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Abstract

There is increasing worldwide awareness that bionics 
and artificial intelligence will play an important role in 
microbial analysis. An intelligent data-warehouse system 
consisting of an odour generation mechanism, rapid 
volatile delivery and recovery system, and a classifier 
system based on Neural Networks and Genetic 
Algorithms have been applied as part of a microbial 
analysis. The microbiological warehouse environment 
has, also adopted the concept of fusion of multiple 
classifiers dedicated to specific feature parameters. The 
experimental results confirm the soundness of the 
presented methods.

1. Introduction 

The data warehousing approach integrates data from 
the operational systems into one common data source, 
known as the data warehouse, which is optimised for 
intelligent data analysis purposes [1,2]. Data warehousing 
technology has traditionally been used in a business 
context, in order to answer questions about operational or 
executive type events in the business of concern.

The data models employed conceptually provide a 
multidimensional view of data, whether implemented in 
relational or dedicated multidimensional DBMS, and this 
has proven to be successful in the business application 
areas. However, some application areas have a need for 
more complex data structures. One such area is clinical 
data warehousing, where clinical data about large patient 
populations is explored to perform clinical management 
and medical studies. Clinical data warehousing is a large 
application area in itself, and we focus on describing the 
requirements of this area. We will concentrate on the use 
of clinical data for analysis purposes 

 The clinical domain requires more powerful data 
model constructs than conventional-bussiness 
multidimensional approaches. Let us consider the case 
study where a patient has multiple symptoms at the same 
time. The relation between patient and symptoms is 
modeled as an many to many relationship.  This is not 
easily possible using a conventional multidimensional 
model. Using traditional dimensions, [3] we would 
itemise all the possible combinations of symptoms. 
Itemising only the combinations actually used would still 
yield a very large number of dimension records. In the 
warehouse world, the only way to reduce dimensionality 
is by projection, thereby disregarding all information 
about the omitted dimensions. It is reported [4] that a 
clinical DW, average patients might have hundreds of 
different facts describing their current situation. There is 
an urgent need to be able to aggregate this massive 
amount of information in a useful way. The issue of pre-
aggregation in connection with dimensionality reduction 
is a very critical when it comes to data warehouses.  

More advanced classification structures are also 
needed, including means of managing dynamic, non-strict 
hierarchies, and of handling change. Continuously valued 
data, e.g., sensor measurements, is very common and has 
special demands for aggregation and computation 
compared to conventional business data. The number of 
dimensions in clinical data is often very large, generating 
a need for intelligent ways of dimensionally reducing the 
data into high-level abstractions. Medical-microbiological 
analysis should be supported directly by the clinical data, 
by integrating data mining capabilities adapted to the 
specific domain. Integrating mining facilities will pave 
the way for automating managed care; a current trend in 
the clinical world.

Instead of relying exclusively on the judgment and 
knowledge of one doctor, the treatment of specific 
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diseases is conducted according to well-defined protocols 
that specify the conditions and actions. The protocol can 
be viewed as a “best practice” guide for patient treatment. 
The clinical data warehouse should have integrated 
support for clinical protocols, to accommodate this 
important part of clinical practice. 

In this sense in this paper it is proposed a protocol for 
automating the process microbial analysis as part of a 
microbiological warehouses environment. The focus in 
this case is to enhance the warehouse functionality by 
integrating, dimensionality reductions techniques and data 
mining capabilities  

2. Relevant Work 

One of the biggest burdens for humanity is infectious 
disease. Bacteria, viruses and protozoan parasites are still 
major causes of death despite the steadily increasing 
understanding of the mechanisms of pathogenicity and 
the constant effort to develop novel drugs. 

 In the past decade, experts have started to appreciate 
and mimic the sense of smell by developing the electronic 
nose (EN). This development spans a wide range of 
scientific disciplines, from chemo-physics (odour 
detection-classification) and medicine (disease diagnosis) 
to psychology and psychiatry (aroma therapy). These are 
only a few examples of the applications of the EN. Like 
the light amplification by stimulated emission of radiation 
(LASER) in its early days, the EN seems to be a tool for 
solving many previously unanswered questions. Sensors 
are the most critical elements of an EN system. Sensors 
are technology dependent, and their commercial 
availability strongly depends on economic parameters 
such as market, available capital, and development time.  

Today, in commercial EN systems, several sensor 
technologies are employed (conducting polymers, metal 
oxides, optical fibres, and piezoelectric devices) [5,6]. 
Many research groups around the world are actively 
developing new improved gas sensors with broad 
sensitivities to certain classes of volatile organic 
compounds. Over the past few years there have been an 
increasing number of attempts to apply artificial olfactory 
diagnostics in clinical practice [7]. The diagnosis of 
disease states is a primary pre-requisite of successful 
medical treatment and as such is a high priority in any 
area of clinical science. Microbial infections and related 
causes of illness seem to be one of the more common 
problems encountered in the world today and are widely 
reported by the press, especially when so-called “killer
bugs” or “antibiotic-resistant” organisms are mentioned. 
In many cases, infection with micro-organisms produces a 
change in the smell of a person, which can be especially 
noticeable on the breath, in the urine or the stools.

Such changes have been commonly used as an aid to 
diagnosis of disease and in some countries, smelling the 
patient or the body fluids of the patient was, and still is, 
an important tool in diagnosis. In 1986, National
Geographic published an article on “The intimate sense of 
smell” in which the odour of different diseases was 
described and in which clinicians state that odour is 
important in diagnosis, especially in the emergency room. 
However a critical step before introducing such “smart” 
devices into the clinic would be the in vitro static or 
dynamic headspace analysis of microbial volatile 
compounds, extracted from clinical isolates of UTI, HP 
and respiratory infections. A metabolite may be described 
as volatile if it is a gas or has a high vapour pressure 
under the environmental conditions in which it is 
liberated from a cell. Organic volatile compounds (VOCs) 
can affect all forms of life, from the pheromones of 
insects, the odours of plants, to putrefaction.

Whether chemo-messengers intraspecies or 
interspecies (allelochemics) [8], they form complex 
dynamic systems of odour mixtures which can affect 
species behaviour and adaptation. “Table-I” presents some 
microbial volatiles and their biochemical precursors. 

Detecting low numbers of bacterial species in clinical 
samples usually involves time consuming growth in 
selective media and subsequent isolation and 
identification by appropriate diagnostic procedures. 
Complex volatile mixtures are released during bacterial 
interaction with the host tissue or media, and 
chromatographic techniques have been used in the past to 
characterise those species on their gas profiles [9]. 

“Table I. Generation of microbial volatiles due to 
metabolic reaction with specific biochemical precursors” 

Bacterial species Medium Volatile Compound 
E. coli, Klebsiella sp. Arabinose,

lactose
Ethanol

Proteus sp., Klebsiella 
sp,
Staph. Aureus, 
Pseudomonas sp. 

Trypticase
soy broth 

Isobutanol, isopentyl 
acetate ketones 

Proteus sp L-methionine Dimethyl sulphide, 
methyl mercaptan 

Proteus sp,
Enterococcus sp.
Klebsiella sp 

Acatyleholine Trimethylamine, ethyl 
acetate

Proteus sp, C. 
septicum 

Broth
(complex) 

Isobutylamine, 
isopentylamine, 
Ethylamine 

Proteus sp Phenylalanine
, valine
leucine

Benzaldehyde, 
isobutyraldehyde 
isovelaraldehyde

P. aeruginosa Broth 
(complex) 

Butanol, methyl 
ketones, 2-heptanone 

Bacterial identification is a process of iterative 
refinement. There is no single set of tests that can be 
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applied to all specimens to obtain a precise identification.
This process of identification is carried varying degrees 
of refinement depending on the body source of the
specimen, the current state of microbiological knowledge,
and clinical considerations. To overcome this sort of 
difficulty, we are exploring the use of NN simulators, on 
top of the microbiological data repository

3. Data Requirements 

In recent years, many NN simulators have been 
designed and are widely available. The current state-of-
the-art NN implementations can be divided into: 1) 
software-based simulators for use on systems such as PC
compatibles and distributed system workstations and 2) 
hardware implementations. Each of these alternatives has
strengths and weaknesses. A variety of NN architectures
and training algorithms is available in the various
alternatives. Some examples are: 1) back-propagation, 2)
competitive networks, 3) Kohonen networks, 4) learning
vector quantisation (LVQ), 5) radial basis function
networks, 6) ART, 7) simulated annealing, and 8) LM
method. Among all of these methods, feed-forward
networks with back-propagation training algorithms are
the most widely used. The appropriateness of a specific
NN architecture and training algorithm is normally a 
function of the task and its requirements/limitations. More
specifically, this appropriateness is mainly due to the
input database (or the input-output structure), the
complexity of the database, and the performance
measures of the network. A fully connected feed-forward 
NN has been used by many researchers [10] in the field of 
artificial olfactory systems and although is not necessarily 
an optimal architecture proves to be reasonably effective. 
Based on these observations, many commercial EN 
manufacturers have employed feed-forward networks as 
their NN architecture. Regardless of the NN architecture, 
it has been shown that the number of neurons is of great
importance in generalisation.

As a general statement, it has been shown that an
excessive number of neurons can result in drastic over-
training, while too few results in under-training
(insufficient training) [11]. The problem of finding an
optimal architecture/ configuration is extremely difficult 
because each specific architecture/ configuration has a 
unique set of optimal parameters. The objectives of this
study are to:

Discriminate in vitro, between multiple bacterial
clinical isolates all collected from patients diagnosed
with UTI, gastrointestinal and respiratory infections
and reveal hidden bacterial complex patterns by using
a hybrid NN-genetic algorithm mode as part of a 
Microbiological data-warehouse environment.

Combine classical NN techniques with advanced AI-
based methodologies (GA’s) to generate a powerful
hybrid classification tool; Demonstrate the power of a 
GA, by which a sophisticated NN can be trained for
better generalisation and classification performance;

Adopt a soft fusion of the outputs of multiple
classifiers dedicated to specific feature parameters.
On of the key issues of this approach is focusing to

combine the results of the various networks to give the
best estimate of the optimal result.

4.  Vivo-Vitro Classification 

4.1 In vitro classification of bacterial clinical isolates

The following bacterial species, as illustrated in Table
II, were isolated from patients suffering from
Septicaemia, Respiratory, wound and Urinary Tract 
infections (UTI). The above clinical isolates were
recovered on Blood agar plates No.2 (Oxoid), containing
5% sterile horse-blood (Oxoid) for 16hrs following
primary isolation, and successful growth the biochemical
profiles of all species were identified using conventional
microbiological analysis performed at Gloucestershire 
Public Health laboratory (UK). Each one of the bacterial 
species was inoculated (106 CFU) on blood agar No 2 
(Oxoid) containing 5% horse-blood (Oxoid), urea (1mg
ml-1), lactose (2mg ml-1), L-methionine, L-valine and L-
eucine (0.5mg mll -1, Sigma) adjusted at pH 7.3.

Table II “ General characteristics of 13 clinical isolates” 

Proceedings of the IDEAS Workshop on Medical Information Systems: The Digital Hospital (IDEAS-DH’04) 
0-7695-2289-0/04 $ 20.00 IEEE 



All bacterial cultures were incubated at 37oC
aerobically for approximately 12hrs except Lactobacillus
spp. that was cultured micro-aerobically at 45oC and pH 
6.0. A number of controls containing only sterile cultures
were also incubated for the same period of time in order
to study the difference between actual bacterial volatile
patterns and “noisy” background produced by humidity,
sensor aging and natural enzymatic digestion of cultural
substrates.

I. Volatile delivery system
Following 12hrs of incubation at 37oC, each of the 
growing cultures-measured at the stationary phase-were 
placed into 2l polypropylene Mylar bags and inflated with
carbon-activated filtered clean air (Hepavent, Whatman).

“Figure 1. Schematic representation of experimental
apparatus”

Each bag was transferred into a 37oC water bath and left 
to equilibrate for 5min before being connected with the 
sensory unit through a 15cm long Teflon tubing, a 
hydrophobic PTFE filter (Hepavent, Whatman), to ensure 
a sterile less humid environment over the sensor surfaces. 
The sampling point was adjusted to a set height above the
static headspace as illustrated in “Figure 1”. A flow rate 
of 200ml min-1 was set automatically by data control
software. Additionally environmental conditions at the
sampling point, inside the water bath were continuously
monitored in order to establish a standardised sampling
protocol.

II. Bacterial pattern recognition
“Figure 2” displays a real time sensory response

analysed by 5 extracted sensor features that describe
sensor-volatile physicochemical interaction and pattern
extraction: (a) Divergence: maximum step response, (b) 
Absorption: maximum rate of change of resistance), (c)
Desorption: maximum negative rate of change of 

resistance, (d) Area under the curve and (e) Ratio
Absorption/Desorption. In order to improve the bacterial
classification process fourteen conducting polymers and 
the above 5 features generated a set of 70 sensor 
parameters. All sensors responses were pre-processed by
using a suitable normalisation algorithm [12].

“Figure 2: Parameters measured for each sensor 
response”

4.2 In vitro classification of Urinary infections 

UTI is a significant cause of morbidity with 3 million
UTI cases each in the USA alone [13]. Thirty-one percent
of nosocomial infections in medical intensive care units
are attributable to UTI, and it is estimated that 20%
percent of females, aged of 20 and 65 years suffer at least
one episode per year. There are also links to other 
complicated or chronic urological disorders such as 
pyelonephritis, urethritis, and prostatitis[14].
Approximately 80% of uncomplicated UTI are caused by
E.coli and 20% by enteric pathogens such as Enterococci,
Klebsiellae, Proteus sp., coagulase (-) Staphylococci and 
fungal opportunistic pathogens such as Candida albicans
[15]. Current diagnostic techniques require 24-48 hrs to
identify pathogenic species in urine midstream specimens
(  105c ml-1) and apply antibiotic sensitivity tests. Despite
the introduction of molecular tests, microscopy and
culture remain the gold standard in every day clinical
practice.

I. Urine samples and volatile generating kits
Forty-five 5ml urine samples (following eukaryotic cell
filtering extraction) were collected from randomly
selected patients admitted in Gloucestershire PHLS and
inoculated into specially made centrifuge bottles (50ml,
Sterilin) each containing 95% BHI broth (Oxoid), 5%
serum bovine (Oxoid), 0.70mg ml-1 of a series of amino
acids (L-Leucine, L-Alanine, L-Serine, L-Valine, L-
Asparagine, L-Glutamine, L-Methionine, Sigma), 1mg
ml-1 Urea (Sigma), 0.75mg ml-1 Lactose (Sigma), 0.1mg
ml-1 Casein (Oxoid), 0.3mg ml-1 Acetylcholine (Sigma) to
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a final volume of 20ml per VGK and incubated 
aerobically for 5 hrs at 37 C.

II. Flow injection analysis (FIA) of urinary volatiles
After 5 hrs of incubation to coincide with the logarithmic
phase of growth, 45 VGK were placed in a 37 C water 
bath and directly connected with a specifically designed
air-filtered sparging (bubbling) system. This consisted of 
Teflon tubing (Tygon), a hydrophobic biofilter (0.45 m
PTFE, Whatman-Hepavent) and an activated carbon filter 
(Whatman) to provide clean air-flow above the urine
headspace. A flow rate of 200ml min-1 was set 
automatically and environmental conditions at the
sampling point were continuously monitored. The actual
urine sampling time and baseline recovery per specimen
was 3 min.

III. Intelligent UTI pattern recognition system
Thirty cases of UTI were identified from 45 randomly

selected samples by standard microscopy and culture: 13 
patients were infected with E.coli (e), 9 with Proteus sp.
(p) and 8 with coagulase (-) Staphylococcus sp., (st). Two 
genetic training algorithms processed urine data through a
parallel evolutionary succession process towards
competent NN solutions. The first GA analysed patient 
data that had been randomly divided into a “training”
group of 31 urinary samples (e: 9, p: 6, st: 5 and n: 11) 
and a group of 14 “unknowns” (e: 4, p: 3, st: 3 and n: 4, 
31% of patient collected data).

5. Odour Recognition and Data Analysis 

5.1 In Vitro Analysis 

Two hundred and forty-eight bacterial patterns of 14
classes and 70 normalised sensor parameters constructed
a matrix of 17,360 sensor data-items that was analysed by
an intelligent system consisting of Radial Basis-Function-
Networks (RBF).

“Figure 3. Multiple classifier architecture”

Overall, the sensor data matrix was randomly divided

into a training group containing 200 bacterial patterns and
a testing one of 48 random “unknown” samples.

Recently, the concept of combining multiple networks 
has been actively exploited for developing highly reliable
neural network systems. One of the key issues of this
approach is how to combine the results of the various
networks to give the best estimate of the optimal result. A 
straightforward approach is to decompose the problem
into manageable ones for several different sub-networks
and combine them via a gating network. The proposed
architecture is a neural network system containing five
parallel modules, one for each of the bacterial properties
as shown in “Figure 3”. Each network module makes a 
classification from a single property and their results are 
combined, using an averaging approach, to make an
overall classification. All modules contain fourteen input
nodes and four output nodes. The fourteen input nodes 
correspond to the fourteen sensor parameters.
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“Figure 4. Fusion analysis results” 

The four output nodes are sufficient for binary
representation of the fourteen classes (13 bacterial classes 
and the control group). Four binary digits can represent
sixteen integers, so each class is assigned one of fourteen
binary patterns. Two patterns remained unused. The soft
combination of neural classifiers resulted in 93.75%
accuracy over the testing dataset, demonstrating in this 
way the efficiency of this scheme in terms of accuracy 
and processing-time. The relevant results are illustrated in
“Figure 4”. 

5.2 In vivo analysis 

An evolutionary process of 5 generations  (3 NNs/
generation) was carried out employing 1 crossover and a 
mutation rate of 0.5. Additionally the second GA
performed a much broader evolutionary optimisation
analysis of 100 generations. It also attempted to analyse
the same amount of patient data but with a higher ratio of 
“unknown” proportion (42% of collected patient data)
including 26 training samples (e: 8, p: 4, st: 4, n: 10) and 
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19 “unknown” UTI  (e:5, p:5, st:4, n:5).
A population of 600 NNs was evolved using an 

immigration mode, 2 crossovers and a mutation rate of
0.7 towards the “fittest” NN solution. Both “genetically”
selected sensor parameters were also used to perform
PCA and DFA-cv. PCA accomplished non-parametrically
a significant dimension reduction by minimising minor
UTI data variations so that information could be depicted
on a few two-dimensional principal component score 
plots. Two parallel evolutionary algorithms selected 2 NN 
solutions.

The first was a 3-layer (28-12-4) back-propagation NN
that used an adaptive learning rate, a momentum of 0.42, 
an input pattern noise of 0.03 and achieved a 98% 
prediction rate. Thirteen out of 14 “unknown” UTI
samples were identified correctly with a prediction output
confidence ranging from 0.75 to 1.01. The intelligent
system failed to characterise only one urine sample
previously diagnosed with E.coli infection.

“Figure 5. Extraction of “genetically” selected sensor 
parameters and two-dimensional representations of PCA
clustering between: a. normal urine (n), Proteus sp. (p) 
and Staphylococcus sp. (st) and b: E.coli (e), Proteus sp. 
(p) and Staphylococcus sp. (st). (Inner and outer circles
divide most closely linearly discriminated patterns from
the most drifted ones, respectively).”

However, this single pattern confusion was limited to
the case of distinguishing between E.coli infection and 
normal urine. Both their prediction confidence outputs
were very close-0.37 for E.coli and 0.43 for normal urine-
but below a 0.5 test tolerance limit.

“Figure 6. DFA and 3-group separation between: a.
normal urine (n), Proteus sp. (p) and Staphylococcus sp. 
(st) and b. normal urine, E.coli (e) and Staphylococcus
sp.”

Twenty-eight “genetically” selected parameters
performed PCA and DFA, which displayed two graphical
cluster separations between Proteus sp., Staphylococcus
sp. UTI and normal samples. Cross-validation reclassified
correctly 6 “unknown” patient samples “Figs 5a & 6a”.
Furthermore by extracting all “genetically” selected 
sensor parameters that had been previously used as input
neurones it was possible to reveal hidden non-linear
patterns characteristic of each UTI group. Furthermore
the second 3-layer NN (22-15-4) achieved a 95%
prediction rate and recognised 18 out 19 “unknown” UTI 
cases. Only one normal patient sample had been mistaken
for E.coli infection.

A two-dimensional discrimination plot between 3 of 
the tested UTI groups (e, st, p) was produced by PCA.
DFA also separated patient samples infected with E.coli,
Staphylococcus sp. and normal urine samples. Cross
validation recognised 7 “unknown” UTI cases (Figures
5b & 6b). 

7. Conclusions 

We have shown that DW technology faces new
challenges from the area of microbiological data 
repositories. The integration of clinical protocols in the
CDW is important to allow for follow-up on the treatment
of patients. Support for medical research, e.g., via data
mining facilities, will enable the clinical community to
perform their research much more efficiently than is 
possible today.
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Microbiological data warehousing provides prospect 
for large repositories research that will also have 
applications in areas beyond the clinical-biological world. 

There is need for innovative inexpensive tests to be 
developed for early diagnosis of infectious diseases and 
control of antibiotic resistance. The recent use of GC-MS 
or MS methods accompanied by NN and multivariate 
analysis although are considered very sensitive, they need 
highly skilled personnel and are characterised by 
increasing capital cost. Intelligent gas sensor technology 
has been applied in several research areas, including 
biomedicine. Many research groups around the world are 
actively developing new improved gas sensors with broad 
sensitivities to certain classes of volatile organic 
compounds. As these sensors become commercially 
viable, the EN might well achieve higher levels of 
acceptance in medical applications.   

The present system resulted in the delivery of bacterial 
odours in the form of repetitive ‘sniffs’, and achieved 
higher control by keeping the sampling point, the 
headspace and liquid volumes constant. Additionally 
there was continuous monitoring of environmental 
conditions at the sampling point. There are several 
advantages in the application of NN models as opposed to 
other statistical techniques. Their ability to generalise is 
particularly useful since rough data is often noisy due to 
some sensor drift. Selecting and constructing the right 
learning data (input) is crucial in pattern recognition 
methods. Each class must be composed of representative 
and reproducible samples. The quantity of these samples 
does not increase the discrimination confidence instead it 
is the “quality” of representation carried in each input 
sample that determines pattern recognition performance. 

 The applied GA-NN technique achieved a high 
prediction rate and enabled the parallel use of multivariate 
techniques too, showing a degree of correlation among 
genetically selected input parameters. The present work 
proposes a novel application of GA-NN in combination 
with multivariate techniques in bacterial class 
discrimination. However, the use of multiple NN fusion is 
a challenging and more promising approach. The adopted 
parallel architecture reduces the dimensionality of the 
network search space thus increasing both computational 
efficiency and the probability that optimal network 
parameters will be found within the search space. Future 
work will investigate the integration of neuro-fuzzy 
algorithm to the multiple classifier scheme employed 
however with a more accurate fusion decision criterion, 
such as the fuzzy integral. 
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