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The co-movement between oil and clean energy stocks: a wavelet-based analysis of horizon
associations

Abstract

The production of clean energy is crucial for protecting the environment and satisfying the future
demand for energy. However, the growth in clean energy production and consumption is influenced
by the developments in the oil and the clean energy technology markets. Thus, it is crucial to study
the association among these markets and this is the main objective of this research. Compared to
the existing literature, we provide evidence from multiple time horizons. In particular, we combine
wavelets over various time scales with multivariate GARCH (MGARCH) to find significant
bidirectional return and risk transfer from oil and technology to the clean energy market. The
transmissions are found to be more pronounced at longer time horizons. These results highlight the
importance of certainty and stability in the oil and technology markets for the growth of clean
energy particularly in the long term.
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1. Introduction

In the last couple of decades, energy consumption has increased substantially and the world’s
reliance on the mature fossil oil industry to supply power, fuel transportation and to run industries
has resulted in increased energy related CO2 emissions that has threatened the eco systems and
increased global warming. These global threats highlight the importance of switching to alternative
energy sources such as renewable clean energy in order to protect and maintain the sustainability

of the universe.

The global demand for energy and energy products is huge and it is growing at a fast pace. The
accommodation of this demand requires enormous capital investments in the energy and alternative
energy sectors. The eco threats, the huge demand for energy, and the large capital formation
requirements to meet energy needs underline the importance of clean energy production for
investors, the governments and the economy.! Therefore, many countries have adopted energy

strategies that promote the use and the production of clean energy. 2

The future performance and growth of clean energy market depends on the future performance
and growth of oil and clean energy technology markets. For instance, innovations in technologies
are expected to support production, consumption and growth of clean energy. Similarly, energy

prices including the price of oil are expected to drive the returns on investments in the clean energy

1 The huge future demand for energy is indicative of big growth opportunities and high returns for investors in the
clean energy sector. It is also indicative of the need for alternative clean energy in order to support existing fossil oil
energy supplies and to preserve the environment. For the economy, the renewable clean energy may drive growth and
jobs as the sector is enormous and it goes beyond wind and solar power production to include businesses that are
concerned with producing, consuming and distributing energy and energy materials in an efficient way.

2 Several countries provide grants, loans and tax incentives to support the production and the consumption of renewable
clean energy. For instance, in India 30% of the cost of rooftop solar panel installations is paid by the government.
Similarly, in Sweden, the taxes on solar panel production is abolished to enable 100% reliance on clean electricity by
2040. Other countries have increased public investment on clean energy production. For example, the Republic of
Korea plans to invest $ 36 billion on clean energy production by 2020 (Renewables, Global status report.2017).
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and the clean energy technology sectors. These inter-relationships will also have important
implications for the future growth of clean energy production and therefore, it informs investors
and enables governments to design a suitable and comprehensive energy strategies that consider

the conditions in other related markets. 2

For all these reasons, the association between oil, clean energy and technology is important and
it has recently attracted research. Results are inconclusive. For instance, Henriques and Sadorsky
(2008) find that shocks to oil prices have a larger impact on technology than clean energy shares.
Sadorsky (2012) show that the linkages between technology and clean energy equities are far
stronger than with oil. He has also found that oil futures can’t be used to hedge clean energy equity
volatility. Contrary to these findings, Kumar et al., (2012) find that previous oil and technology
returns have influenced the performance of the clean energy market. Furthermore, Managi and
Okimoto (2013) show that oil and clean energy are always positively correlated after structural
breaks in the oil market. However, in Bondia et al., (2016) the influence of oil and technology
equity on clean energy disappears in the long run and the growth and development of the clean
energy market is independent of the oil price. In a recent study, Ahmed (2017) points out that oil
is a net receiver of shocks from clean energy and technology equities. He has also found a strong
association of clean energy with technology but a weak association with oil. In a recent study
Reboredo et al., (2017) consider multiple horizons and they find weak short-term association and

causality among oil-clean energy-technology sectors that strengthens with time.

3 Clean energy and related clean energy technology equities represent a relatively new and promising asset for
investment, thereby providing investors with new asset to diversify their portfolios.
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In these studies, the inference on the association is derived on the basis of data that is sampled
mainly at the weekly frequency.* The choice of the weekly data horizon is appropriate as most
portfolios are rebalanced weekly. However, the associations over longer and shorter spans of time
are also informative for investors and energy policy makers. For instance, in managing energy
portfolios, exposure association over varying times provide an important information on the risk
profile of the portfolio over varying horizons, and this is crucial for energy portfolio risk

management.®

Similarly, a prudent energy policy has to adapt to the linkages in energy markets over various
horizons. The long-term growth in the price of oil brings investments and growth in the clean
energy sector only if the two markets are correlated in the long horizon. If they are, then this will
reduce the need to support clean energy sector over the long term particularly when the oil prices
are expected to be high. The short-term focus of the strategy is warranted in this case. However, if
the two markets are only associated over short horizons, then any prudent energy policy should
have a particular emphasis on the long term to support clean energy production. The same can be

said about risk transfer.®

Therefore, there isn’t much that has been done on the horizon heterogeneity of the association
among energy markets. In this paper, we aim to fill this gap and to contribute to the existing

literature by investigating return and risk transmission among crude oil, clean energy and clean

4 From these studies, only Reboredo (2017) considers multiple frequencies that range from 1 day to 500 days. The rest
of authors base their analysis on weekly returns.

> If the risk over specific horizons is deemed too high by the management for any reason, then the portfolio may be
rebalanced to reduce risk.

® The influence of uncertainty in the oil market on the clean energy market depends on the horizon linkages between

the two markets. The lack of association in the short run implies that the energy policy need not to worry about short

term oil price fluctuation in its support for the clean energy sector. The strategy should focus on the long term.
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energy technology markets over horizons that extends from less than a week to slightly over six

weeks.

A particular method that is able to capture effectively cross market linkages over various scales
without losing information is the wavelet based multi time scale analysis.” Hence, in this paper we
construct horizon wavelets transforms of the return series. Then the causality and dynamic
association between the energy markets is inferred by estimating a multi-variate dynamic
conditional correlation GARCH model (MGARCH-DCC hereafter) of the wavelets.® This model
is rich and it shows the influence of lagged returns, lagged short term return shocks and lagged
volatility of the oil market on the returns and volatilities of the equities in the clean energy and the

technology sectors.®

In the related literature the technology sector returns are used as a proxy for the clean energy
technology performance in the analysis (See, for instance, Henriques and Sadorsky, 2008;
Sadorsky, 2012; Kumar et al., 2012; Managi and Okimoto, 2013; Bondia et al., 2016; Ahmed,
2017, Reboredo et al., 2017). The intuition is that the clean energy technology sector is a buyer of
energy innovations from the technology sector. However, we think that assuming technology and
clean technology as synonymous in the analysis is not appropriate.'® In fact, the Arca Technology
100 index which is used in all previous studies includes companies from multiple technology

industries that has nothing to do with clean energy technology. These companies operate in areas

" In frequency analysis, the independent sampling over longer frequencies will reduce the number of observations
significantly. However, in wavelet analysis, the wavelets for all scales will have the same number of observations.
Moreover, shifting the start point in frequency analysis changes the result. On the contrary, the findings in wavelets is
shift invariant.

8 This model is first proposed by Engle (2002). A similar application of the model on wavelets can be found in
Khalfaoui et al., (2012, 2015)

® The terms are defined roughly as: the short term describes 2 to 4 working days; the medium term describes 4 to 16
working days and the long term describes 16 to 32 working days.

10 This point with its following arguments has been pointed to us thankfully by one of the referees.
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of computer hardware, computer software, semiconductor production, health care equipment,
telecommunication, electronics, biotechnology media and aerospace. Hence, this index may have
less linkages with oil or clean energy than an index which includes only companies that focus
mainly on clean energy technologies. For these reasons, instead of the Arca 100, we choose the
FTSE ET50 Index to represent the clean energy technology market. The index is value weighted
and it contains only those companies that develop, manufacture, distribute and install energy

technology products.

Our analysis reveals a number of interesting results. The transmissions of returns from oil to
clean energy and technology are found to be significant and increasing with time.! In the opposite
direction, there is only transmissions from technology to oil. The technology market returns are
found to be negatively associated with the oil market returns.? Moreover, there are bidirectional

spillovers between the clean energy and the technology stocks at all horizons.

The investors in energy should expect less diversification over longer periods that are even
lower if they assume the energy exposure with only clean energy and technology stocks. It is
obvious from these estimates that oil has some diversification to add to a portfolio of energy
equities particularly over the short term. To increase clean energy production, energy policy should
be more focused on the long- and short-term growth and development of the clean energy
technologies. The growth of the technology sector will bring alongside a growth in clean energy

thus alleviating pressure on public funds needed to support the sector.

There is significant risk transfer from oil to clean energy but not to clean energy technology.

These transfers are more pronounced over the longer term. Moreover, there are significant volatility

11 Most of the related parameters are significant at 10% level only. At longer horizons, the significance is higher.
12 Improvement in clean energy technology may be seen as a threat to the oil price.
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transmissions between clean energy and clean energy technology. These estimates indicate that
uncertainty in the oil market may potentially be transferred to energy equities particularly over the
longer term. Therefore, the certainty and stability of the oil market is important in reducing the risk

of the clean energy market particularly in the long term.

Finally, to provide more information for energy market investors, we compute hedge ratios and
optimal portfolios and we find that clean energy technology provides the cheapest hedge for an
investment in oil. A 15-cent allocation to technology is required hedge a $1 investment in oil. On
the other hand, hedging with clean energy requires around 30 cents. The optimal portfolio weights
of technology and clean energy equities in a portfolio of oil are found to be 20% and 40%

respectively.

The rest of the paper is organized as follows. In Section 2, we review previous empirical studies
on the relationship between oil, clean energy and technology equities. Section 3 outlines the
wavelet-based DCC-GARCH approach. Section 4 provides a description of the data set and
preliminary statistics. In Section 5, we present the empirical results. Finally, in Section 6 we

provide concluding remarks.

2. Literature review

In the literature, there are only a few papers on the association between oil, clean energy and
clean energy technology stocks. The findings of these papers agree on the close linkages between
clean energy and technology equities, however there is a total disagreement on how clean energy
is related to the oil market. The results in that respect are inconclusive. The first paper that discusses
the three markets is the paper by Henriques and Sadorsky (2008) who investigate the influence of

oil price changes on the financial performance of alternative energy companies. In this paper, the



authors used weekly data that extends from the 3™ of January 2001 to the 30" of May 2007.*% They
find that shocks to technology has a larger impact on clean energy than shocks to oil. However,
they also find that technology is influenced by the movement in the price of oil. The lower impact
of oil price shocks on clean energy relative to technology is explained by saying that investors view
alternative energy companies as similar to technology companies.** The research of Sadorsky
(2012) gives similar results. He investigates dynamic correlations and volatility transmissions
between oil, clean energy and technology companies using multivariate GARCH models. The clean

energy is found to be more correlated with technology than it is with oil.1°

The same conclusion is arrived at by the study of Inchauspe et al., (2015) who analyze oil, clean
energy, and technology relationships using an asset pricing model with time varying coefficients.
They include in their analysis equity indices and carbon prices as additional assets and find that the
returns of high technology and renewable energy equities are highly correlated with no clear-cut

influence of the oil price on either sector.

The weak association between oil and clean energy in these studies is attributed to the time
periods investigated and to the failure of modeling structural breaks in the oil market. Through
extending Sadorsky’s sample to include the year 2008, Kumar et al. (2012) find that past
movements in oil prices explain significant portion of the variation in the clean energy equities.*®

Moreover, Managi and Okimoto (2013) have recorded positive linkages between oil and clean

13 During this period the price of crude oil has increased from $25 to $75 per barrel.

14 The energy sector has been always viewed by investors as a value sector with low multiples and low growth
opportunities. However, the recent advent of new technologies in producing energy have started a new era in which
the sector may change fast from a value to a growth sector.

15 Moreover, he finds that the investment in clean energy companies can be hedged effectively with a short position in
crude oil futures.

16 Unlike Sadorsky who used vector auto regression, Kumar used multi-factor model to draw his inference.
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energy following the structural break in the oil price in 2008.1" Their analysis is based on a Markov-
switching vector autoregressive model that endogenously controls for structural breaks. The
importance of modelling structural breaks in the oil- clean energy-technology association is pointed
out by Bondia et al., (2016) who find that there is a short run causality between oil, clean energy
and technology that shows up only when structural breaks are accounted for. They find no causality
that is running from oil towards the prices of alternative energy stocks in the long run. The authors

contend that increasing oil prices does not lead to the adoption of clean energy in the longer term.

The daily returns and risk transmissions between oil, clean energy and technology has recently
been investigated by Ahmad (2017). The results of his paper indicate that the spillover from clean
energy and technology equities to the oil market is more pronounced than the transmissions in the
opposite direction. These crossovers are found to strengthen during the global financial crisis in
2008, the Eurozone turmoil in 2009, and during the global economic slowdown that followed. In
his study there are great diversification benefits in the portfolio that mixes crude oil with clean
energy equities and little diversification when clean energy is mixed with technology. The weight

of clean energy stocks in the crude oil portfolio is found to be more than 52%.'8

In a new study Reboredo et al., (2017) tests the co-movement and causality between oil and
renewable energy equities using wavelets coherence analysis. They considered horizons that range
from 1 to 500 days or two years of markets’ life and they find weak short-term association and
causality that strengthens with time. They conclude that energy policy makers should focus their

energy policies in the short term as in the long term the rising oil prices will induce growth and

17 The oil price displayed a free fall from a staggering $145 per barrel to a low of $39 per barrel during the Global
Financial Crisis in 2008.

18 In a recent study, Ahmed et al. (2018) finds that the VIX index (implied volatility of the S&P100 index) is best to
hedge clean energy among a group of assets that include: crude oil, US-bonds, gold, oil implied volatility index (the
OVX index) and the European carbon prices.



development in the clean energy sector. We are related to this study in terms of focusing on various
horizons, however, our inference is drawn from the dynamic association between markets that is
estimated using dynamic conditional correlation multi variate GARCH process of the wavelets
rather than from a coherence analysis. Instead, we use the coherence analysis to confirm our

findings.®

It is worth to mention here that growth of clean energy production depends on the ability of
the sector to attract new investments and hence, the relative return and risk prospects of the clean
energy sector compared to other opportunities is important. Many studies have pointed to the high
risks of renewable energy investments. For instance, Ortas and Moneva (2013) find that clean
energy and clean energy technology outperform the MSCI Global and the S&P 500 Index. They
suggest that this outperformance is a consequence of the high risk of the clean technology indices.
The same inference on the risk of investing in clean energy has been arrived by Rezec and Scholtens
(2017) who study the performance of renewable equity and find that their risk is significantly

higher than a broad equity benchmark.

The Liu and Zeng (2017) research identifies the reasons of higher risks and uncertainties of
clean energy investments. Their simulations show that policy risk and other idiosyncratic risk are
paramount for renewable energy particularly in the early stages of the investment. However, as
innovation and technology advances, the investment is less risky but market risk comes into play.

Now the investment contains more systematic risk, and it is correlated with general equity returns.

19 Recently, Reboredo (2018) has found that green bonds are more associated with treasury and corporate bonds than
with clean energy equities or oil. She finds that green bonds provide substantial diversification benefits to oil and
clean energy equities with little diversification to other bonds.
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To sum up, the association between oil, clean energy and clean energy technology is important
for the growth and development of the clean energy production and consumption as well as for the
setup of a sound energy policy. However, there is little research on the linkages between these
markets and the results of this research is inconclusive. Moreover, the related papers in the
literature consider only weekly investment horizon and little is known on the linkages between
these markets over longer time scales. The only study that considers various investment horizons
is Reboredo et al., (2017). However, this study uses the Arca 100 index, which is a general

technology index to represent the clean energy technology sector.

In this paper we contribute to the literature by stressing the heterogeneity of associations over
multiple horizons. Compared to Reboredo et al., (2017), we arrive at similar results that association
strengthen with time but we use a different index that is more representative of the clean energy
technology market and a different methodology. Our inference is drawn from a dynamic
conditional correlation GARCH process and we use the coherence analysis only to confirm the

robustness of our results.

3. Methodology

In this paper the interest lies in the investigation of return and volatility linkages over multiple
horizons. To accomplish that, we estimate a dynamic conditional correlation multivariate GARCH
model of the wavelets (DCC-GARCH hereafter). 2 This allows for the accommodation of time
and frequency domain variations of the time series together, and thus it can be used to examine co-

movements among financial variables over various time scales. ?* Furthermore, this model controls

20 See the article by Ramsey (2002) for insights obtained from applying wavelets analysis to economic and financial
data.

2L A DCC-GARCH of the wavelets inference is followed by many researchers: see for instance, Khalfaoui et al., (2012,
2015), Barunik et al. (2016) and Boubaker and Raza (2017).
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for any potential nonlinearities, structural breaks, seasonality, trends and any other cyclical patterns
in the relationship between the variables (Crowley, 2005).

The estimated dynamics conditional correlations (the DCCs hereafter) between oil, clean energy
and technology shares are used to compute dynamic hedge ratios and optimal portfolio weights.
These hedge ratios and weights assess the importance of oil in hedging and diversifying clean
energy and technology stocks across different time horizons.

The wavelet-based DCC-GARCH estimates are generated in a two-step approach. First, the
wavelet transforms are computed using maximal overlap discrete wavelet transformation
(MODWT hereafter) to decompose each of the examined time series in time-frequency domain and
time domain. Second, the obtained wavelet time series are used to estimate the DCC-GARCH
model.

In the following section we sketch the Wavelet-based DCC-GARCH methodology starting with

the wavelet transform analysis and then we introduce the traditional DCC GARCH model.

3.1 Wavelet-based approach

In the analysis we obtain data in frequency domain by using the maximal overlap discrete
wavelet transform as mentioned previously.?? In comparison with alternative transform methods
such as the discrete wavelet transform, the MODWT is less sensitive to the choice of the starting
point of the time series (Percival and Walden, 2000). Furthermore, the MODWT does not require
the length of the series to be dyadic (i.e., power of 2). Therefore, the obtained wavelet and scaling
coefficient vectors from decompositions will have equal length at all scales similar to the number

of observations of the original time series.?> Moreover, the MODWT detailed coefficients shift

22 Note that the most text and notation in this section are quoted mainly from Barunik et al., (2016) and Khalfaoui and
Boutahar (2012).
23 See Cornish et al. (2003) and Crowley (2005) for more details about the properties of MODWT transform.
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along with the original series. Hence, the peaks and the troughs in the original series will be

correctly aligned with similar events in the multiresolution analysis (Masset, 2015).
The jith level wavelet coefficients (W) and the scaling coefficients (V; ) for the return series

r(t) are obtained via the following formulas

L]'—l

Wi,j = z Ej,lrt—j modT U= 0,..,T—-1, (1)
Lj—l

I7i,j = Z JjiTe—j moart =0,...,T =1, (2)
I1=0

where L is the length of the filter, fl] > are the wavelet filters, and §;, = J/Z are the scaling

/
filters.?*

Following the related empirical literature, we use the least asymmetric wavelet method of
Daubechies (1988, 1992) with a filter length of L = 8 to obtain multiscale decomposition of the
return series.?® Hence, the decomposed signals of the multi resolution analysis in the MODWT is

defined as

J
r(t) = S;(t) + Z d; () (3)
j=1

where S;(t) = X122, h(D)S;-1(t + 2771 x 1) represents the smoothed version of the series r(t)

at scale J, and d;(t) —21__009(1)5,-—1 (t+2j_1 xl) represents the wavelet detailed which

24 The MODWT filters satisfies the following properties: (1) X125 kb, = 0, Xi0 g, = 1; (2) Xico hf =Xi%0 3¢, = ES

2
B) X2 hyhyyon = Y12 §1G142n (see Khalfaoui et al. 2015).
25 This wavelet filter has been widely used and applied in economics and finance. The filter length of L = 8 has been
shown as an ideal band-pass filter in the Daubechies wavelets (Gencay et al., 2002; Lien and Shrestha, 2007; In and
Kim, 2013).
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captures the local fluctuations over the whole period of the time series at each scale as well as at a

givenscalej{j =1,..,J}.

3.2 DCC-GARCH model

Based on the wavelet decomposition results, we analyse the dynamic correlations of returns at
different time scales using the DCC-GARCH model proposed by Engle (2002). The conditional
mean is modelled as a vector autoregressive process (the VAR model) and the volatility is specified
as multivariate GARCH as in Ling and McAleer (2003). This specification is rich and allows for
studying time-varying correlations and volatility spillover effects at different time scales.

Specifically, let R;:(j) = (Ro: (), Re: () , Rt (j) )’ be an n x 1 vector of wavelet return series
at time t, scale j and n assets. The assets in this paper are crude oil, clean energy stocks and
technology shares. The VAR model may be written as:

R.(j) =c+¥YR._1(j) +&()

1 (4)
&(j) = H, M ve(d , v () ~N(0,1)

where ¢ = (c,,c.,cs)” is an n x 1 vector of constant terms; ¥ and = are time-invariant 3 x 3
matrices of coefficients with elements [¥];; =y, where i,k ={o,e5s}; &)=
(g0t (), €ec (), €5: ()" is an 3 x 1 vector of error terms; v, (j) = (vor (), ver (), v5: ()" is @ 3 X
1 vector of independently and identically distributed errors. The variable H; is a symmetric n X n
conditional variance-covariance matrix. From the above specification, testing for return spillovers
is equivalent to testing ¥;,(j) = 0, Vi # k.

Following Engle (2002), H.(j) can be written as H.(j) = D:(j)R:(j)D:(j), where D.(j) =
diag{\/m} which is a 3 x 3 matrix of time-varying conditional volatilities along the main

diagonal; R; is a symmetric n X n matrix of time-varying conditional correlations with ones on
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the diagonal and [R;(j)]ix = pur¢(j) # 1 for i # k; and H,(j) has elements [H;(j)]i=x = h;:(j)

on the diagonal (time-varying conditional variances) and [H; (N]izx = v/hit (D it (D i, () Off
the diagonal (time-varying conditional covariances), where i, k = {o, e, s}.

The common practice in estimating the DCC model is to assume that the conditional volatilities
are univariate. Instead, in this paper, we obtain the elements of D, from a multivariate GARCH
specification. This approach to modelling volatilities allows for measuring the variance spill overs

between assets.

Therefore, the conditional variance is specified as:

he()) = v + Aef1(j) + Bhe_1 (j) (5)
where y = (y°,y%,v®) is a 3 x 1 vector of constant terms; A and B are 3 x 3 matrices of
estimated ARCH and GARCH coefficients, respectively, with elements [A];x = @ik, [Blix = Bik,
where i,k = {o0,e,5}.2% For i = k, a;;, represent own conditional ARCH effects which measure
short-term persistence, whereas S;;, represent own GARCH effects which measure long-term
persistence. The mean reverting condition 0 < a;;, + B < 1, for i = k is required to ensure that
along run equilibrium in conditional volatility is established. For i # k, the a;;, and B;;, coefficients
capture volatility spill overs between assets. In particular, a;; measures the shock spill overs from
asset k on the conditional volatility of asset i, while ;;, measures past volatility spillovers from
asset k on the conditional volatility of asset i.

To test for significant volatility transmissions from one asset to another, we need to test for the
joint null hypothesis: a;, = Bix = 0,V i # k. For example, if the null hypothesis a,, = B., = 0 is

rejected, there is evidence that the volatility in oil is transmitted to the clean energy sector during

26 Note that the sign and size tests of Engle and NG (1993) indicate that responses are not asymmetric. Therefore, in
Eg. (5) we do not account for asymmetry in the responses.
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the period of consideration. The null hypothesis of the test for volatility transmission from clean
energy to crude oil is written a,, = f,. = 0.
The test statistics that is used to make the inference is the usual likelihood ratio test which is

written as:

LR = —2(Lg — Lyg) = x> () (6)
where LR is the log likelihood ratio, and Lg and L are the values of the log-likelihood functions
of the restricted and unrestricted models respectively. The LR statistic has an asymptotic
x2 () distribution with x degrees of freedom; where x equals to the number of restrictions imposed
on the model.

Given the conditional variances in equation (5), the time-varying conditional correlation

matrix R; at time horizon j in the DCC model takes the following form:

-1/2 -1/2
R.() = (diag (0:())) " @:() (diag (Q.())) )
where Q; is a k X k symmetric positive-definite matrix given by
Q:() =QA =6, —0,)Q + 01601 (Ner—1 () + 02011 () (8)

where Q is the unconditional covariance matrix of the standardized residuals &,; 6;and 6, are
nonnegative scalar coefficients with a sum of less than unity and they are loadings that represent
the effect of previous shocks and previous dynamic conditional correlations on the current dynamic
conditional correlations; and the elements of [Q,(j)]ix = qix,+(j) can be interpreted as the dynamic
conditional covariances between assets i and k at time horizon j. By imposing the restriction 8, =
6, =0, Q reduces to the constant conditional correlation (CCC) model. The conditional

correlation coefficient p;; . (j) is expressed as follows:
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9t ()

NEHOLRO)

If the estimated p;;, . is positive and statistically significant, then asset returns are moving in the

Pik,c () = NVi#k 9

same direction and vice versa.

The parameters of the DCC model are estimated by using the quasi-maximum likelihood (QML)
estimator of Bollerslev and Wooldridge (1992) which takes into account the joint multivariate no-
normal distribution of financial time series.?” The Ljung-Box (LB) statistics of the squared
standardized residuals are used to determine the adequacy of the estimated conditional variance
model.

The estimated results derived from the DCC model can be used to construct hedge ratios, global
minimum variance portfolio and/or portfolios that minimize the volatility at every level of expected
returns. In this study, we compute optimal hedge ratios and optimal portfolio weights at each

wavelet scale (short, medium and long term).
Following Kroner and Sultan (1993), the risk minimizing hedge ratio (ﬁfk,t(j)) for two-asset

(i, k) at time t and at wavelet scale j can be derived as:?

hir,e ()
ekt ()

Bk () = (10)

where hy, ((j) is the is the conditional covariance between i and k and hy .(j) the conditional

variance of k.

27 \We use the quasi-Newton method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) algorithm with a convergence
criterion of 0.00001. We estimated the DCC model with WinRats 9.0 using a code provided by Sadorsky (2012), which
we modified for our purposes.

28 This model specification is in line with most of the previous studies (Sadorsky, 2012, 2014; Lin et al. 2014; Lin and
Li, 2015; Basher and Sadorsky; 2016; Maghyereh et al., 2017; among many others) on MGARCH hedging.
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In the same way, we use conditional volatilities from the DCC model to construct minimum
variance portfolios. Following Kroner and Ng (1998), among others, the optimal weight

(Wi, (7)) for a two- asset portfolio (i, k) at time ¢ and at wavelet scale j is obtained by:

hkk,t (]) - hik,t (])

Wfk 1) = - - —, 11
it () hiit ) = 2R e () + hir,e () (11)
0! lf Wi*k,t(i) < 0
with wj, () = {Wir,: (D, if 0=<wy, () <1 (12)

1' if lekk,t(j) >1
where wy, .(j) is the weight of asseti in a one-dollar portfolio, h;..(j) is the conditional
covariance between i and j; h;¢(j) and hy, ((j) are the conditional variances of assets i and k

respectively. The weight of asset k in the considered portfolio is computed as (1 — wy, . (j)).

4. Data set and descriptive statistics

The data set includes the daily prices of crude oil, clean energy index and the clean energy
technology index. It covers the period that extends from the 1% of January 2001 to the 23" of
February 2018 for a total of 4,475 observations. For crude oil prices we use the West Texas
Intermediate (WTI) which is denominated in US dollars per barrel. The WTI is the underlying price
of the most actively traded futures contract among all physical commodity futures contracts that
are transacted globally. It accounts for around two-thirds of the commodity futures market trading
activity and thus the WTI is considered as the global benchmark for crude oil prices (Sadorsky,
2012). To represent the clean energy sector, we use the modified equally weighted WilderHill
Clean Energy Index (ECO). This index is widely used to benchmark the performance of

investments in clean energy. It includes companies that are expected to substantially benefit from
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the transition of society to the use of clean energy production, consumption and conservation.?®
The individual companies included and the sector weighting within the ECO are based on the extent
of utilization of renewable greener sources of energy. The index includes companies that focus on
renewable energy harvesting, production, conversion, conservation and storage. It also includes
companies that are concerned with efficiency improvement, pollution prevention, delivery, and
information monitoring.*® The index consists of 41 companies as of the first quarter of 2018.

To represent the clean energy technology sector, we use the FTSE ET50 Index which is a value
weighted index that is composed of largest 50 global companies that have a core business in
manufacturing, developing, distributing and installing clean energy technologies.*

In this paper we use daily short horizon data to get high number of observations and to be able
to adequately capture the rapidity and intensity of dynamic interactions among markets. The data
is retrieved from the Thomson Reuters DataStream. For each data series, we compute the
continuously compounded returns as r; = In(p;/p:-1), Where p; is the daily closing price at time t.
Figure 1 exhibits the evolution of the prices and returns of crude oil, clean energy stocks and
technology stocks over the sample period.

In Figure 1, the bust of the technology bubble can be seen clearly as the indexes of clean energy
technologies and clean energy have tumbled in 2003. Meanwhile the oil price has continued its

growth to achieve new highs. Following 2003, the clean energy and clean energy technologies

2 The clean energy sector covers four main sub-sectors: energy, transportation, water, and materials (Pernick &
Wilder,2007). But 70% of the sector investments are in energy and energy efficiency technologies (Price water house
Coopers, 2015, Cleantech Money Tree Report: Q4 2014).

30 This is the oldest index devoted solely to track clean energy companies, Sadorsky (2012). For more details see
https://wildershares.com/about.php

31 More information on this index can be found in https://www.ftserussell.com/. Another similar index is the Ardour
Global Alternative Energy Index (AGIGL). The AGIGL is a value weighted index that includes 141 companies that
manufacture and develop clean energy technology, renewable energy and alternative fuels. But our results using this
index remain qualitatively very similar. Therefore, we do not present these results, but we keep them available from
the authors upon request.
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markets have recouped losses and continued their growth until 2008. By that time the oil prices
have achieved an extremely new high of $145 per barrel.

In 2008, the three markets have experienced severe losses in the wake of the global financial
crisis. However, oil has shown more resilience than clean energy and/or clean energy technology
shares as it managed to re-grow and compensate for the losses while the clean energy and clean
energy technology markets have failed. The growth in the oil price following the global financial
crisis is induced by the high continued demand for oil coming from emerging markets, China and
the Middle East. The figure also displays the sever drop in oil prices in 2014. In November 2014
OPEC refused to cut oil production in order to preserve market shares and to attack the US shale
oil production. The move surprised the markets and the oil price tumbled and touched a low of $26
per barrel. In November 2016, OPEC and non-OPEC oil producers cut production to support prices
and the oil price started to grow as can be seen in Figure 1. Finally note that clean energy and clean
energy technology prices move in the same direction together more often than they move in tandem
with oil. This is not unexpected as oil is a commodity and it represents another asset class while
these indexes belong to the same class of assets, namely equities.

[INSERT FIGURE 1 HERE]

Table 1 presents the descriptive statistics of the three markets. Over the sample period the three
markets have not experienced any growth and the average return is around zero. Hence, the value
of capital invested in energy did not grow over the sample period. In terms of the standard error,
the oil market seems to be riskier than either clean energy or clean energy technology equities. It
has also the widest range. The skewness coefficients are all negative. They are more pronounced
and more negative in the clean energy technology market. Moreover, the three markets exhibit
significant excess kurtosis thus indicating that the return distributions are leptokurtic and that there

are extreme movements of returns in either direction. The negative skewness and excess kurtosis
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indicate that the distributional properties of all the return series is far from being normal. This is
confirmed by the Jarque—Bera (JB) statistics that rejects normality of the return distributions at the
1% significance level. Finally, Table 1 reports the unit root test results. As can be seen in the table
the Augmented Dickey—Fuller (ADF) tests show that there are no unit roots and that all return
series are covariance stationary.

Table 2 reports simple unconditional correlations over the sample period. The crude oil return
series is significantly and positively correlated with clean energy and clean energy technology
shares. It is slightly more correlated with technology equities (0.285) than it is correlated with clean
energy (0.263). The highest correlation is found to be between clean energy and technology equities
(0.757).

[INSERT TABLE 1 HERE]
[INSERT TABLE 2 HERE]

As mentioned previously we are mainly interested in assessing the evolution of correlations at
different investment horizons/scales. Therefore, we decompose the raw return series into four
scales (dt (1), dt (2), dt (3), dt (4)) and a smooth.? The dt (1) scale is the shortest and it represents
the influence of shocks around the smooth over 2 to 4 days periods. The rest of the scales, which
are the dt (2), the dt (3) and the dt (4), capture the influence of shocks over periods of 4 to 8 days,
8 t016 days and 16 to 32 days respectively. Note that the scales dt (5) - dt (8) which represent the
influence of shocks over periods longer than 32 days are ignored as the corresponding wavelet time
series does not exhibit enough volatility and hence the GARCH model is not suitable for these

scales.®

32 The wavelet smooth series is S8. We use the MODWT with Daubechies least asymmetric wavelet filters of a length
of 8 (Daubechies,1992).
33 The results on these scales are not reported but available from the authors upon request.
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Figure 2 plots the wavelet scales dt (1) to dt (4) together with the smoothed component over
the sample period. As shown in the figure, fluctuations of shocks are relatively higher in the dt (1)
and dt (2) short term scales. As we move to the longer scales dt (3) and dt (4) the influence of shocks
disappears as fluctuation dies out. This indicates that the influence of shocks is only short term and
that it dies out over longer horizons. As can be seen in the figure the wavelets over long horizons

has fewer and smaller spike lengths.

The wavelet time series in the figure captures shocks in the three markets. For instance, the
scales of clean energy and clean energy technology equities exhibit more values and fluctuations
during the burst of technology bubble in 2003. Similarly, oil shows more variations during the
Argentine crisis in 2002 and also during the Iragi war in 2003. All scales exhibit more fluctuations
and values during the global financial crisis in 2008. Variations can also be seen during the
European sovereign debt crisis from April 2010 to June 2012.

[INSERT FIGURE 2 HERE]

Table 3 shows the descriptive statistics of the sample data at each wavelet scale. The average
shock in the three markets is zero at all scales. This indicates that over long periods of time the
negative and the positive shocks cancel out around the smooth. The table also reveal that the
standard deviation of all series tends to be greater at smaller horizon. The shocks to clean energy
and technology stocks exhibit lower standard deviation than the shocks to oil at all scales. The
wavelets exhibit positive skewness and excess kurtosis over the vast majority of the considered
scales and the normality of shocks is rejected by the Jarque—Bera test statistic in the three markets.®*

Finally, all wavelets are covariance stationary at the 1% level of significance.

34 However, long term clean energy and clean energy technology equities display a negative skewness.
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[INSERT TABLE 3 HERE]
Table 4 presents the pairwise wavelet correlations. The table shows relatively similar correlation
between the wavelets of oil, clean energy and the wavelets of oil and clean technology. It also

shows that the wavelet correlations are relatively higher at longer horizons.

Figure 3 is a supplementary graph that depicts pairwise correlation of the wavelets across the
scales. It also displays the 95% confidence interval of the correlation between the wavelets. The
figure shows clearly that the higher the horizon the higher the association between the wavelets of
oil and the wavelets of clean energy and technology equities. The only exception is the drop-in
association between oil and clean energy at horizons greater than 8 days but less than 16 days.
However, the association increases monotonically after that. Note also that the strongest wavelets
association is found to be between clean energy and technology indexes. This increases

substantially over longer horizons.*

The dependence structure obtained of the wavelets reflects the additional linkages between clean
energy and technology equities through the market. Companies in these two sectors has some
systematic risk which is non-existent in the case of oil as it is a commodity. When the broad equity
market varies, clean energy and technology equities change according to their betas. However, as

the beta of oil is zero, a subsequent change in the oil price may not occur.

Therefore, portfolio managers who are looking to get exposure to energy by buying stocks of
clean energy companies should be prepared to over or underperform the oil market due to

systematic and/or idiosyncratic risk. These risks may contaminate the relationship between the

% The confidence interval is narrower here thus reflecting a lower standard error of the correlation estimate
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performance of oil as a commaodity and the performance of energy companies such as clean energy

and technology stocks.

The macroeconomy is another route through which oil can be linked to equities. The increase
in oil prices could result from the high demand for oil due to global economic growth. Or it may
occur as a result of a supply shock, even when the global economy is stagnating. To the extent that
equities mirror the performance of the economy, then it is well possible for the correlation of oil
and equities to be positive or negative depending on whether the oil price is demand or supply
driven. The feedback effect from the oil price to the global economy makes the relation even more

complicated.®

It is worth to mention here that it is not only the linkage between the oil market and economic
growth is broken, but also the linkages between economic growth and equity market performance.
Hence, even when the oil market is low and economic growth is high, still equities may
underperform. The reason is that assets usually are overvalued in an economic expansion and
undervalued in recession. In other words, if cheap oil trigger economic growth and overvalued
equities then oil equity can be positively correlated. Alternatively, if expensive oil triggers

stagnation and undervalued equity then oil-equity maybe negatively associated.

The upshot here is that energy stocks are not pure exposure to the oil price and they contain
systematic and company risk. Moreover, the relationship between oil and equities is complicated
despite the fact that higher oil prices is good news for clean energy and clean energy technology

stocks. Therefore, the empirical estimation of the association between oil, clean energy and clean

3% There is substantial evidence of asymmetry of the oil influence on economic growth. While economic growth is
threatened by an increase in oil prices, economic expansion is not triggered by cheap oil prices. This makes the
relationship between oil and equities even muddier.
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energy technology stocks has the final say on the extent and direction of the association between

these assets.

Figure 4 displays the markets’ correlations at various leads and lags. The figure shows that the
lead and lag correlations are relatively higher in long-term scales. The correlation between equities
of clean energy and clean energy technologies is much higher than the correlation with oil. These
correlations show that the forward and backward dependence structure is higher between clean
energy and clean energy technology than either has with oil. Moreover, there is more dependence

among oil, clean energy and clean energy technology at longer horizons.

These results are not unexpected as clean energy and oil are substitutes and therefore they are
driven by the same shocks. The same can be said also about the relationship between oil and clean
technology equities. The strong correlation between clean energy technologies and clean energy
stocks reflects the fact that both assets are equities and they belong to the same class and hence
they are naturally more correlated through the market. On the contrary, oil is a commaodity that is

more driven by the forces of supply and demand than it is driven by equity market returns.®’

To check the suitability of the MGARCH-DCC model with wavelets, we test for constant
conditional correlations of the wavelets using two tests: the Tse (2000) test and the Engle and
Sheppard (2001) test. The null is of constant conditional correlations while the alternative is

dynamic conditional correlations as in the DCC model.*

37 The results can be also explained by the behavioral arguments of Barberis et al., (2005) who suggest that the market
sentiment which drives correlation in the short term disappears and that long-term correlations are driven by the
economic fundamentals.

38 For detailed information on these tests see McCloud and Hong (2011).
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Table 5 presents the results. As can be seen in the table, the null hypothesis of constant
correlations has been rejected for all scales at classical significance levels. The wavelets are
dynamically associated and hence the MGARCH-DCC model is appropriate. To see the fit of
model in predicting the volatility of the wavelets, we evaluate the model’s out of sample forecast

accuracy of Value at Risk (the VaR).*®

[INSERT FIGURE 3 HERE]

[INSERT FIGURE 4 HERE]

[INSERT TABLE 4 HERE]

[INSERT TABLE 5 HERE]
Table 6 presents the results of backtesting the MGARCH-DCC model’s predictions of VaR.
The likelihood ratio test rejects the null hypothesis of inappropriate VaR model and for all time

scales.®® Thus, we can conclude that the MGARCH-DCC model is appropriate and sufficiently

accurate.

[INSERT TABLE 6 HERE]

Finally, Figure 5 displays the dynamic conditional correlations of the markets. As can be seen
in the figure, clean energy is more correlated with clean energy technologies than with oil, implying
that oil is still a better diversifier than clean energy technologies even in a clean energy equity
portfolio. The figure also shows that there is a jJump is association between all markets following
the global financial crisis in 2008 as well as following the crash in the oil price in November 2014.

Now we turn to discuss the return and volatility spillovers between the markets.

[INSERT FIGURE 5 HERE]

39 The LR test of Kupiec (1995) and the dynamic quantile test of Engle and Manganelli (2004) are used to backtest
and to assess the quality and the accuracy of the VaR estimates.

40 All results are significant at the 1% and 5% levels. The only exceptions are the 8 to16 days and the 16 to 32 days.
These are significant at the 10% level.
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5. Empirical results

5.1 Dynamic conditional correlation analysis

Table 7 presents the parameter estimates of the MGARCH-DCC model of the original data set
that contains the daily returns of oil, clean energy and clean energy technology equities. Panel A
of the table reports the conditional mean estimates that describe daily return spillovers across the
three markets.*! The parameters ¢ are particularly important as they measure the influence of last
period returns of one of the assets on the returns of the same or other assets. A significant ¢ is
indicative of return spillover between the markets.*2

The panel shows that the return spillover from the oil market to the clean and the technology
equity markets is insignificant. e, and s, are statistically equivalent to zero. Hence, we conclude
that the previous oil returns are not informative of the future returns of clean energy and clean
technology equities. However, there is evidence that there is a return spillover from clean energy
equity returns to the clean energy technology as s is positive and significant at conventional
levels.

Panel B of table 7 reports the volatility transmission parameters between the three assets. The
aij parameter captures the influence of previous shocks of the conditional mean of a particular
market on the current volatility of other markets.*}In that sense, it measures the influence of cross
market short-term ARCH effects. The long-term influence of cross market volatility is captured
through the coefficient 5 which measures the influence of long term volatility across markets. In

that sense it resembles the GARCH effect in a univariate analysis.**

41 The subscripts {o, e, s} in the table are used to refer to the oil, clean energy and clean energy technology markets
respectively.

42 Note also that a significant y;; may also point to the predictability of returns of market i by the previous returns of
market j.

43 The y; parameter is a constant term that measures long-term unconditional volatility of asset i.

4 In the language of Sadorsky (2012), a;; reflects short-term persistence, whereas S reflects long-term persistence.
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As can be seen in the panel there is significant bi-directional long- term volatility transmissions
among the markets. The uncertainty of oil is positively related to the uncertainty of the two markets.
Similarly, is the transmission of volatility from the technology market which is found to be positive.
However, an increase in clean energy equity risk is good for the oil market as it tends to reduce the
long-term volatility of oil. The clean energy market in this context is seen as a threat for the oil
market and a higher volatility in this competing market may provide calmness and assurance
regarding a good future performance and less risk in the oil market.

The short- term transmissions are mostly unidirectional from equities to oil. The short-term
volatility of the clean technology tends to stabilize the oil market while the short-term shocks to
the clean energy market tends to increase it. These results represent a unique pattern of short-term
transmissions across markets and they confirm the argument that stock markets are the source of
contagious spillover to other markets including the oil market. °

[INSERT TABLE 7 HERE]

Panel B also reports the estimates of parameters of the DCC model. As can be seen in the panel
the correlation between markets are all positive and significant. The same as in simple correlation
analysis, the association is higher between clean energy and clean energy technology than between
oil and either market. This is not unexpected as oil is a commodity and it represents another asset
class while these indexes belong to the same class of assets, namely equities. The parameters 61
and 62 sums to less than 1 and hence, we may conclude that all correlations are mean reverting.*

To check the adequacy of the DCC model to capture the important features of the data, the

diagnostic tests of the standardized residuals of the CCC model are shown at the bottom of Table

4 This finding is consistent with the result of Yoon et al., (2018) who finds that the stock markets are the source of
contagious spillover to commodities.
46 The model has been estimated via quasi-maximum likelihood (QMLE).
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7. The univariate Box-Ljung Ljung-Box Q(10) and Q2(10) statistics of the residuals indicate no
serial correlation in either the standardized residuals Q (10) or the squared standardized residuals
Q?(10), showing that the fitted model is appropriate for the data employed. Furthermore, the
multivariate version of Box-Ljung test, namely the Hosking (1980) and McLeod and Li (1983)
multivariate Portmanteau statistics of both the standardized and the squared standardized residuals
reveal that the hypothesis of no residual autocorrelation is not rejected and thus, there is no
statistically evidence of misspecification in the model.

Table 8 is similar to Table 7 but it presents the estimation results of the wavelets over different
investment horizons.*” As can be seen in Panel A of the table, there are significant bi-directional
return transmission between oil & technology, and clean energy & technology at all-time horizons.
The oil transmission to clean energy is significant for horizons greater than 4 days while the
transmission from clean energy to oil is only significant over the 8-16 days horizon. For most
horizons, the clean energy technology market is negatively associated with the oil market.

These results point out that the day to day returns in the oil market do not influence the returns
of the clean energy equities. However, the oil market performance over longer periods of time
significantly and positively influence clean energy equity returns. In the relationship between the
two markets oil is the driving force. This underlines the importance of the oil market in the
performance of clean energy equities and the growth of the sector.

It is worth to mention here that the oil market returns are influenced by only the technology

market and that there is a lot of bidirectional return transmission between clean energy and

47 As can be seen in table 8, the diagnostics of the residuals support the model. The Ljung-Box statistics, the Hosking
(1980) test and McLeod and Li (1983) test imply no serial correlations in the residuals and the squared of the residuals
at all scales.
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technology stocks at all horizons.*® The implication is the importance of the prospect of technology
in the development and growth of the clean energy sectors. The reason is the heavy reliance of the
sector on the technological innovations and output of the clean energy technology sector.

Panel B of the table shows volatility transmissions. As can be seen in the panel, there is short
term negative volatility transmission from oil to clean energy markets across all time scales.*® The
short -term uncertainty in the oil market tends to increase the certainty and reduce risk in the clean
energy equity markets. Hence, energy policy makers should not worry about the short-term shocks
in the oil market as they stabilize the clean energy market. The transmissions from technology
equities to oil is found to be only significant at the lowest scale of 2 to 4 days.

The transmission of long-term oil volatility to clean energy volatility is positive and it is more
significant at the long-time scales of 8 to 16 days and 16 to 32 days. On the other direction the
volatility influence of clean energy on oil is positive, but it is only significant at the 2 to 4 days
scale. Note that the volatility transmission from clean technology to clean energy technology is
significant at all time scales except the 8 to16 day scale. On the other direction the volatility
transmission between clean energy and clean energy technology is significant at all scales. Overall,
these results may suggest that investors in these markets should pay more attention to volatility
spillover at all-time scales.>

The correlation estimates in table 8 reflect the nature of the transmissions discussed previously.
As can be seen in the table, the association gets slightly stronger over longer investment horizon.

However, it remains that the clean energy is more correlated with the clean energy technology than

48 Note that the technology returns negatively influence oil future returns, but the oil returns positively influence
technology returns.

4% However, in the opposite direction the transmission is only significant in the long-term scale of 8-16 days and at the
10% significant level.

%0 For all scales the sum of the estimated coefficients 81 and 62 is less than 1 and hence, the dynamic conditional
correlation is mean reverting.
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either is correlated with oil. The implication for equity portfolio management is that the energy
sector in equity portfolios is less risky and more diversified when oil futures are added to the
portfolio.

[INSERT TABLE 8 HERE]

In table 9 we test the joint hypothesis of the absence of short and long-term risk transfer using
the Wald test. More formally, we jointly test for insignificant short-term (i.e. ai;;=0) and long-term
influence (i.e. B=0). The test is carried out over all wavelets scales. The table shows in the raw
data that there is short and long-term risk transfer among markets that is significant at the 1% level.

In table 9 the risk transfer between oil and clean energy is bidirectional at all scales. Similarly,
it is between clean energy and clean energy technology markets. However, in the clean energy
technology market there is only a short- and medium-term unidirectional risk transfer to the oil
market. The risk transfer from oil to technology stocks is not significant at all time horizon. Hence,
uncertainty of the oil market is not received in the clean energy technology market. These patterns
of risk transfer underline the importance of the stability of the oil and the technology markets for
the growth, development and stability of the clean energy market.

[INSERT TABLE 9 HERE]

5.2 Analysis of hedging effectiveness and optimal portfolio weights

As mentioned previously, the conditional volatility estimates will be used to construct hedge
ratios. The time series of the optimal hedge ratios is depicted in Figure 6. The figure shows
considerable variability in the optimal hedge ratios. The raw data shows higher optimal hedge ratios
following the financial crisis in 2008. The short time scale of 2 to 4 days displays a lower hedging

volatility compared to long-time scales such as the 16 to 32 days scale.
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The average value of the optimal hedge ratios is displayed in Table 10, which reports the amount
that should be longed/shorted in order to hedge a $1 portfolio of oil, clean energy or clean
technology for different time scales. The average value of the hedge ratio between a long position
in oil and a short position in the clean energy firms ranges between 29 and 33 cents of the dollar,
while the hedge ratio between a long position in oil and short position in the clean energy
technology-oriented stocks ranges between 17 and 27 cents thus, suggesting that the cheapest hedge
for $1 long position in oil is obtained with clean energy technology stocks. !

On the other hand, hedging clean energy with technology is five to six folds more expensive.
For instance, at the 8 to 16-day horizon, we need to short 77 cents of technology equities to hedge
a $1 position in clean energy but only 17 cents to hedge it with oil. The table also indicates that the
hedge ratios are unique at every horizon as there is no pattern that changes upward or downward
and this applies to all combinations of assets.

[INSERT TABLE 10 HERE]

Panel B of Table 10 reports the summary statistics of optimal portfolio weights. For instance,
the average weight for the Crude Qil/Clean Energy portfolio is 0.61 for the raw data, indicating
that for $1 portfolio, 61 cents should be invested in oil and 39 cents in clean energy. In most
portfolios, the weight of oil is lowest in the 16 to 32 days scale indicating that the oil’s
diversification benefits in an energy equity portfolio is less the longer the horizon.

[INSERT FIGURE 6 HERE]

51 The out-of-sample hedge ratio is computed using a rolling window correlation estimate. The window is fixed at
3,475 days are used to compute 1000 one-step-ahead hedge ratio with a step-size of 20 days. Different length of the
forecast horizon (i.e., 1500 and 2000 of one-step forecasts) and step size (i.e., 40 and 60 days) are tried. But the results
are qualitatively similar and to conserve space these findings are not reported and available from the authors upon
request.
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5.3 Wauvelet coherence analysis

To double check our findings under another data generating process of the wavelets, we use
wavelet coherence analysis. The application allows us to measure dynamic interconnection
between return series over time and across different investment horizons. Hereafter, we only
provide brief description of this approach.®

The wavelet coherence is defined as the squared absolute value of the smoothed cross wavelet
power spectra of each selected time series. Specifically, wavelet coherence of two time series
x(t) and y(t) can be expressed as follows:

(s o)
5 (5 W ) 251, 9

R?(u,s) = (13)

where Wy, (u, s) = W, (u, s)W; (u, s)is the cross-wavelet transform with u refers to the position

¢k

index, s tothe scale, ™ indicates the complex conjugate, and W, (u, s)and W,, (u, s)are the wavelet

transforms of x(t) and y(t) respectively. In the above specification, S is refer to the smoothing
operator in both time and frequency. The squared wavelet coherence coefficient should satisfy
0 < R%(u,s) < 1 intime-frequency space. A value of R?(u, s) close to zero indicates that the time
series is weakly correlated which is portrayed with a blue colour. However, a value that is close to
one provides an evidence of strong correlation and it is depicted by a warmer red colour. The cold
regions indicate that the significant areas represent time and frequencies with no correlation
between the variables.

In the above specification, however, the wavelet coherency is squared, thereby we will not be

able to distinguish negative from positive correlation between the two-time series in the time-

52 See Torrence and Webster (1999), Torrence and Compo (1998), Grinsted et al., (2004) and Chakrabarty, et al.,
(2015) for more details
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frequency space or even to identify the lead-lag relationships. Torrence and Compo (1998)
proposed a wavelet phase-difference to solve this problem. Following their contribution, the
wavelet coherence phase difference (i.e., @, (u,s)) between two time series x(t) and y(t) can

be expressed as follows:

) 3 (s (s’lwxy(u, s)))
R (s (s‘lwxy (u s)))

where J and R are the imaginary and the real parts of the smoothed power spectrum respectively.

Dy (U, s) = tan™ (14)

Figure 7 display the estimated wavelet coherence and phase-difference of the pairs for scales
that extends from two (d1) up to thirty-two days.> The standard practice is to plot the horizontal
axis to refer to the time intervals and the vertical axis to refer to the scales. The lower the scale, the
higher the frequency. The regions inside the thick black line in the graph represent the areas with
significant dependence at the 5% level. These are estimated by Monte Carlo simulations and the
outcome is indicated with the solid-curved line. The warmer red colour area represents strong
correlation between pairs, while the colder blue colour areas indicate weak dependence between
pairs. The cold regions beyond the significant areas represent the time and the frequencies with no
dependence between the pairs. The warmer the colour of a region, the greater the coherence is
between the pairs. The causality between pairs is represented by phase arrows. Arrows pointing to
the right-down or left-up indicate that the oil is leading, while arrows pointing to the right-up or
left-down say that the other variable is leading.

On the aggregate, the results from the wavelet coherence suggest a relatively low level of co-

dependency between oil-clean energy and oil-technology over the time and the frequency domain.

53 The scales appear at the top and at the bottom of the plot.
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This is shown by the dominant blue colour as well as by the small area of significance in the low
frequency part and over the sample period.

The no correlation period between oil and clean energy extends from January 2001 to August
2008. But after that the association starts in September 2008 and it remained until the end of 2011,
albeit at low frequency. This period is characterized by many stresses that include the sub-prime
crises, the global financial collapse and the European debt crisis. Thereafter, the dependence
dropped at all frequencies till the middle of 2014.

The direction of the arrows points rightward and up especially at low frequencies indicate that
oil and clean energy are in-phase, which means that they are positively correlated but oil is playing
the lead role. From the middle of 2014 to the end of the sample, the interdependence between oil
and clean energy becomes more evident but at long scales. In addition, phases, represented by the
arrows pointing right, indicate that local correlations are positive during the period and that oil
leads clean energy prices.

The same applies to clean energy technology, our results suggest low degree of interdependence
between oil and technology as there exists a very small significant zones in the low frequencies
across the sample period. The degree of interdependence is relatively high and significant during
the 2009 and 2012 but at low frequency scales. The rightward and up arrows pattern indicates one
more time that the local correlations are positive and that oil is playing the leading role.

There is a strong local correlation between clean energy and clean technology indexes at all
frequencies and over the whole sample. The arrows point rightward and indicate that clean energy
and technology are in-phase and positively correlated. However, it is difficult to conclude which
variables is leading because of the unreliability of the tendency of arrows across time scales over

the sample period.
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These results are consistent with the inference we got from the MGARCH-DCC analysis of the
wavelets. The weak interdependence between oil and clean energy companies at various
investment horizons stresses the role of oil as a diversifier of the energy exposure portion of an
equity portfolio. In addition, we find that the statistically significant interdependence occurs at low
frequency scales during the time period that included the sub-prime crises, the global financial
collapse and European debt crisis. The oil market played the leading role over clean energy and
technology equities and there is loads of transmissions from the oil market that has been received
by clean energy and technology markets during these crises’ periods particularly at the low

frequency scales.

6. Conclusion

The relationship between oil, clean energy and clean energy technology have important
implications for the growth of clean energy production, consumption, energy management and
energy policy. Therefore, these associations have recently attracted much research.

In most of this research, the focus is placed on the weekly associations using the Arca 100
Technology index to represent the clean energy technology market. However, it is well known that
longer- and shorter-term associations are also important for investors and policy makers. Moreover,
the Arca 100 index is a general technology index that may not reflect the performance of the clean
energy technology market.

Therefore, in this paper, we aim to assess the relationship between the crude oil, the clean energy
and the clean energy technology market over multiple horizons using the FTSE ET 50 index that

includes the biggest 50 global clean energy technology companies.
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The returns and risk transfer among the markets is assessed over four horizons: 2 to 4 days, 4 to
8 days, 8 to16 days and 16 to 32 days. In order to include more observations for longer scales, we
analyze wavelets of the return series over the target horizons. The return and risk transmissions of
the wavelets are inferred from a multi variate GARCH of the wavelets.

The analysis of the raw data at the daily level shows that the oil market returns does not affect
or get affected by the returns of either the clean energy or the clean energy technology stocks.
However, the clean technology stocks’ returns are influenced by the returns of the clean energy
market. The picture over longer scale is different and it shows more associations. For instance, the
return transmission from oil to clean energy and technology stocks is significant at the long
horizons.> Over all scales, the strongest returns linkages are found between the clean energy and
the clean energy technology stocks.

These results can be used by investors and energy policy makers. Investors and policy makers
should realize that technology and clean energy are more intertwined than oil and clean energy.
The implication for investors is less diversification when the energy exposure of their portfolio
does not include oil. As the association with oil is stronger in the longer horizons, the crude oil as
a commodity is less valuable as a diversifier for clean energy and clean energy technology stocks.

Policy makers should realize that the growth and success of clean energy depends on innovation
and technology by more than it depends on oil. Therefore, it is crucial to build an energy strategy
that is supportive for the technology sector particularly in the short term. In the longer term, growth
of clean energy is more dependent on oil as well as technology. Therefore, the energy strategy

should target a healthy oil market that supports the development of the clean energy market.

5 It is significant at all horizons to clean energy technology stocks.
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On the contrary of the return spillovers, the volatility transfer from market to market is found
to be significant in the raw data as well as in the wavelets and at all-time horizons. The risk
transmissions are found to be stronger the longer the investment timeframe and particularly in the
clean energy sector. These patterns of risk transfer underline the influence of oil and technology
markets’ uncertainty on the development and the volatility of the clean energy market especially
in the long term. It also stresses the need for a clean energy policy that encourages stability and
less volatility in the oil markets. The excess fluctuation of oil and technology stocks makes the
clean energy market riskier for investors and hinders its growth.

In order to check diversification and hedging within the energy portion of an investment
portfolio we compute the hedge ratios and the optimal portfolio weights using the wavelets at
various time horizons. Technology is found to provide the cheapest hedge for an investment in oil.

Finally, we find that clean energy is a good diversifier of oil particularly in the short term.
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Table 1: Descriptive statistics (raw data)

Crude Qil Clean Energy Technology
Mean 8.734e-5 -0.0001 3.6368e-6
Maximum 0.071 0.063 0.053
Minimum -0.074 -0.062 -0.054
Std.Dev. 0.010 0.008 0.006
Skewness -0.091**(0.013) -0.255***(0.000) -0.492***(0.000)
Kurtosis 4.571***(0.000) 4.648***(0.000) 10.180***(0.000)
JB 3904.5***(0.000) 4078.7***(0.000) 19505.0***(0.000)
ADF -37.986*** -37.933*** -36.64***

Notes: The data for returns is daily and covers the period January 1, 2001 to February 23, 2018. JB is the value of
the Jarque—Bera statistic, testing for normality. The ADF stands for Augmented Dickey—Fuller test with the null
hypothesis is defined as ‘the series has a unit root against the alternative of stationarity’. The unit root tests are
carried out with a constant and a time trend where the optimal lag length has been chosen using the Akaike
information criterion. The asymptotic critical values of ADF at 1%, 5%, and 10% are
-2.56572, -1.94093 and -1.61663 respectively. The p-values are in brackets.

*+x 0 <0.01.
** p <0.05.
*p<0.1.

Table 2. Unconditional correlations (raw data)

Crude Qil Clean Energy Technology
Panel A: Levels
Crude Qil 1.000
Clean Energy 0.263*** (0.000) 1.000
Technology 0.285*** (0.000) 0.757*** (0.000) 1.000
The p-values are in brackets.
*+x 0 < 0.01.
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Table 3: Descriptive statistics of the wavelet components

Crude Oil Clean Energy Technology
Panel A: Frequency of d{([2 — 4 ] days)
Mean 2.748e-19 -3.004e-20 1.0123e-10
Maximum 0.043 0.047 0.039
Minimum -0.058 -0.041 -0.042
Std.Dev. 0.007 0.006 0.003
Skewness 0.055 (0.129) 0.173*** (0.000) 0.091**(0.012)
Kurtosis 4.158*** (0.000) 5.561***(0.000) 11.980***(0.000)
JB 3226.9*%**(0.000) 5789.9***(0.000) 26765.0***(0.000)
ADF -101.553*** -98.077*** -99.631***
Panel B: Frequency of d,([4 — 8 ] days)
Mean 6.172e-20 -5.309e-20 -1.6581e-10
Maximum 0.027 0.032 0.028
Minimum -0.027 -0.035 -0.029
Std.Dev. 0.005 0.004 0.003
Skewness 3.207 (0.530) -0.010 (0.776) 0.082**(0.025)
Kurtosis 2.3260*** (0.000) 5.995 (0.000) 9.943***(0.000)
JB 1918.5***(0.000) 6703.0***(0.000) 18441.0*%**(0.000)
ADF -46.600*** -46.278*** -44,133***
Panel C: Frequency of d3([8 — 16 | days)
Mean 3.408e-20 1.757e-20 5.4749e-11
Maximum 0.022 0.025 0.026
Minimum -0.031 -0.020 -0.022
Std.Dev. 0.004 0.003 0.002
Skewness -0.064***(0.076) 6.585***(0.000) 0.315***(0.000)
Kurtosis 0.252***(0.000) 5.788***(0.000) 12.430***(0.000)
JB 8088.5***(0.000) 6294.8***(0.000) 28885.0***(0.000)
ADF -51.368*** -48.775%** -45.938***(0.000)
Panel D: Frequency of d4([16 — 32 | days)
Mean -6.616e-20 -1.417e-20 5.8659e-11
Maximum 0.022 0.010 0.011
Minimum -0.019 -0.015 -0.011
Std.Dev. 0.003 0.002 0.001
Skewness 0.105*** (0.003) -0.152***(0.000) -0.063*(0.081)
Kurtosis 7.793***(0.000) 3.102***(0.000) 6.201***(0.000)
JB 11334.0***(0.000) 1812.6***(0.000) 7173.6***(0.000)
ADF -38.077*** -33.491*** -34.420***

Notes: The data for returns is daily and covers the period January 1, 2001 to February 23, 2018. JB is the value of
the Jarque—Bera statistic, testing for normality. The ADF stands for Augmented Dickey—Fuller test with the null
hypothesis is defined as ‘the series has a unit root against the alternative of stationarity’. The unit root tests are
carried out with a constant and a time trend where the optimal lag length has been chosen using the Akaike
information criterion. The asymptotic critical values of ADF at 1%, 5%, and 10% are -2.56572, -1.94093 and -

1.61663 respectively. The p-values are in brackets.
% p < 0.01.
*x p < 0.05.

*p <0.1.
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Table 4: Wavelet correlation

Scale Crude oil-Clean Energy Crude Qil-Technology Clean Energy-Technology
d,([2 — 4] days) 0.251 0.273 0.685
d,([4 — 8] days) 0.271 0.297 0.778
d;([8 — 16 ] days) 0.257 0.300 0.840
d,([16 — 32 ] days) 0.318 0.303 0.875

Note: The table presents mean estimates of the wavelet correlation between crude oil, clean energy stock and clean technology stock
at different scales estimated based on MODHWT filters.

Table 5: Tests statistics for non-constant correlation

Tse test Engle and Sheppard test
5 lags 10 lags
Stat p-value Stat p-value Stat p-value
Raw Data 17.809***  (0.000) 36.818*** (0.000) 68.714*** (0.000)

d,([2 —4]days) 246.149***  (0.000) 512.760*** (0.000) 535.637*** (0.000)

d,([4 — 8] days) 82.848*** (0.000)  2115.740*** (0.000) 2201.470*** (0.000)
d;([8 — 16 ] days) 678.429***  (0.000) 6034.170*** (0.000) 6167.500*** (0.000)
d,([16 — 32 ] days) 1146.000*** (0.000) 8604.750*** (0.000) 9154.540*** (0.000)
Note: “Stat” is the test statistic of the non-constant correlation test of Tse (2000) and Engle and Sheppard (2001), which is
asymptotically distributed as a chi-squared distribution. P-value is calculated for the null hypothesis (H,): R, = R. The p-values
are in brackets.
*xx D <0.01.
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Table 6: The backtesting results of VaR forecasting in out-of-samples with DCC-GARCH model.

Raw Data d,([2 — 4] days) d,([4 — 8] days) d;([8 — 16 ] days) d,([16 — 32 ] days)

Panel A: Kupiec (LR) test

Critical prob. =0.01 1.124 0.173 0.234 3.122* 0.173
(99% VaR) (0.288) (0.677) (0.628) (0.077) (0.677)
Critical prob. = 0.05 2.640 2.287 0.248 1.038 2.506
(95% VaR) (0.104) (0.130) (0.618) (0.308) (0.113)
Critical prob. =0.10 4.651** 2.665 1.047 2.834* 0.107
(90% VaR) (0.037) (0.102) (0.306) (0.092) (0.742)
Panel B: Dynamic Quantile (DQ) test

Critical prob. = 0.01 3.418 3.261 2.757 2.871 2.730
(99% VaR) (0.678) (0.725) (0.838) (0.825) (0.841)
Critical prob. = 0.05 6.418 6.032 7.067 5.783 4.173
(95% VaR) (0.378) (0.372) (0.314) (0.447) (0.501)
Critical prob. = 0.10 8.696 9.525 7.100** 37.666*** 32.134***
(90% VaR) (0.148) (0.146) (0.150) (0.000) (0.000)

Note: This table presents the backtesting results of out-of-sample daily VaR for the DCC-GARCH model. The backtesting of Kupiec’s (1995) LR
and Engle and Manganelli’s DQ (2004) at 1%, 5% and 10% significant level respectively are conducted. The values in parentheses are p-values.
The greater p-value states the higher accuracy of the model.

**x P < 0.01.

*+ 0 < 0.05.

*p<0.1.
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Table 7: Estimated coefficients of DCC-GARCH model (Raw Data)

Crude Qil Clean Energy Technology
Ry:(i =o0) Re(i=ce) Rs(i=5)
Coeff p-value Coeff p-value Coeff p-value
Panel A: Estimation results of mean equations
¢ 0.027*** (0.022) 0.014 (0.113) 0.023*** (0.000)
Yoi -0.041*** (0.000) 0.014 (0.522) 0.010 (0.771)
Wei 0.000 (0.956) 0.042** (0.038) 0.017 (0.088)
Y 0.005 (0.421) 0.106*** (0.000) 0.012 (0.502)
Panel B: Estimation results of conditional variance—covariance equations
¥i 0.009*** (0.002) 0.013 (0.185) 0.008 (0.778)
Qo; 0.051*** (0.000) 0.018*** (0.000) -0.011*** (0.000)
Qei -0.002 (0.797) 0.038*** (0.000) -0.049** (0.031)
ag; -0.006 (0.390) 0.005** (0.0499) 0.079*** (0.000)
Boi 0.943*** (0.000) -0.059*** (0.000) 0.024*** (0.000)
Bei 0.025** (0.016) 0.898*** (0.000) 0.020*** (0.000)
Bsi 0.025** (0.0182) 0.030*** (0.000) 0.853*** (0.000)
Poe 0.243*** (0.000)
Dos 0.262*** (0.000)
Des 0.743*** (0.000)
01 0.016*** (0.053)
0, 0.978*** (0.000)
LL -11848.926
Univariate diagnostics tests for standardized residuals
Q(10) 9.616 (0.974) 14.825 (0.786) 27.293 (0.127)
Q2%(10) 20.162 (0.447) 23.249 (0.3167) 16.315 (0.696)
Multivariate diagnostics tests for standardized residuals
H (10) 330.803 (0.173)
H?(10) 252.585 (0.449)
Li — McL(10) 330.759 (0.171)
L — McL?(10) 252.451 (0.445)

Notes: This table presents the results of the DCC-GARCH model based on raw data. The first panel reports the return spillover parameters, Panel B reports the volatility
transmission parameters between the three markets. The notation corresponds to the expositions in the method section. i = o (for crude oil returns), e (for clean energy returns), s
(for technology returns). The model is estimated by the quasi-maximum likelihood (QMLE) method which can be optimized by implementing the Broyden—Fletcher—Goldfarb—
Shanno (BFGS) algorithm. LL is the log-likelihood function value. Q(k) and Q2(k) (k) (with k = 10 ) are the Ljung—Box Q statistics of kth order autocorrelation for the
standardized residuals and their squares, respectively. H(10) and H2(10) are the Hosking's (1980) multivariate Portmanteau statistics on both standardized and squared
standardized residuals at kth order, respectively. Li — McL(10) and Li — McL?(10) are the multivariate Portmanteau statistics of Li and McLeod (1981) on both standardized and

squared standardized residuals at kth order, respectively.
*+x p <0.01.

** P < 0.05.

*p<0.1.
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Table 8: Estimated coefficients of wavelet-based DCC-GARCH model

d;([2 — 4] days)

d,([4 — 8] days)

Crude Oil Clean Energy Technology Crude QOil Clean Energy Technology
Rot(i=0) Ry (i=e) Ry(i=5) Ry:(i =0) Ry (i=e) Ry(i=5s)
Coeff p-value Coeff p-value Coeff p-value Coeff p-value Coeff p-value Coeff p-value
Panel A: Estimation results of mean equations
¢ -0.003 0.477) -0.002 (0.361) 0.000 (0.899) 0.0002 (0.938) 0.000 (0.791) -0.000 (0.970)
Yoi -0.639*** (0.000) 0.015 (0.221) -0.070*** (0.000) 0.283*** (0.000) -0.006 (0.653) -0.046** (0.028)
Pei 0.005 (0.302) -0.574*** (0.000) -0.169*** (0.000) 0.013* (0.089) 0.466*** (0.000) -0.292%** (0.000)
Ysi 0.007** (0.028) 0.068*** (0.000) -0.689*** (0.000) 0.011** (0.023) 0.132%** (0.000) 0.188*** (0.000)
Panel B: Estimation results of conditional variance—covariance equations
¥i 0.025*** (0.000) 0.016*** (0.000) 0.003*** (0.000) 0.013*** (0.000) 0.011*** (0.000) 0.003*** (0.000)
Qoi 0.371*** (0.000) -0.006 (0.822) -0.073*** (0.000) 0.437*** (0.000) 0.037 (0.246) -0.036 (0.445)
Qei -0.007*** (0.000) 0.243*** (0.000) 0.099** (0.000) -0.039*** (0.002) 0.369*** (0.000) 0.135%** (0.000)
A 0.000 (0.979) -0.033*** (0.001) 0.303*** (0.000) -0.008 (0.247) 0.039*** (0.004) 0.395%** (0.000)
Boi 0.593*** (0.000)  0.0502** (0.000) 0.192*** (0.000) 0.578*** (0.000) -0.049 (0.156) 0.102** (0.038)
Bei 0.013* (0.076) 0.572*** (0.000) 0.162*** (0.004) 0.024* (0.080) 0.546*** (0.000) 0.038* (0.089)
Bsi 0.007 (0.416) 0.050** (0.016) 0.650*** (0.000) -0.001 (0.838) 0.002** (0.016) 0.607*** (0.000)
Poe 0.242%** (0.000) 0.261%** (0.000)
Pos 0.257*** (0.000) 0.276%** (0.000)
Pes 0.705*** (0.000) 0.736%** (0.000)
0, 0.246*** (0.000) 0.335*** (0.000)
0, 0.645*** (0.000) 0.592%*** (0.000)
LL -3529.395 -3690.7694
Univariate diagnostics tests for standardized residuals
Q(10) 13.345 (0.862) 16.683 (0.707) 29.984 (0.175) 34.100* (0.150) 23.790 (0.249) 16.410 (0.717)
Q%(10) 23.162 (0.468) 26.375 (0.389) 17.864 (0.718) 45.851 (0.201) 49.899 (0.187) 23.139 (0.453)
Multivariate diagnostics tests for standardized residuals
H (10) 279.181 (0.539) 290.880 (0.567)
H?(10) 285.114 (0.453) 316.781 (0.519)
Li — McL(10) 377.516 (0.272) 290.301 (0.562)
L — McL?(10) 264.550 (0.398) 263.605 (0.630)

Notes: This table presents the results of the DCC-GARCH model based on wavelet data. The first panel reports the return spillover parameters, Panel B reports the volatility transmission parameters
between the three markets. The notation corresponds to the expositions in the method section. i = o (for crude oil returns), e (for clean energy returns), s (for technology stock returns). The model is
estimated by the quasi-maximum likelihood (QMLE) method which can be optimized by implementing the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm. LL is the log-likelihood function
value. Q(k) and Q?(k) (k) (with k = 10 ) are the Ljung—Box Q statistics of kth order autocorrelation for the standardized residuals and their squares, respectively. H(10) and
H?(10) are the Hosking's (1980) multivariate Portmanteau statistics on both standardized and squared standardized residuals at kth order, respectively. Li — McL(10) and

Li — McL?(10) are the multivariate Portmanteau statistics of Li and McLeod (1981) on both standardized and squared standardized residuals at kth order, respectively.

*xx 0 <0.01.
*x P <0.05.
*p<0.1
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Table 8 (continued)

d;([8 — 16 ] days)

d,([16 — 32] days)

Crude Qil Clean Energy Technology Crude Qil Clean Energy Technology
Ry:(i =0) Rey(i=e) Ry(i=5s) Rot(i =0) Ry (i=e) Ry (i =5s)
Coeff p-value Coeff p-value Coeff p-value Coeff p-value Coeff p-value Coeff p-value
Panel A: Estimation results of mean equations
¢ -0.001 (0.429) -0.000 (0.810) -0.000 (0.646) -0.002 (0.184) -0.000 (0.437) -0.002* (0.073)
Yoi 0.754*** (0.000) 0.087*** (0.000) -0.111*** (0.000) 0.924*** (0.000) -0.016 (0.653) -0.046** (0.028)
Pei 0.012** (0.040) 0.865*** (0.000) -0.174%*** (0.000) 0.012* (0.069) 0.929*** (0.000) 0.031%** (0.000)
Ysi 0.008** (0.028) 0.078*** (0.000) 0.677*** (0.000) 0.010** (0.023) 0.013*** (0.000) 0.486*** (0.000)
Panel B: Estimation results of conditional variance—covariance equations
¥i 0.002*** (0.000) 0.001*** (0.000) 0.001*** (0.000) 0.001*** (0.000) 0.001*** (0.000) 0.001*** (0.000)
Qoi 0.425*** (0.000) 0.048* (0.077) -0.023 (0.201) 0.900*** (0.000) -0.011 (0.246) 0.092 (0.445)
Qei 0.021*** (0.000) 0.392*** (0.000) 0.107*** (0.000) 0.112** (0.029) 0.829*** (0.000) 0.129%** (0.000)
ag; 0.013** (0.025) 0.030*** (0.001) 0.441*** (0.000) -0.011 (0.374) 0.006*** (0.008) 0.989*** (0.000)
Boi 0.616*** (0.000) -0.000 (0.976) -0.005 (0.884) 0.194*** (0.000) 0.056 (0.132) -0.062 (0.195)
Bei 0.018** (0.013) 0.589*** (0.000) 0.014*** (0.004) 0.032*** (0.000) 0.371*** (0.000) 0.186*** (0.000)
Bsi -0.004 (0.377) -0.001 (0.935) 0.601*** (0.000) 0.012 (0.172) 0.016** (0.021) 0.583*** (0.000)
Poe 0.288*** (0.000) 0.318%** (0.000)
Pos 0.314%** (0.000) 0.318*** (0.000)
Pes 0.794*** (0.000) 0.816%** (0.000)
61 0.378*** (0.000) 0.335%** (0.000)
0, 0.606*** (0.000) 0.632*** (0.000)
LL -3538.536 -3687.191
Univariate diagnostics tests for standardized residuals
Q(10) 10.205 (0.890) 14.435 (0.763) 44.881* (0.074) 10.762 (0.326) 57.895** (0.046) 14.430 (0.371)
Q2%(10) 18.820 (0.562) 40.729* (0.092) 77.880* (0.068) 30.964* (0.083) 109.588** (0.039) 27.850 (0.343)
Multivariate diagnostics tests for standardized residuals
H (10) 206.830 (0.474) 462.931 (0.201)
H?(10) 226.941 (0.488) 300.570 (0.306)
Li — McL(10) 208.981 (0.394) 440.431 (0.269)
L — McL?(10) 186.039 (0.341) 299.98 (0.303)

Notes: This table presents the results of the DCC-GARCH model based on wavelet data. The first panel reports the return spillover parameters, Panel B reports the volatility transmission parameters
between the three markets. The notation corresponds to the expositions in the method section. i = o (for crude oil returns), e (for clean energy returns), s (for technology stock returns). The model is
estimated by the quasi-maximum likelihood (QMLE) method which can be optimized by implementing the Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm. LL is the log-likelihood function
value. Q(k) and Q?(k) (k) (with k = 10 ) are the Ljung—Box Q statistics of kth order autocorrelation for the standardized residuals and their squares, respectively. H(10) and
H?(10) are the Hosking's (1980) multivariate Portmanteau statistics on both standardized and squared standardized residuals at kth order, respectively. Li — McL(10) and

Li — McL?(10) are the multivariate Portmanteau statistics of Li and McLeod (1981) on both standardized and squared standardized residuals at kth order, respectively.

*xx 0 <0.01.
*x p < 0.05.
*p<0.1
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Table 9: Wald joint test for spillover-in-variance

Raw Data d,([2 — 4] days) d,([4 — 8] days) d;([8 — 16 ] days) d,([16 — 32 ] days)
Panel A: Crude oil and Clean Energy
No spillover-in-variance from R, t0 R, 39.380*** 15.277 *** 2.063 5.717* 8.664**
Hy:pe = Boe =0 (0.000) (0.000) (0.356) (0.057) (0.023)
No spillover-in-variance from R, to R, 8.102*** 2.804* 9.689*** 10.515*** 11.803***
Hy: 0oy = Po =0 (0.001) (0.069) (0.007) (0.005) (0.002)
Panel B: Crude oil and Technology
No spillover-in-variance from R to R, 20.902*** 7.749%* 6.044** 0.993 1.845
Hy:aps = Bos = 0 (0.000) (0.020) (0.048) (0.608) (0.397)
No spillover-in-variance from R, to R,; 18.097*** 0.851 1.859 5.012* 1.891
Hy: sy = Bso =0 (0.000) (0.653) (0.394) (0.081) (0.388)
Panel C: Clean Energy and Technology
No spillover-in-variance from R, to Ry; 30.54*** 70.575*** 99.815*** 38.551*** 84.557***
Hy: 0ps = Bes =0 (0.000) (0.000) (0.000) (0.000) (0.000)
No spillover-in-variance from R, to R, 16.154*** 10.216*** 19.697*** 6.525** 15.534***
Hy:age = fse =0 (0.000) (0.006) (0.000) (0.038) (0.002)

Notes: This table shows the Wald test results of the joint null hypothesis of no volatility transmission between crude oil/clean energy and technology. The values

in parentheses are p-values.
**x p < 0.01.

** p < 0.05.

*p<0.1
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Table 10: Optimal portfolio weights and average hedge ratio

Raw Data  di([2 — 4] days) d,([4 — 8] days) d;([8 — 16 ] days) d,([16 — 32 ] days)

Panel A: Average hedge ratio

Crude Oil/Clean Energy 0.30 0.27 0.32 0.29 0.33
Crude Oil/Technology 0.15 0.16 0.13 0.10 0.17
Clean Energy /Technology 0.68 0.66 0.67 0.77 0.76
Panel B: Optimal portfolio weights

Crude Oil/Clean Energy 0.61 0.63 0.59 0.56 0.56
Crude Oil/Technology 0.83 0.84 0.78 0.72 0.71
Clean Energy /Technology 0.95 0.93 0.90 0.85 0.84

Note: The table reports average optimal weights and hedge ratios between pairs of assets in 1$ portfolio.
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Figure 1: Daily plots of prices and returns
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Figure 2: Wavelet decomposition
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Figure 3 (Supplementary): Wavelet multiple correlations
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Notes: This figure plots the estimated wavelet multiple correlation The wavelet correlations are generated
using MODWT with a Daubechies least asymmetric wavelet filters up to eight time scales. The dashed lines
are corresponding 95% confidence intervals.
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Figure 4 (Supplementary): Wavelet correlation at different leads and lags
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Figure 5: Time-varying conditional correlations
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Figure 6: Time-varying hedge ratios
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Figure 7: Wavelet coherence
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Notes: This figure plots the wavelet coherence for pairs of oil, clean energy and clean energy technology from 1st of January 2001 to the 23rd
of February 2018, using daily sampling. Time is represented on the horizontal, while the vertical axis shows the frequency (the lower the
frequency, the higher the scale). Frequency is covered to days. The level of correlation is indicated by the color on the right side of the charts;
the warmer the colors (red) the higher the absolute correlation between the pairs, while colder colors (blue) indicate lower dependence between
the pairs. Cold regions beyond the significant areas represent time and frequencies with no dependence in the series. The warmer the color of a
region, the greater the coherence is between the pairs. The black solid line isolates the statistical significant area at the 5% significance level. An
arrow represents the lead/lag phase relations between the two series. A zero phase difference means that the two-time series move together on a
particular scale. Arrows point to the right (left).
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