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Abstract 

The prediction by classification of side effects incidence in a given medical treatment is a common challenge in 

medical research. Machine Learning (ML) methods are widely used in the areas of risk prediction and classification. 

The primary objective of such algorithms is to use several features to predict dichotomous responses (e.g., disease 

positive/negative). Similar to statistical inference modelling, ML modelling is subject to the problem of class 

imbalance and is affected by the majority class, increasing the false-negative rate. In this study, seventy-nine ML 

models were built and evaluated to classify approximately 2000 participants from 26 hospitals in eight different 

countries into two groups of radiotherapy (RT) side effects incidence based on recorded observations from the 

international study of RT related toxicity "REQUITE". We also examined the effect of sampling techniques, cost-

sensitive learning and meta-learning methods on the models when dealing with class imbalance. The combinations of 

resampling and meta techniques used had a significant impact on the classification. They resulted in an improvement 

in incidence status prediction by facilitating an increase in the information contained within each variable. Based on 

domain expert criteria, the best classification model for RT acute toxicity prediction was identified. The Area Under 

Receiver Operator Characteristic curve of the models tested with an isolated dataset ranged between 0.50 and 0.77. 

The scale of improved results is promising and will be used to guide further development of models to predict RT 

acute toxicities. One new model was optimised and found to be beneficial to identify patients who are at risk of 

developing acute RT early toxicities during or after breast RT treatment ensuring relevant treatment management 

interventions can be appropriately targeted. The ML models presented in this paper were developed by a multi-

disciplinary collaboration of data scientists, medical physicists, oncologists and surgeons in the UK Radiotherapy 

Machine Learning Network. 
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1. Introduction 

A common real-world problem facing Machine Learning (ML) is the lack of good data. While data preparation and 

modelling often consume most of the time of developing ML solutions, data quality is essential for the algorithms to 

function as intended. Noisy, dirty, and incomplete data are common obstacles to creating ML solutions [1]. Routinely 

collected health data are data collected without specific a priori research questions developed before collection [2]. 

Health data of this type are used widely for clinical, pharmacoepidemiologic and health services research. However, 

the quality of these data remains in question; hence data scientists often need a combination of domain knowledge as 

well as an in-depth understanding of ML to examine and cleanse such data. Such a process sheds light on the 

significance of interdisciplinary collaborations in this type of research.    

In ML modelling, the imbalance and lack of uniform distribution across patients' groups in health data also form a 

challenge for both industrial and research domains [3]. There are multiple techniques to tackle class imbalance [4], of 

which data enrichment is the most straightforward. Other more sophisticated methods include varied sampling 

techniques [5], cost-sensitive learning [6], [7], feature selection; more complex strategies include meta-learning [8], 

combining classifiers [9], and algorithmic modifications [10].  

Resampling methods often raise questions over their suitability [11]. For example: is the new resampled dataset 

representative of the population in relation to the response variable? Is it acceptable to artificially generate synthetic 

data of class subjects when training ML classification models? It has been argued that by using sampling methods, 

the original class ratio is lost during the training process and that this affects the accuracy metrics [12]. Similarly, 

training ML models with synthetic data may compromise accuracy measures by deceiving the process of cross-

validation [13].  

While most learning algorithms train under the assumption that the cost of misclassification is identical across outcome 

groups [14], penalising classifiers with cost-sensitive classification for incorrect predictions is a practical solution to 

the problem in many fields, like the medical domain of our study. In the medical domain, defining such a cost is 

challenging [15]. In treatment management scenarios, the cost of a false positive might be derived by the monetary 

cost of performing subsequent tests. In contrast, there is not a monetary equivalent cost for administering treatment 

on a patient and get further health complications.  

The primary goal of this study is to identify the best ML models to predict acute desquamation - a common side effect 

following breast cancer radiotherapy (RT) - before the start of any treatment; such models are of particular interest to 

cancer clinicians. 

The deployment of ML modelling in this study aims at tackling a real-world treatment management challenge. Over 

70% of breast cancer patients receive RT during the course of their treatment [16]. RT is recommended to all breast 

cancer patients who have a local excision following mastectomy in high-risk patients [17]. Radiation treatment reduces 

the rates of cancer recurrence following local excision and increases long-term survival [18]. As survival from breast 

cancer continues to improve [19], quality-of-life (QoL) and survivorship have become an increasingly important 

research priority [20].  

Radiation toxicity can be estimated from empirical dosimetric models based on the dose to the target organ and 

surrounding tissue [21] [22]. However, there is considerable variation between individual patients' normal tissue 

reaction to RT and resultant toxicities, including skin desquamation [23]. In a significant minority of patients, this can 

cause substantial patient morbidity and can worsen the cosmetic outcome following breast surgery. At the severe end, 

acute desquamation (skin loss) can result in the interruption of RT or even a total dose reduction, potentially increasing 

the risk of local recurrence. Thus, acute radiation toxicities can have an adverse effect on the QoL in a significant 

minority of breast cancer patients. This effect could be reduced if a patient's individual risk of radiation toxicity was 

better known. This would allow treatment plans to be personalised and inform discussions about treatment risks and 

benefits with patients.  

Given the paucity of validated predictive models for RT-related toxicity, it is important to build models with optimal 

predictive performance. ML is well placed to achieve this. Recent studies have demonstrated an ability to develop 

well-performing predictive models for radiation toxicities [24] [25], including a thermal image-based classifier to 

predict breast radiation skin toxicity after the first week of RT [26]. In this paper, using the large REQUITE breast 

cancer cohort, we compare eight different ML algorithms (building a total of 79 models) for predicting acute skin 

desquamation.  The new models were built using Cost-Sensitive (CS) learning [27], Random Under Sampling (RUS), 

Synthetic Minority Over Sampling Technique (SMOTE) and Random Over Sampling (ROS) techniques [28] [29] 

applied to highly imbalanced training data. This study suggests the most suitable models meeting the domain experts' 

success criteria. The data imbalance characteristic causing the transition in classifier training performance was 



monitored visually by Adaptive Projection Analysis (APA) [30] and numerically via Information Gain (IG) attribute 

evaluation [31]. The ML models presented in this paper were developed by a multi-disciplinary collaboration of data 

scientists, medical physicists, oncologists and surgeons in the UK Radiotherapy Machine Learning Network. 

The paper is structured as follows: section 2 has a brief description of the study cohort. The methodology, methods 

and approaches used in this study are presented in section 3. The results and analysis are documented in section 4, 

with the discussion and next steps in sections 5 and 6, respectively. 

 

2. Study cohort and participants 

The study is a cross-sectional assessment of an international, prospective cohort study recruited cancer patients in 26 

hospitals in eight countries between April 2014 and March 2017. This study uses collected data from 2069 patients 

who underwent breast RT. There were 192 patients (9.3%) with acute desquamation (grade 1≥ulceration or grade≥ 3 

erythema). The median age of breast patients was 58 years (range 23-80 years), treated with a median dose to the 

breast of 50 Gy (28.5-56 Gy) in 25 fractions (5-31), and 64 % of patients received boost treatment. Further details on 

the prevalence of clinical risk factors are widely available [32]. 

Binary ML classification models were built to predict acute desquamation development in breast RT patients. The 

REQUITE team provided patients' data, and the questionnaire and methodology for this study were approved by the 

REQUITE publications committee. The multicentre-REQUITE breast cancer patients cohort was recruited 

prospectively in seven European countries and the US. The cohort was used for building predictive ML models 

throughout this study. The REQUITE study was conceived as a multicentre validation cohort for predictive models of 

radiation toxicity collecting data under a unified protocol [33]. Patient baseline characteristics and methodology have 

been described in detail elsewhere [34]. All patients were treated with Breast Conservative Surgery (BCS) followed 

by External Beam RT (EBRT) according to local protocol. Although late toxicity was the primary endpoint in 

REQUITE, data collected at the end of radiation treatment was used to document acute toxicity. All patients gave 

written informed consent. The study was approved by local ethics committees in participating countries and registered 

at the ISRCTN registry [35] (ISRCTN98496463). For the full list and sequence of the methods used in this study see 

Fig.1 in section 3.  

2.1 Response variable (endpoint) definition 

Radiation toxicity in REQUITE was scored using CTCAE (Common Terminology Criteria for Adverse Events) v4.0 

[36]. CTCAE v4.0 has separate scales for radiation dermatitis (erythema or redness) and skin ulceration (skin loss), 

both of which are relevant to the acute response to RT in the breast. The primary endpoint of this study was acute 

desquamation (skin loss or moist desquamation) occurring by the end of treatment. Cases were defined as patients 

who experienced either grade≥3 radiation dermatitis (moist desquamation) or CTCAE grade≥1 skin ulceration, 

implying that skin integrity has been broken over the breast or in the inframammary fold.  There were 192 patients 

(9.3%) with acute desquamation.   

3. Methodology 

The methodology corresponds to a merge of several data mining tasks into two key phases which were carried out in 

collaboration with medical domain experts. The first phase combines data cleaning, preparation and pre-processing 

tasks; it includes predictors selections, error detection, data labelling and imputation. The second phase combines the 

modelling, evaluation and simplification tasks. 

3.1 Data preparation and pre-processing 

Fig.1 shows the sequence of data preparation and pre-processing tasks as they were deployed to this study. The raw 

REQUITE dataset (n = 2069) contained (m > 300) variables (features). Variables were initially nominated manually 

using domain expertise in modelling desquamation by clinicians and RT physicists and only a set of m = 136 

applicable variables and n = 2058 (𝐷𝑒𝑠𝑞+ = 192, 𝐷𝑒𝑠𝑞− = 1866) records remained (Case-wise deletion (n=11 with 

missing class endpoint observations). The nominated set proceeded to preparation and pre-processing; its variables 

include baseline characteristics, familial history, breast cancer staging information, chemotherapy regimens, lifestyle 

attributes, medical conditions, household characteristics, sociodemographic factors, medical operations, treatment 

history, female-specific factors, mental and behavioural disorders, medications, quality of life aspects and breast RT 

clinical measurements such as normo-fractionation procedure. In data preparation, Boundary Value Analysis (BVA) 

and Equivalence Class Partitioning (EPC) techniques [37] were used for detecting and correcting or removing corrupt 

or inaccurate records from the dataset. Also, missingness analysis was performed by cross-checking the data with the 



REQUITE study questionnaire design to ascertain the causes of incomplete records and deduce patterns. A 

combination of non-statistical and statistical imputation techniques was used, non-statistical methods were used to 

reduce uncertainty via logical rule imputation and variable dropping [38] (see Table 1). The investigation of missing 

data patterns [38] assisted in non-statistical imputation of missing data with logical rule imputation, variable dropping 

(m=13 with > 37% missing values at random compared to observed values in the remaining variables to avoid 

introducing correlation bias when statistical imputation techniques are used). The retained dataset for feature 

engineering transformation and modelling finally had m=123 variables and n=2058 records. 

 

 

Fig. 1 Data preparation and pre-processing tasks used in this study 

Table 1. Percentage of Imputed missing observations in breast RT cohort variables 

Breast RT cohort nominated raw data 

(m=136, n=2069) 

Breast RT cohort post case-wise 

deletion and logical rule imputation 

(m=136, n=2058) 

Breast RT cohort post variable 

dropping (m=123, n=2058) 

Variables 

Count 

Missing Observations 

Percentage  

Variables 

Count 
Missing Observations 

Percentage 
Variables 

Count 
Status 

21 90.01%- 100.00% 9 90.01% - 100.00% 9 Dropped 

4 75.01% - 90.00% 2 75.01% - 90.00% 2 Dropped 

5 50.01% - 75.00% 2 37.01% - 75.00% 2 Dropped 

3 35.01% - 50.00% 1 37.00% 1 Retained 

3 20.01% - 35.00% 4 20.01% - 35.00% 4 Retained 

9 5.01% - 20.00% 12 5.01% - 20.00% 12 Retained 

13 1.01% - 5.00%  23 1.01% - 5.00%  23 Retained 

18  0.05% - 1.00%  22 0.05% - 1.00%  22 Retained 

60  0.00% 61 0.00% 61 Retained 

 

The retained records n=2058 were shuffled with a randomisation algorithm. Following randomisation, a 50:50 

training-test dataset-split with class stratification was performed to sample both the raw Imbalanced Training Dataset 

(raw ITD, n=1029) and the raw Validation Dataset (raw VD, n=1029). The process was followed by applying a state-

of-the-art hybrid statistical-ML imputation for each set independently with ML Decision-Tree based Missing-Value 

Imputation (DMI) Technique [39] to enhance the best expectations of missing values. Datasets’ information levels 

were monitored in each set pre-imputation (raw(ITD), raw(VD)) and post-imputation (DMI(ITD) and DMI(VD)) with 

Information Gain Attribute Evaluation [40]. The evaluation of information worth is highly affected by the number of 

records; hence the 50:50 training-test split to allow for a fair information bias comparison, see supplementary 

Information Gain Attribute Evaluation Table A.  

The retained 123 variables for modelling consisted of: 



• 106 raw features. 

• Breast size measurement calculated as a single continuous variable by adding bra cup and band sizes, to represent 

'sister' sizes equal to the same breast volume [41].  

• For instance, a UK size 34B bra holds an approximate breast volume equal to 32C, approximately 390 cc. 

• Sixteen additional features described below. 

For data pre-processing and feature engineering, sixteen additional features were constructed. In many patients, the 

chemotherapy regimens consisted of a combination of cytotoxic agents. In order to account for the vast number of 

possible chemotherapeutic combinations that patients could be prescribed, we opted to binarise [42] the prescriptions 

based on their generic chemical names (see table 2). One-Hot Encoding converted chemotherapy drugs categorical 

values into a form that could be provided to ML algorithms to improve prediction performance [43]. The categorical 

value represents the administered chemo-drugs combinations in a chemotherapy regime. The combinations values 

start from zero goes all the way up to N-1 categories. One-Hot encoding binarisation is performed at a category level 

(single observation level per attribute) which converted every chemo-drug used in a chemotherapy regime into a new 

feature. 

Chemotherapy can be neoadjuvant and adjuvant. Neoadjuvant therapy is performed before the primary treatment, to 

help reduce the size of a tumour or kill cancer cells that have spread, generally given before the surgical procedure. 

Adjuvant therapy is administered after the primary treatment, to destroy remaining cancer cells to prevent a possible 

cancer recurrence. In many cases, chemotherapy drugs (agents) are administered in combinations, which means the 

patient receives two or three different medicines at the same time. These combinations are known as chemotherapy 

regimens. Every cancer responds differently to chemotherapy. Common breast cancer chemotherapy regimens include 

AT, AC, AC+T, CMF, CEF, CAF, TAC and others [44]. NHS UK published a wide range of chemotherapy side 

effects which may occur to breast cancer patients, some of whom may have plans to undergoing breast RT [45]. 

Therefore, including chemotherapy attributes in this study was recommended. 

Table 2. Illustration of the binarisation of chemotherapy regimens  

Binarized chemotherapeutic agents 
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CAF 1 1 0 0 0 0 1 0 0 0 0 0 110000100000 

AC or CA 1 1 0 0 0 0 0 0 0 0 0 0 110000000000 

AC+T 1 1 0 0 0 0 0 0 0 1 0 0 110000000100 

TAC 1 1 0 1 0 0 0 0 0 0 0 0 110100000000 

CMF 0 1 0 0 0 0 1 0 1 0 0 0 010000101000 

CT or TC 0 1 0 1 0 0 0 0 0 0 0 0 010100000000 

CEF or FEC 0 1 0 0 1 0 1 0 0 0 0 0 010010100000 

EC 0 1 0 0 1 0 0 0 0 0 0 0 010010000000 

FEC+T 0 1 0 1 1 0 1 0 0 0 0 0 010110100000 

TCH 0 0 1 1 0 0 0 1 0 0 0 0 001100010000 

TCHP 0 0 1 1 0 0 0 1 0 0 0 1 001100010001 

 

In order to adjust for different RT regimens, the dose was calculated as the biologically effective dose (BED). BED is 

the product of the number of fractions (n), dose per fraction (d), and a factor determined by the dose and α/β ratio for 

skin (10 Gy), which is used in radiobiology to describe the slope of the cell survival curve for different irradiated 

tissues [46]. Three features were constructed by calculating the BED. 

𝐵𝐸𝐷 = 𝑛 𝑑 (1 +
 𝑑 

𝛼 𝛽⁄
) 

CTCAE endpoint definition was used to label the patients to create a binary response variable. Out of all 123 variables, 

all numeric features (m=63) were normalised with 𝓩-score standardisation [47]. The 𝓩-score indicates the distance 



from each value in each variable to its mean in the units of standard deviation. Feature standardisation scales the 

values of the observations of each feature in the data to have a zero mean. The need for feature scaling (standardisation) 

emerges in the REQUITE dataset since it contains features which highly vary in magnitudes, units and range. For 

example, there is a large difference in magnitude of breast volume measurement in cm3 and the photon radio dose per 

fraction in Gray (Gy). 

𝑥′ =
𝑥 − 𝑥̅

𝜎
 

In a breast radiation treatment, only a small portion of patients suffer from acute desquamation [48], that is also 

reflected in the REQUITE dataset known as a problem of class imbalance. This poses an additional barrier to using 

ML algorithms. These algorithms usually are optimised using loss functions that attribute the same importance to all 

samples in the training dataset regardless of its endpoint. Therefore, the trained ML model will include a strong bias 

towards the majority class. Class imbalance is a common challenge in ML modelling [4]. One approach to tackle class 

imbalance in the training data is to apply three data resampling techniques to ITD≡DMI(ITD), by which the endpoint 

response classes of records become equal (see Fig.2); Random Under Sampling (RUS) (n=192, 𝐷𝑒𝑠𝑞+ = 96, 𝐷𝑒𝑠𝑞− =

96), Random Over Sampling (ROS) (n = 1866, 𝐷𝑒𝑠𝑞+ = 933, 𝐷𝑒𝑠𝑞− = 933) and Synthetic Minority Oversampling 

Technique (SMOTE) (n = 1866, 𝐷𝑒𝑠𝑞+ = 933, 𝐷𝑒𝑠𝑞− = 933) [28] [29]. The effect of such resampling techniques on 

the training dataset was visualised with a multi-dimensional Adaptive Projection Algorithm (APA) [30] into a 3D 

point cloud.  

 

Fig. 2 The visualisation of samples size for ITD, RUS, ROS, SMOTE training datasets and validation dataset VD. 

3.2 Modelling, Evaluation and Simplification 

In this second phase, we apply a complex mix of model building, evaluation and simplification tasks, which flow is 

shown  in Fig.3. The training set (ITD) n=1029 breast cancer patients who underwent breast RT is used to train eight 

ML algorithms (each of a different learning scheme) with 10-Fold Cross-Validation [13] to avoid the problem of 

overfitting. In relation to their cohort, the trained models are tested on the isolated validation dataset (VD) n=1029. 

The description of the REQUITE dataset variables is reported in a previous study [34]. Both ITD and VD are equally 

imbalanced (𝐷𝑒𝑠𝑞+ = 96, 𝐷𝑒𝑠𝑞− = 933).  

The resampled datasets RUS, ROS and SMOTE, are used to train each of the same ML algorithms. These algorithms 

are Discretised Naïve Bayes (NB) [49], Logistic Regression with Ridge Estimator (LR) [50], Artificial Neural 

Networks (ANN) with a multi-layer perceptron architecture [51], Support Vector Machine (SVM) with polynomial  



 

Fig. 3 Models Building, evaluation and simplification methodology used in this study 

kernel and Logistic calibrator [52], K-Nearest Neighbour (KNN) [53] with K={1,3,5,7,9}, Decision Trees (C4.5) [54], 

Logistic Model Tree (LMT) [55] and Random Forest (RF) [56]. Alternative meta-learning approach to overcome class 

imbalance known as Cost-Sensitive Classification (CS) [27] was used to impose penalties (costs) for the 

misclassification of the positive group (false negative prediction) only during the model training process with the 

imbalanced training dataset (ITD). In this study the cost for a false negative prediction is not linked to a monetary 

value; instead, a ten-step Incremental Inverse Class Distribution cost was used [57], ITD has a (96:933 ≅ 1:10) ratio 

of examples in the positive class to examples in the negative class. This ratio is inverted to penalise false negative 

(FN) with a ten-step incrementation at an initial cost 𝓍: 1 of 10:1 increasing to 100:1. The cost is applied in the form 

of Charles Elkan's explicit cost matrix notation below [27]. 

𝐶𝑜𝑠𝑡 𝑀𝑎𝑡𝑟𝑖𝑥 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠  [
FP(1) TN(0)
TP(0) FN(𝓍)

] = {[
1 0
0 10

] , [
1 0
0 20

] , [
1 0
0 30

] , ⋯ , [
1 0
0 100

]} 

 
Three ML algorithms out of the competing eight were systematically selected for Cost-Sensitive Learning modelling. 
All algorithms used for this study were implemented in Waikato Environment for Knowledge Analysis (WEKA) 3.8.3 

(with the default models' parameters settings), with the C4.5 using the J48 implementation, KNN using the IBK 

implementation and SVM using SMO implementation.  

A two-stage performance evaluation was applied, three performance metrics were used to compare and assess the 

performance of all models after being validated on test datasets (VD). At the first stage, the Area Under Receiver 

Operator Characteristic Curve (AUC-ROC) [57] was used to select classifiers trained with ITD which achieved the 

highest AUC for CS modelling improvement, while the Sensitivity (True Positive Rate TPR) and the Specificity (True 

Negative Rate TNR) [57] were used at the second stage to compare the final models' performances and contribute to 

its interpretability. Having a model with a large number of features makes its interpretability complex or even opaque. 

Opaque models are hard to trust by clinicians and physicians. Having a smaller number of features improves 

interpretability and performance. The clinical specialists made it clear that the requirement is to model with all 

carefully selected features to understand their impact and importance. A purity filter was used to select fewer features 

to optimise the final model [58].  

4. Results analysis  

The APA visualisation [30] in Fig. 4 can be used to indicate the classes which can be separated, the attribute 

combinations which are most associated with each class, the outliers, the sources of error in the classification 

algorithms, and the existence of clusters in the data. In this case, the APA shows a high degree of overlap of the 

variable's values between patients with and without desquamation, suggesting that it could be difficult to differentiate 

these two classes using these variables.  

Additionally, the visualisation of the ITD highlights the imbalance in the data and how resampling techniques are 

addressing the balance. 

 



Fig. 4 The APA visualisation of imputed ITD, RUS, ROS, SMOTE training datasets and validation dataset. 

ROS training dataset shows somewhat widely scattered positive class records since ROS re-sampling technique 

randomly duplicated records from the positive class. While SMOTE resampling technique has intensified the existing 

positive class records by generating synthetic prototype records analogous to the positive class records, these records 

seem to cluster near the original positive records. The RUS visualisation depicts how a balanced dataset may be able 

to expose divisions within the data more clearly, e.g. desquamation samples on top of the RUS visualisation seem to 

be easily separable. At the same time, in the ITD, ROS and SMOTE, it is difficult to observe a clear division between 

classes. Moreover, the APA analysis shows that the ITD and VD are similar, thus suggesting that the randomised data 

split did not introduce any major bias into either dataset and that the training dataset is representative of the whole 

data.  

The information Gain (IG) of each variable was also computed. The IG is the expected reduction of entropy when 

partitioning the data for a given variable. Entropy is related to how likely we are to predict the class labels of samples, 

i.e. when data has high entropy, it is difficult to predict the class label of an example, and when the entropy is low, the 

opposite is verified. So, IG provides a measure of how much the prediction of the class labels of samples would 

improve if the data was split using just one feature. We used IG to monitor any bias that occurs in either training or 

validation datasets. Entropy and purity could vary as a result of data pre-processing techniques such as imputation and 

resampling with different numbers of records. The more plausible the conclusive pattern of IG among datasets, the 

less bias is introduced in modelling. By looking at both ITD and VD datasets in Fig. 5, it is notable that most of their 

features preserved close purity and entropy levels before and after imputation. Features that showed dominance in IG 

evaluation before DMI imputation have also maintained power after DMI imputation. Note that the imputation of ITD 

and VD separately removes the opportunity of both datasets sharing the same statistical parameter setting used by the 

imputation algorithm. This execution makes both the training and validation datasets utterly independent from each 

other and entirely isolated. 

As for the models built with ITD dataset, a single model was built and validated for each of the eight ML algorithms, 

with the exception to KNN, for which five models were built with ITD and validated with VD, to account for the 

different values of K parameter, where K= {1,3,5,7,9} [59]. Table 3 shows the models' AUC, TPR and TNR [57] for 

all twelve models in training and validation. The training and validation performance results illustrate the impact of 

the class imbalance issue with a severe high accuracy bias towards the desquamation-negative group (majority class) 

by sacrificing the desquamation-positive records (minority class) as type II errors (FN) [57]. At this stage of modelling, 

for an imbalanced model to compete for selection for further improvement with cost-sensitive classification modelling, 

the selected imbalanced model needs to achieve the highest AUC in validation which indicates the highest degree of 

discrimination of at least one of the classes or both. The improvement is achieved with incremental inverse-class 

distribution cost matrix to penalise the classifier for the misclassification of FN records. The incremental penalty will 

skew correct classification towards the positive group as there are no further improvements required for the negative 

class. The highest three champions in AUC performance in validation with (VD) LMT ranked first with AUC of 

0.746; RF was not far behind with AUC of 0.742 and NB in third place with AUC of 0.737 all show a good AUC > 

0.70; however, the TPR is poor. The highest sensitivity was achieved by the NB model of 0.500, followed by LMT 

with 0.042 and RF with 0.010. The confusion matrices in Table 4 describe the numeric count of correctly classified 

patients, FP (type I) and FN (type II) errors misclassifications). 



Fig. 5 The IG levels comparison of ITD, RUS, ROS, SMOTE training datasets and validation dataset. 

 

Table 3. Imbalanced ML models' performances with ITD training set 

 
 

Table 4. The validation confusion matrices of LMT, RF and NB imbalanced ML models (Trained with ITD)  

 

 

Fig. 6 shows the validation results of the cost-sensitive RF, NB and LMT models. The effect of applying incremental 

cost is indirectly proportional to a decrease of specificity per model, and the false positive (FP) increases as the penalty 

increases. A significant improvement is made in TPR; models with higher penalty showed higher sensitivity. The TPR 

improvement is rapid for all models as the cost of FN increases. NB sensitivity ranges from 0.50 in the unpenalised 

model to 0.771 for a penalty of 100. The greatest improvement in sensitivity was achieved by RF ranging from 0.010 

Specificity (TNR) Sensitivity (TPR) AUC Specificity (TNR) Sensitivity (TPR) AUC

LMT 0.996 0.010 0.578 0.995 0.042 0.746 1

RF 0.998 0.021 0.725 1.000 0.010 0.742 2

NB 0.810 0.438 0.697 0.833 0.500 0.737 3

ANN 0.945 0.198 0.694 0.953 0.177 0.676 4

KNN (K=9) 0.999 0.031 0.660 0.999 0.042 0.665 5

KNN (K=5) 0.985 0.042 0.624 0.989 0.063 0.651 6

KNN (K=7) 0.996 0.031 0.648 0.998 0.052 0.644 7

KNN (K=3) 0.975 0.094 0.601 0.979 0.125 0.627 8

KNN (K=1) 0.908 0.167 0.548 0.923 0.292 0.607 9

LR 0.910 0.188 0.567 0.959 0.135 0.596 10

SVM 0.966 0.156 0.561 0.976 0.146 0.561 11

C4.5 0.985 0.083 0.575 0.979 0.125 0.496 12
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for the unpenalised model to 0.792 at a penalty of 100. LMT sensitivity improved from 0.042 without a penalty to 

0.646 at a penalty of 100.  

The TNR and TPR validation performances of resampling techniques RUS, ROS and SMOTE for RF, LMT, NB, 

C4.5, ANN, KNN, SVM and LR classifiers are also in Fig. 6. It shows that resampling techniques improved sensitivity 

across all classifiers with RUS achieving the least variance between specificity and improved sensitivity. 

Fig. 6 Radar charts plotting The Ture Positive Rate (TPR) and Ture Negative Rate (TNR) for RUS, ROS, SMOTE and Cost-

sensitive validated models. Penalty values refer to FN prediction costs in the explicit cost-sensitive models. While FP predictions 

costs are kept at a value of 1, both TP and TN predictions costs always remained at the value of  zero 

4.1 Model's selection and simplification 

Based on all models' validation TPR and TNR evaluations and the clinicians' trade-off between TPR and TNR in Fig. 

7, it is found that there are two trade-off conditions that models compete towards, based on a lower and upper threshold 

values of 0.63 and 0.70 respectively. These conditions are (TPR ≥ 0.63 & TNR ≥ 0.70) and (TNR ≥ 0.63 & TPR ≥ 

0.70). Five models met both conditions. They are CS-RF(FN:FP=90:1, TNR=0.65, TPR=0.77, AUC=0.76), RUS-

RF(TNR=0.65, TPR=0.74, AUC=0.74), CS-NB(FN:FP=60:1, TNR=0.64, TPR=0.70, AUC= 0.72), CS-

RF(FN:FP=80:1, TNR=0.70, TPR=0.65, AUC=0.75) and CS-NB(FN:FP=20:1, TNR=0.70. TPR=0.63, AUC=0.73). 

The confusion matrices for the compliant five validated models are found in Table 5. 

Table 5. The confusion matrices of the compliant five validated models with VD

 

Maximising TPs is essential; therefore, specialists' consensus concluded that the best performing model was CS-

RF(FN:FP = 90:1) for exceeding all other models' sensitivity and AUC performances while maintaining a competitive 

specificity. The ranking of the compliant performing models based on domain experts' success criteria are in table 6. 



Fig. 7 The True Positive Rate (TPR) and True Negative Rate (TNR) trade-offs threshold lines for all validated models with VD. 

Penalty values refer to FN prediction costs in the explicit cost-sensitive models. While FP predictions costs are kept at a value of 

1, both TP and TN predictions costs always remained at the value of  zero 

 

Table 6. The performance ranking of the compliant five validated models with VD 

Rank Learner Bias type Bias ratio TNR TPR AUC 

1 RF Cost-sensitive Misclassification cost (FN:FP = 90:1) 0.65 0.77 0.76 

2 RF Data re-sampling RUS (r = 1) 0.65 0.74 0.74 

3 NB Cost-sensitive Misclassification cost (FN:FP = 60:1) 0.64 0.70 0.72 

4 RF Cost-sensitive Misclassification cost (FN:FP = 80:1) 0.70 0.65 0.75 

5 NB Cost-sensitive Misclassification cost (FN:FP = 20:1) 0.70 0.63 0.73 

 

 



The top-performing model has many predictors M=122, which makes its interpretability quite complicated. Feature 

importance in RF was calculated with Mean Decrease Impurity [58]. Eight features were estimated to have zero 

importance for the model CS-RF(FN:FP = 90:1). In order to simplify the model, these features were removed, and the 

model was rebuilt and validated. As a result, the simplified model performance slightly improved its specificity to 

0.66 and AUC to 0.77, while its sensitivity remained unchanged. Feature importance is described in the Supplementary 

Material Tables B and C. The final simplified Hero model's performance is described in Table 7. 

Table 7. The simplified final model training and validation confusion matrices performances 

 

5. Discussion  

The overall goal of this study was to predict radiation therapy acute toxicity desquamation in breast cancer patient's 

participants from the REQUITE cohort and to apply ML methods to classify these subjects into susceptibility to 

toxicity occurrence or non-occurrence categories. The ability to predict and classify this variable, using simple clinical 

routinely collected data will have a significant impact on the identification of subjects likely to avoid QoL deterioration 

during radiation therapy. The models tested here input features that include baseline characteristics, familial data, 

breast cancer staging records, chemotherapy-regimen drugs, lifestyle observations, medical conditions, 

sociodemographic factors, medical operations, treatment history, female-specific factors, mental and behavioural 

disorders, medications, quality of life and breast RT procedure measurements such as normo-fractionation procedure. 

The features also included reported RT toxicities risk factors except imaging and genomic factors which previously 

demonstrated to correlate with acute desquamation significantly. [32] 

Our models initially used 122 input features (attributes) to predict a binary acute desquamation endpoint. The models 

were built with eight ML algorithms, NB, LR, ANN, SVM, KNN, C4.5, LMT and RF; each has a different learning 

scheme. A purity based ranking technique, IG was calculated to evaluate the worth of each input feature independently. 

When observing IG evaluation after the randomised and stratified training/validation data split, it was noted that few 

variables in the validation dataset (VD) contained a different worth of information as compared to the training set 

(ITD). A way to interpret the calculated IG values is the possible presence of associations between each feature and 

the class labels in each training dataset, yet, this purity measure differs from correlation association, and it is not 

utilised as a feature selection in this study. Observed IG evaluation also showed that some variables in the VD 

contained a higher worth of information as compared to the ITD. In ITD, it was observed that 

“radio_skin_max_dose_Gy”, “BED_Breast_Gy”, “radio_breast_fractions_dose_per_fraction_Gy”, “ra-

dio_breast_ct_volume_cm3” and “radio_photon_2nd_fractions” dominated the top five ranks in purity values in 

relation to the class variable (acute desquamation endpoint). After balancing the two classes with RUS resampling 

technique, "radio_skin_max_dose_Gy" still reserved the highest IG evaluation, and 

"radio_breast_fractions_dose_per_fraction_Gy" slipped to sixth place while "BED_Breast_Gy" remained in the top 

five; other new predictors sored to the top five IG ranks: those are "radio_type_imrt", "radio_boost_type" and 

"radio_photon_energy_MV or kV". In the oversampled dataset (ROS), similar to ITD, 

“radio_breast_ct_volume_cm3” and “radio_skin_max_dose_Gy” were in the top five places, while three new 

predictors joined the top five ranks - “BED_Total_Gy”, “weight_at_cancer_diagnosis_kg” and 

“radio_photon_boost_volume_cm3”. Unlike all training sets, in SMOTE synthetic oversampled dataset, five new 

predictors occupied the top five ranks, those being "breast_separation_cm", "band_size_UK_inch", "bra_cup_size", 



"household_members" and "height_cm". This information theory approach into the models' features adds a layer of 

details to the observed correlations in previous studies by describing the strength of each feature to discriminate 

between the positive and negative classes [60 – 66]. 

Furthermore, when considering the ITD, RUS, ROS and SMOTE datasets, some variables showed no purity towards 

the class: ITD had 42 predictors with zero IG, RUS had 59 predictor variables (the highest), and ROS and SMOTE 

had the least predictors with zero IG of 11 and 12 respectively. Zero IG does not negate the potential relevance of 

these predictors to the predictive models as they may climb up the ranking if additional records are added to the same 

dataset. They simply mean that based on purity and entropy in these training datasets, they do not distinguish between 

both class labels at the endpoint. Some ML models may still calculate otherwise and utilise them in building the 

predictive models depending on the learning mechanism, hence including all 122 predictors in the modelling process. 

For ML modelling, tackling the imbalanced class problem has a significant impact on the performance of standard 

ML algorithms. Also, the classification modelling performance in the training phase is severely impacted by class 

separability. Training standard ML algorithms with highly imbalanced classes without any adjustment to the training 

set results in an accuracy bias towards the majority class. In this study, we tackled that bias by applying two 

approaches. In the first approach, resampling techniques (RUS, ROS and SMOTE) were used to adjust the class 

imbalance in the classification training phase at the dataset level which in turn amplified the IG in many input features. 

The second approach (a cost-sensitive approach) awarded higher weights for the records in the minority class while 

maintaining unchanged levels of information in the input features.  

It was observed that the cost-sensitive approach achieved the highest ranks in the models' evaluation. It remains 

unclear as to whether other remedies for imbalanced data classifications, such as Ensembles Learning (which are 

implemented at the algorithmic level), could result in better performances [8] [9] [10]. The advantages of resampling 

techniques evaluated here, however, include simplicity and transportability. Nevertheless, they are limited by the 

amount of IG manipulation because of their application resulting in biased predictions towards the minority class. The 

excessive use of such techniques could result in overfitting, as seen in the ROS and SMOTE models. In this study, the 

original REQUITE cohort dataset was highly imbalanced. Traditional ML algorithms were sensitive to higher 

information gains. They tended to produce superb performance results in training for ROS and SMOTE datasets, but 

when testing the models, the overall model performance often dropped below the training phase performance. Unlike 

resampling techniques, cost-sensitive classification is proven complex to determine the exact penalty for minority 

records misclassification. The complexity becomes recursive since the attention to the minority records of different 

ML classifiers of various learning schemes is shifted differently for the same misclassification penalty when building 

predictive models. 

The REQUITE breast RT dataset utilised in this study showed that applying the correct level of resampling without 

disrupting the original data distribution in the case of RUS-based method, together with the desired choice of 

performance metrics and slight manipulation of IG levels, produced a prediction solution which competed with further 

developed models with algorithmic modifications in the case of cost-sensitive classification. Among all 79 models 

reported in this study, five models satisfied the trade-off threshold conditions (see table 6). However, one "hero" model 

was selected for this specific domain problem that is a cost-sensitive RF model with FN:FP misclassification penalty 

ratio of 90:1. Nevertheless, the effect of the classifier's learning scheme becomes highly noticeable in imbalanced 

datasets when the minority classes prediction accuracies (TPR) are compared. In the resampled models' results 

analysis, the learning scheme's impact was seen to decrease with the class imbalance severity in datasets compared to 

balanced datasets. In cost-sensitive classification, classifiers behaved very differently for the same cost matrix when 

trained on the same dataset. 

The "hero" model was further simplified by discarding eight features which were deemed unimportant according to 

RF model-based feature selection method Mean Decrease Impurity (MDI) zero value, and the "hero" classifier is 

rebuilt with the remaining 114 features. The performance of the "hero" model continued to show a slight improvement 

in TNR. When using the MDI, which is an impurity-based ranking filter, feature selection based on impurity reduction 

is biased towards preferring variables with more categories [67]. This bias is not a problem in our study, since MDI 

was only used to optimise (simplify) a model with known performance. However, if the dataset contains two (or more) 

correlated features, then from the model's point of view, any of these correlated features can be used as a top predictor, 

with no preference of one over the others; once one of them is used, the importance of the others is significantly 

reduced since the impurity they can eliminate is already removed by the first selected feature. Therefore, they will 

have lower reported importance. This reduction of importance is not an issue when we want to use this feature selection 

technique to simplify the model since it is desired to remove mostly unimportant features. 



Nevertheless, when interpreting the model, it can provide a misleading perception that one of the variables is a strong 

predictor while the others in the same group are unimportant, while in fact, they are very closely associated with the 

response endpoint (see Table 8 and Table 9). The effect of the misinterpretation of unimportant features removals is 

somewhat reduced thanks to random feature selection at each node in random forests. However, the generalised effect 

within the averaged model is not entirely eliminated. The difficulty of interpreting the ranking of associated variables 

is not Random Forest specific; it applies to most model-based feature selection methods [68]. 

Like most biomedical case studies, when biochemical tests are performance assessed, in our study, the data obtained 

is heavily skewed (imbalanced). Typical disease prevalence is in the range of ~10% for those with the disease, and 

~90% do not have that disease. It is common to use the AUC-ROC curve to evaluate the clinical performance of a 

biochemical test. The AUC-ROC curve is a graphical representation of the trade-off between TPR and FPR for every 

possible cut-off for a test or a combination of tests, and the area under the ROC curve gives an idea about the benefit 

of using the test in question. However, the imbalanced datasets tend to provide a much better ROC curve; therefore, 

visual interpretation and comparisons of ROC curves for ML models trained with imbalanced datasets can be 

misleading [69] [70] as observed in all ITD-based models in Table 3. Therefore, additional performance metrics are 

required to provide a more accurate representation of the models' validation. The TPR and TNR are used less 

frequently than ROC curves, but as we examined the models, assessing additional performance metrics is proven to 

be a better choice for imbalanced datasets. 

A limitation of this and many other ML papers used in radiation oncology is the number of variables used compared 

to routine practice. Real-world applicability is reduced due to unrealistic datasets. However, the volume and variety 

of data routinely collected on patients will only increase over time. Indeed, many of the variables currently collected 

in routine practice are not fully utilised. Past medical history, drug history and family history form a large number of 

binary variables in the REQUITE dataset but at present are often recorded as free text on the first encounter between 

patient and oncologist. Regardless, similar models using more limited datasets should be developed and tested before 

this approach to predict RT toxicities can move beyond the research setting and into clinical practice. 

6. Clinical implication and next steps 

Our study shows that the application of traditional ML algorithms to datasets of phenotype and clinical variables offers 

a fast and inexpensive solution to predict acute toxicities (moist desquamation) for breast cancer RT patients by 

aligning the classification task to predict specific adverse skin effects based on a Common Terminology Criteria for 

Adverse Events. The selection of a binary-class prediction task in this study is strategic to include patients classed 

within severe, life-threatening and death criteria. It identifies patients who are at higher risk of developing acute 

desquamation condition and are more likely to benefit from treatment plans to be personalised and trigger discussions 

about treatment risks and benefits with patients. The process of training various ML algorithms with 10-Fold Cross-

Validation and testing the models with an isolated group of patients of similar ratio to the training data makes this 

study suitable for follow-up research in medical screening to identify subjects that may require treatment intervention. 

This domain problem is the first to use the clinical features only at a CTCAE >3 setting to predict acute toxicities with 

ML. This study has the largest number of patients in modelling and validation among other known studies. This study 

could be used as a benchmark for future studies to compare its results to any other research from the same domain. 

Nevertheless, this work will be followed by further analyses where additional methods to improve the outcomes will 

be investigated. 
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Supplementary material  

Table A. Information Gain Attribute Evaluation. 

Information and entropy levels within independent variables were monitored using an Information Gain Attribute 

Evaluator (IG) Algorithm. This algorithm evaluates the worth of each attribute by measuring information (purity) with 

respect to the class in combination with a ranker algorithm that ranks the attributes by their influence on the class. IG 

assisted in spotting and removing variables duplications but mainly helped to monitor and report any information bias 

introduced as a result of data splitting, imputation and resampling. This supplementary table shows the information 

gain evaluation for each predictor per data set. 

Variable Name 
Data 

Type 

Imbalanced Training Data 

(ITD) N=1029 

RUS Training 

Data N=192 

ROS Training 

Data N=1866 

SMOTE Training 

Data N=1866 

Validation Data (VD) 

N=1029 

IG(Raw) IG(Imputed) ∆IG IG(RUS) IG(ROS) IG(SMOTE) IG(Raw) IG(Imputed) ∆IG 

5-fluorouracil (5-FU) _chemo_drug CAT 0.00186 0.00186 0.00000 0.03211 0.01134 0.02820 0.00074 0.00074 0.00000 

ace_inhibitor  CAT 0.00002 0.00002 0.00000 0.00330 0.00001 0.01242 0.00039 0.00039 0.00000 

ace_inhibitor_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.00646 0.00000 0.00000 0.00000 0.00000 

age_at_radiotherapy_start_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.06043 0.28719 0.00000 0.00000 0.00000 

alcohol_current_consumption NUM 0.00000 0.00000 0.00000 0.00000 0.04980 0.39272 0.00000 0.00000 0.00000 

alcohol_intake  CAT 0.00092 0.00111 0.00019 0.01246 0.00144 0.02850 0.00155 0.00185 0.00031 

alcohol_previous_consumption NUM 0.00000 0.00000 0.00000 0.00000 0.04232 0.41889 0.00000 0.00000 0.00000 

amiodarone  CAT 0.00041 0.00041 0.00000 0.00000 0.00107 0.00161 0.00059 0.00059 0.00000 

amiodarone_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

analgesics  CAT 0.00025 0.00025 0.00000 0.00084 0.00076 0.03930 0.00079 0.00079 0.00000 

analgesics_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.02784 0.00000 0.00000 0.00000 0.00000 

antidepressant  CAT 0.00050 0.00050 0.00000 0.00084 0.00242 0.01402 0.00071 0.00071 0.00000 

antidepressant_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.03538 0.00707 0.00000 0.00000 0.00000 

antidiabetic  CAT 0.00005 0.00005 0.00000 0.00000 0.00031 0.01662 0.00661 0.00661 0.00000 

antidiabetic_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

band_size_UK_inch NUM 0.00000 0.00000 0.00000 0.00000 0.02131 0.50857 0.00000 0.00000 0.00000 

BED_boost_Gy NUM 0.00000 0.00000 0.00000 0.00000 0.02415 0.04063 0.00000 0.00000 0.00000 

BED_Breast_Gy NUM 0.02970 0.02970 0.00000 0.07932 0.12273 0.25004 0.04354 0.04354 0.00000 

BED_total_Gy NUM 0.01495 0.01495 0.00000 0.05387 0.17604 0.23385 0.01529 0.01529 0.00000 

blood_pressure  CAT 0.00132 0.00132 0.00000 0.01372 0.00086 0.05213 0.00002 0.00002 0.00000 

boost  CAT 0.00262 0.00262 0.00000 0.00778 0.00226 0.00611 0.00357 0.00357 0.00000 

boost_frac NUM 0.00737 0.00000 -0.00737 0.00000 0.07024 0.14193 0.01035 0.01527 0.00492 

bra_cup_size NUM 0.01383 0.01406 0.00024 0.00000 0.05494 0.46227 0.00000 0.00000 0.00000 

breast_cancer_family_history_1st_degree  CAT 0.00001 0.00001 0.00000 0.00012 0.00013 0.04822 0.00347 0.00345 -0.00001 

breast_separation_cm NUM 0.00903 0.00903 0.00000 0.00000 0.03786 0.51206 0.00000 0.00000 0.00000 

carboplatin_chemo_drug CAT 0.00031 0.00031 0.00000 0.00000 0.00098 0.00721 0.00008 0.00008 0.00000 

chemotherapy  CAT 0.00005 0.00005 0.00000 0.00621 0.00003 0.03693 0.00020 0.00020 0.00000 

combined_chemo_drugs  CAT 0.01366 0.01366 0.00000 0.05236 0.05304 0.09239 0.02102 0.02102 0.00000 

cyclophosphamide_chemo_drug CAT 0.00031 0.00031 0.00000 0.00838 0.00047 0.02510 0.00000 0.00000 0.00000 

depression  CAT 0.00046 0.00046 0.00000 0.00181 0.00283 0.01370 0.00024 0.00024 0.00000 

depression_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.03309 0.00000 0.00000 0.00000 0.00000 

diabetes  CAT 0.00001 0.00001 0.00000 0.00103 0.00003 0.02156 0.00763 0.00762 -0.00001 

diabetes_duration_yrs NUM 0.01067 0.00000 -0.01067 0.00000 0.00646 0.00000 0.00610 0.00763 0.00152 

docetaxel_chemo_drug CAT 0.00064 0.00064 0.00000 0.01099 0.00328 0.00682 0.00037 0.00037 0.00000 

doxorubicin_chemo_drug CAT 0.00252 0.00252 0.00000 0.00000 0.00753 0.03255 0.00043 0.00043 0.00000 

education_profession  CAT 0.00215 0.00391 0.00176 0.03741 0.01803 0.01005 0.00175 0.00463 0.00288 

epirubicin_chemo_drug CAT 0.00106 0.00106 0.00000 0.01359 0.00177 0.02509 0.00069 0.00069 0.00000 

eribulin_chemo_drug CAT 0.00055 0.00055 0.00000 0.00000 0.00161 0.00215 0.00152 0.00152 0.00000 

ethnicity  CAT 0.00571 0.00570 0.00000 0.03271 0.02589 0.02189 0.00509 0.00508 -0.00001 



grade_invasive  CAT 0.00187 0.00228 0.00041 0.00971 0.01402 0.02199 0.00246 0.00226 -0.00020 

height_cm NUM 0.00000 0.00000 0.00000 0.00000 0.08316 0.44196 0.00000 0.00000 0.00000 

histology  CAT 0.00234 0.00237 0.00003 0.01183 0.01176 0.08485 0.00057 0.00060 0.00003 

history_of_heart_disease  CAT 0.00354 0.00353 -0.00001 0.01157 0.00952 0.03197 0.00127 0.00127 0.00000 

history_of_heart_disease_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.02948 0.03102 0.00000 0.00000 0.00000 

hormone_replacement_therapy  CAT 0.00029 0.00066 0.00037 0.00910 0.00257 0.05089 0.00037 0.00029 -0.00008 

household_income  CAT 0.00356 0.00703 0.00347 0.04210 0.01992 0.06340 0.00351 0.00408 0.00057 

household_members NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.44358 0.00000 0.00000 0.00000 

hypertension  CAT 0.00132 0.00132 0.00000 0.01372 0.00086 0.05213 0.00002 0.00002 0.00000 

hypertension_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.17291 0.00509 0.00000 -0.00509 

menopausal_status  CAT 0.00237 0.00231 -0.00006 0.01637 0.01302 0.03152 0.00246 0.00138 -0.00108 

methotrexate _chemo_drug CAT 0.00025 0.00025 0.00000 0.00130 0.00479 0.00308 0.00074 0.00008 -0.00066 

monopause_age_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.03857 0.41090 0.00010 0.00000 -0.00010 

n_stage  CAT 0.00525 0.00545 0.00020 0.02052 0.02645 0.05619 0.00000 0.00059 0.00059 

on_statin  CAT 0.00644 0.00644 0.00000 0.00691 0.01914 0.06728 0.00057 0.00602 0.00545 

on_statin_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.06413 0.04844 0.00127 0.00000 -0.00127 

other_antihypertensive_drug  CAT 0.00145 0.00145 0.00000 0.01611 0.00160 0.03251 0.00000 0.00000 0.00000 

other_antihypertensive_drug_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.01555 0.15670 0.00037 0.00000 -0.00037 

other_collagen_vascular_disease  CAT 0.00096 0.00096 0.00000 0.00000 0.00430 0.00376 0.00351 0.00013 -0.00338 

other_collagen_vascular_disease_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.00430 0.00376 0.00000 0.00000 0.00000 

other_lipid_lowering_drugs  CAT 0.00104 0.00104 0.00000 0.00742 0.00124 0.00045 0.00002 0.00277 0.00276 

other_lipid_lowering_drugs_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.01449 0.00811 0.00000 0.00000 0.00000 

paclitaxel_chemo_drug CAT 0.00006 0.00006 0.00000 0.00056 0.00336 0.05403 0.00015 0.00015 0.00000 

pegfilgrastim_chemo_drug CAT 0.00055 0.00055 0.00000 0.00523 0.00322 0.00215 0.00008 0.00027 0.00020 

Pertuzumab_chemo_drug CAT 0.00027 0.00027 0.00000 0.00000 0.00000 0.00107 0.00144 0.00037 -0.00107 

radio_axillary_levels NUM 0.00000 0.00000 0.00000 0.00000 0.04207 0.05464 0.00000 0.00000 0.00000 

radio_axillary_other NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

radio_bolus  CAT 0.00001 0.00001 0.00000 0.00078 0.00001 0.00575 0.00000 0.00000 0.00000 

radio_boost_diameter_cm NUM 0.00774 0.00918 0.00143 0.00000 0.03798 0.09225 0.00000 0.00000 0.00000 

radio_boost_fractions NUM 0.00000 0.00824 0.00824 0.06593 0.04896 0.15592 0.00000 0.01748 0.01748 

radio_boost_sequence  CAT 0.00857 0.00857 0.00000 0.01071 0.01516 0.07039 0.00436 0.00436 0.00000 

radio_boost_type CAT 0.01700 0.01700 0.00000 0.08043 0.04059 0.06648 0.01575 0.01575 0.00000 

radio_breast_ct_volume_cm3 NUM 0.02000 0.02047 0.00048 0.06228 0.19793 0.10627 0.00000 0.00000 0.00000 

radio_breast_delineation  CAT 0.00027 0.00027 0.00000 0.00000 0.00107 0.00107 0.00059 0.00059 0.00000 

radio_breast_dose_Gy NUM 0.01966 0.01966 0.00000 0.07054 0.08518 0.28445 0.02210 0.02210 0.00000 

radio_breast_fractions NUM 0.01813 0.01813 0.00000 0.06984 0.07038 0.31260 0.02926 0.02926 0.00000 

radio_breast_fractions_dose_per_fract_Gy NUM 0.02204 0.02204 0.00000 0.07547 0.10130 0.26556 0.02415 0.02415 0.00000 

radio_breast_fractions_per_week NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.01054 0.00000 0.00000 0.00000 

radio_elec_boost_dose_Gy NUM 0.00000 0.00000 0.00000 0.00000 0.02557 0.08132 0.00000 0.00000 0.00000 

radio_elec_boost_field_x_cm NUM 0.00000 0.00000 0.00000 0.00000 0.04908 0.16020 0.00000 0.00000 0.00000 

radio_elec_boost_field_y_cm NUM 0.00000 0.00000 0.00000 0.00000 0.02164 0.16766 0.00000 0.00000 0.00000 

radio_elec_energy_MeV NUM 0.01686 0.01686 0.00000 0.00000 0.04548 0.08072 0.00000 0.00000 0.00000 

radio_heart_mean_dose_Gy NUM 0.00000 0.00000 0.00000 0.00000 0.07873 0.09566 0.00000 0.00000 0.00000 

radio_hot_spots CAT 0.00211 0.00214 0.00003 0.00152 0.00515 0.00655 0.00009 0.00010 0.00001 

radio_imrt  CAT 0.00848 0.00843 -0.00005 0.04575 0.02009 0.08996 0.02141 0.02127 -0.00014 

radio_interrupted  CAT 0.00002 0.00002 0.00000 0.01050 0.00017 0.00762 0.00057 0.00057 0.00000 

radio_interrupted_days NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

radio_ipsilateral_lung_mean_Gy NUM 0.00000 0.00000 0.00000 0.00000 0.10337 0.05360 0.00000 0.00000 0.00000 

radio_photon_2nd  CAT 0.01060 0.01060 0.00000 0.01690 0.02592 0.01454 0.01341 0.01341 0.00000 

radio_photon_2nd_dose_fract_per_wk NUM 0.01127 0.01127 0.00000 0.00000 0.03197 0.03582 0.01363 0.01363 0.00000 



 

 

 

 

 

 

 

 

 

 

 

 

radio_photon_2nd_dose_MV NUM 0.01843 0.01843 0.00000 0.05581 0.06771 0.12095 0.02328 0.02328 0.00000 

radio_photon_2nd_dose_per_fract_Gy NUM 0.01228 0.01228 0.00000 0.00000 0.09747 0.05150 0.01629 0.01629 0.00000 

radio_photon_2nd_fractions NUM 0.02037 0.02037 0.00000 0.00000 0.06359 0.07346 0.02186 0.02186 0.00000 

radio_photon_boost_dose_per_fract_Gy NUM 0.00000 0.00000 0.00000 0.04376 0.02956 0.15682 0.00000 0.00000 0.00000 

radio_photon_boost_fractions NUM 0.00737 0.00000 -0.00737 0.00000 0.07024 0.20287 0.01035 0.01527 0.00492 

radio_photon_boost_fractions_per_week NUM 0.00800 0.01066 0.00267 0.05360 0.02002 0.06328 0.01042 0.01330 0.00287 

radio_photon_boost_volume_cm3 NUM 0.01033 0.01574 0.00541 0.05411 0.13251 0.12075 0.00000 0.00000 0.00000 

radio_photon_boostdose_Gy NUM 0.00000 0.00000 0.00000 0.00000 0.05234 0.13049 0.00000 0.00000 0.00000 

radio_photon_boostdose_precise_Gy NUM 0.00000 0.00000 0.00000 0.00000 0.02963 0.14553 0.00991 0.01182 0.00191 

radio_photon_dose_MV NUM 0.00000 0.00000 0.00000 0.00000 0.01107 0.00000 0.00000 0.00000 0.00000 

radio_photon_energy_MV or kV NUM 0.00970 0.00965 -0.00006 0.07597 0.02628 0.12818 0.02097 0.02097 0.00000 

radio_skin_max_dose_Gy  NUM 0.03073 0.03088 0.00015 0.14315 0.19629 0.12209 0.02948 0.02912 -0.00035 

radio_supraclavicular_fossa  CAT 0.00027 0.00027 0.00000 0.00020 0.00368 0.04354 0.00115 0.00115 0.00000 

radio_treated_breast  CAT 0.00159 0.00159 0.00000 0.01542 0.00618 0.10882 0.00023 0.00023 0.00000 

radio_treatment_pos  CAT 0.00396 0.00396 0.00000 0.01001 0.01182 0.06438 0.00094 0.00093 -0.00001 

radio_type_imrt  CAT 0.01754 0.01749 -0.00005 0.08163 0.04062 0.12413 0.02651 0.02637 -0.00014 

radiotherapy_toxicity_family_history  CAT 0.00047 0.00045 -0.00002 0.00078 0.00505 0.01303 0.00001 0.00002 0.00002 

rheumatoid arthritis CAT 0.00007 0.00007 0.00000 0.00742 0.00127 0.01021 0.00002 0.00002 0.00000 

rheumatoid arthritis_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.00918 0.00000 0.00000 0.00000 0.00000 

smoker  CAT 0.00145 0.00132 -0.00013 0.00239 0.00650 0.09127 0.00140 0.00146 0.00006 

smoking_status CAT 0.00059 0.00059 0.00000 0.00204 0.00364 0.04721 0.00015 0.00015 0.00000 

smoking_duration_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.01408 0.01982 0.00000 0.00000 0.00000 

smoking_time_since_quitting_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.13645 0.00000 0.00000 0.00000 

surgery_type  CAT 0.00105 0.00105 0.00000 0.00000 0.00574 0.00344 0.00155 0.00155 0.00000 

systemic_lupus_erythematosus  CAT 0.00027 0.00027 0.00000 0.00000 0.00000 0.00107 0.00027 0.00027 0.00000 

systemic_lupus_erythematosus_yrs NUM 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

t_stage  CAT 0.00454 0.00446 -0.00008 0.01970 0.01723 0.12975 0.00806 0.00815 0.00008 

TAM  CAT 0.00118 0.00108 -0.00010 0.00661 0.00000 0.07888 0.00291 0.00269 -0.00022 

tobacco_product  CAT 0.00764 0.00030 -0.00734 0.00074 0.00145 0.03533 0.00061 0.00072 0.00011 

tobacco_products_per_day NUM 0.00000 0.00000 0.00000 0.00000 0.05251 0.00000 0.00000 0.00000 0.00000 

trastuzumab_chemo_drug CAT 0.00166 0.00166 0.00000 0.00000 0.00700 0.00646 0.00010 0.00010 0.00000 

tumour_size_mm NUM 0.00000 0.00000 0.00000 0.00000 0.04472 0.02545 0.00000 0.00000 0.00000 

weight_at_cancer_diagnosis_kg NUM 0.01264 0.01382 0.00117 0.06476 0.13548 0.13946 0.00000 0.00000 0.00000 



Table B. Feature Importance of Cost-Sensitive RF Model's with MDI (Pre-simplification) 

Model's Features MDI Model's Features MDI 

5-fluorouracil (5-FU)_chemo_drug 0.37 radio_photon_2nd_dose_MV 0.19 

radio_imrt  0.35 analgesics  0.19 

ace_inhibitor  0.34 radio_photon_2nd_dose_fractions_per_week 0.19 

Smoking  0.32 radio_interrupted_days 0.19 

chemotherapy_performed 0.32 surgery_type  0.19 

docetaxel_chemo_drug 0.32 radio_breast_fractions_dose_per_fraction_Gy 0.18 

other_antihypertensive_drug  0.31 alcohol_intake  0.18 

tumour_size_mm 0.30 radio_photon_boostdose_precise_Gy 0.18 

radio_treated_breast  0.30 radio_elec_boost_dose_Gy 0.18 

grade_invasive  0.29 tobacco_product  0.18 

histology  0.28 radio_treatment_pos  0.18 

tobacco_products_per_day 0.28 radio_photon_2nd  0.18 

Band_size_UK 0.27 combined_chemo_drugs 0.17 

monopause_age_yrs 0.27 household_income 0.17 

boost  0.27 radio_elec_boost_field_y_cm 0.17 

epirubicin_chemo_drug 0.27 radio_photon_boost_fractions 0.17 

radio_axillary_other 0.27 radio_boost_diameter_cm 0.17 

radio_breast_ct_volume_cm3 0.26 radio_supraclavicular_fossa  0.17 

radio_heart_mean_dose_Gy 0.26 antidepressant  0.17 

BED_breast 0.26 radio_breast_fractions 0.16 

TAM  0.26 radio_elec_boost_field_x_cm 0.16 

radio_hot_spots_107  0.26 doxorubicin_chemo_drug 0.16 

breast_separation 0.25 radio_boost_type  0.15 

t_stage  0.25 radio_elec_energy_MeV 0.15 

smoking_time_since_quitting_yrs 0.25 radio_photon_energy_MV or kV 0.15 

blood_pressure  0.25 diabetes  0.15 

cyclophosphamide_chemo_drug 0.25 carboplatin_chemo_drug 0.15 

rheumatoid_arthritis_duration_yrs 0.25 depression_duration_yrs 0.14 

methotrexate_chemo_drug 0.25 depression  0.13 

boost_fractions 0.24 ace_inhibitor_duration_yrs 0.13 

alcohol_previous_consumption 0.24 radiotherapy_toxicity_family_history  0.13 

radio_skin_max_dose_Gy 0.23 other_lipid_lowering_drugs  0.13 

radio_ipsilateral_lung_mean_Gy 0.23 antidiabetic  0.13 

height_cm 0.23 radio_axillary_levels 0.12 

alcohol_current_consumption 0.23 Ethnicity 0.12 

radio_photon_boost_volume_cm3 0.23 radio_photon_2nd_fractions 0.12 

n_stage 0.23 analgesics_duration_yrs 0.11 

BED_boost 0.23 on_statin  0.11 

radio_photon_boostdose_Gy 0.23 radio_photon_boost_fractions_per_week 0.11 

hypertension_duration_yrs 0.23 diabetes_duration_yrs 0.11 

smoker  0.22 trastuzumab  0.11 

menopausal_status 0.22 radio_photon_2nd_dose_per_fraction_Gy 0.10 

BED_total 0.21 antidepressant_duration_yrs 0.10 



smoking_duration_yrs 0.21 radio_breast_fractions_per_week 0.10 

radio_type_imrt  0.21 radio_boost_sequence  0.08 

radio_boost_fractions 0.21 on_statin_duration_yrs 0.08 

hypertension  0.21 history_of_heart_disease_duration_yrs 0.07 

paclitaxel  0.21 radio_bolus  0.07 

hormone_replacement_therapy 0.21 radio_interrupted  0.07 

weight_at_cancer_diagnosis_kg 0.20 history_of_heart_disease  0.06 

age_at_radiotherapy_start_yrs 0.20 antidiabetic_duration_yrs 0.04 

bra_cup_size 0.20 pegfilgrastim  0.03 

education_profession 0.20 other_collagen_vascular_disease  0.02 

breast_cancer_family_history_1st_degree  0.20 systemic_lupus_erythematosus_duration_yrs 0.00 

radio_photon_dose_MV 0.20 systemic_lupus_erythematosus  0.00 

other_lipid_lowering_drugs_duration_yrs 0.20 radio_breast_delineation  0.00 

rheumatoid_arthritis 0.20 pertuzumab_chemo_drug 0.00 

radio_breast_dose_Gy 0.19 other_collagen_vascular_disease_duration_yrs 0.00 

household_members 0.19 eribulin_chemo_drug 0.00 

other_antihypertensive_drug_duration_yrs 0.19 amiodarone_duration_yrs 0.00 

radio_photon_boost_dose_per_fraction_Gy 0.19 amiodarone  0.00 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table C. Feature Importance of the simplified cost-sensitive RF model with MDI 

Model's Feature MDI Model's Feature MDI 

other_lipid_lowering_drugs_duration_yrs 0.52 alcohol_current_consumption 0.20 

surgery_type  0.41 smoking_time_since_quitting_yrs 0.20 

radio_bolus  0.40 radio_imrt  0.19 

chemotherapy  0.36 radio_photon_boostdose_Gy 0.19 

boost  0.35 other_antihypertensive_drug  0.19 

radio_photon_dose_MV 0.34 household_members 0.19 

epirubicin_chemo_drug 0.34 radio_breast_fractions_dose_per_fraction_Gy 0.19 

blood_pressure  0.33 radio_elec_boost_field_y_cm 0.19 

band_size_UK 0.30 radio_photon_2nd  0.19 

radio_treated_breast  0.30 bra_cup_size 0.19 

tumour_size_mm 0.29 radio_breast_fractions 0.19 

paclitaxel_chemo_drug 0.29 n_stage  0.18 

grade_invasive  0.28 hypertension_duration_yrs 0.18 

breast_separation 0.28 radio_supraclavicular_fossa  0.18 

smoking  0.27 education_profession  0.18 

radio_elec_energy_MeV 0.27 radio_axillary_levels 0.18 

BED_boost 0.27 hypertension  0.18 

docetaxel_chemo_drug 0.27 radio_photon_boost_fractions_per_week 0.17 

BED_Total 0.27 smoker  0.17 

radio_elec_boost_dose_Gy 0.27 depression  0.17 

TAM  0.26 menopausal_status  0.17 

radio_heart_mean_dose_Gy 0.26 radio_boost_diameter_cm 0.16 

t_stage  0.26 5-fluorouracil (5-FU)_chemo_drug 0.16 

radio_hot_spots_107  0.25 radio_photon_boost_dose_per_fraction_Gy 0.16 

BED_Breast 0.25 antidepressant_duration_yrs 0.16 

tobacco_products_per_day 0.25 radio_breast_fractions_per_week 0.15 

age_at_radiotherapy_start_yrs 0.25 radio_boost_type  0.15 

radio_breast_ct_volume_cm3 0.25 Carboplatin_chemo_drug 0.15 

hormone_replacement_therapy  0.24 radio_boost_sequence  0.15 

radio_photon_boost_volume_cm3 0.24 radio_photon_boost_fractions 0.15 

antidepressant  0.24 household_income  0.15 

height_cm 0.24 methotrexate_chemo_drug 0.15 

radio_photon_2nd_dose_MV 0.24 other_lipid_lowering_drugs  0.14 

radio_ipsilateral_lung_mean_Gy 0.24 radio_photon_energy_MV or kV 0.14 

alcohol_previous_consumption 0.24 ace_inhibitor  0.13 

radio_photon_2nd_dose_fractions_per_week 0.23 analgesics_duration_yrs 0.13 

radio_skin_max_dose_Gy 0.23 radio_photon_2nd_dose_per_fraction_Gy 0.13 

histology  0.23 antidiabetic_duration_yrs 0.13 

monopause_age_yrs 0.23 depression_duration_yrs 0.13 

other_antihypertensive_drug_duration_yrs 0.23 on_statin_duration_yrs 0.12 

weight_at_cancer_diagnosis_kg 0.23 antidiabetic  0.12 

tobacco_product  0.23 diabetes  0.11 

cyclophosphamide_chemo_drug 0.22 ace_inhibitor_duration_yrs 0.11 

combined_chemo_drugs  0.22 on_statin  0.11 

boost_frac 0.22 doxorubicin_chemo_drug 0.11 

analgesics  0.22 history_of_heart_disease  0.09 



breast_cancer_family_history_1st_degree  0.22 radio_axillary_other 0.09 

smoking_duration_yrs 0.21 ethnicity  0.09 

radio_photon_boostdose_precise_Gy 0.21 radio_interrupted  0.08 

radio_elec_boost_field_x_cm 0.21 pegfilgrastim_chemo_drug 0.07 

radio_photon_2nd_fractions 0.21 history_of_heart_disease_duration_yrs 0.06 

radio_boost_fractions 0.21 radiotherapy_toxicity_family_history  0.06 

alcohol_intake  0.21 diabetes_duration_yrs 0.05 

radio_type_imrt  0.21 radio_interrupted_days 0.05 

radio_treatment_pos  0.21 trastuzumab_chemo_drug 0.04 

radio_breast_dose_Gy 0.20 other_collagen_vascular_disease  0.03 

rheumatoid arthritis_duration_yrs 0.20 rheumatoid arthritis  0.02 

    

 


