0.001) in C-20/A4 cells, as compared to control cells. With the co- 

treatment of TNF-a and UCN levels of TUNEL but not Annexin V/PI staining was 

significantly reduced (P<0.05). Again, the reduction in TUNEL positivity in response 

to UCN treatment was significantly reversed by a helical M(9-41) (P<0.001, TNF- 

a+UCN+a helical CRH(9.41) vs TNF-(x+UCN). 
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4.3.5.6 The effects of exogenous UCN on cell proliferation 
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Figure 4.30: C-20/A4 cell numbers following treatment with various concentrations of UCN expressed as 

a percentage of the growth of a control (untreated populations). Data are presented as 

the mean values (± standard deviations) of three independent experiments, each of 

which was performed in triplicate. 

The neutral red assay was used to monitor the effects of various concentrations of UCN, 

on the growth rate of C-20/A4 cells in monolayer. Since, previous experiments detailed 

here have shown that UCN may be a growth factor as well as a cytoprotective agent on 

C-20/A4 chondrocytes, these experiments were designed to assess whether exogenous 

UCN also had an effect on cell growth rate. As observed in Figure 4.30, cell number 

remained relatively stable, and cell proliferation was not affected significantly when 

compared to the control population. No significant changes were observed over time 

(P>0.05). 
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4.4 Discussion 

The corticotrophin releasing hormone family of neuropeptides is a group of closely 

related peptides one member of which, Urocortin (UCN) has been reported to have a 

wide tissue distribution with a diverse range of functions. UCN has been detected in the 

human placenta (Petraglia et al, 1996) fetal membranes (Petraglia et al, 1996), skin 

(Slomiski et al, 2000) and the brain (Takahashi et al, 1998). The CRH family of 

peptides functions in the regulation of the pituitary-adrenal axis (Abrahamson et al, 

2001) and in endocrine, autonomic and behavioural responses to stress (Lubomirov et 

al, 2001). UCN and other CRH related peptides have been shown to affect 

inflammatory and cytoprotective responses in the cardiovascular system (Kohno et al, 

2001; Brar et al, 2000) and in gastric mucosa (Chatzaki et al, 2003). This CRH family 

binds to the two classes of CRH receptor (CRH-R1 and CRH-R2) with varying affinity. 

CRH and UCN bind to the CRH-RI receptor with similar potency, whereas UCN, UCN 

II and UCN III bind to the CRH-R2 subtype with higher affinity than CRH. UCN II and 

UCN III are exclusive CRH-R2 ligands and do not bind to CRH-R1 (Reyes et al, 2001; 

Lewis et al, 2001). 

This chapter first investigated the basal expression of UCN in C-20/A4 chondrocyte 

cells and variations in expression in response to stimuli. Endogenous UCN expression 

was established by reverse transcription-polymerase chain reaction (RT-PCR) in C- 

20/A4 cells, the first demonstration of UCN mRNA (and therefore, by inference, 

protein) in chondrocytes to the best of our knowledge. In order to perform further 

experiments, PCR optimization was performed with regard to annealing temperature, 

cycle number and Mg2+ concentration. These conditions were established as an 

annealing temperature of 64°C for 33 amplification cycles with 1mM magnesium ion 

concentration. For UCN these conditions resulted in strong bands for the gene of 

interest when analysed by AGE with minimal extraneous products. Optimum conditions 

were similarly established for the ß-actin and GAPDH housekeeping genes using 63°C, 

32 cycles, 1mM Mg2+ concentration (ß-actin) and 58°C, 30 cycles, 1mM Mg 2+ 

concentration (GAPDH), although (3-actin subsequently proved to be an inappropriate 

housekeeping gene in these studies. 

These PCR parameters were used throughout this study to examine the expression of 

UCN mRNA in C-20/A4 cells treated with a variety of stimuli. UCN mRNA was 
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expressed and easily detected in all conditions investigated, as can be seen in Figures 
4.10 and 4.11. The original intention was to normalize UCN expression against the f3- 

actin housekeeping gene. However, as the bands in Figure 4.10 clearly show, ß-actin 

expression fluctuates following treatment with the various stimuli making it unreliable 
as a housekeeping gene for these experiments. A house keeping gene (internal control 

primer) such as ß-actin should not vary under experimental conditions and is used to 

ensure consistency in sample preparation and loading despite differences in tissue type 

and localisation. The use of ß-actin as a housekeeping gene has also been shown to be 

problematic by other authors (Harrison et al, 2000; Nishida et al, 2006) and with these 

considerations in mind ß-actin was abandoned as a housekeeping gene for the studies in 

this thesis and GAPDH was adopted. GAPDH is one of the glycolytic enzymes 

involved in energy production, but has many different biological properties including 

DNA repair and replication, translational control of gene expression, endocytosis, and 

apoptosis (Harrison et al, 2000). The data shown in Figure 4.11 a indicates a much more 

stable level of GAPDH expression in C-20/A4 chondrocytes exposed to various stimuli, 

than that observed for ß-actin in Figure 4.10 which validates the use of this gene as an 

alternative housekeeping gene. The amplification products were compatible with the 

expected sizes for UCN (172 bp) and GAPDH (437 bp) and their identity was further 

confirmed by sequencing and subsequent BLAST searches of the human genome, 

(accession numbers given in table 4.3) verifying the presence of UCN mRNA in C- 

20/A4 cells. PCR data was normalized by expressing data as a ratio of UCN: GAPDH 

densitometry readings (4.1 lb). Several important observations may be made from this 

normalized data. UCN is expressed at a basal level in untreated C-20/A4 chondrocytes 

but, this data also clearly shows that UCN mRNA expression increases when C-20/A4 

cells are treated with SNAP/NO and that this increase is statistically significant 

(P<0.01). Treatment with TNF-a and a helical CRH(9_41), a CRH receptor antagonist 

however, does not result in any significant increase in UCN above the basal levels. This 

data was further supported by real time PCR using commercial `assay on demand' 

primer/probe kits (Figure 4.12). This method also showed that SNAP treatment of C- 

20/A4 cells stimulated the production of UCN whereas TNF-a and a helical CRH(9.41) 

did not. The real time PCR data actually suggest that TNF-a and a helical CRH(9.41) 

reduce UCN expression which was statistically significant when compared to the 

control cells. 
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The data would suggest that UCN may be a specific cytoprotective agent produced in 

response to certain stimuli/apoptotic pathways only. As well as the presence of UCN in 

C-20/A4 cells, the beneficial effects of UCN mRNA has been reported in many other 
tissues including brain, heart, spleen, skeletal muscle, kidney, liver, adipose tissue, 
intestine, lungs, stomach, skin, adjuvant-induced arthritic joints, placenta and the ovary 
(Boorse and Denver, 2006). The present data is consistant with the data of Okosi et l 

(1998) who also demonstrated increased endogenous mRNA UCN expression in rat 

cardiac myocytes, which was increased further by thermal shock resulting in UCN 

protection of cardiac myocytes from cell death triggered by hypoxia. The present data is 

also supported by Brar et l (1999), who demonstrated that simulated ischeamia (which 

caused both necrotic and apoptotic death of neonatal rat cardiac myocytes) is linked 

with increased expression of UCN mRNA and peptide production. Kohno et al, (2001) 

and Uzuki et al, (2001) have both reported that UCN mRNA and immunoreactivity was 

expressed in synovial lining cell layer, synovial fibroblast like cells, blood vessel 

endothelial cells and infiltrating mononuclear inflammatory cells in human arthritic 

joints. They also established that the expression of UCN mRNA in synovial tissues in 

RA was more significant than that in OA and correlated with the level of inflammation. 

This could be due to the higher level of cytokines and NO in RA. They also 

demonstrated that synovium from healthy patients showed a decreased level of UCN 

expression. They suggested UCN in the inflamed joints may be secreted by the 

terminals of peripheral neurons as well as immune cells. This data may also suggest that 

UCN may play an important role as an autocrine and/or paracrine regulator of synovial 

inflammation (Oki and Sasano, 2004). However, the present data disagrees with the data 

of Honjo et al, (2006), who reported the presence of TNF-a (10 ng/ml) had resulted in 

increased UCN mRNA levels in HUVECs observed in a time and dose dependent 

manner. Clearly, this was not observed with C-20/A4 cells. This could be due to Honjo 

et al, using a higher dose of TNF-a which could indicate that UCN is expressed at 

increased TNF-a concentration, whilst in this study, the concentration of TNF-ct was 

much lower (70pg/ml), which could explain why UCN was not expressed. 

To investigate the endogenous production of UCN further, cells were treated with 

various concentrations of the CRH antagonist a helical CRH(9_41). In order to first 

establish a suitable concentration of a helical CRH(9_41 to use, C-20/A4 cells were 

treated with a range of concentrations (10-12M to 10-6 M) which resulted in a dose 

dependent increase in apoptosis (Figure 4.13). Low concentrations of a helical 
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CRH(9_41) from 10-1'M to 10-1°M resulted in no significant increase in apoptotic or 
necrotic cell death as compared to control cells (P>0.05). A gradual dose dependent 

increase in apoptosis was observed however from 10-9M to 10-6 Ma helical CRH(9_41) 

with no change in necrosis. It is likely that receptor saturation with ligands occurs at 
higher concentrations of a helical CRH(9_41) than at low concentrations, since apoptotic 
levels remained unchanged from 10-9M to 10-6M. These data suggest that the 

endogenous UCN is produced even by resting C-20/A4 cells which is secreted and acts 
in an autocrine/paracrine fashion to promote cell growth/survival. For the purposes of 
further experiments, a concentration of 10-8M a helical CRH(9_41) was used, since this 

was apoptogenic. This dose is in agreement to the data of Brar et al, (1999), who 

established that the dose 10-8M a helical CRH(9_41) was effective in abolishing the 

protective effect of UCN in cardiac myocytes exposed to simulated ischaemia. 

The increase in apoptotic death with cc helical CRH(9_41) alone would support the 

existence of a CRH-R mediated protective mechanism. Whilst this data would indicate a 

basal expression of UCN which could contribute to cell survival, the data from section 

4.3.1.4.2 indicates that UCN expression is induced by pro-apoptotic stimuli. 

Experiments were therefore conducted to investigate the nature of this UCN induction 

further and to determine if this too could be blocked by a helical CRH(9.41). 

Chondrocyte cells were therefore treated with 1mM SNAP and 10-8M a helical CRH(9_ 

41). Figure 4.14 shows low levels of apoptosis in control cells, but a high level of 

apoptosis in cells treated with 10-8 Ma helical CRH(9_41) which was significantly 

different from control cells (P<0.001). This would indicate an endogenous basal 

production of a member or members of the CRH family of peptides (CRH, UCN, UCN 

II, or UCN IH). The addition of a helical CRH(9_41) would block the binding of these 

CRH peptides to the CRH receptor (at present it is not known which type of CRH 

receptor CRH-R1 or CRH-R2 is expressed by chondrocytes, but a helical CRH(9.41) 

inhibits both receptor subtypes). SNAP treatment of C-20/A4 cells resulted in an 

increase level of apoptosis, however, apoptotic levels in SNAP treated cells were 

significantly less than those treated with a helical CRH(9_41) alone, (P<0.01). Treatment 

with both SNAP and a helical CRH(9_41) showed a further increase of apoptosis to 30% 

Annexin V/PI and 25% TUNEL positive cells, (P<0.05) against SNAP alone. These 

data and that from section 4.3.1.4.2 therefore suggest that the increased endogenous 

urocortin induced by SNAP is also released, and may exert, a cytoprotective effect by 
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possibly binding to a CRH receptor on the C-20/A4 cell surface due to the antagonist 

used a helical CRH(9_41) (blocks either CRH-R1/2). This increase in chondrocyte death 

following CRH receptor blockade is a novel observation and would support the 

presence of a CRH receptor-dependent protective mechanism in C-20/A4 cells. This 

hypothesis is supported by the work of Brar et al (1999), who demonstrated that a 
helical CRH(9_41) treatment of cardiac myocytes significantly reduced the protective 

effect of preconditioned media. 

In experiments performed with TNF-a (Figure 4.15), untreated cells showed low levels 

of apoptosis whilst a helical CRH(9_41) alone, as in the SNAP experiments, significantly 

increased (P<0.001) apoptotic levels. Treatment with 70pg/ml TNF-a showed an 

induction of apoptosis. Similarly to the SNAP experiments, a further increase in cell 

death was achieved in the presence of both TNF-a and a helical CRH(9_41) and this was 

again observed to be significantly different compared to TNF-a alone (P<0.01), 

correlating with the results observed with the SNAP experiments. This may indicate that 

some CRH family peptide binding to CRH receptors was taking place resulting in a 

degree of protection from the stimulus although the data from Figure 4.15 indicates that, 

unlike SNAP, TNF-a does not stimulate the production of UCN. Data from these 

experiments would indicate that chondrocytes may synthesise and release a member of 

the CRH family (possibly UCN, as suggested by the RT-PCR data), which protects 

from apoptosis by binding to a CRH receptor. The involvement of a CRH family 

peptide is further supported by the data of Okosi et al (1998) who showed that UCN 

expression in rat heart is increased by thermal shock and that exogenous UCN protects 

primary cardiac myocytes from cell death induced by simulated ischaemia suggesting 

that UCN may work as an endogenous cardioprotective agent. This is further supported 

(2003) who reported that myocytes which expressed UCN at the by Scarabelli et at 

protein level resulted in no TUNEL positive cells, suggesting that endogenous UCN 

effectively protects those myocytes in which it is produced. It has been suggested by 

Vaughan et al, (1995), Kozicz et al, (1998) and Oki et al, (1998) that UCN may be the 

endogenous mammalian ligand for the CRH-R2 receptor and binds to this receptor with 

high affinity, although the identity of the CRH receptors on chondrocytes has not been 

established. 
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As the a helical CRH(9-41) studies described here clearly suggest the existence of a 
UCN/CRH-R circuit, an alternative approach was sought using selective depletion of 
UCN from the culture medium of growing C-20/A4 cells, using an anti human UCN 

antibody. Figure 4.16, shows that, the selective depletion of UCN with an anti-UCN 

antibody results in an increased level of cell death, even greater than that caused by the 

addition of a helical CRH(9_41 and shown to be significant against the control (P<0.001) 

and a helical CRH(9-41) (P<0.001). The addition of anti-albumin antibody (isotype 

control) did not result in a significant increase (P>0.05) in cell death, with a similar 
level of apoptosis observed to that of the control cells. These data support that from the 

a helical CRH(9-41) studies suggesting the existence of an endogenous cytoprotective 

mechanism involving UCN in chondrocytes. 

The data from the UCN depletion studies and the RT-PCR data indicate that UCN may 

be endogenously produced and released to act in an autocrine/paracrine manner as a 

cytoprotective mechanism. This hypothesis is supported by the cardiac myocyte data of 

Brar et al, (1999) who showed that preconditioned media from cardiac myocytes 

exposed to brief simulated ischaemia significantly protected other cardiac myocytes 

from cell death. Experiments were therefore designed to investigate whether similar 

phenomenon occurred in C-20/A4 chodrocyte cells. 

The protective effects of preconditioned media were evaluated by growing C-20/A4 

cells for 6 hours in the presence of 1mM SNAP (PS) or 70pg/ml TNF-a (PT), 

harvesting the medium and using it to treat other cells. Control medium was also 

generated from cells grown for 6 hours without SNAP or TNF-a (PC). These 

preconditioned media were used to treat additional C-20/A4 cells in conditions similar 

to those used in the SNAP and TNF-cc experiments previously. However, no protection 

was observed using any of the preconditioned media, at either 10% or 100% 

concentration (Figures 4.17-4.22). Even if endogenous UCN was being released, any 

potential effect is presumably being masked by the presence of other pro-apoptotic 

factors also present. This whole series of experiments does not, therefore contribute to 

the confirmation or reflection of the hypothesis for an autocrine/paracrine endogenous 

UCN-CRH-R protective pathway. 

As selective depletion of endogenous UCN results in increased cell death, the 

chondroprotective role of UCN was examined further, by first incubating C-20/A4 cells 
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in various concentrations of exogenous UCN to investigate the response of these cells to 
UCN in the absence of pro-apoptotic stimuli. After 6 hours the cells were assessed for 

cell death by the three assays. Figure 4.23 illustrates that, after an initial rise in 

apoptosis between the concentrations 10-1'M-10-10M a gradual decrease to control levels 

occurs at higher concentrations. For the purposes of further experiments, a 

concentration of 10-8M UCN was used, since this was not apoptogenic. This dose is in 

agreement to the data of Okosi et al, (1998), Brar et al, (1999), Schulman et al, (2002) 

and Chanalaris et al, (2005), who established a dose of 10-8M UCN to be potective in 

cardiac cells, and further supported by Honjo et al, (2006) who also found this dose was 

protective in HUVECs. 

The data in Figure 4.24 indicates that UCN cytoprotective action is competitively 

inhibited by a helical CRH(9_41). Whilst a concentration of 10-8M a helical CRH(9-41) 

(Figure 4.13) was used for most experiments, a lower concentration of 5x10-10M was 

used for these experiments to give increased sensitivity. This experiment was designed 

to investigate whether varying concentrations of UCN are able to lower the apoptotic 

cell death in a helical CRH(9-41) treated C-20/A4 cells and therefore by inference 

whether UCN and a helical CRH(9-41) are competitively occupying CRH receptors. At 

lower concentrations (10-12 M-10-10 M) of UCN it appears that a helical CRH(9-41) 

occupies the CRH receptors to a greater extent than UCN, resulting in increased cell 

death. As the concentration of UCN increased, levels of apoptosis decreased 

demonstrating that UCN is likely to be competing with a helical CRH(9-41) for the 

binding of its receptors. No inference can be made as to the subtype of CRH receptor 

present since this has not been established in this study, however UCN is known to bind 

to the CRH-R2 at high potency and efficacy (-5 fold higher) than CRH-R1 (Bale and 

Vale, 2004). 

Once an optimum UCN concentration for further experiments had been decided upon, 

cells were treated as before with SNAP and TNF-a, but this time with the addition of 

exogenous UCN at 10-8M (Figure 4.25), in order to investigate any possible protective 

effects. C-20/A4 cells were co-treated both with SNAP and UCN, and TNF-a and 

UCN. It can be seen that treatment with SNAP + UCN, showed a decreased level of 

apoptosis as compared to SNAP alone showing a significant level of protection against 

cell death (P<0.01). With TNF-a + UCN however, no significant protection was 

observed when compared with TNF-a alone (P>0.05). These data clearly show that 
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exogenous UCN protects C-20/A4 cells from apoptosis, where SNAP (NO) is the 

stimulus but not where TNF-a is the stimulus. As previously shown in this study, UCN 
is constitutively expressed and is also inducible by SNAP treatment. The addition of 
exogenous UCN would increase the pool present in the medium increasing CRH 

receptor binding and hence protection observed in SNAP treatment. The production of 
UCN in the presence of TNF-a was previously shown to be significantly lower as 

compared to SNAP. It is possible that the difference in response of SNAP and TNF-a to 

UCN could arise from various expressions of the receptors (CRH or calcium channels, 
because at present the identity of the CRH-R on chondrocytes is not known (discussed 

later). Whilst Agnello et al, (1998) did report that the effect on TNF-a producing cells 

may be the reason for UCN inhibition, which indicated a lack of protection from TNF-a 

in the presence of UCN in C-20/A4 chondrocytes. 

As discussed earlier, protection is observed when cells were co-treated with SNAP 

(NO) and UCN but not TNF-a and UCN (Figure 4.25). Studies were also performed to 

determine if pre-treatment with UCN resulted in further increases in protection. For this 

reason, cells were pre-treated with UCN at several time points prior to the addition of 

SNAP (Figure 4.26) and TNF-a (Figure 4.27) and the level of cell death determined. 

Cell death increased with increased pre-treatment time. Indeed the studies with SNAP 

(Figure 4.26) indicate the pre-treatment for 30 minutes or 1 hour makes no significant 

difference to the level of cell death when compared to the level observed with co- 

treatment of SNAP and UCN (Figure 4.25) (P<0.001). Pre-treatment for longer times 

than this e. g. 2 hours, results in a significant reduction in UCN mediated cytoprotection 

against SNAP (P<0.01). In experiments, where TNF-a provided the pro-apoptotic 

stimulus (Figure 4.27) UCN pre-treatment had little effect on levels of cell death 

showing no significant decrease in death at any time point, including co-treatment 

(Figure 4.25) (P>0.05). These data indicate that UCN does not protect chondrocytes 

further when pretreated. It is possible that at increased treatment times UCN may bind 

to other sites other than CRH receptors resulting in changed intracellular signals and 

biological effects. However because receptor ligation was not studied in this thesis, it is 

not possible to fully conclude on this. It is equally possible however that UCN may 

have a short half life (plasma half life in normal humans is 52± 3 minutes (Davis et al 

2004) and may be degraded and no longer biologically active after extended 

incubations. For this reason it was decided that C-20/A4 chondrocytes would be treated 

with UCN and the pro-apoptotic stimulus concurrently in future experiments as pre- 
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treatment with UCN did not protect cells further. The present data disagrees with the 
data of Brar et al, (2000) who showed that a 30 minute pre-treatment with UCN was 
effective in protecting primary cardiac myocyte culture exposed to lethal simulated 
hypoxia/ischeamia from apoptotic death as measured by Annexin V/PI and TUNEL 

staining. 

In order, to investigate the protective role of UCN further, C-20/A4 cells were co- 

treated with exogenous UCN at the established concentration of 10-8M with the pro- 

apoptotic stimuli (SNAP and TNF-a), but the specificity of the UCN effects were also 

assessed by the addition of the CRH-R antagonist a helical CRH(9_41) (10-8M). The data 

observed in Figure 4.28 shows that with the addition of exogenous UCN, apoptotic 
levels induced by SNAP are notably decreased. Treatment with UCN and SNAP 

showed a significantly (P<0.001) decreased level of apoptosis compared to SNAP 

alone. However, treatment with SNAP, UCN and a helical CRH(9_41) showed high levels 

of apoptosis (P>0.05), which were not significant against SNAP alone. Therefore the 

protective effects of UCN are abrogated by this receptor antagonist. C-20/A4 cells were 

also treated with TNF-a in the absence and presence of 10-8M UCN (Figure 4.29). 

Observations from Figure 4.29 shows that when cells were treated with TNF-a in the 

presence of UCN, TUNEL, but not Annexin V/PI staining was significantly reduced 

(P<0.05) as compared to TNF-oc alone. This may suggest that UCN is delaying the 

progression of the apoptotic programme in response to TNF-a. Again, the protective 

effects of UCN on DNA fragmentation were inhibited by the receptor antagonist. 

These data show that with the addition of a helical CRH(9_41), the chondroprotective 

effect of UCN is abolished in C-20/A4 cells, suggesting that the effects of UCN are 

possibly CRH receptor mediated (Xu et al, 2006). In comparison to Figure 4.14 and 

4.15, the main difference observed, is that a CRH peptide appears to be present at basal 

level because with the addition of a helical CRH(9_41) alone, apoptotic levels had 

increased considerably. Subsequently, the data obtained in Figures 4.28 and 4.29 shows 

when UCN was added exogenously the level of UCN content in these media would 

have increased. Indicating UCN was at a more concentrated level, which helped protect 

these cells from death especially in SNAP treated cells. Until now, a direct link between 

UCN and NO has not been reported in C-20/A4 human chondrocytes and as observed 

previously in this study, UCN production in the presence of TNF-a is small. As shown 

in the SNAP treated cells a helical CRH(9_41) abolished any protective effects exerted by 
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this peptide. UCN has also been shown to exert cytoprotective effect in several tissues. 
This data is in agreement with results obtained from Okosi et al, (1998) and Brar et l 

(1999) who demonstrated UCN to be protective against cardiac myocytes cultured from 

neonatal rat against lethal ischaemic injury and reduces the infarct size of the intact rat 
heart prior to and following ischaemic insult and it is therefore possible that UCN also 

performs a similar protective function in chondrocytes. Brar et 1 (2002) later reported 

that UCN generated significant protection against hypoxia/reoxygenation both in terms 

of total cell death (measured by Trypan blue) and of apoptosis (as measured by Annexin 

V and TUNEL staining). The present data is also supported by Scarabelli et al, (2002) 

who reported that the addition of UCN (10-8M) reduced necrotic and apoptotic cell 
death in the isolated rat heart exposed to ischaemia/reperfusion. Cardioprotective effects 

of UCN on cardiac myocytes stimulated by hypoxia or by ischaemia indicate that 

calcium channels could take part since ischaemia and hypoxia damage is linked with 

(2004; 2005) reported that UCN calcium overload (Scarabelli et al 2002). Tao et at 

may exert the inhibitory effect directly on L-type calcium channels or KATP channels 

instead of through binding primarily to its CRH-R receptors (by using CRH-R 

antagonist) in rat cardiac myocytes. These authors also reported that UCN- can directly 

block L-type calcium currents. This blocking effect of UCN on L type calcium channels 

would be possible to exert a cardioprotective action by reducing calcium overload via 

the calcium voltage gated calcium channels, consistent with the studies of Scarabelli et 

al, (2002) who reported that UCN protected the cardiomyocytes against apoptosis which 

is known to be linked with calcium overload. These reports were further supported by 

their in vivo studies (Tao et al) indicating UCN, similar to the L type calcium channel 

blocker, verapamil, significantly diminished the infarct size of adult rat hearts. Since 

calcium plays a vital role in apoptosis, and the evidence suggested by Tao et al, it is 

possible these human chondrocytes could be exerting its inhibitory effects directly on 

the L-type calcium channels before binding to the CRH receptors, but since the 

existence of CRH receptors or L-type calcium channels has not been shown in this 

study, this remains inconclusive. In regards to this Kohno et al, (2001) reported that 

UCN on inflammation is mediated by CRH-R1 in RA and OA patients, and acts in an 

autocrine or paracrine manner. Webster et l (1996) reported that most of the 

inflammatory actions of UCN are mediated by CRH-R1 rather than CRH-R2 in rat 

pituitary, frontal cortex and cerebellum, but not heart, (by using the CRH-R1 antagonist 

antalarmin). It is possible that C-20/A4 cells could be mediated by CRH-R1 also, 

because of the antagonist used in this study which recognises both receptor forms. The 
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present data also agrees with the data of Nishikimi et al, (2000), who showed exogenous 
UCN is potent in protecting cardiac myocytes from necrotic and apoptotic death 

induced by ischeamia. The present data is also consistant with the data of Pederson et 

al, (2002) who showed that UCN exert its potent protective effect on cultured rat 
hippocampal neurons with concentrations in the range 0.5-5. OpM, increasing the 

resistance of these cells to oxidative and excitotoxic stresses via CRH-R1. In this report, 

however the concentration of UCN had protected cultured hippocampal neurons from 

cell death was lower than that used with chondrocytes indicating that UCN is 

cytoprotective even at low doses. The present data is also supported by Facci et al, 

(2003) who reported that the protective effect of UCN (30nM) was abolished by a CRH 

receptor antagonist in cerebellar granule neurons. The data obtained in this study would 

indicate that SNAP and TNF-a are both involved in the pathogenesis of OA, and may 

exert their pro-apoptotic effects via alternative pathways. Since TNF-a is known to 

induce apoptosis via the death receptor pathway and NO is known to induce apoptosis 

via the mitochondrial pathway. 

The final experiments documented in this chapter (Figure 4.30) were designed to assess 

whether UCN treatment was showing apparent decreases in cell death by increasing C- 

20/A4 chondrocyte growth rate or by actually protecting existing cells. The data in 

Figure 4.30 show no increase in cell growth for UCN treated cells as compared to 

control, untreated cells, suggesting that UCN is exerting a genuine cytoprotective effect. 

Data in this thesis demonstrates, for the first time, the endogenous production of UCN 

by a human chondrocyte cell line and reveals a cytoprotective role of UCN in 

chondrocytes subjected to the pro-apoptotic mitochondrial stimulus NO, but not to the 

death receptor mediated stimulus TNF-a. Many mechanisms may take part in this 

protective effect of UCN in C-20/A4 cells such as activation of P13K (Brar et al, 

2002b), P38 MAPK (Kageyama et al, 2003), P42/P44 MAPK (Schulman et al, 2002; 

Brar et al, 2002b), or activation of mitochondrial ATP-sensitive potassium channels 

(KATp) (Lawrence et al, 2002). Whilst the identification of upstream kinases (MAPKs) 

that are activated by UCN have been established in C-20/A4 cells and other cells, the 

identification of end effector molecules has not. Lawrence et al, (2002; 2004) used 

Affymetrix gene chip technology to search for global gene changes linked with a 24 

hour exposure of rat neonatal primary cardiac myocytes to UCN. They investigated 

three gene products by this technique, the first one being an ATP sensitive inwardly 
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rectifying potassium channel (KATO subtype, Kir6.1 that is increased 2.6-fold at the 

protein level in UCN treated cells compared to controls. The mitochondrial KATP 

channel blockers further increased apoptotic cell death during ischaemia/reperfusion 

(UR) and blocked the protective effect of UCN. The authors reported these channel 
blockers to be cardioprotective. The second protein they identified was a specific 

calcium independent phospholipase A,? (iPLA2) enzyme which was lowered by UCN 

(2.3 fold). This protein has been shown to enhance its activities during UR, with a 

simultaneous increase in its metabolites arachidonic acid (AA) and 
lysophosphatidylcholine (LPC). LPC has been implicated in cell death during I/R insult 

and the authors recently discovered that the concentration of LPC in the heart is lowered 

by a 24 hour UCN treatment. The third and final gene discovered as being altered 

during UCN treatment is the protein kinase C epsilon (PKCE). The transcript level of 

this enzyme in cardiac myocytes after UCN treatment were increased 3.6 fold compared 

to untreated cells. No other isoform of PKC present on the gene chip was changed 

following UCN treatment. The PKCE is the only isoform of PKC that is protective 

during ischaemic injury. Since these proteins were not examined in C-20/A4 cells, and 

the evidence of chondroprotection observed with SNAP treatment (possibly 

mitochondrial pathway), it is possible these proteins, present in the mitochondria could 

be activated in these cells with UCN treatment, to endure chondroprotection. It has also 

been reported that these three proteins can interact, e. g. LPC can alter both KATP 

channels and PKCc, whilst PKCc can interact with KATP channels and iPLA2 (Steer et 

al, 2002). 

The protective effect of UCN has been demonstrated to be dependent on the activation 

of the P13K (Brar et al, 2002b), P38 MAPK (Kageyama et al, 2003) and P42/P44 

MAPK (Brar et al, 2002a) in other cell types. As a result, chapter 5 documents the 

investigation and possible beneficial effects of UCN via these pathways in C-20/A4 

chondrocytes. As well as these pathways, the apoptotic pathway observed in 

chondrocytes was also investigated using specific antibodies for caspases. 
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CHAPTER 5 

INTRACELLULAR SIGNALLING IN UCN MEDIATED 

C-20/A4 CHONDROCYTE PROTECTION 
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5.1 Introduction 

Others have previously identified signal transduction pathways associated with 

urocortin-mediated cytoprotection. Firstly, therefore I wished to establish whether the 

same pathways were also implicated in the protection of chondrocyte apoptosis by 

UCN. Secondly, although TNF-a is known to induce apoptosis primarily by binding to 

TNF-R, and activation of caspase 8, I have investigated which initiator caspase was 
initially activated by SNAP, to evaluate whether NO-induced chondrocyte apoptosis is 

mediated by mitochondrial or death receptor pathways. 

Inhibitors of the kinase family of signal pathways, are used in research in order to 

establish specific signaling leading to changes in gene expression. The majority of the 

protein kinase inhibitors are small molecules that either interfere with phosphorylation 

or bind (competitively) in the ATP binding site, an area within the activation loop of the 

kinase in which the dual phosphorylation (especially MAPK) takes place (Hommes et 

al, 2003). 

In the present study, three selective inhibitors of different pathways were studied, 

LY294002 (for P13K inhibition), SB202190 (for P38 MAPK inhibition), and PD98059 

(for P42/P44 MAPK inhibition) (Dudley et al, 1995). By using selective inhibitors for 

each pathway, it was possible to study the potential importance of these pathways in C- 

20/A4 chondrocytes. 

LY294002 (2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one) is a potent and 

selective cell permeable inhibitor of P13K which inhibits purified P13K with an IC50 of 

1.4p, M on purified preparations (Vlahos et al, 1994). LY294002, is a compound 

originated from the naturally occurring bioflavinoid quercetin, and is known to prevent 

P13K activity through competitive inhibition of an ATP binding site on the p85a subunit 

(Vlahos et al, 1994). LY294002 is an effective compound for the identification of 

cellular events that are controlled by the PI3K/Akt axis, and has been shown to enhance 

apoptosis in a variety of cells by blocking the PI3K/Akt anti-apoptotic pathway 

(Bancroft et al, 2002). LY294002 was shown to totally eliminate P13K activity in 

stimulated human neutrophils, as well as inhibiting proliferation of smooth muscle cells 

in cultured rabbit aortic segments (Vlahos et al, 1994). LY294002 was also used to treat 
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C-20/A4 chondrocytes to establish if the P13K is involved in the protective mechanism 
of UCN. 

Ever since selective inhibitors of the P38 MAPK and P42/P44 MAPK cascades were 
first described, they have been extensively used to study the relative contribution of 
different intracellular signal transduction pathways. The pyridinylimidazole compound 

4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)IH-imidazole (SB202190) is 

primarily a specific inhibitor of P38a and P380 (Jiang et al, 1996) via competition with 

ATP for the same binding site on the P38 kinase (Wilson et al, 1997). This selective 

P38 inhibitor is extensively used in investigations of the physiological functions of the 

P38 MAPK pathway, including lipopolysaccharide, UV, anisomycin-induced c-jun and 

c-fos expression (Hazzalin et al, 1996), and B cell antigen receptor-induced apoptosis 

(Graves et al, 1998). The P38 MAPK inhibitor is also known to control cytokine 

production and is anti-inflammatory in vivo (Beyaert et al, 1996). P38 MAPK inhibitors 

have been reported to suppress TNF-a mRNA translation (Young et al, 1993). 

However, the inhibitory step that is blocked by P38 inhibitors depends on the cytokine 

and cell type used (Chin and Kostura, 1993). SB202190 is also known to be a 

membrane permeable inhibitor of P38 MAPK, and was used to treat C-20/A4 cells to 

establish if the P38 MAPK is involved in the protective mechanism of UCN. It has been 

reported that in RA, P38 MAPK and P42/P44 MAPK are activated in rheumatoid 

synovial tissues (Jackson et al, 1998). 

The flavone compound 2- (2' -amino-3' -methoxyphenyl)oxanaphthalen-4-one 

(PD98059) is a cell permeable selective inhibitor of the mammalian MEK-1/2 and has 

been used widely for investigating the physiological function of P42/P44 MAPK (Pang 

et al, 1995). PD98059 selectively inhibits MEK activation, leading to the inhibition of 

phosphorylation and the activation of MAPK. In PC12 cells, it blocks the increase in 

MAPK activity produced by NGF. PD98059 is a very useful tool to assist in the 

clarification on the role of the MAPK cascade in many biological systems (Yeh et al, 

2002). As with the other inhibitors, PD98059 was also used to treat C-20/A4 

chondrocytes to establish if the P42/P44 MAPK is involved in the protective 

mechanism of UCN. 

Caspases are the main effectors of apoptosis. The caspases are a group of cysteine 

proteases present in the cell as inactive pro-forms or zymogens, which can be cleaved to 
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form active enzymes after apoptotic induction. Induction of apoptosis via death 

receptors and mitochondrial pathways results in the activation of an initiator caspase 
such as caspase 8 and caspase 9 respectively. These caspases can then activate other 
caspases in a cascade, which leads to the activation of the effector caspase, caspase 3. 
These caspases are responsible for the cleavage of the key cellular proteins that leads to 
the typical morphological changes observed in cells undergoing apoptosis and are 
discussed in detail in chapter 1. 
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5.2 Methods 

5.2.1 Electrophoresis / Western blotting technique 

The SDS-PAGE electrophoresis and Western blot procedure was followed as set in 

chapter 2 (section 2.2.4.2 and 2.2.4.3 respectively) for P42/P44 MAPK as well as the 

caspases 3,8 and 9. The P42/P44 MAPK inhibitor, PD98059 was administered to C- 

20/A4 cells in the presence and absence of stimuli for a period of 30 minutes. This time 

point was chosen following initial experiments with exposure lines of 30 and 60 

minutes (data not shown). The induction of P42/P44 MAPK activities were clearly 

detected in C-20/A4 cells at 30 minutes, whilst at 60 minutes the activation had not 

enhanced any further. This was also observed by Brar et al, (2002a) who showed that 

P42/P44 MAPK actually occurs in the presence of stimuli as early as 5 minutes (weak 

response) and is further enhanced with the increase in time up to 1 hour (Brar et al, 

2004). The blots were probed for phosphorylated/total ERK 1/2 using 1: 500 dilutions of 

polyclonal rabbit antibodies specific for the ERK 1/2 proteins and followed as explained 

in chapter 2. 

Western blotting was performed with polyclonal rabbit antibodies (1: 500) to caspase 3 

(recognizes cleaved active form only, purchased from Cell Signaling), caspase 8 and 

caspase 9 (recognise both the inactive precursors and the activated forms of either 

caspase, purchased from Santa Cruz Biotechnology). Analysis is presented as ratio 

densitometry values of active caspase 3 to GAPDH. 

5.2.2 Co treatment of C-20/A4 cells with signal transduction pathway inhibitors and 

ro-anontotic Stimuli. 

The LY294002 (P13K inhibitor) was used to treat C-20/A4 cells along with the pro- 

apoptotic stimuli (1mM SNAP or 70pg/ml TNF-(x) and the CRH family peptide UCN. 

Cells were cultured as described previously (2.2.1.1) and transferred from a 75cm2 flask 

to 6 well plates. Cells were treated at a final concentration of 25µM LY294002 alone 

(concentration established in a study by Gavaldä et al, (2004)), pro-apoptotic stimuli 

alone (ImM SNAP or 70pg/ml TNF-(x), pro-apoptotic stimulus plus 10-8M UCN, or 

LY294002 with either of the pro-apoptotic stimulus and UCN. Prior to treatment, cells 
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were cultured and starved of serum for 24 hrs, then re-supplied with either 1% FCS 

DMEM media for a6 hr exposure. A similar procedure was repeated with either the P38 

MAPK pathway inhibitor SB202190 being replaced by LY294002 at a final 

concentration of 3µM (established in a study by Wang et al, (1999)) or PD98059 

(P42/P44 MAPK pathway inhibitor) at a final concentration of 501M (concentration 

established in a study by Dudley et al, (1995)). 
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5.3 Results 

5.3.1 The investigation of the UCN mediated protective pathways in C-20/A4 cells 

5.3.1.1 The effects of P13K inhibition in C-20/A4 cells treated with pro-apoptotic 
stimuli and UCN 

5.3.1.1.1 SNAP and UCN treatment 
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Figure 5.1: Percentage of Annexin V/Propidium Iodide, TUNEL positive and cellular LDH 
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release following co-treatment of C-20/A4 cells, with SNAP, LY294002 and UCN. Data are 

presented as the mean values (f standard deviations) of three independent experiments, each 

of which was performed in triplicate. 

Control experiments showed low levels of apoptosis. Significantly high apoptotic and 

low necrotic levels were observed with SNAP alone as compared to SNAP + UCN 

(P<0.001). However, the addition of LY294002 to SNAP and UCN significantly 

reversed the UCN mediated protection (P<0.001). 
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5.3.1.1.2 TNF-a and UCN treatment 
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Figure 5.2: Percentage of Annexin V/Propidium Iodide, TUNEL positive and cellular LDH 
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release following co-treatment of C-20/A4 cells, with TNF-cc, LY294002 and UCN. Data 

are presented as the mean values (± standard deviations) of three independent experiments, 

each of which was perfonned in triplicate. 

In untreated cells, cell death was observed to be low. Co-treatment of LY294002 + 

UCN + TNF-a significantly reversed the UCN mediated protection (23% Annexin V/PI 

and 21 % TUNEL) as compared to TNF-a+UCN for TUNEL treated cells (P<O. 001) but 

not Annexin VIPI treated cells (P>0.05), and was not significantly different to TNF-a 

alone (P>0.05) for both Annexin V/PI and TUNEL staining. 
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5.3.1.2 The effects of P38 MAPK inhibition in C-20/A4 cells treated with pro-apoptotic 
stimuli and UCN 

5.3.1.2.1 SNAP and UCN treatment 
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Figure 5.3: Percentage of Annexin V/Propidium Iodide and TUNEL positive cells and cellular LDH 

release following co-treatment of C-20/A4 cells, with SNAP, SB202190 and UCN. Data are 

presented as the mean values (± standard deviations) of three independent experiments, each 

of which was performed in triplicate. 

Co-treatment with UCN and SNAP resulted in significantly low (P<0.001) apoptotic 

levels as compared to SNAP alone (P<0.001). However, the addition of SB202190 + 

UCN + SNAP (30% Annexin V/PI, 17% TUNEL) significantly reversed the UCN 

mediated protection compared to SNAP+UCN (P<0.001) for Annexin V/PI treated 

cells. Necrotic levels remained low throughout the experiment. 
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5.3.1.2.2 TNF-a and UCN treatment 
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Figure 5.4: Percentage of Annexin V/Propidium Iodide, TUNEL positive and cellular LDH 

release following co-treatment of C-20/A4 cells, with TNF-a, SB202190 and UCN. Data are 

presented as the mean values (± standard deviations) of three independent experiments, each 

of which was performed in triplicate. 

Co-treatment of SB202190 + UCN + TNF-a reversed the UCN mediated protection 

(23% Annexin V/PI and 21 % TLTNEL) as compared to TNF-cx+UCN for Annexin V/PI 

(P<O. 00 1) for Annexin `'/PI staining. 
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5.3.1.3 The effects of P42/P44 MAPK inhibition in C-20/A4 cells treated with 
Lo-apo totic stimuli and UCN 

5.3.1.3.1 SNAP and UCN treatment 
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Figure 5.5: Percentage of Annexin V/Propidium Iodide, TUNEL positive and cellular LDH 

release following co-treatment of C-20/A4 cells, with SNAP, PD98059 and UCN. Data are 

represented as the mean values (± standard deviations) of three independent experiments, 

each of which was performed in triplicate. 

Control experiments showed low levels of apoptosis. SNAP+UCN showed significantly 

low levels of apoptosis as compared to SNAP alone (P<0.01), but in PD98059 + UCN + 

SNAP, apoptotic level was observed to be significant increased as compared to 

SNAP+UCN (P<0.001), but not in SNAP alone (P>0.05), indicating that PD98059 

reversed the UCN mediated protection 
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5.3.1.3.2 TNF-a and UCN treatment 
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Figure 5.6: Percentage of Annexin V/Propidium Iodide, TUNEL positive and cellular LDH 
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release following co-treatment of C-20/A4 cells, with TNF-a, PD98059 and UCN. Data are 

presented as the mean values (± standard deviations) of three independent experiments, each 

of which was performed in triplicate. 

Co-treatment of PD98059+UCN+TNF-a showed an increased level of apoptosis at 23% 

Annexin V/PI, 40% TUNEL, which was more prominent for TL7NEL than Annexin 

V/PI staining. These were significantly different as compared to TNF-a+UCN 

apoptosis especially for TUNEL staining. This data again indicated that PD98059 had 

reversed the UCN mediated protection in C-20/A4 cells more for TUNEL staining than 

Annexin V/PI staining. 
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5.3.1.4 The effects of LY294002, SB202190 and PD98059 inhibition alone in C-20/A4 

cells 
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Figure 5.7: Percentage of Annexin V/Propidium Iodide, TUNEL positive and cellular LDH 

release following treatment of C-20/A4 cells, with LY294002, SB202190 and PD98059. 

Data are presented as the mean values (± standard deviations) of three independent 

experiments, each of which was performed in triplicate. 

The inhibitors used in this study for the various pathways were then used to treat C- 

20/A4 cells alone. This was to observe whether these inhibitors were exerting a toxic 

effect in these cells. Treatment of LY294002, SB202190 and PD98059 were all 

significantly increased against the control respectively (P<0.001). 
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5.3.2 The effects of UCN treatment of C-20/A4 cells on P42/P44 MAPK 

phosphorylation 

The P42/P44 MAPK pathway was investigated in C-20/A4 chondrocytes in the 

presence of SNAP and TNF-a. This pathway was investigated because the results 

obtained from the inhibitor studies showed that UCN mediated protection was reversed 

mostly by PD98059 treatment in C-20/A4 cells compared to the P38 MAPK and P13K 

pathways. 

5.3.2.1 P42/P44 MAPK vhosDhorvlation in the absence of nro-anontotic stimuli. 

MAPK activation in C-20/A4 cells were investigated in the presence of various stimuli. 

Chondrocytes were subjected to the P42/P44 MAPK inhibitor PD98059 with UCN, as 

well as the P38 MAPK inhibitor SB202190 with UCN, PD98059 alone and UCN alone 

before cells were harvested and constituent proteins probed with dual phospho-P42/P44 

and total P42/P44 antibodies. 

CU PD PD+U SB+U 

Figure 5.8: Activation of P42/P44 MAPK in C-20/A4 cells. Samples are probed with dual phospho- 

specific MAPK antibodies for P42/P44. From left to right, C-control, U-UCN, PD-PD98059, 

PD+U-PD98059+UCN, SB+U-SB202190+UCN. 

CU Yll YU+U 3t+u 

Figure 5.9: Total levels of P42/P44 MAPK in C-20/A4 cells. Samples are probed with antibodies 
detecting total P42/P44 MAPK. From left to right, C-control, U-UCN, PD-PD98059, PD+U- 

PD98059+UCN, SB+U-SB202190+UCN. 
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Figure 5.10: Ratio of P42/P44 MAPK expression of UCN, PD98059 and SB202190 in Western blot 

analysis. Data are presented as the mean values (± standard deviations) of three independent 

experiments. 

Figure 5.8 represents C-20/A4 chondrocytes treated with UCN, PD98059, 

PD98059+UCN and SB202190+UCN. Figure 5.9 shows equal protein loading after the 

membranes were stripped and re-probed with the ERK 2 (total P42/P44) antibody. 

Figure 5.10 shows a graphical representation of the P42/P44 phosphorylated against the 

P42/P44 total ratio of the different treatments. P42/P44 MAPK activation was evaluated 

biochemically using an antibody which recognizes the activated form of P42/P44 

MAPK. PD98059 alone and with treatment was added to ensure its effectiveness in 

blocking P42/P44 MAPK activation. Some activation was observed in control treated 

cells, which was significantly blocked by PD98059 alone (P<0.001). Cells treated with 

UCN alone showed increased phosphorylation of P42/P44 MAPK (P<0.001 UCN vs 

control) which was significantly blocked by the addition of PD98059 (P<0.001), but not 

SB202190+UCN (P>0.01). 
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5.3.2.2 P42/P44 MAPK phosphorylation in the presence of SNAP 

MAPK activation in human chondrocytes was investigated in the presence of various 
stimuli. C-20/A4 cells were subjected to SNAP, SNAP+UCN and 

PD98059+UCN+SNAP before cells were harvested and constituent proteins probed 

with dual phospho-P42/P44 and total P42/P44 antibodies. 

CS S+U S+U+PD 

Figure 5.11: Activation of P42/P44 MAPK in C-20/A4 cells. Samples are probed with dual phospho- 
specific MAPK antibodies for P42/P44. From left to right, C-control, S-SNAP, S+U- 
SNAP+UCN, S+U+PD-SNAP+UCN+PD98059. 

CS S+U S+U+rli 

Figure 5.12: Total levels of P42/P44 MAPK in C-20/A4 cells. Samples are probed with antibodies 
detecting total P42/P44 MAPK. From left to right, C-control, S-SNAP, S+U-SNAP+UCN, 

S+U+PD-SNAP+UCN+PD98059. 
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Figure 5.13: Ratio of P42/P44 MAPK expression of SNAP, UCN and PD98059 in Western blot 

analysis. Data are presented as the mean values (± standard deviations) of three independent 

experiments. 

Figure 5.11 denotes treatment with SNAP, SNAP+UCN and SNAP+UCN+PD98059 in 

human chondrocytes and Figure 5.12 shows the equal loading of protein followed by 

graphical representation (Figure 5.13) of P42/P44 MAPK phosphorylated against 

P42/P44 MAPK total ratio of the various treatments. Untreated cells showed the least 

P42/P44 MAPK activation in C-20/A4 cells. P42/P44 MAPK activation was increased 

in SNAP (P<0.001 SNAP vs control) treated cells and further increased with the 

addition of UCN (P<0.001, SNAP vs SNAP+UCN), which was then significantly 
blocked by the addition of PD98059 (P<0.001, SNAP+UCN+PD98059 vs 

SNAP+UCN), and observed not to be significant compared to control (P>0.05 

SNAP+UCN+PD98059 vs control). 
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5.3.2.3 P42/P44 MAPK phosphorylation in the presence of TNF c 

MAPK activation in human chondrocytes were investigated in the presence of various 
stimuli. C-20/A4 cells were subjected to TNF-a alone, TNF-a+UCN, and TNF- 

ct+PD98059+UCN before cells were harvested and constituent proteins probed with 
dual phospho-P42/P44 and total P42/P44 antibodies. 

MCT T+U T+U+PD 

Figure 5.14: Activation of P42/P44 MAPK in C-20/A4 cells. Samples are probed with dual phospho- 
specific MAPK antibodies for P42/P44. From left to right, M-Pre-stained protein marker 
(Biolabs), C-control, T-TNF-a, T+U-TNF-a+UCN, T+U+PD-TNF-a+UCN+PD98059. 

F rig 

CT T+U T+U+PD 

Figure 5.15: Total levels of of P42/P44 MAPK in C-20/A4 cells. Samples are probed with antibodies 
detecting total P42/P44 MAPK. From left to right, C-control, T-TNF-a, T+U-TNF-a+UCN, 

T+U+PD-TNF-a+UCN+PD9805 9. 
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Figure 5.16: Ratio of P42/P44 MAPK expression of TNF-a, UCN and PD98059 in Western blot analysis. 
Data are presented as the mean values (± standard deviations) of three independent 

experiments. 

Figure 5.14 shows treatments with TNF-a, TNF-a+UCN and TNF-a+UCN+PD98059 

in chondrocytes. Figure 5.15 shows total protein loading followed by graphical 

representation (Figure 5.16) of P42/P44 phosphorylated against P42/P44 MAPK total. 

Treatment of TNF-a alone increased activation against control (P<0.001), which was 

not increased further with TNF-a+UCN, but activation of P42/P44 MAPK was blocked 

by the addition of PD98059 which was not significantly increased compared to control 

(P>0.05), but significantly different against TNF-a alone (P<0.01) and TNF-a+UCN 

(P<0.001). 
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5.3.3 Caspase Activation in C-20/A4 cells with co-treatment of SNAP, TNF-a and 
UCN. 

The caspases play crucial roles in the apoptotic process and may conveniently be 
divided into effector caspases and initiator caspases. These experiments detail the 

activation status of caspase 3, an effector caspase, and the initiator caspases 8 and 9. 

5.3.3.1 Caspase 3 activation 

C-20/A4 cells were investigated for caspase 3 activation after stimulation with SNAP, 

SNAP+UCN, TNF-a and TNF-a+UCN before cells were collected, subjected to 

Western blotting and then probed with an antibody for activated caspase 3. 

CS S+U T T+U 

- P19 kDa 

Figure 5.17: Activation of caspase 3 in C-20/A4 cells. Samples are probed with anti-caspase 3 antibody, 
which recognizes only the active form. From left to right, C-control, S-SNAP, S+U- 
SNAP+UCN, T-TNF-a, T+U-TNF-a+UCN. 

V 

CS S+U T T+U 

- 146 kDa 

Figure 5.18: Total level of GAPDH in C-20/A4 cells. From left to right, C-control, S-SNAP, and S+U- 

SNAP+UCN, T-TNF-a, T+U-TNF-a+UCN. 
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Figure 5.19: Caspase 3 activation following SNAP, TNF-a, and UCN co-treatment of C-20/A4 cells. 
Data are presented as the mean values (± standard deviations), of three independent 

experiments. 

Figure 5.17 shows caspase 3 activation (P19 kDa) in the presence of various treatments 

of SNAP and TNF-a alone, and with the co-treatment of UCN with each stimuli. The 

membrane was stripped and re-probed with anti-GAPDH (Figure 5.18) to ensure 

consistent total protein loading. Figure 5.19 is a graphical representation of the ratio of 

densitometry values for activated caspase 3 against GAPDH for the various treatments. 

Clearly, SNAP treated cells showed a significant 9-fold increase compared to control 

(P<0.001). SNAP+UCN showed a significant decrease in caspase 3 activation as 

compared to SNAP alone (P<0.001). However, TNF-a and TNF-a+UCN failed to show 

activation of caspase 3. 
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5.3.3.2 Caspase 8 activation 

Caspase activation in human chondrocytes was again investigated after stimulation of 
C-20/A4 cells with SNAP, SNAP+UCN, TNF-a and TNF-a+UCN before cells were 

collected subjected to Western blotting and probed with antibodies against caspase 8, 

the initiator caspase of the death receptor pathway of apoptosis. 
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Figure 5.20: Activation of caspase 8 in C-20/A4 chondrocytes. Samples are probed with anti-caspase 8 

antibody, which recognizes both the pro-enzyme and active form. From left to right, M-Pre- 

stained protein marker (Biolabs), C-control, S-SNAP, S+U-SNAP+UCN, T-TNF-a, 
T+U-TNF-a+UCN. Arrows denote the pro-enzyme and active form. 
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Figure 5.21: Picric acid coomassie blue staining of an SDS-PAGE gel revealing the loading of proteins 
for Figure 5.20. From left to right, M-Rainbow marker (Amersham), C-control, S-SNAP, 

S+U-SNAP+UCN, T-TNF-a, T+U-TNF-a+UCN. 
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Figure 5.20 shows a membrane probed with the anti-caspase 8 in the presence of 
various stimuli. Activation of caspase 8 occurs in two steps. The initial cleavage of the 

precursor gives rise to the P48 subunit, followed by the generation of the active P20 

subunit. The pro-enzyme of caspase 8 (P48) is indicated by the arrow. Bands lower 

down indicate the expected active form (P20), which is unclear from this blot. These 

results, however, are unconfirmed as repeated experiments show inconsistencies in the 

results achieved. Treatments with various stimuli resulted in the appearance of 

undetectable amounts of active caspase 8 in C-20/A4 cells. Figure 5.21 shows a picric 

acid coomassie blue staining of an SDS PAGE gel, to indicate total protein loading of 
for Figure 5.20. 
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5.3.3.3 Caspase 9 activation 

Caspase activation in human chondrocytes was again investigated after stimulation of 
C-20/A4 cells with SNAP, SNAP+UCN, TNF-o and TNF-a+UCN before cells were 

collected, subjected to Western blotting and probed with antibodies against caspase 9, 

which plays an important role in the mitochondrial pathway of apoptosis. 
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Figure 5.22: Activation of caspase 9 in C-20/A4 cells. Samples are probed with anti-caspase 9 antibody, 
which recognizes both the pro-enzyme and active form. From left to right, M-Pre-stained 

protein marker (Biolabs), C-control, S-SNAP, S+U-SNAP+UCN, T-TNF-a, T+U-TNF- 

a+UCN. Arrows denotes the pro-enzyme and active form 
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Figure 5.23: Picric acid coomassie blue staining of an SDS-PAGE gel revealing the loading of proteins 
for Figure 5.22. From left to right, M-Rainbow marker (Amersham), C-control, S-SNAP, 

S+U-SNAP+UCN, T-TNF-a, T+U-TNF-a+UCN. 
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Membranes were probed with anti-caspase 9 (Figure 5.22), in the presence of various 
stimuli. Figure 5.23 represents a picric acid coomassie blue staining of an SDS PAGE 

gel, to show consistant protein loading of all samples. It can be observed that 

chondrocytes treated with SNAP alone showed very little activation of caspase 9 similar 
to control cells. However, treatment of SNAP+UCN showed an increased level of 

caspase 9 activation than SNAP alone. Pro-enzyme (P32) is indicated by the arrow and 
the activated form (PlO) is clearly labeled. TNF-a alone and TNF-a+UCN did not show 

any caspase 9 activation. Similar to the caspase 8 experiments, inconsistent results were 

obtained. 
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5.4 Discussion 

As previously observed in this study, UCN protects chondrocytes against apoptotic 
death. Growth factors and cytokines control cellular functions by conveying their 

signals via specialized receptor-generated signal transduction pathways that may 

influence the cell survival or death decision. Consequently, signal transduction 

pathways which activate or prevent apoptosis are of major interest to this study. A range 

of extracellular signals have been shown to control various cell functions such as cell 

proliferation and differentiation via activation of mitogen activated protein kinases 

(MAPK) and phosphatidylinositol 3-kinase (P13K) signal pathways. Recent studies by 

Brar et l (2000; 2002) have shown that UCN protects cardiac cells via the P42/P44 

MAPK, and the P13 Kinase pathway and the experiments in this chapter were designed 

to investigate if the MAPK pathways (P38 MAPK, P42/44 MAPK) and the P13K 

pathway are involved in UCN mediated 'chondroprotection'. The apoptotic pathways 

involved in chondrocyte death in response to SNAP and TNF-a treatment were also 

studied with regard to caspase activation. 

To further investigate the intracellular signaling pathways activated by UCN, C-20/A4 

chondrocytes were treated with cell signaling inhibitors, P13K inhibitor LY294008 and 

the P38 and P42/P44 MAPK inhibitors SB202190 and PD98059 respectively. 

Ligation of many growth factor receptors, cytokine receptors and G protein coupled 

receptors stimulate P13K activity (Cantrell et al, 2001). In view of this, the involvement 

of the P13K pathway was investigated in C-20/A4 protection as it has previously been 

shown that cardiac myocytes were protected by UCN acting via this pathway (Brar et 

al, 2002b). 

Cells treated with SNAP+UCN+LY294002 (Figure 5.1) showed an increased level of 

apoptosis, which was significant compared to SNAP+UCN (P<0.001). These results 

indicate that P13K is involved in the protection of C-20/A4 cells. This data is in 

agreement with Brar et al (2002b) who showed that co-administration of LY294002 

with UCN in cardiac myocytes exposed to hypoxia/reoxygenation had blocked the 

protective effect of UCN. 
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LY294002 was also used in conjunction with TNF-a (Figure 5.2). The degree of 

apoptosis induced with TNF-a+UCN+LY294002, was not significantly different as 

compared to TNF-a+UCN for Annexin V/PI staining (P>0.05), but a significantly 
increased apoptotic level was observed for TUNEL staining (P<0.001). This data is 

consistent with the data of Sandra et al, (2006) who showed that the apoptotic level in 

ameloblastoma cells as measured by flow cytometry DNA fragmentation increased by 

14%, and when treated with LY294002 (251tM) in conjunction with TNF-a, above that 

induced by TNF-a alone. The two main differences in the present study and that of 

Sandra et al, are the cell type and the TNF-a concentration which at 100ng/ml was 

much higher than the one used in this study (70pg/ml). 

The results obtained here clearly indicate that chondrocytes are protected by UCN in 

SNAP and TNF-a treated cells via the P13K pathway. This data is consistent with the 

data of Chanalaris et al, (2003) who reported that the P13K inhibitor LY294002 

abolished the cardioprotective effects of UCN, UCN II and UCN III, suggesting that 

this peptide family were dependent on the activation of P13K for their anti-apoptotic 

effects in cardiomyocytes. These authors showed that with the treatment of LY294002, 

apoptotic levels measured by the TUNEL assay increased by 22% as compared to basal 

cells, and co-treatment with UCN also resulted in high apoptotic levels. It has also been 

suggested that NF-KB survival signaling is regulated by the P13K pathway (Sizemore et 

al, 2002). The present data however is not in agreement with Facci et al, (2003) who 

reported that UCN (30nM) prevented DNA fragmentation as well as LDH release from 

LY294002 (751tM) treated rat cerebellar granule neurons. Therefore the data from this 

study and that of Chanalaris et al, (2003) indicates that P13K activity is important for 

UCN chondroprotection in C-20/A4 cells. 

Figure 5.3 shows the co-treatment of SB202190+UCN+SNAP resulted in a significant 

increase in apoptotic death when compared to SNAP+UCN (P<0.01). Similarly, Figure 

5.4 showed co-treatment with SB202190+UCN+TNF-a showed an increased level of 

Annexin V/PI and TUNEL staining in chondrocytes, in comparison to TNF-a+UCN, 

these levels were significantly different (P<0.001). These results suggest, along with the 

SNAP data that, P38 MAPK is involved in the protection of C-20/A4 cells. Therefore, it 

can be suggested that P38 MAPK may be a cellular stress response that is designed to 

protect cells from death. This was one reason why the effect of P38 MAPK inhibitor 

SB202190 on P38 activity in C-20/A4 cells were examined. 
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Taken together, Figures 5.3 and 5.4 show that with the addition of a P38 MAPK 

inhibitor SB202190 in SNAP and TNF-a treated cells apoptotic levels are increased 

clearly, indicating that P38 MAPK maybe involved in the mechanism of protection in 

C-20/A4 cells (more for TNF-a than SNAP). Zwerina et al, (2006) reported that P38 

MAPK inhibition (by a P38 MAPK inhibitor) affected cartilage damage considerably. 
They reported that proteoglycan loss was significantly reduced, and P38 MAPK 

inhibition was similar to that observed in synovial inflammation. The protection of 

articular cartilage may not be a direct effect due to lower expression of proinflammatory 

cytokines. P38 MAPK plays a vital role in pro-inflammatory cytokine production by 

activating the transcription factor NF-KB which binds to the promoter regions of several 

pro-inflammatory cytokines, such as TNF-a via TNF-R1. However, P38 MAPK 

activation by NO may lead to the down regulation of Bcl-2 by interfering with gene 

transcription (probably due to caspases 9 activation and the release of cytochrome c). 

This is supported by Kim and Chun, (2003) who reported that P38 MAPK activates NF- 

KB, which is required for NO induced apoptosis in primary culture of rabbit articular 

chondrocytes. The data presented in this study, however, does not agree with the data of 

Chanalaris et al, (2003) who showed that a P38 MAPK inhibitor was unable to inhibit 

the cardioprotective effects of UCN and its homologues (UCN II and UCN III), 

suggesting that UCN along with its homologues were not dependent on the activation of 

P38 MAPK for their anti-apoptotic effects in cardiomyocytes. Whilst data obtained in 

this study appears to suggest that P38 MAPK inhibited the chondroprotective effects of 

UCN in C-20/A4 cells. 

UCN has also previously shown to protect cardiac myocytes against 

hypoxia/reperfusion injury via activation of the P42/P44 MAPK pathway (Brar et al, 

2000). Based on these findings, this pathway was investigated here to establish whether 

the observed UCN mediated protection of C-20/A4 chondrocyte cells also occurred via 

this pathway. In order to establish this, the P42/P44 MAPK inhibitor PD98059 was used 

which has been shown to act in vivo as a highly selective upstream inhibitor of MEKI 

activation in the ERKl/2 pathways. 

SNAP+UCN+PD98059 treatment (Figure 5.5), were observed to markedly enhance 

apoptosis and were significantly increased compared to SNAP+UCN (P<0.001). These 

results clearly indicate that UCN is again protecting C-20/A4 cells from apoptotic cell 

death, and when co-treated with PD98059, apoptotic levels increased suggesting that the 
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MAPK P42/P44 pathway is involved in the protection of C-20/A4 cells. This data 

agrees with the data of Kim et at (2003) who shows that with the co-treatment of 
PD98059 (20µM) with an NO donor in rabbit chondrocytes, apoptotic levels are 
increased significantly (38%) as measured by TUNEL assay. Kim et l (2002) also 

reported that in primary articular chondrocytes, NO caused apoptosis and 
dedifferentiation, which are mediated by MAPK subtypes ERK and P38 MAPK. 

C-20/A4 cells subjected to TNF-a+UCN+PD98059 (Figure 5.6) showed an increased 

level of apoptosis and was significantly higher than TNF-a+UCN (P<0.001). 

PD98059+TNF-a+UCN treatment, clearly showed that TUNEL staining induced a 

significantly high level of apoptosis, as compared to the Annexin V/PI staining which 

resulted in a 2-fold increase against TNF-a+UCN, indicating protection by UCN via the 

P42/P44 MAPK pathway. This data agrees with the data of Chanalaris et al, (2003) who 

established that the P42/P44 MAPK inhibitor PD98059 completely abolished the anti- 

apoptotic effects of UCN, UCN II and UCN III, suggesting that all three peptides were 

dependent on the activation of P42/P44 MAPK for their effects in cardiomyocytes. The 

authors reported an increase in apoptosis in the presence of PD98059, measured by the 

TUNEL assay whilst co-treatment with UCN resulted in a further increase of 11 % as 

compared to PD98059 alone, indicating that P42/P44 MAPK was involved in the 

cardioprotection of cardiomyocytes. The data of the present study does not agree with 

the data of Kim et l (2002) who found that co-treatment of PD98059 and TNF-a 

(l0ng/ml) did not result in any significant increase in human chondrocyte apoptosis. It 

is possible that TNF-a activation via P42/P44 MAPK may require low doses, as 

observed in this study, because the dose used by Kim and Song was substancial in 

comparison. 

Figure 5.6 showed protective effect of UCN more on TNF-a than SNAP induced 

apoptosis as observed by TUNEL staining. The induction of apoptosis is generally 

restricted to receptors that contain `death domains' as in TNF-a signaling. The TNF-R1 

contains a death domain protein (TRADD), which is known to interact with TRAF-2 

that is associated with TRADD and RIP-1 in the activation of nuclear factor kappa B 

(NF-KB). NF-KB inducing kinase is then activated, resulting in the activation of, the IKB 

kinase complexes, the phosphorylation of IKB, the degradation of IKB, and finally to the 

activation of NK-KB. It has been postulated that ERK signaling can be controlled by 
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NF-icB via autocrine mechanisms, such as TNF-a enhanced expression (Bhat- 

Natakshatri et al, 2002), suggesting one possible reason why increased level of late 

apoptosis may have been observed in C-20/A4 cells in the presence of the P42/P44 

MAPK inhibitor. 

Figure 5.7 shows the inhibitors treated alone in C-20/A4 cells. This was to observe if 

these inhibitors were exerting a toxic effect in chondrocytes. Treatment of LY294002, 

SB202190 and PD98059 were all significantly increased against the control respectively 
(P<0.001), and showed no toxic effect exerted on these cells. 

The results obtained from the various inhibitor studies clearly showed that all three 

pathways are likely to be involved in the UCN mediated protection of C-20/A4 cells. 

UCN is believed to act in an autocrine/paracrine manner to protect chondrocytes by 

binding to an as yet unconfirmed receptor, which then activates these pathways. As 

inhibitor data alone cannot conclusively, determine that UCN is chondroprotective via 

these pathways (chemical inhibitors are not specific). Western blot analysis was used to 

investigate kinase activation by using specific antibodies for the various kinases. Due to 

time constraints, these studies were focused on the P42/P44 MAPK only, as UCN 

conferred protection was reversed mostly by PD98059 treatment compared to the other 

two inhibitors. This was observed after, the chondrocytes were treated with PD98059 in 

the presence and absence of SNAP and TNF-a, with or without UCN. The P38 MAPK 

inhibitor SB202190 was also used in the presence of UCN stimulation as a control. 

P42/P44 MAPK activation occurs via dual phosphorylation of threonine and tyrosine 

residues as specific antibodies for this phosphorylated form were used to quantify 

MAPK activation in C-20/A4 cells. 

Figure 5.8 shows that the activation of P42/P44 MAPK was significantly blocked by 

PD98059 alone (P<0.001, PD98059 vs control). Significantly increased activation (2 

fold) of P42/P44 MAPK was observed with UCN treated alone (P<0.001 UCN vs 

control), which was then blocked in the presence of PD98059. No significant difference 

in activation was observed with SB202190+UCN compared to UCN alone (P>0.01). 

This is to be expected as SB202190 is a P38 inhibitor and should not interfere with 

P42/P44 activation. Samples with PD98059+UCN showed some level of activation, but 

the inhibitor largely counters the UCN induced activation. This data along with the fact 

that chondroprotective effect was abolished by PD98059 (Figure 5.5 and 5.6), indicates 
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(that the chondroprotective mechanism of UCN involves the activation of P42/P44 
MAPK. The apparent increase in signal for P42/P44 MAPK, especially in UCN treated 

cells, could however, be a result of the three factors: 

i) an increase in the percentage of phosphorylated proteins in P42/P44 MAPK 

ii) an increase in total expression of P42/P44 MAPK not including changes in 

the percentage of phosphorylation or 
iii) combination of i and ii. 

However, total P42/P44 MAPK levels were unchanged in all treatments (Figures 5.9, 

5.12,5.15) indicating, that the increased P42/P44 MAPK phosphorylation observed in 

UCN treated samples is genuine rather than a result of an increase in total expression 

levels of P42/P44 MAPK. The present data agrees with the data of Brar et al, (2002a) 

who showed that with the exogenous treatment of UCN (10-8M), P42/P44 MAPK 

phosphorylation increased significantly in cardiac myocytes and when administered 

with PD98059, it had abolished the phosphorylation of P42/P44 MAPK by UCN. 

Figure 5.11 clearly show that when PD98059 is added, P42/P44 MAPK activation is 

decreased as expected since it blocks the P42/P44 MAPK pathway. In SNAP treated 

cells, the increase in P42/P44 MAPK activation may be a result of endogenous UCN 

production stimulated by the applied NO insult. The presence of exogenous UCN in 

SNAP significantly activates P42/P44 MAPK (P<0.001 SNAP+UCN vs SNAP alone) 

as previously observed in this study. This data is in agreement with Kim et al, (2003) 

who showed NO donor treatment in articular chondrocytes activates the ERK 1/2 

kinase, as established by Western blot analyses, although the specie was not identified 

in that report. 

Figure 5.14 suggests that under TNF-a exposure, P42/P44 MAPK activation occurs 

significantly in C-20/A4 human chondrocytes (P<0.001 TNF-oc vs control). The data 

shown in this study clearly showed that TNF-a does not induce endogenous UCN, so it 

may be possible that another mechanism is operating in these cells in the presence of 

TNF-a, most probably complex I. It has been reported that TNF-R1 ligation triggers 

activation of P42/P44 MAPK which can override the pro-apoptotic signaling pathway 

of this death receptor. Thus, P42/P44 MAPK may have a normally protective effect on 

death receptor-induced apoptosis that may be used under conditions when death 
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receptor reaction has to be switched off promptly i. e. causing the internalization of the 

receptor (TNF-R1) from the surface of the cell to the cytosol and inhibition of its 

cytotoxic ability (Zhang et al, 2003) which may be one possibility to why TNF-a alone 
induced the highest level of activation. However if this was the case, then TNF-a+UCN 

should have shown higher protection in C-20/A4 cells. This data however is consistent 

with the data of Sandra et al, (2005) who showed that when ameloblastoma cells were 

subjected to TNF-a (100ng/ml), it induced phosphorylation of P42/P44 MAPK, which 

may be involved in cell survival and/or proliferation in these cells. 

Overall these findings clearly demonstrate that P42/P44 MAPK modulates cell survival 

in C-20/A4 cells and contributes to the cytoprotection effected by endogenous and 

exogenous UCN as this anti-apoptotic effect was correlated with the increased P42/P44 

MAPK signaling activity. Activated P42/P44 MAPK (ERK1/ERK2) translocates into 

the nucleus and regulates the activities of numerous nuclear transcription factors (e. g. 

ELK-1) which in turn could activate transcription of the gene expression (Pearson et al 

as observed in the SNAP treatments, which was not observed because of UCN being a 

protective agent. At present there is no explanation as to why that could have occurred, 

2001). Inhibition of ERK1/ERK2 prevents this translocation into the nucleus from the 

cytosol, potentially resulting in increased expression of genes which regulate pro- 

apoptotic proteins or decreased expression of genes which regulates anti-apoptotic 

proteins. Inhibiting ERK1/ERK2 may also prevent the inactivation of pro-apoptotic 

factors (Gebauer et al, 1999). P42/P44 MAPK are Ser/Thr kinases stimulated by G 

protein coupled receptors and protein tyrosine kinases via the initiation of Ras and Raf 

(Khokhlatchev et al, 1997). This tyrosine kinase is recognized to be intimately linked 

with focal adhesion complexes that are made when membrane spanning integrins work 

together with their extracellular ligands. It is possible that other tyrosine kinases 

functions as a link between mechanoreceptors, including integrins, and the P42/P44 

MAPK pathway. The P42/P44 MAPK activation results obtained for both SNAP and 

TNF-a are consistent with the apoptosis observed in the PD98059 inhibitor studies, and 

provide further evidence that C-20/A4 cells are protected by UCN via the P42/P44 

MAPK pathway. These results are in agreement with Brar et al, (2000) who showed 

that P42/P44 MAPK pathway mediate the cardioprotective effects of UCN (10-8M) in 

neonatal rat cardiomyocytes. UCN has also been shown to activate and phosphorylate 

P42/P44 MAPK in cultured human pregnant myometrial cells (Light et al, 1996; 

Grammatopoulos et al, 2000). The finding of the present study is also consistent with 
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the studies of Liacini et at (2003) who reported that TNF-a (20ng/ml) significantly 

stimulated the activation of ERKI/2 in human OA chondrocytes. However, due to 
limitations and nonspecificity of inhibitor studies, it is possible that other kinases may 

also be involved in C-20/A4 cells, such as P38 MAPK and P13K which were not 
investigated and could be examined as future work. This data is also in agreement with 
Sandra et al, (2006) who reported that treatment of TNF-a (IOOng/ml) in ameloblastoma 

cells caused an increased level of P42/P44 MAPK phosphorylation. These results 

indicate that TNF-ct stimulated survival activity could no longer compensate the 

apoptosis signal, which also was induced by TNF-a. This could be due to TNF-a 

working through an anti-apoptotic pathway (Aizawa et al, 2001). The anti-apoptotic 

pathway regulated by NF-KB (complex I) controls the expression of several anti- 

apoptotic proteins and generally triggers cell survival signals (which have been 

discussed earlier in this study) (Micheau and Tschopp, 2003). 

Due to caspases contributing to the overall apoptotic morphology by cleavage of various 

cellular substrates, and to verify the involvement of the caspase cascade in C-20/A4 

chondrocyte death, caspase activation was examined. In order to establish which 

pathway of apoptosis may be operational in C-20/A4 cells, the activation of caspase 3, 

caspase 8 and caspase 9 was investigated. These caspases are located at important 

junctions in the apoptotic pathway. Caspase 8 and caspase 9 activate caspase 3 by 

proteolytic cleavage and caspase 3 then digests important cellular proteins (Hengartner, 

2000). 

Caspase 3 is one of the effector caspases that digests substrates crucial for cell death, 

and the amount of caspase 3 activity is thus a vital marker of the level of apoptosis. 

Caspase 3 is synthesized as a 32 kDa proenzyme (not shown due to antibody only 

recognizing cleaved form) that is cleaved during activation to yield a large catalytic 

subunit of 20 kDa (Mancini et al, 1998). This subunit (20kDa) was detected in C-20/A4 

chondrocytes treated with SNAP (Figure 5.17), indicating a high level of activation, 

almost a 9-fold increase as compared to control cells which was significantly different 

(P<0.001). However, in the presence of SNAP+UCN, only a 7-fold increase was noted. 

This was shown to be significantly different when compared to SNAP treatment alone 

(P<0.001). Treatment with TNF-a and TNF-a+UCN failed to show any activation. 

These results show clearly that caspase 3 activation is enhanced by SNAP treatment but 

decreased in the presence of UCN indicating protection against apoptosis, in accordance 
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with previous results in this study. Other studies have shown TNF-a to activates 
caspase 3, but, why TNF-a failed to show any significant activation, in C-20/A4 

chondrocytes is not known. One would have expected some activation of caspase 3 at 
least in the TNF-a only samples as caspase 3 is one of the main effectors of apoptosis 

and apoptotic C-20/A4 cell death does occur with TNF-a treatment. However, these 

experiments were repeated several times and the results were consistent. The present 
data is in agreement with Scarabelli et al, (2002) who showed that with the addition of 

exogenous UCN (10-8M) in the isolated pulsed rat heart caspase 3 activation (using an 

enzymatic assay to measure caspase 3) is significantly reduced. The data presented here 

does not agree with that of Sandra et al, (2006) who showed that caspase 3 (using anti- 

caspase 3 antibody) was activated in ameloblastoma cells when treated with TNF-a, but 

does agree with that of Los et l (2002) who showed that treatment of immortalized 

fibroblast cells with 40ng/ml of TNF-a does not induce caspase 3, activation until 8 hrs 

of treatment. These authors performed a time course of caspase activation on TNF-a 

mediated cell death, and established that after 8 hrs TNF-a only induced a weak, 

caspase activation. This may be one reason why TNF-a treatment did not result in 

caspase 3 activation in C-20/A4 cells, since caspase 3 activation was only assessed at 6 

hours. 

The SNAP data presented here is in agreement with Kim et l (2003) who established 

that NO-induced apoptosis results in caspase 3 cleavage (using a ApoAlert CPP32 

colorimetric assay kit) in rabbit chondrocytes. This data is also supported by Notoya et 

l (2000) who showed that, in the presence of an NO donor, caspase 3 activity in 

human OA chondrocytes was increased as measured by a caspase assay kit. The present 

data is part supported by Maneiro et al (2005) who showed that both an NO donor 

(0.5mM) and TNF-a (10ng/ml) induced an increase of caspase 3 mRNA in human 

chondrocytes, but the authors did not report if caspase 3 activation was observed. It is 

possible that if caspase expression is increased in cells due to insult, caspase 3 

activation may not always occur. 

Caspase 8 initiates cell disassembly due to extracellular apoptosis-inducing ligands and 

is stimulated in a complex linked with the cytoplasmic death domain of several cell 

surface receptors for the ligands (Chinnaiyan et al, 1995). The death receptor pathway 

was investigated with the same stimuli stated for caspase 3 (Figure 5.20). Figure 5.21 
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shows an SDS-PAGE picric acid gel of equal protein loading for caspase 8. 
Interpretation of the results, are complicated by the unexpected results obtained. One 

would have expected activation of caspase 8 in cells treated with TNF-a although, this 

was not observed. Activation for SNAP and SNAP+UCN was not detected either, but 

SNAP (NO) is known to work via the mitochondrial pathway (Zech et al, 2003). The 

pro-enzyme are shown by the arrows. Problems were experienced with the primary 

antibodies purchased from Santa Cruz Biotechnology for active caspase 8 and, despite 

these being replaced by Santa Cruz, inconsistencies in the data were still apparent. 
Another possibility could be low levels of caspases with short half lives, making 
detection harder (Mistry et al, 2004). Due to time restrictions, it was not possible to 

investigate these problems further although similar inconsistency problems were 

encountered with the original caspase 3 antibodies also purchased from Santa Cruz. 

This prompted a change of primary antibody to one purchased from Cell Signaling 

Technology which performed much better. If time allowed, the caspase 8 experiments 

would have been repeated using antibodies from Cell Signalling Technology in an 

attempt to improve consistency. 

This data agrees in part with Kühn and Lotz, (2001) who detected no procaspase 8 

processing by immunoblotting after stimulating human chondrocytes with CD-95 

antibody, although the mRNA transcript of caspase 8 was detected. Caspase activation 

has also been reported by Spears et al, (2003) who showed that in rat 

temporomandibular joints, TNF-a (50ng/ml) caused a significant increase in caspase 3 

and caspase 8 activation as compared to basal level by using the ApoAlert caspase 

colorimetric assay kit. The data of Spears et al, (2003) is supported by Mohamed et al, 

(2002) who reported by using Western blot analysis, caspase 3 and caspase 8 were 

activated after TNF-a (50ng/ml) treatment in Hela-TNFR2 cells. 

Caspase 9 activates disassembly in response to insults that trigger the release of 

cytochrome c from mitochondria and is activated when complexed with APAF-1 and 

extramitochondrial cytochrome c. The mitochondrial pathway was also investigated 

with the same stimuli, as stated for caspase 3. Figure 5.22 shows the membrane probed 

with caspase 9 antibodies to establish if this initiator caspase, is activated in C-20/A4 

chondrocytes subjected to the different stimuli. It can clearly be seen that there is a basal 

level of cleavage in control cells. Cells treated with SNAP alone showed almost the 

same level of cleavage shown at basal level. However, co-treatment with SNAP+UCN 

191 



showed an increase in cleavage of caspase 9. The reason for this at present is unknown. 
Due to UCN being a protective agent, based on previous data in this thesis, increased 

caspase 9 activation in the presence of UCN is unexpected. TNF-a and TNF-a+UCN 

failed to show any activation, which would be consistant with TNF-a acting through the 
death receptor pathway. This data thus, with activation of caspase 8 and 9 at present 

cannot be interpreted due to the inconsistencies observed. 

The results presented in this chapter demonstrate that the cell survival/anti-apoptotic 

effect of UCN (which has been shown to protect C-20/A4 chondrocytes from SNAP and 

TNF-(x stimulation) involves activation of the PI3K, P38 MAPK, and P42/P44 MAPK 

pathway. The activation of all these pathways may be involved in UCN mediated 

chondroprotection as blocking these pathways with the relevant inhibitors increases cell 

death even in the presence of exogenous UCN. Of all three however, the effect appears 

most pronounced with P42/P44 MAPK inhibition indicating that this may be the 

primary signaling pathway involved. This was further supported by Western blot 

analysis of P42/P44 MAPK activation by UCN. Due to time constraints, it was not 

possible to pursue the other two pathways, but these results clearly showed that UCN 

activates the P42/P44 MAPK signal cascade in C-20/A4 human chondrocytes. The 

involvement of the death receptor and mitochondrial apoptotic pathways, were also 

investigated for the two main proapoptotic stimuli used (NO and TNF-(X) but due to 

inconsistent results it was not possible to draw conclusions from these studies and 

further work is necessary. 
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CHAPTER 6 

FINAL DISCUSSION, CONCLUSIONS AND FUTURE 

WORK 
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Chondrocyte death by apoptosis has been implicated in the pathogenesis of 
osteoarthritis. The aims of this research were to study the potential inducers of 
chondrocyte death, determine the mechanism of that death and to investigate the role of 
the CRH-like peptide, Urocortin in `chondroprotection', i. e. the prevention of 
chondrocyte death 

This study first sought to characterize the response of C-20/A4 chondrocytes to three 

pro-apoptotic stimuli implicated in the pathogenesis of OA, Nitric oxide (NO) TNF-a 

and IL-1ß. NO regulates several cartilage functions including loss of chondrocyte 

phenotype, chondrocyte apoptosis, and extracellular matrix degradation. In keeping with 
this, the studies detailed in this thesis showed that SNAP (an NO donor) induces 

apoptosis in C-20/A4 cells. In vitro human articular cartilage can generate significant 
levels of NO that can be increased by pro-inflammatory cytokines such as TNF-a 

(Attur et al, 1997) and IL-10 which have also been shown to induce apoptosis in C- 

20/A4 cells 

It was clearly observed in this study that apoptosis (as measured by TUNEL and 

Annexin V/PI assays) and not necrosis (as measured by LDH release) was the main cell 

death observed in C-20/A4 human chondrocytes treated with ImM SNAP, 70pg/ml 

TNF-a and 8pg/ml IL-1(3. SNAP treatment demonstrated a dose dependent increase in 

apoptosis, whilst TNF-a and IL-1(3 did not. TNF-a showed a dose dependent increase in 

cell death up to 80pg/ml after which a decreased cell death occurs. During this decrease 

in apoptosis from 80-100pg/ml, the complex I signal transduction cascade mediated by 

TNF-a could have activated a number of transcriptional factors including NF-KB and 

AP-1 (Ah-Kim et al, 2000). Since NF-KB activation is known to protect cells from the 

cytotoxic effects of TNF-a in a variety of cell lines, further work can be undertaken to 

elucidate the effects of C-20/A4 cells on degradation of its cytoplasmatic inhibitor IKB 

and NF-KB activation in TNF-a treated chondrocytes. 

In 1998 Okosi et al, reported that the CRH family peptide UCN was produced by 

cardiac myocytes and that it was protective against hypoxia mediated apoptosis in these 

cells. It is therefore possible that UCN could play a comparable role in chondrocytes 

which may represent a mechanism to prevent chondrocyte death. 
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The endogenous production of UCN by chondrocytes was clearly shown in this study, 

the first time this has been demonstrated (Figure 4-11a). UCN is produced at a basal 

level consitutively in C-20/A4 cells but is also inducible by certain pro-apoptotic stimuli 

such as SNAP (NO) which increased C-20/A4 expression of UCN by approximately 

two fold whereas others such as TNF-a did not induce increased expression. This may 

indicate that UCN represents a protective mechanism against only certain types of 

stimuli, e. g. mitochondrial insults but not death receptor insults. The cytoprotective 

potential of UCN was further confirmed by CRH antagonist studies (4.3.2) where 

apoptotic levels increased significantly on the addition of a helical CRH(9_41), clearly 

indicating the existence of a CRH family peptide in C-20/A4 cells. 

Following confirmation of the endogenous production of UCN by C-20/A4 cells, and 

the increase in apoptosis after a helical CRH(9_41) administration (section 4.3.2), it was 

suspected that UCN may represent endogenous cytoprotective and growth factor 

mechanism in chondrocytes. This was confirmed by the addition of a UCN specific 

antibody to C-20/A4 cultures which resulted in a high level of apoptosis whereas an 

isotype control, anti-albumin antibody did not. These experiments (section 4.3.3) 

confirm that UCN production is an endogenous `chondroprotective' mechanism. 

Brar et al, (1999) also reported that the addition of preconditioned media to cardiac 

myocytes protected these cells from necrotic and apoptotic cell death indicating the 

existence of a protective agent in the preconditioned media which was believed to be a 

member of the CRH family of peptides. The experiments performed in this study 

however failed to establish any chondrocyte protection from preconditioned media as 

shown in section 4.3.4. This may indicate that preconditioning is cell type specific or 

that the effects of protective elements in the media may be being masked by pro- 

apoptotic elements also present. 

In assuming that UCN was a `chondroprotective' agent, the next logical step was to 

treat chondrocyte cultures exposed to pro-apoptotic stimuli with exogenous UCN and 

observe the effects on the level of cell death. The addition of exogenous UCN at 10-8M 

reduced chondrocyte death in cultures treated with SNAP and TNF-a but UCN appears 

to confer greater protection against SNAP (NO) initiated cell death than that caused by 

TNF-a (Figure 4.28 and Figure 4.29 respectively). This protection conferred by 

exogenous UCN was negated by the addition of a helical CRH(9.41). 
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Once it was confirmed that UCN was protecting chondrocytes from death, the next step 

was to establish the mechanism of chondrocyte protection by UCN. Since UCN 

activation of the PI3K, and P42/P44 MAPK, but not P38 MAPK survival pathways has 

been shown to suppress apoptosis in other cell systems (Chanalaris et al, 2003), the 

involvement of these signaling pathways in UCN mediated chondrocyte protection 

against SNAP and TNF-a induced apoptosis was studied. To gain further insights into 

the roles played by these signaling cascades, the P13K, P38 MAPK and P42/P44 MAPK 

pathways were interrupted with the selective inhibitors LY294002, SB202190 and 

PD98059 respectively. 

The data presented in chapter 5.3.1 indicates that all three pathways may be involved as 

the protective effects of UCN were reduced by all three of the inhibitors but the 

P42/P44 MAPK may be particularly significant as inhibition of this pathway resulted in 

the greatest reversal of UCN mediated protection. This was further confirmed by 

Western blot analysis using antibodies against phosphorylated (active) P42/P44 MAPK 

which clearly showed that UCN treatment of C-20/A4 chondrocytes results in an 

increased level of P42/P44 MAPK activation which was abolished by the selective 

inhibitor PD98059. The treatment of C-20/A4 cells with SNAP alone also shows some 

activation of P42/P44 MAPK, possibly as a result of endogenous UCN activity whilst 

co-treatment of cells with UCN and SNAP shows a greater level of activation than 

SNAP alone. These observations are in accordance with the data presented in section 

4.3.5 of this thesis which showed that the co-treatment of C-20/A4 cells with UCN and 

SNAP resulted in a decreased level of apoptotic cell death than that observed with 

SNAP treatment. This seems to indicate a link between chondrocyte protection and 

P42/P44 MAPK activation in C-20/A4 cells. 

Significant activation of the P42/P44 MAPK pathway was also observed in TNF-a 

treated C-20/A4 cells (at a much higher level than that observed for SNAP treatment) 

but the addition of UCN resulted in no significant change in P42/P44 MAPK activation 

with this stimulus. This too would support the data shown in section 4.3.5 where the 

degree of protection accorded by UCN co-treatment with TNF-a is minimal than SNAP 

co-treatment. It seems likely that P42/P44 MAPK activation in this instance is a direct 

result of TNF-a stimulation rather than UCN mediated P42/P44 MAPK activation. This 

phenomenon has been reported by others (Tselepis et al, 2002; Sandra et al, 2005). To 

assess this further, UCN makes a contribution to the P42/P44 MAPK activation in this 
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instance future experiments could be devised to include a helical CRH(9_41) with 
UCN/TNF-a co-treatment to observe if there is any decrease in the P42/P44 MAPK 

activation. 

The role played by P38 MAPK in cells is quite controversial and remains a subject of 
debate (Dean et al, 1999; Manthey et al, 1998, Lee et al, 1994). This controversy could 

arise from many variables, including differences in the cell type or stress agent 

involved. Furthermore, because most studies have looked at a given pathway in 

isolation, the potential interactions between pathways have not been addressed. The 

P38, P42/P44 and P13 kinase pathway all appear to be involved to some extent in the 

chondroprotective effect of UCN in C-20/A4 cells. Whether UCN phosphorylates and 

activates the P38 MAPK and P13K pathway in C-20/A4 cells needs to be investigated 

further. But the possibility that different signaling pathways are used by chondrocytes to 

respond to different mechanical stimuli opens up more avenues for further study. 

The final experiments detailed in this thesis were an attempt to establish the apoptotic 

pathway activated in C-20/A4 cells after treatment with SNAP or TNF-a. In section 

5.3.3.1 activation of caspase 3, was increased in SNAP alone and decreased in 

SNAP+UCN treated cells. This data is consistent with previous data in this thesis 

(Figure 4.28), which showed that in the presence of SNAP alone, apoptotic levels had 

increased significantly, whilst in the presence of SNAP+UCN induction of apoptosis 

decreased significantly. There is however no explanation as to why caspase 3 activation 

was not observed in TNF-a treated cells at present, even though apoptotic levels were 

observed to significantly increase following TNF-a treatment throughout this study. 

Whilst caspase 3 activation was shown with SNAP treatment and correlated with 

increased cell death, analysis of initiator caspase activation is less clear. Western 

blotting for activated caspase 9 (section 5.3.3.3) did show some cleavage in SNAP alone 

treated cells, but this increased with SNAP+UCN treatment which is not consistent with 

the cell death data documented in this thesis (Figure 4.28). However the results obtained 

from replicates of this experiment were not consistant so no real conclusions can be 

drawn from this data. Studies of Caspase 8 activation were similarly inconclusive due to 

similar inconsistency between repeat experiments. As a result of these inconsistancies, 

no meaningful conclusions can be drawn from this data and further work is required to 

197 



conclusively establish which of the initiator caspases is activated by the different 

stimuli. 

The experiments and results documented in this thesis indicate that UCN is likely to 

represent an endogenous cyto-protective mechanism in human chondrocytes although, 

there is considerably more work that needs to be done to clarify how UCN may mediate 

its effects in chondrocytes. As UCN is believed to work in an autocrine/paracrine 

fashion, one of the most basic questions still to be answered is which cell surface 

molecule/receptor does UCN bind to in order to induce a response in the target cell. In 

other cell types, UCN has been shown to exert its effects through binding to either of 

the CRH receptors, CRH-R1 or CRH-R2. Whilst this is supported to a certain extent by 

the a helical CRH(9_41) experiments in this study, CRH-R expression has not yet been 

demonstrated on chondrocytes. It is equally possible that UCN may be exerting it' s 

effects through calcium channel inhibition as reported by Tao et al (2004), in rat 

ventricular cells. An important area of future work would therefore be to determine 

chondrocyte expression of CRH-R and calcium channels and the subtypes thereof. 

The other main area of future work that needs to be pursued is the mechanisms of action 

of UCN and how it effects cyto-protection against apoptosis. Due to the inconclusive 

nature of the capase activation experiments considered earlier, these certainly need to be 

repeated (with alternative reagents) to establish which apoptotic pathways the various 

pro-apoptotic stimuli induce in chondrocytes and then the pathways through which 

UCN mediated protection is achieved need to be further studied. As well as the possible 

mechanisms discussed earlier, a number of endogenous substances have been shown to 

be involved in cyto-protection in other tissues. Brar et al, (2002a) established that UCN 

induced the expression of the cytoprotective HSP90 heat shock protein. Heat shock 

protein production is enhanced by cell stress and they act as molecular chaperones 

contributing to cellular homeostasis by encouraging accurate folding of proteins, 

repairing denatured proteins or increasing their degradation (Benjamin and Mcmillan, 

1998). Increasing evidence also suggests that mitochondrial KATP channels may also be 

involved in UCN mediated cytoprotection. Lawrence et al, (2002) reported that UCN 

distinctively enhances gene expression of the K;, 6.1 subunit of the cardiac K+ channel 

and that UCN mediated cardioprotection could be inhibited by mitochondrial KATP 

channel blockers. In support of this, Scarabelli et l (2003) reported that live, UCN 

positive cells expressing the Kir6.1 KATP channel that are surrounded by live, UCN 
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negative, but K;, 6.1 positive cells, indicatiing that autocrine and paracrine enhancement 
of KATP channel expression by endogenously released UCN also occurs. It would be 
interesting to see if these proteins and KATP channels are present in C-20/A4 

chondrocytes and if UCN exerts similar effects on their levels in C-20/A4 cells. 

The recent discovery of two new members of the CRH peptide family, UCN II and 

UCN III (Reyes et al, 2001; Lewis et al, 2001) also present further study opportunities. 
UCN II and UCN III show higher affinity for the CRH-R2 than CRH-R1, and it is 

possible that these peptides may therefore exhibit higher protective effects than UCN 

and/or produce these effects with higher specificity, since they bind only to CRH-R2. 

UCN III has already been shown to be more potent than UCN in protecting against 

apoptosis induced by hypoxia/reoxygenation injury in rat neonatal cardiomyocytes 

(Chanalaris et al, 2003). Thus comparing the protective potencies of UCN, UCN II and 

UCN III in chondrocytes is important in the development of CRH peptide-related 

therapies for the treatment of OA. 

In conclusion, the data reported in this study indicate that the CRH-like peptide UCN is 

an endogenous chondroprotective agent which is induced in response to certain pro- 

apoptotic stimuli, in particular NO. These experiments also indicate that UCN mediated 

chondroprotection may occur via the P13K, P38 MAPK and P42/P44 MAPK signaling 

pathways but the most significant is likely to be the P42/P44 MAPK. These experiments 

have also demonstrated that UCN is capable of reducing chondrocyte death when added 

exogenously which leads to the possibility that UCN, or an analogue of UCN, may have 

potential as a therapeutic agent for the prevention of chondrocyte death. This would 

represent a possible therapeutic avenue for the treatment/prevention of OA but it should 

be noted however that the potential for UCN activity outside the desired target tissue is 

high due to the distribution of the CRH receptors. This research has also identified other 

possible areas of intervention, such as the P13K and MAPK pathways implicated in 

UCN activity which could be molecular targets for the prevention of chondrocyte 

apoptosis providing further possibilities for the treatment of OA. Additional 

investigation of the role of UCN and its homologues in human chondrocytes may help 

to guide researchers to a clear insight of the natural role of this unique peptide family 

and to its definitive therapeutic use in this degenerative disease and other conditions. 
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