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Abstract 

In this report we provide a summary of the presentations and discussion of the latest 

knowledge regarding the buccal micronucleus (MN) cytome assay. This information was 

presented at the HUMN workshop held in Malaga, Spain, in connection with the 2023 

European, Environmental Mutagenesis and Genomics conference.  The presentations covered 

the most salient topics relevant to the buccal MN cytome assay including (i) the biology of the 

buccal mucosa, (ii) its application in human studies relating to DNA damage caused by 

environmental exposure to genotoxins, (iii) the association of buccal MN with cancer and a 

wide range of reproductive, metabolic, immunological, neurodegenerative  and other age-

related diseases, (iv)  the impact of nutrition and lifestyle on buccal MN cytome assay 

biomarkers; (v) its potential for application to studies of DNA damage in children and obesity, 

and (vi) the growing prospects of enhancing the clinical utility by automated scoring of the 

buccal MN cytome assay biomarkers by image recognition software developed using artificial 

intelligence. The most important knowledge gap is the need of prospective studies to test 

whether the buccal MN cytome assay biomarkers predict health and disease.  

 

Key words: buccal micronucleus, DNA damage, occupational, clinical, nutritional, automation 

 

Abbreviations: AI artificial intelligence, CBMN assay cytokinesis-block micronucleus assay, 

DNN deep neural network, MN micronucleus or micronuclei  
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1.Introduction 

Micronuclei (MN) are expressed in cells that have structural chromosome aberrations and/or 

defects in the mitotic apparatus that leads to failed segregation of chromosome fragments 

and/or whole chromosomes during mitosis [1]. The lagging chromosome fragments or whole 

chromosomes are excluded from the two main nuclei at anaphase/telophase and are 

ultimately surrounded by membrane to form MN. Measurement of MN in human cells has 

become one of the most widely used methods to measure chromosome instability and the 

DNA damaging effects of environmental and endogenous genotoxins [2,3]. The best validated 

of these methods in humans is the lymphocyte cytokinesis-block micronucleus cytome 

(CBMN) assay in which MN, and other related nuclear anomalies, such as nucleoplasmic 

bridges and nuclear buds, are scored exclusively in cells that have completed one nuclear 

division ex vivo after mitogen stimulation which are identified as binucleated (BN) cells after 

blocking cytokinesis with cytochalasin-B [4]. 

Another method to measure MN in humans is to use buccal cells which are post-mitotic 

epithelial cells that can be collected in a minimally invasive manner from the inside of the 

mouth. In this method MN and other nuclear anomalies such as nuclear buds can be 

observed and scored without the need of ex vivo culture of cells [5]. Because of the relative 

ease of collecting, preparing, fixing and storing buccal cells, there is growing interest in 

further developing and validating this assay for in vivo biomonitoring studies in humans. 

Recent reviews have shown that the relative increase in MN frequency of buccal cells 

induced by exposure to genotoxins, or buccal cells from people with age-related 

degenerative diseases such as cancer and cardiovascular disease, is similar to that observed 

in cytokinesis-blocked lymphocytes [6,7].  

However, there are some important knowledge and technological gaps regarding the buccal 

MN assay that need to be resolved. The knowledge limitations include (i) lack of prospective 

studies showing that an elevated MN frequency in buccal cells predicts an increased risk of 

developmental and degenerative diseases and (ii) lack of knowledge on whether mitotic rate 

in the basal layer of the buccal epithelium substantially affects MN frequency. The 

technological gaps that suggest challenging goals for the future include (i) lack of automated 

systems to score MN frequency in buccal cells which is critical given the lower incidence of 

MN in buccal cells relative to lymphocytes, (ii) lack of image analysis algorithms that can 

distinguish MN from other nuclear anomalies such as nuclear buds, or distinguish between 

normal cells and different types of cell death such as cells that have nuclei with condensed 

chromatin, karyorrhexis or pyknosis. The workshop was designed to discuss the current status 

of the buccal MN cytome assay and determine the most important near-term and long-term 

goals to further validate the assay and enable its more practical application in human studies. 

Presentations in the HUMN Malaga workshop were given by experts on the use of the buccal 

MN cytome assay including the mechanisms and biology of MN formation in buccal cells, 

application of this assay in occupational exposures to genotoxins, the association with disease, 

nutrition and lifestyle and the potential challenges and opportunities for automation. 

Summaries of these presentations and the main points of discussion that emerged are 

provided below. 
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2. The biology of buccal cells and the buccal micronucleus (MN) cytome assay 

Claudia Bolognesi reported that the buccal mucosa forms the primary barrier for the 

inhalation or ingestion routes and is, therefore, a high-risk site for exposure to genotoxic 

agents entering the body via the aerodigestive tract. The oral epithelium, which is composed 

of multiple layers of cells, maintains itself by continuous cell renewal whereby new cells 

produced in the basal layer by mitosis migrate to the surface replacing those that are shed. 

Basal cells impacted by genotoxic agents express the genetic damage as chromosome 

breakage or loss, resulting in formation of MN during nuclear division. Daughter cells with or 

without MN differentiate into squamous epithelial cells, then exfoliate into the buccal cavity 

and can be easily collected and analysed. The MN assay applied in exfoliated cells represents 

a minimally invasive approach to evaluate genomic damage in biomonitoring studies [5,8]. 

The MN assay in buccal cells was established in 1982 to evaluate the genotoxic effects induced 

by chewing betel quid [9]. This method has been largely applied in the last 40 years in 

biomonitoring human populations exposed by inhalation or oral ingestion of a variety of 

genotoxic and carcinogenic agents. The buccal MN test was also used to evaluate the effects 

of anti-cancer agents, and to study the impact of nutrition and lifestyle factors on genome 

integrity. A large number of studies appeared more recently on the application of the buccal 

MN assay in the follow-up of cancerous and precancerous oral lesions and as a biomarker of 

chromosomal instability in patients with cancer and/or with different chronic diseases [10]. 

Based on the data available, the association of MN in buccal cells with some diseases appears 

to be as robust as MN in lymphocytes [6]. 

More recently the buccal MN assay evolved into the “buccal MN cytome” method which 

includes the additional scoring of the different cell types and nuclear anomalies providing a 

comprehensive evaluation of the biomarkers of DNA damage, biomarkers of cell death, 

biomarkers of cytokinetic defects or arrest [5,8]. Data collected in biomonitoring occupational 

or environmental exposure and in clinical studies suggest an added value for the evaluation 

of the cytome biomarker profile as reported below. 

 

3.The use of buccal MN cytome assay in occupational exposure studies 

Georg Wultsch informed the workshop that so far about 200 studies have been published 

which concern the formation of MN in buccal cells of workers exposed to a variety of 

potentially genotoxic occupational scenarios. The first investigation with iron-exposed 

workers was published already 30 years ago [11]. Most studies (n=55) concern the impact of 

exposure to agricultural chemicals followed by workers that are exposed to petroleum and its 

derivatives (n=24). A similar number of investigations was conducted with medical staff 

(exposed to anaesthetic gases, cytostatics and radiation) (n=22). Further studies were 

conducted with medical students and anatomy laboratory staff who are exposed to 

formaldehyde (n=14). Less frequently studied groups are miners, electroplaters, welders, 

painters and carpenters.  
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Dr Wultsch and his team conducted in the last decade studies with the latter groups and found 

a clear positive result in individuals who work in furniture production [12] but not in 

electroplaters [13] and welders [14]. Also, with workers that are exposed to chicken manure 

(used for energy production) negative results were obtained [15]. It is notable that in all these 

studies the number of nuclear anomalies which reflect acute cytotoxicity in the buccal MN 

cytome assay (i.e. karyolysis, karyorrhexis, condensed chromatin) was significantly higher in 

exposed subjects. A clear increase of MN was found in cotton weavers (in Pakistan) that are 

exposed to cotton dust [16]. The latest study concerned the induction of DNA damage in street 

markers that are exposed to silica crystals and various chemicals. A clear increase of genotoxic 

effect with a duration of work was detected. This is the first study which demonstrated 

increased genetic damage in this occupational group [17]. The currently available data indicate 

that MN studies with buccal cells are a cost-effective, rapid and simple approach to find out if 

workers are exposed to genotoxic carcinogens. This method could complement the chemical 

exposure measurements which are currently used to control the safety of workers.   

 

4. Association of buccal MN cytome assay biomarkers with disease and their relevance for 

clinical studies 

In his presentation Stefano Bonassi focused on the potential clinical application of the buccal 

MN assay as a test to identify those patients at higher risk of degenerative diseases such as 

cancer. He reported on the limited extent of clinical data concerning MN frequency in buccal 

cells and their comparison with MN frequency in lymphocytes in cancer and non-cancer 

diseases. In all diseases examined, MN in lymphocytes and exfoliated cells were higher than 

in controls, with the exception of prostate cancer [6]. The ratio of MN frequency in subjects 

with disease vs controls in lymphocytes (2.3 and 2.0 for non-cancer diseases and cancer, 

respectively) was significantly lower than the corresponding estimates observed in exfoliated 

buccal cells (3.6 and 6.1). The strongest association was found for those cases in which MN 

were measured in cells from the same tissue in which cancer was diagnosed (e.g., oral cancer 

in the case of buccal cells). He discussed how to validate and translate the application of MN 

assays into clinical practice and presented a possible roadmap driving this process. Critical 

steps are the following: (a) differentiate disease patients from unaffected individuals and 

identify important variables that can modify the MN biomarker in healthy and disease 

subjects; (b) drive the transition from the use of MN assays at group level to the individual 

level; and (3) run prospective cohort studies and randomised controlled trials to verify that 

MN assays are predictive of disease and that MN frequency modification alters disease 

outcomes. Pragmatic trials will also be required before inclusion in routine clinical practice, to 

provide the decisive evidence to support their adoption by the medical and public health 

community. 
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5. Impact of nutrition and lifestyle on MN and other nuclear anomalies in buccal cells 

Siegfried Knasmueller reported that only few dietary studies have been realized in which the 

impact of vitamins (vitamin C and provitamin A, tocopherol, folate) on buccal MN were studied 

and in most of them (>90%) evidence for beneficial effects were found.  

The buccal MN technique was also frequently used to study the consequences of consumption 

of various drugs. Consistently positive effects were observed in tobacco chewers and in heavy 

smokers [18-20]. Interestingly, they observed an inverse correlation between the nicotine 

contents of cigarettes and MN formation while a positive correlation with the tar contents was 

observed [21]. In a well-designed older trial evidence for a synergistic effect between alcohol 

consumption and smoking was reported [22]. Alcohol intake per se caused no clear effects in 

other investigations.  

Several studies showed that betel and areca nuts chewing (with and without tobacco) and 

consumption of khat leaves lead to increased buccal MN frequencies [23-25]. This observation 

may explain the high incidence of oral cancer in areas where these chewing habits are 

prevalent. It is also notable that synthetic derivatives of ephedrine as well as synthetic and 

natural cannabinoids led to increased MN frequencies in in vitro experiments with cells from 

respiratory/oral tract [26]. On the contrary, no evidence of MN induction was seen in a study 

which we realized in South America (Peru) with coca leave chewers (i.e. in this case even a 

decrease of the MN frequencies was observed) [27].   

A substantial number of studies (in total 17) concern the effects of mobile phone specific 

electromagnetic fields. High quality studies (n=4) yielded consistently negative results. Also, 

in their investigation with highly controlled exposure via headphones (Knasmueller et al., 

unpublished) no evidence for positive results was found.  

Taken together, the available data show that MN assays reflect health risks as a consequence 

of exposure to certain drugs; the results of dietary studies are scarce and no firm conclusion 

can be drawn. 

   

6. Automation of the buccal MN cytome assay 

Originally, the buccal MN technique was a simple assay in which only MN are scored. Michael 

Fenech explained how It eventually evolved into a complex two-stage cytome assay in which 

cells are first classified into seven types (Basal, Differentiated, Binucleated, Condensed 

chromatin, Karyorrhexis, Pyknotic, Karyolytic cells) and secondly MN and nuclear buds (NBUD) 

are scored in differentiated cells only [28,29]. Both the relative frequency of the various cell 

types and the number of differentiated cells with MNi and/or NBUD have potential diagnostic 

value with regards to toxic environmental exposures, poor lifestyle, malnutrition and a wide 

range of diseases. However, scoring this complex profile of biomarkers is laborious and limits 

the possibility of doing genetic toxicology studies efficiently. 

Therefore, there is a legitimate need to automate some of the best validated biomarkers of 

the Buccal MN cytome assay and ultimately achieve a fully automated system for this purpose. 
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In his presentation Michael Fenech discussed which of the buccal biomarkers may be easier 

to measure automatically by image analysis and presented preliminary data with DAPI stained 

slides using the Metafer system indicating the feasibility of scoring buccal MN and binucleated 

cells.  He noted that a key remaining question is which slide preparation and staining system 

is most practical and suitable to optimise accuracy of visual and automated scoring of buccal 

cell biomarkers.  

Christian Schunck reported that artificial intelligence (AI) has become a key factor for 

automated microscope-based image analysis. The power of Deep Neural Networks (DNN) in 

the evaluation of digital image content opens unimagined possibilities for automating even 

complex assays such as the micronucleus cytome assays. He provided the example of how 

MetaSystems uses this technology in its scanning software Metafer to classify objects based 

on criteria determined by the algorithm. These networks are trained with large amounts of 

pre-classified image data determined by visual scoring of cells (supervised learning). The 

Buccal Micronucleus Cytome Assay scores many different cell classes and DNA damage 

markers Consequently evaluation of a very large number of cells is required to achieve 

statistically significant results. Automation of the assay would therefore be highly desirable. 

He emphasised that the HUMN workshop provides an ideal forum to discuss, with early career 

scientists and experts, the different possible approaches for automation of the Buccal 

Micronucleus Cytome Assay using DNN. 

 

7. Genomic instability measured using the buccal micronucleus cytome assay is predicted 

by obesity, oxidative DNA damage and vitamin D in children and adolescents 

The minimally invasive methodology for collecting exfoliated buccal cells is one of the most 

appealing aspects of the Buccal MN cytome assay because it makes it practical to use with 

children and adolescents.  Emanuela Volpi reported on her experience using this methodology 

in a study aimed to determine a novel approach for predicting genomic instability via the 

combined assessment of adiposity, systemic inflammation, DNA oxidation and vitamin D 

status using a cross-sectional study with 132 participants, aged 10–18, recruited from schools 

and paediatric obesity clinics in London. When examining relationships between variables for 

all participants, markers of adiposity positively correlated with acquired oxidative DNA 

damage (p < 0.01) and genomic instability (p < 0.001), and negatively correlated with vitamin 

D (p < 0.01). Multiple regression analyses identified obesity (p < 0.001), vitamin D (p < 0.001), 

and oxidative DNA damage (p < 0.05) as the three significant predictors of genomic instability 

measured using the Buccal MN cytome assay combined score of MNi, multinucleated cells, 

nuclear buds and nucleoplasmic bridges. Their study concluded that non-invasive 

biomonitoring of genomic instability using buccal cells and predictive modelling of this 

phenotype in young patients with obesity may contribute to their identification and 

prioritisation for clinical intervention measures to improve genome integrity. 
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8. Discussion on knowledge gaps regarding the buccal MN cytome assay and a roadmap for 

its translation into practice 

More than 100 participated in the workshop and subsequent discussion. There was a general 

interest in the use of buccal MN assay and whether it can be implemented instead of the 

lymphocyte MN assay as a biomarker of genotoxin exposure. This question remains 

unanswered because of the uncertainty of whether the mechanisms that lead to MN 

formation in buccal cells is the same as the mechanisms that cause MN in lymphocytes and 

also because of potential differences in the kinetics of MN expression between these two 

systems.  Furthermore, although the lymphocyte CBMN assay has been shown to be 

predictive of disease risk in four prospective studies relating to cancer risk, cardiovascular 

disease mortality and pregnancy complications [30-34], no studies have been reported 

showing that a higher level of MN frequency in buccal cells is associated prospectively with 

increased disease risk. It was generally acknowledged that conducting prospective studies 

with the buccal MN assay should be a high priority for this biomarker.  

A deeper understanding of the biology of the buccal mucosa and how this varies with aging 

and disease is desirable to be able to correctly interpret the changes in frequency of the 

various cell types and biomarkers of DNA damage and cell death. Inter-laboratory slide scoring 

exercises have shown that there is generally good agreement between and within labs for 

scoring MN in buccal cells, however, the concordance of scoring other biomarkers and cell 

types is not as high [35-37]. It has been suggested that the cell death biomarkers (condensed 

chromatin and karyorrhexis cells) which are correlated but not easy to distinguish from each 

other, can be combined together. The other biomarkers (basal cells, nuclear buds, binucleated 

cells, pyknotic cells and karyolytic cells still need more stringent criteria and training to raise 

concordance in scoring to an acceptable level. 

Furthermore, it is vital for researchers to realise the importance of using DNA-specific stains 

and, when possible, molecular markers such as centromere probes, to verify the genomic 

origin of the MN scored and the mechanisms by which they were produced (e.g.  mitotic 

malsegregation of acentric chromosome fragments or whole chromosomes). In addition, it is 

essential to be aware that the kinetics of expression of MN in buccal cells may vary depending 

on whether the subjects examined are exposed to acute or chronic genotoxic events because 

in the former one may expect only transient increase in MN frequency but in the latter 

elevated MN frequency may be persistent. 

 Understanding the kinetics of MN formation in the basal layer and the time it takes for 

appearance of cells with MN in the surface layers of the buccal mucosa has great relevance to 

the optimal time to harvest buccal cells to achieve precise measurement of buccal cell MN 

frequency. Given the current inadequate state of knowledge on this topic it is important that 

future studies are designed that have a sufficient number of harvest time points to ensure 

that buccal MN assay captures the full extent of MN formation both in cases of acute or 

chronic exposure to genotoxic events. 

Theoretically, MN observed in exfoliated buccal cells are only produced in the dividing cells of 

the basal layer of the buccal mucosa because other cells in this tissue are unable to divide and 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

wattsn
Highlight

wattsn
Highlight



9 

express MN. Therefore, any ingested genotoxins could either penetrate through buccal 

mucosa and directly harm the basal cells or, alternatively, they are absorbed via the digestive 

system and reach the buccal basal cells via the bloodstream. Understanding the route by 

which exogenous chemical genotoxins may reach the buccal mucosa basal layer and cause 

DNA damage in the basal cells is an additional aspect that deserves more attention in future 

research. 

Much of the discussion was focused on the need of a reliable automated system to score 

buccal mucosa cells using AI. However, the success of using automated systems to score MN 

and other nuclear anomalies will depend on the quality of the slide preparation and the 

staining method used. There was consensus that the staining method used should be DNA 

specific and also stain the cytoplasm of the cells so that the cell boundaries are evident. The 

reasons for these requirements are first to avoid false-positive MN due to unwanted staining 

of non-DNA structures that resemble MN such as keratohyalin granules and secondly to 

identify clearly and discriminate between mononucleated and binucleated cells and also to 

identify basal cells which are characterised by their smaller cytoplasmic area relative to fully 

differentiated buccal cells. The staining that is generally considered suitable for these 

purposes is Feulgen for nuclei and MN, and Light Green for cytoplasm. Feulgen stain has the 

added advantage that it can also be visualised using fluorescence microscopy without fading 

which is useful to verify the true positivity of MN. An alternative fluorescence staining 

approach is to use DAPI which is DNA specific but on its own cannot define the cytoplasmic 

boundaries and, therefore, a cytoplasmic fluorescent stain such as FITC or eosin will be 

required. Although we are in the early stage of automation of MN cytome assays promising 

results using lymphoblastoid cells and skin epithelial cells have been reported for the use of 

artificial intelligence in scoring the CBMN cytome assay biomarkers using image flow 

cytometry [38-40]. Whether these technologies will be successful with buccal epithelial cells 

collected from humans and other species is yet to be determined.   

In conclusion, we find ourselves in an interesting and exciting period in which we can better 

appreciate the need and the possibility of validating and consolidating the use of the buccal 

MN cytome assay as a reliable biomarker of DNA damage and predictor of disease risk that 

can be readily translated into routine clinical practice.   
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Abstract 

In this report we provide a summary of the presentations and discussion of the latest 

knowledge regarding the buccal micronucleus (MN) cytome assay. This information was 

presented at the HUMN workshop held in Malaga, Spain, in connection with the 2023 

European, Environmental Mutagenesis and Genomics conference.  The presentations covered 

the most salient topics relevant to the buccal MN cytome assay including (i) the biology of the 

buccal mucosa, (ii) its application in human studies relating to DNA damage caused by 

environmental exposure to genotoxins, (iii) the association of buccal MN with cancer and a 

wide range of reproductive, metabolic, immunological, neurodegenerative  and other age-

related diseases, (iv)  the impact of nutrition and lifestyle on buccal MN cytome assay 

biomarkers; (v) its potential for application to studies of DNA damage in children and obesity, 

and (vi) the growing prospects of enhancing the clinical utility by automated scoring of the 

buccal MN cytome assay biomarkers by image recognition software developed using artificial 

intelligence. The most important knowledge gap is the need of prospective studies to test 

whether the buccal MN cytome assay biomarkers predict health and disease.  

 

Key words: buccal micronucleus, DNA damage, occupational, clinical, nutritional, automation 

 

Abbreviations: AI artificial intelligence, CBMN assay cytokinesis-block micronucleus assay, 

DNN deep neural network, MN micronucleus or micronuclei  
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1.Introduction 

Micronuclei (MN) are expressed in cells that have structural chromosome aberrations and/or 

defects in the mitotic apparatus that leads to failed segregation of chromosome fragments 

and/or whole chromosomes during mitosis [1]. The lagging chromosome fragments or whole 

chromosomes are excluded from the two main nuclei at anaphase/telophase and are 

ultimately surrounded by membrane to form MN. Measurement of MN in human cells has 

become one of the most widely used methods to measure chromosome instability and the 

DNA damaging effects of environmental and endogenous genotoxins [2,3]. The best validated 

of these methods in humans is the lymphocyte cytokinesis-block micronucleus cytome 

(CBMN) assay in which MN, and other related nuclear anomalies, such as nucleoplasmic 

bridges and nuclear buds, are scored exclusively in cells that have completed one nuclear 

division ex vivo after mitogen stimulation which are identified as binucleated (BN) cells after 

blocking cytokinesis with cytochalasin-B [4]. 

Another method to measure MN in humans is to use buccal cells which are post-mitotic 

epithelial cells that can be collected in a minimally invasive manner from the inside of the 

mouth. In this method MN and other nuclear anomalies such as nuclear buds can be 

observed and scored without the need of ex vivo culture of cells [5]. Because of the relative 

ease of collecting, preparing, fixing and storing buccal cells, there is growing interest in 

further developing and validating this assay for in vivo biomonitoring studies in humans. 

Recent reviews have shown that the relative increase in MN frequency of buccal cells 

induced by exposure to genotoxins, or buccal cells from people with age-related 

degenerative diseases such as cancer and cardiovascular disease, is similar to that observed 

in cytokinesis-blocked lymphocytes [6,7].  

However, there are some important knowledge and technological gaps regarding the buccal 

MN assay that need to be resolved. The knowledge limitations include (i) lack of prospective 

studies showing that an elevated MN frequency in buccal cells predicts an increased risk of 

developmental and degenerative diseases and (ii) lack of knowledge on whether mitotic rate 

in the basal layer of the buccal epithelium substantially affects MN frequency. The 

technological gaps that suggest challenging goals for the future include (i) lack of automated 

systems to score MN frequency in buccal cells which is critical given the lower incidence of 

MN in buccal cells relative to lymphocytes, (ii) lack of image analysis algorithms that can 

distinguish MN from other nuclear anomalies such as nuclear buds, or distinguish between 

normal cells and different types of cell death such as cells that have nuclei with condensed 

chromatin, karyorrhexis or pyknosis. The workshop was designed to discuss the current status 

of the buccal MN cytome assay and determine the most important near-term and long-term 

goals to further validate the assay and enable its more practical application in human studies. 

Presentations in the HUMN Malaga workshop were given by experts on the use of the buccal 

MN cytome assay including the mechanisms and biology of MN formation in buccal cells, 

application of this assay in occupational exposures to genotoxins, the association with disease, 

nutrition and lifestyle and the potential challenges and opportunities for automation. 

Summaries of these presentations and the main points of discussion that emerged are 

provided below. 
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2. The biology of buccal cells and the buccal micronucleus (MN) cytome assay 

Claudia Bolognesi reported that the buccal mucosa forms the primary barrier for the 

inhalation or ingestion routes and is, therefore, a high-risk site for exposure to genotoxic 

agents entering the body via the aerodigestive tract. The oral epithelium, which is composed 

of multiple layers of cells, maintains itself by continuous cell renewal whereby new cells 

produced in the basal layer by mitosis migrate to the surface replacing those that are shed. 

Basal cells impacted by genotoxic agents express the genetic damage as chromosome 

breakage or loss, resulting in formation of MN during nuclear division. Daughter cells with or 

without MN differentiate into squamous epithelial cells, then exfoliate into the buccal cavity 

and can be easily collected and analysed. The MN assay applied in exfoliated cells represents 

a minimally invasive approach to evaluate genomic damage in biomonitoring studies [5,8]. 

The MN assay in buccal cells was established in 1982 to evaluate the genotoxic effects induced 

by chewing betel quid [9]. This method has been largely applied in the last 40 years in 

biomonitoring human populations exposed by inhalation or oral ingestion of a variety of 

genotoxic and carcinogenic agents. The buccal MN test was also used to evaluate the effects 

of anti-cancer agents, and to study the impact of nutrition and lifestyle factors on genome 

integrity. A large number of studies appeared more recently on the application of the buccal 

MN assay in the follow-up of cancerous and precancerous oral lesions and as a biomarker of 

chromosomal instability in patients with cancer and/or with different chronic diseases [10]. 

Based on the data available, the association of MN in buccal cells with some diseases appears 

to be as robust as MN in lymphocytes [6]. 

More recently the buccal MN assay evolved into the “buccal MN cytome” method which 

includes the additional scoring of the different cell types and nuclear anomalies providing a 

comprehensive evaluation of the biomarkers of DNA damage, biomarkers of cell death, 

biomarkers of cytokinetic defects or arrest [5,8]. Data collected in biomonitoring occupational 

or environmental exposure and in clinical studies suggest an added value for the evaluation 

of the cytome biomarker profile as reported below. 

 

3.The use of buccal MN cytome assay in occupational exposure studies 

Georg Wultsch informed the workshop that so far about 200 studies have been published 

which concern the formation of MN in buccal cells of workers exposed to a variety of 

potentially genotoxic occupational scenarios. The first investigation with iron-exposed 

workers was published already 30 years ago [11]. Most studies (n=55) concern the impact of 

exposure to agricultural chemicals followed by workers that are exposed to petroleum and its 

derivatives (n=24). A similar number of investigations was conducted with medical staff 

(exposed to anaesthetic gases, cytostatics and radiation) (n=22). Further studies were 

conducted with medical students and anatomy laboratory staff who are exposed to 

formaldehyde (n=14). Less frequently studied groups are miners, electroplaters, welders, 

painters and carpenters.  
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Dr Wultsch and his team conducted in the last decade studies with the latter groups and found 

a clear positive result in individuals who work in furniture production [12] but not in 

electroplaters [13] and welders [14]. Also, with workers that are exposed to chicken manure 

(used for energy production) negative results were obtained [15]. It is notable that in all these 

studies the number of nuclear anomalies which reflect acute cytotoxicity in the buccal MN 

cytome assay (i.e. karyolysis, karyorrhexis, condensed chromatin) was significantly higher in 

exposed subjects. A clear increase of MN was found in cotton weavers (in Pakistan) that are 

exposed to cotton dust [16]. The latest study concerned the induction of DNA damage in street 

markers that are exposed to silica crystals and various chemicals. A clear increase of genotoxic 

effect with a duration of work was detected. This is the first study which demonstrated 

increased genetic damage in this occupational group [17]. The currently available data indicate 

that MN studies with buccal cells are a cost-effective, rapid and simple approach to find out if 

workers are exposed to genotoxic carcinogens. This method could complement the chemical 

exposure measurements which are currently used to control the safety of workers.   

 

4. Association of buccal MN cytome assay biomarkers with disease and their relevance for 

clinical studies 

In his presentation Stefano Bonassi focused on the potential clinical application of the buccal 

MN assay as a test to identify those patients at higher risk of degenerative diseases such as 

cancer. He reported on the limited extent of clinical data concerning MN frequency in buccal 

cells and their comparison with MN frequency in lymphocytes in cancer and non-cancer 

diseases. In all diseases examined, MN in lymphocytes and exfoliated cells were higher than 

in controls, with the exception of prostate cancer [6]. The ratio of MN frequency in subjects 

with disease vs controls in lymphocytes (2.3 and 2.0 for non-cancer diseases and cancer, 

respectively) was significantly lower than the corresponding estimates observed in exfoliated 

buccal cells (3.6 and 6.1). The strongest association was found for those cases in which MN 

were measured in cells from the same tissue in which cancer was diagnosed (e.g., oral cancer 

in the case of buccal cells). He discussed how to validate and translate the application of MN 

assays into clinical practice and presented a possible roadmap driving this process. Critical 

steps are the following: (a) differentiate disease patients from unaffected individuals and 

identify important variables that can modify the MN biomarker in healthy and disease 

subjects; (b) drive the transition from the use of MN assays at group level to the individual 

level; and (3) run prospective cohort studies and randomised controlled trials to verify that 

MN assays are predictive of disease and that MN frequency modification alters disease 

outcomes. Pragmatic trials will also be required before inclusion in routine clinical practice, to 

provide the decisive evidence to support their adoption by the medical and public health 

community. 
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5. Impact of nutrition and lifestyle on MN and other nuclear anomalies in buccal cells 

Siegfried Knasmueller reported that only few dietary studies have been realized in which the 

impact of vitamins (vitamin C and provitamin A, tocopherol, folate) on buccal MN were studied 

and in most of them (>90%) evidence for beneficial effects were found.  

The buccal MN technique was also frequently used to study the consequences of consumption 

of various drugs. Consistently positive effects were observed in tobacco chewers and in heavy 

smokers [18-20]. Interestingly, they observed an inverse correlation between the nicotine 

contents of cigarettes and MN formation while a positive correlation with the tar contents was 

observed [21]. In a well-designed older trial evidence for a synergistic effect between alcohol 

consumption and smoking was reported [22]. Alcohol intake per se caused no clear effects in 

other investigations.  

Several studies showed that betel and areca nuts chewing (with and without tobacco) and 

consumption of khat leaves lead to increased buccal MN frequencies [23-25]. This observation 

may explain the high incidence of oral cancer in areas where these chewing habits are 

prevalent. It is also notable that synthetic derivatives of ephedrine as well as synthetic and 

natural cannabinoids led to increased MN frequencies in in vitro experiments with cells from 

respiratory/oral tract [26]. On the contrary, no evidence of MN induction was seen in a study 

which we realized in South America (Peru) with coca leave chewers (i.e. in this case even a 

decrease of the MN frequencies was observed) [27].   

A substantial number of studies (in total 17) concern the effects of mobile phone specific 

electromagnetic fields. High quality studies (n=4) yielded consistently negative results. Also, 

in their investigation with highly controlled exposure via headphones (Knasmueller et al., 

unpublished) no evidence for positive results was found.  

Taken together, the available data show that MN assays reflect health risks as a consequence 

of exposure to certain drugs; the results of dietary studies are scarce and no firm conclusion 

can be drawn. 

   

6. Automation of the buccal MN cytome assay 

Originally, the buccal MN technique was a simple assay in which only MN are scored. Michael 

Fenech explained how It eventually evolved into a complex two-stage cytome assay in which 

cells are first classified into seven types (Basal, Differentiated, Binucleated, Condensed 

chromatin, Karyorrhexis, Pyknotic, Karyolytic cells) and secondly MN and nuclear buds (NBUD) 

are scored in differentiated cells only [28,29]. Both the relative frequency of the various cell 

types and the number of differentiated cells with MNi and/or NBUD have potential diagnostic 

value with regards to toxic environmental exposures, poor lifestyle, malnutrition and a wide 

range of diseases. However, scoring this complex profile of biomarkers is laborious and limits 

the possibility of doing genetic toxicology studies efficiently. 

Therefore, there is a legitimate need to automate some of the best validated biomarkers of 

the Buccal MN cytome assay and ultimately achieve a fully automated system for this purpose. 
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In his presentation Michael Fenech discussed which of the buccal biomarkers may be easier 

to measure automatically by image analysis and presented preliminary data with DAPI stained 

slides using the Metafer system indicating the feasibility of scoring buccal MN and binucleated 

cells.  He noted that a key remaining question is which slide preparation and staining system 

is most practical and suitable to optimise accuracy of visual and automated scoring of buccal 

cell biomarkers.  

Christian Schunck reported that artificial intelligence (AI) has become a key factor for 

automated microscope-based image analysis. The power of Deep Neural Networks (DNN) in 

the evaluation of digital image content opens unimagined possibilities for automating even 

complex assays such as the micronucleus cytome assays. He provided the example of how 

MetaSystems uses this technology in its scanning software Metafer to classify objects based 

on criteria determined by the algorithm. These networks are trained with large amounts of 

pre-classified image data determined by visual scoring of cells (supervised learning). The 

Buccal Micronucleus Cytome Assay scores many different cell classes and DNA damage 

markers Consequently evaluation of a very large number of cells is required to achieve 

statistically significant results. Automation of the assay would therefore be highly desirable. 

He emphasised that the HUMN workshop provides an ideal forum to discuss, with early career 

scientists and experts, the different possible approaches for automation of the Buccal 

Micronucleus Cytome Assay using DNN. 

 

7. Genomic instability measured using the buccal micronucleus cytome assay is predicted 

by obesity, oxidative DNA damage and vitamin D in children and adolescents 

The minimally invasive methodology for collecting exfoliated buccal cells is one of the most 

appealing aspects of the Buccal MN cytome assay because it makes it practical to use with 

children and adolescents.  Emanuela Volpi reported on her experience using this methodology 

in a study aimed to determine a novel approach for predicting genomic instability via the 

combined assessment of adiposity, systemic inflammation, DNA oxidation and vitamin D 

status using a cross-sectional study with 132 participants, aged 10–18, recruited from schools 

and paediatric obesity clinics in London. When examining relationships between variables for 

all participants, markers of adiposity positively correlated with acquired oxidative DNA 

damage (p < 0.01) and genomic instability (p < 0.001), and negatively correlated with vitamin 

D (p < 0.01). Multiple regression analyses identified obesity (p < 0.001), vitamin D (p < 0.001), 

and oxidative DNA damage (p < 0.05) as the three significant predictors of genomic instability 

measured using the Buccal MN cytome assay combined score of MNi, multinucleated cells, 

nuclear buds and nucleoplasmic bridges. Their study concluded that non-invasive 

biomonitoring of genomic instability using buccal cells and predictive modelling of this 

phenotype in young patients with obesity may contribute to their identification and 

prioritisation for clinical intervention measures to improve genome integrity. 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8 
 

8. Discussion on knowledge gaps regarding the buccal MN cytome assay and a roadmap for 

its translation into practice 

More than 100 participated in the workshop and subsequent discussion. There was a general 

interest in the use of buccal MN assay and whether it can be implemented instead of the 

lymphocyte MN assay as a biomarker of genotoxin exposure. This question remains 

unanswered because of the uncertainty of whether the mechanisms that lead to MN 

formation in buccal cells is the same as the mechanisms that cause MN in lymphocytes and 

also because of potential differences in the kinetics of MN expression between these two 

systems.  Furthermore, although the lymphocyte CBMN assay has been shown to be 

predictive of disease risk in four prospective studies relating to cancer risk, cardiovascular 

disease mortality and pregnancy complications [30-34], no studies have been reported 

showing that a higher level of MN frequency in buccal cells is associated prospectively with 

increased disease risk. It was generally acknowledged that conducting prospective studies 

with the buccal MN assay should be a high priority for this biomarker.  

A deeper understanding of the biology of the buccal mucosa and how this varies with aging 

and disease is desirable to be able to correctly interpret the changes in frequency of the 

various cell types and biomarkers of DNA damage and cell death. Inter-laboratory slide scoring 

exercises have shown that there is generally good agreement between and within labs for 

scoring MN in buccal cells, however, the concordance of scoring other biomarkers and cell 

types is not as high [35-37]. It has been suggested that the cell death biomarkers (condensed 

chromatin and karyorrhexis cells) which are correlated but not easy to distinguish from each 

other, can be combined together. The other biomarkers (basal cells, nuclear buds, binucleated 

cells, pyknotic cells and karyolytic cells still need more stringent criteria and training to raise 

concordance in scoring to an acceptable level. 

Furthermore, it is vital for researchers to realise the importance of using DNA-specific stains 

and, when possible, molecular markers such as centromere probes, to verify the genomic 

origin of the MN scored and the mechanisms by which they were produced (e.g.  mitotic 

malsegregation of acentric chromosome fragments or whole chromosomes). In addition, it is 

essential to be aware that the kinetics of expression of MN in buccal cells may vary depending 

on whether the subjects examined are exposed to acute or chronic genotoxic events because 

in the former one may expect only transient increase in MN frequency but in the latter 

elevated MN frequency may be persistent. 

 Understanding the kinetics of MN formation in the basal layer and the time it takes for 

appearance of cells with MN in the surface layers of the buccal mucosa has great relevance to 

the optimal time to harvest buccal cells to achieve precise measurement of buccal cell MN 

frequency. Given the current inadequate state of knowledge on this topic it is important that 

future studies are designed that have a sufficient number of harvest time points to ensure 

that buccal MN assay captures the full extent of MN formation both in cases of acute or 

chronic exposure to genotoxic events. 

Theoretically, MN observed in exfoliated buccal cells are only produced in the dividing cells of 

the basal layer of the buccal mucosa because other cells in this tissue are unable to divide and 
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express MN. Therefore, any ingested genotoxins could either penetrate through buccal 

mucosa and directly harm the basal cells or, alternatively, they are absorbed via the digestive 

system and reach the buccal basal cells via the bloodstream. Understanding the route by 

which exogenous chemical genotoxins may reach the buccal mucosa basal layer and cause 

DNA damage in the basal cells is an additional aspect that deserves more attention in future 

research. 

  

Much of the discussion was focused on the need of a reliable automated system to score 

buccal mucosa cells using AI. However, the success of using automated systems to score MN 

and other nuclear anomalies will depend on the quality of the slide preparation and the 

staining method used. There was consensus that the staining method used should be DNA 

specific and also stain the cytoplasm of the cells so that the cell boundaries are evident. The 

reasons for these requirements are first to avoid false-positive MN due to unwanted staining 

of non-DNA structures that resemble MN such as keratohyalin granules and secondly to 

identify clearly and discriminate between mononucleated and binucleated cells and also to 

identify basal cells which are characterised by their smaller cytoplasmic area relative to fully 

differentiated buccal cells. The staining that is generally considered suitable for these 

purposes is Feulgen for nuclei and MN, and Light Green for cytoplasm. Feulgen stain has the 

added advantage that it can also be visualised using fluorescence microscopy without fading 

which is useful to verify the true positivity of MN. An alternative fluorescence staining 

approach is to use DAPI which is DNA specific but on its own cannot define the cytoplasmic 

boundaries and, therefore, a cytoplasmic fluorescent stain such as FITC or eosin will be 

required. Although we are in the early stage of automation of MN cytome assays promising 

results using lymphoblastoid cells and skin epithelial cells have been reported for the use of 

artificial intelligence in scoring the CBMN cytome assay biomarkers using image flow 

cytometry [38-40]. Whether these technologies will be successful with buccal epithelial cells 

collected from humans and other species is yet to be determined.   

In conclusion, we find ourselves in an interesting and exciting period in which we can better 

appreciate the need and the possibility of validating and consolidating the use of the buccal 

MN cytome assay as a reliable biomarker of DNA damage and predictor of disease risk that 

can be readily translated into routine clinical practice.   
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