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Abstract- The aim of this paper is to determine the
stability of higher-order J-Z modulators for sinusoidal
inputs. The nonlinear gains for the single bit quantizer for
a dual sinusoidal input have been derived and the
maximum stable input limits for a fifth-order Chebyshev
Type II based J-Z modulators are established. These
results are usefulfor optimising the design ofhigher-order
J-Z modulators.

I. INTRODUCTION

The stable input amplitude limits for A-E modulators
is complicated to predict due to the non-linearity
introduced by the quantizer in the feedback loop.
Various approaches have been employed to explain
this nonlinear behaviour. Using quasilinear
modeling, a new interpretation of the instability
mechanism for A-E modulators based on the noise
amplification curve is given in [1]. This is restricted
for DC inputs and unity quantizer gains. The
quasilinear method can be extended to more than
one input with each input represented by a separate
equivalent gain. This concept forms the basis for the
Describing Function (DF) method [2]. In [3] the
stability analysis for higher-order A-E modulators
based on the noise amplification curve was done
using the DF method for DC and (single-tone)
sinusoidal inputs for non-unity quantizer gain
values. In this paper the analysis is extended for
multiple (dual) tone sinusoidal inputs.

II. QUASILINEAR STABILITY ANALYSIS OF
A-E MODULATORS

A generic A-E modulator having its quantizer
replaced by a gain factor K followed by additive
quantization noise q(k) [1] is shown in Figure 1.

x(k) _ eCk) q(k)
G(z) + K+

y(k)

Figure 1. Quasilinear A-E modulator Quantizer Model

The output of the modulator in the z-domain is given
by:

Y(z) = STF(z)X(z) + NTF(z)Q(z) (1)
where, Y(z), X(z) and Q(z) are the z-transforms of the
output, input and quantizer noise signals respectively.
Also, STF(z) and NTF(z) are the Signal and Noise
Transfer functions of the A-E modulator derived from
Figure 1.
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Since the poles of the denominator (1 +KH(z)) determine
the stability of the modulator, for a given H(z), there will
be a certain interval [Kmin, Kmax] for which the modulator
is stable [4]. Assuming q(k) to be Gaussian white
stochastic G(O, Gq2) and the transfer function between
q(k) and y(k) to be known, then the output noise variance
is given by:

ri} 2 1 V 2
Var4y(k)J =crq f NTF(e' ) df

0

2
aq A(K) (4)

where, Gq2 is the variance of q(k) and A(K) is the total
output noise power amplification factor. Using
Parseval's relation, A(K) can be found in the time
domain as [1]:

A(K)=L 2 _ 2
A(K) = ~ntf(k) A~ntf

k=O
(5)

where ntf(k) is the impulse response corresponding to
NTF(z) and A(K) is the squared two-norm of NTF(z).
The A(K) curves of the loop-filter are crucial for the
stability analysis of the A-E modulators. Typical curves
for Type II Chebyshev 3rd and 4 order based modulators
are shown in Figure 2. The Amin value is the global
minimum of the curve. It has been shown in [1] that for
stable operation A(K)>Amin. As the amplitude of the input
signal increases the value of A(K) decreases on the right
side (monotonically decreasing) of the curve till it finally
reaches Amin . This characterizes the onset of instability
and the value of A(K) then slips onto the left side of the
curve which is monotonically increasing. In this region
the quantizer gain values are such that the modulator is
always unstable. This is an irreversible state.
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and pa2=(I12)(a2ll) , ph2=(112)(h21Cl). F(.) is the1.5 2 Confluent Hypergoemetric Function [6]. The output
noise variance is given by:

Figure 2. A(K) Curves for Type II Chebyshev NTF

III. NOISE AMPLIFICATION CURVES - DF
METHOD

The quasilinear quantizer model in Figure 1 can be
extended using separate gains K, and Kn for the DF
model as shown in Figures 3 and 4 [5].

x(k) ex(k)
G(z) +

yx(k)
H(z)

Figure 3. A-Y modulator Quantizer Signal-Model

Figure 4. A-Y modulator Quantizer Noise-Model

Figure 3 describes the model for the input signal with
linear gain K,. Figure 4 describes the noise signal model
with linear gain Kn. The combined output signal is given
by:

y(k) = yx (k) + Yn (k) (6)
The linearised gains for two sinusoidal input signals
Xa(t)=acos(co4(t)+0j), Xb(t)=bcos(cq2(t)+02) (where a, b
are constants, (0), 02 the sinusoidal frequencies, O and

02 random phases) and a random Gaussian signal
(feedback components) have been solved for the case of
an one-bit quantizer with an output ±A in Appendix A
where the final expressions are shown below:

K22Ab 1]{ 13 } (7)

Varty(k)} = (2 K2 +U2
en q,b

where 0qab is the quantization noise power for the two
uncorrelated sinusoidal inputs xa (t) and Xb (t) .
Therefore from (4), (9) and (13) the noise amplification
factor is given by:

A (K)
ab

2 2{a 22 );- Pa e- Pb : 2 + f2

l J aab
2
q ab

Since xa(t) and xb(t)are uncorrelated, the power of the
output signal is given by:

Ey2 (k)= a2 K2 + 072 + 072 K 2 +u2 K 2 (15)
e n qab e b e a

n1 a b a

where 0eb and dea are the powers of the sinusoidal
inputs at the quantizer input which are given by:

s72 = 1'72 and 072 =
1 072

eb K2 b ea K 2 a
b a

From (9), (15) and (16) we get:

A2= 2 p22 2 +U2 b aA2 A e -11e +lob + +
if vqab 2 2

Rearranging (17), the quantization noise is given by:
a2 b2 {e 2

qab A2!1 2A 2A2
e Pb2}2;2]

From (8) and (16) we get:

Sir f (7)ban (16) f 2s o X ( w

Similarly from (7) and (16) for the sinusoid xa (t) we
have:

( >{ 2 Fla} a, (20)
2

(19) and (20) are two simultaneous equations that were

solved using MIATLAB in order to get the values of pa
and pb for various values a and b.
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IV. RESULTS & SIMULATIONS

From (19) and (20), values obtained of pb have been
plotted in Figure 5. The value of pb is observed to get
bigger as the sinusoidal amplitude b increases. However,
the increase in pb gets attenuated as the signal amplitude
a increases from 0.2 to 0.8.
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Figure 5. Variation ofpb versus b for different a amplitudes

Using (18) the quantization noise O2qab is plotted in
Figure 6. The c2qab in the regions b < 0.2, b < 0.4 and b
< 0.6 for the curves I (a=0.2), II (a=0.4) and III (a=0.6)
respectively increases mainly due to pa. As pa becomes
bigger when the amplitude a increases from 0.2 to 0.6 in
so does c2qab. The increase in Gqab in the regions b > 0.2,
b > 0.4 and b > 0.6 for the curves I, II, and III
respectively is mainly attributed to increase in pb. As pb
increases with a reduction in the amplitude a from 0.6 to
0.2 in Figure 5 so does c2qab.
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Figure 6. Variation of quantization noise versus the two sine amplitudes

Figure 7 shows the A(K) curves obtained from (40) for a
= 0.2, 0.4 and 0.6.
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Figure 7. A(K) variation versus the two sine amplitudes

From Aab(K), the stable amplitude limits b have been
plotted for the 5th_ Chebyshev Type II NTF for a = 0.2 in
Figure 8. The stable amplitude b is seen to vary with the
quantizer gain K and the stop-band attenuation.
Maximum stable limit of b is achieved when the
quantizer gain value is close to one for a given stop-band
attenuation. This stable amplitude limit decreases as K
increases to 1.5 and beyond. It is also observed that for
given value of the quantizer gain K, the stable amplitude
limit decreases as the stop-band attenuation increases.
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Figure 8. Stable limits of amplitude b of 5th_order for a 0.2

Simulations for the 5th_order Chebyshev Type II A-E
modulator shown in Figure 9 were performed for
1638400 samples. The input amplitude was increased in
steps of 0.1. The maximum stable amplitude limits were

obtained and compared with simulations as shown in
Figure 9. Results obtained in [3] were used for the DC
and single sinusoidal inputs.
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Figure 9. Simulation results for DC, sine & two sinusoidal inputs

The reason for variation can be attributed to the fact that
the derivation of the three gains (i.e. 2 sinusoids and one
Gaussian) is based on the modified non-linearity
concept. In order to compute the gain for any of the 3
inputs, it is assumed that the non-linear function has been
modified in turn by each of the 2 remaining inputs.
However, in real-time this may not be the case as all the
3 inputs coexist simultaneously.

V. CONCLUSION

The stability of higher-order A-E modulators for dual
tone sinusoidal inputs using the Describing Function
Method has been predicted. The nonlinear gains for the
single bit quantizer for a dual sinusoidal input have been
derived and the maximum stable input limits for 5t-order
Chebyshev Type II based A-E modulator have been
established. Accurate results for the stable amplitude
curves can be obtained for a range of values of quantizer
gain K in which the A-E modulators are likely to operate.

APPENDIX A

In this Appendix, the derivation of the gains for two
inputs (a dual-tone sinusoidal one Gaussian) for a single-
bit quantizer is made. If the inputs to the nonlinearity are
of different (Probability Density Functions) PDFs or of
different magnitudes of similar waveforms, the output
component from one of these inputs depends not only on
the magnitude of this particular input but also on the
magnitudes of all the other inputs. The concept used here
is the modified linearity concept [7], whereby to
determine the response to a particular input, the
nonlinear characteristic is modified in turn by each of the
input signals present to obtain a modified nonlinearity to
which the input is applied.

The two sinusoidal inputs considered here are
Xa(t) =acos(c9j(t)±+ ) and Xb(t) =bcos(co2(t) + 02) where a,
b are constants, Wj, 0°2 the sinusoidal frequencies,
assumed to be incommensurate, l and 02 are RVs each
having a uniform PDF in the interval [0, 2wr]. The second
input is the quantization noise assumed to be Gaussian
G(O, a) i.e. with zero mean and variance ad.The modified
nonlinearity of single-bit quantizer with a random input
is given by [8]:

(Al)
r

nl(y) = 2Aq(y)dy
0

where ±A is the output of the quantizer and q(y) is the
PDF of the random input. Therefore for a Gaussian
input:

n, (y) =2AJ 1<e 22d (A2)
0V5

On integration (A2) simplifies to:

n,(/) = Aerf (7,) (A3)

The non-linearity n1(j further modified to n2(o by one
of the sinusoidal signals say xa (t) which is given by [7]:

a

n2(r) Jp(x)n, (x + y)dx (A4)
-a

where p(x) is the PDF of xa(t). Therefore:

n2(Y) 1 2 Aerf x dcr x (A5)

n2(j is now the nonlinearity of the quantizer which has
been modified by the sinusoidal input Xa(t) and the
quantization noise G(0, a). The next step is to evaluate
the gain for Xb(t) to this modified nonlinearity. The gain
Kb of the sinusoidal input Xb(t) to this non-linearity n2(0
is given by [8]:

b

Kb 2 fxn2(x)r(x)dx (A9)b -b
where ab = b212, is the variance and r(x) the PDF of
Xb (t). On integrating (A9) we get the gain for b Kb as:

Kb ) )(bj I _2{F1 2 b)+b}()
where,

/b = -P4+16 6 128 8 (Al 1)

In order to obtain the gain for Xa(t), we proceed as in
above to get:

K a)2A -b bj ,1 32{ 1 2'-Pa)+ ifa}(A12)
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Noise Gain

The modified nonlinearity of order 1 for a Gaussian input
to an single bit quantizer is given by [8]:

00

n(a, Y)i = Jn(y + r)Hj( q(y)dy (A13)
0~~~~0

where H1 is the Hermite Polynomial of the first order.
Substituting for q(y) and n(y+y) in (A20):

oo y2 y

n(ao A Jye 2o5dy fhe 2 (A14)

The noise gain Kn in the presence of another random
input with PDF p(r) is given by [8]

Kn n(a,r)Ip(r)dr (A15)

Here we consider the additional random input as a
combination of two uncorrelated sinusoidal inputs. The
joint PDF p(r) of the two sinusoidal signals having
amplitudes a and b, with incommensurate frequencies is:
p(r) =(r rab)(1/sin 0), where 0-cos 'f[a2+b2-r2]12ab}.
Putting the value ofp(r) in (22) we get:

K= ~ e 2,2 rt dr (A16)
n () fa f zab )(sin 0)

a-b

Changing the variable from r -*0,

K = 2 e 2u2e 2<,2 JekcosO0dO (A17)
0

where k ab&a2. Solving the integral above we get the
noise gain as:

where:

K = Peae Pb

44 6 6 88

= I1+ppa 2+Pa +-A +...~
Pb

4 36 576
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