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Abstract—If an edge-node orchestrator can partition Big Data
tasks of variable computational complexity between the edge
and cloud resources, major reductions in total task completion
times can be achieved even at low Wide Area Network (WAN)
speeds. The percentage time savings are greater with increasing
task computational complexity and higher WAN speeds are
required for low-complexity tasks. We demonstrate from nu-
merical simulations that low-complexity tasks can benefit either
by task partitioning between an edge node and multiple cloud
servers. The orchestrator can also achieve greater time benefits
by rerouting Big Data tasks directly to a single cloud resource
if the balance of parameters (WAN speed and the ratio between
edge and cloud processing speeds) is favourable.

Keywords—Big Data, Edge Computing, Cloud Computing,
edge-to-cloud orchestration, Wide Area Network, Wireless Local
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I. INTRODUCTION

THE synergy of combining edge computing nodes with
cloud computing resources is being increasingly studied

in networks with a wide range of motives, ranging from
that of increasing the performance of resource-constrained
mobile devices [1] to optimisation tasks in global e-commerce
[2] Edge-cloud orchestration has been explored with a wide
variety of computational and IT scenarios: real-time vehicle
route management [3], wearable device communication and
Internet of Things (IoT) data processing [4], geolocated de-
ployment of edge computing services [5], large-scale mobile
IoT applications [6], [7], edge node resource management [8],
[9], IoT device and application deployment [10]–[12] and
video processing and secure healthcare data analysis appli-
cations [13].

Recently, we have demonstrated the great reductions in
task processing times if Big Data analytics can be flexibly
moved from edge nodes to cloud resources if the combination
of task complexity, processing powers, data transfer rates and
edge node congestion are recognised [14]. In this paper, we
explore how the parallel processing abilities of edge nodes
and cloud servers can be combined to optimise computing

performance, especially when data transfer rates are major
constraints.

A. Motivation and Related Work

Rather than visualising edge and cloud resources as alter-
natives, they can be explored as parallel tracks in a spatially
large computing network. Specifically, different quantities of
a Big Data analytics tasks could be partitioned into allocate
portions and our analysis is focused on establishing under what
circumstances total task completion times could be minimised
and what effects physical parameters such as data transfer rates
could have an orchestration decision making. Task partitioning
is a topic that has been explored in Edge Computing where
offloading efficiency is optimisable by, for example, the use
of Artificial Intelligence [15], [16] or where multiple mobile
devices and edge servers are combined [17], [18].

Edge-cloud orchestration aims to balance demand from an
end user with the supply of appropriate services (in this case,
computational power and capacity for Big Data analytics) by
matching service deployment and service delivery in terms of a
Service Level Agreement (SLA) [19]. We focus on minimising
total task completion time in accordance with presumed SLA
requirements and we base calculations to a per GB base (from
which all conclusions can be scaled up to actual end user
demands). We assume further that the SLA for an enterprise
client will place restrictions on edge and cloud resource use for
security reasons [20]: rather than operating with multiple edge
servers and cloud data centres [21], we restrict the simulation
analysis to one edge server and up to three cloud resource
centres identified and specified by a SLA (Figure 1). Finally,
we do not consider the end user demand to include real-
time manufacturing systems to avoid latency issues and the
construction of smart monitoring-analysis-planning-execution
in closed loops [22] and the SLA prohibits any but transient
data storage off site to follow specified security protocols [23].

B. Contributions

Following these principles, our main contributions in this
paper are:978-1-6654-6316-4/22/$31.00 ©2022 IEEE
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Figure 1: Edge-cloud orchestrator embedded in an edge node
directing data traffic to and from edge and/or cloud servers.

• With high, intermediate and low computational task
complexities, optimum partitioning by an edge-
located orchestrator results in minimal total task com-
pletion times at different ranges of Wide Area Net-
work (WAN) speeds for edge-to-cloud data transfer.

• With increasing WAN speeds, the reductions in total
task completion times are larger and occur with a
greater proportion of the task sent for processing in
cloud resources.

The remainder of the text is organised as follows. Sec-
tion II states the problem formulation and the methodology
used. Section III presents quantitative outcomes from data
simulations with ranges of WAN speeds and different task
computational complexities. Section IV draws conclusions and
outlines possible strategies for further optimising edge-cloud
synergies for Big Data analytics.

II. PROBLEM FORMULATION

An orchestrator embedded in the proximal edge node
decides the transfer of data files from edge servers to cloud
servers for time-limited processing when an advantage for
processing exists by edge-to-cloud data transfer [13].

Following the mathematical treatment proposed by [14], a
task processing time can be represented by

TT = TES(1− θ) + TC
θ (1)

where TES is the total task processing time in the edge
server, TC is total task processing time using cloud resources
and θ (max = 1) is the proportion of the data forwarded to the
cloud from the edge node.

Table I: Parameters used for numerical simulations

Parameter Numerical Value/Range Unit

αe 1.36× 1011 IPS

βc 2.72× 1012 IPS

λ 0.0000529 - 0.00227 bpi

WLAN 50 Mbps

WAN 0.5-100 Mbps

Each of TES and TC is composed of multiple sub-times.
For TC there are (sequentially) a data transfer time from the
end user via a Wireless Local Area Network (WLAN) to the
edge node, a processing time in the edge node and a reduced
(× 0.1) data transfer back to the end user. For Tc there are
additionally (and sequentially) a data transfer time from the
edge node via a Wide Area Network (WAN), a processing
time in the cloud and reduced (× 0.1) data transfer back to
the edge node.

The processing times are directly proportional to the data
size (in GB) and inversely proportional to the server processing
speed and to the computational complexity (in bits per instruc-
tion) of the task [24]. The data transfer times assume a constant
WLAN speed but variable WAN speeds and the total time
when utilising cloud resources is critically dependant on the
WAN speed: high WAN speeds favour edge-to-cloud transfer
while low WAN speeds favour edge node processing [14].

Based on knowledge accessible by the edge node orches-
trator, a value of θ (in the range 0-1) is selected to minimise
TT at the WAN speed then applicable and which is assumed
to be constant for the time represented by edge-to-cloud data
transfer.

III. NUMERICAL SIMULATIONS

Numerical simulations were performed to identify possible
optimal minimum total task processing times by migrating
proportions of tasks from edge nodes to cloud resources. The
numerical values of parameters used in these simulations are
listed in Table I. A cloud:edge processing speed. upscaling of
20:1 was used [24].

Where αe is the computing capability of edge server in
instructions/sec, βc is the computing capability of Cloud in
instructions/sec and λ is the application complexity on the ES
in bits/instructions.

A. Task computational complexity parameter choices

Task computational complexity values were taken for sci-
entific apps which represent scientific programs of varying
complexity suitable for modelling Big Data analytics [24].
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Figure 2: Effect of WAN speed on total task completion time
for the highest task computational complexity (0.000059 bpi).
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Figure 3: Effect of WAN speed on total task completion time
for an intermediate task computational complexity (0.000286
bpi).

At the highest computational complexity (0.000059 bpi,
Figure 2), edge-to-cloud data transfer has a clear total task
processing time advantage at a WAN speed of 2.5 Mbps and
such transfer results in time reductions of >90% at WAN
speeds greater than 40 Mbps.

At an intermediate computational complexity (0.000286
bpi, Figure 3), a WAN speed in excess of 5Mbps is required
for any time advantage of edge-to-cloud transfer to be evident.
Above WAN speeds of 70 Mbps, such transfer results in time
reductions of >80%.
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Figure 4: Effect of WAN speed on total task completion time
for the lowest task computational complexity (0.00277 bpi)

In contrast, at the lowest computational complexity
(0.00277 bpi, Figure 4) a minimum WAN speed of 40 Mbps
is necessary before time advantages can be achieved and, even
at 100 Mbps, the time reduction over edge node processing is
only 30%.

B. Task partitioning between edge and cloud resources

At low WAN speeds (0.5-5 Mbps), the highest complexity
tasks showed optima for task partitioning to result in reduced
total task completion times (Figure 5). At the slowest WAN
speed (0.5 Mbps), increasing the partitioning of the task
to cloud resources to >0.4 resulted in increased total task
completion times relative to edge-only processing.

At higher WAN speeds (≥ 10 Mbps), task time reductions
increased progressively as the WAN speed was increased.

At the intermediate task computational complexity, a sim-
ilar pattern of optimisation occurred but at a higher range of
WAN speeds, 5-25 Mbps (Figure 6). Again, at higher WAN
speeds (≥ 30 Mbps), task time reductions increased progres-
sively as the WAN speed was increased with partitioning
optima.

At the lowest task computational complexity, an optimised
total task completion time represented a 37% time saving
over edge-only processing and this used a partitioning of 0.7
using cloud resources but required a WAN speed of 100 Mbps
(Figure 7). Total partitioning of the task to cloud resources at
100 Mbps achieved only a 30% time saving over edge-only
processing.
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Figure 5: Effect of increasing the partitioning of a high-
complexity (0.000059 bpi) task from edge nodes to cloud
resources at relatively low WAN speeds.
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Figure 6: Effect of increasing the partitioning of an
intermediate-complexity (0.000286 bpi ) task from edge nodes
to cloud resources.

C. Edge-to-multiple clouds for task partitioning

When multiple cloud resource sites are available to the
edge-cloud orchestrator, increasingly large reductions in total
task completion times can be achieved. For example, with
three equivalent cloud sites and WAN speeds ≥ 80 Mbps
50% reductions in total task completion times are approached
(Figure 8).

In this scenario, makespan analysis is relevant [25]. In all
cases where a task is partitioned between one edge node and
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Figure 7: Effect of increasing the partitioning of the lowest-
complexity (0.00277 bpi) task from edge nodes to cloud
resources.
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Figure 8: Parallel processing of the lowest-complexity
(0.00277 bpi) task between one edge node and three equivalent
cloud servers.

three cloud servers, the makespan (i.e., the last task to be
finished) is that of processing in the edge node. Increasing
degrees of task partitioning to greater numbers of servers
progressively reduces total task completion times if only edge-
to-cloud routes are used. A more effective solution is, however,
for the orchestrator to route data transfer and return directly
to and from a cloud resource server, this bypassing the edge
node; at a WAN speed of 100 Mbps, a 75% saving on total
task completion time for the lowest-complexity tasks can be
achieved but a minimum client-to-cloud WAN speed of 25
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Figure 9: Effect of WAN speed on time savings by orchestrat-
ing data traffic direct to cloud resources

Mbps is required for any advantage over edge-only processing
to be possible.

Even at low WAN speeds (10 Mbps), partitioning the
lowest-complexity task into three equal portions and trans-
mitting the data directly to three equivalent cloud resources
under the direction of the edge-cloud orchestrator reduces the
total task completion time by 25%, which increases to a 84%
saving with a WAN speed of 50 Mbps, i.e., equal to the WLAN
speed (Figure 9). Much greater reductions can be obtained with
higher complexity tasks using the same range of WAN speeds
(Figure 9).

IV. CONCLUSIONS AND FUTURE WORK

Edge-cloud synergy is a powerful means of reducing
the time required for complex manipulations in Big Data
analytics. At low WAN speeds for edge-to-cloud data transfer,
partitioning the high-complexity tasks between the two sets of
resources can find optimum solutions; this scenario could, for
example, occur if high latency or job queuing at cloud servers
compromises otherwise acceptable WAN speeds. As the task
complexity decreases, higher WAN speeds are required for
optimum time reductions relative to edge-only processing to
occur.

The challenge of achieving computational efficiency for
low-complexity tasks is partly soluble by using multiple cloud
sites or cloud resources and harnessing greater degrees of
parallel processing or direct client-to-cloud data transfer at fast
WAN speeds. Nevertheless, the time reductions possible with
low-complexity tasks do not rival those achieved with high-
complexity tasks but further improvements would be possible
with higher cloud-to-edge processing ratios.

Future work in this area could address how edge nodes
operating in Symmetric Multiprocessing [26], Massively Par-
allel Processing [27], Clustered Memory Scheduling [28] or
Non-Uniform Memory Access [29], [30] systems could be
synergised with cloud resources for increased efficiency in Big
Data analytics.
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