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SUMMARY

Characterization of host genetic factors contributing to COVID-19 severity promises advances on drug
discovery to fight the disease. Most genetic analyses to date have identified genome-wide significant as-
sociations involving loss-of-function variants for immune response pathways. Despite accumulating evi-
dence supporting a role for T cells in COVID-19 severity, no definitive genetic markers have been found
to support an involvement of T cell responses. We analyzed 205 whole exomes from both a well-charac-
terized cohort of hospitalized severe COVID-19 patients and controls. Significantly enriched high impact
alleles were found for 25 variants within the T cell receptor beta (TRB) locus on chromosome 7. Although
most of these alleles were found in heterozygosis, at least three or more in TRBV6-5, TRBV7-3, TRBV7-6,
TRBV7-7, and TRBV10-1 suggested a possible TRB loss of function via compound heterozygosis. This loss-
of-function in TRB genes supports suboptimal or dysfunctional T cell responses as a major contributor to
severe COVID-19 pathogenesis.

INTRODUCTION

During March 2020, Spain experienced a rapid surge of COVID-19 cases, making Madrid one of the epicenters of Europe’s first pandemic

wave. Within two months, a large temporary patient outflow hospital was set up at the city’s international convention center, with hundreds

of beds lined up in pavilions normally used as auditoriums and exhibition halls. Many of the patients taken therewere in critical condition and a

high proportion unfortunately died.1 Although acute respiratory disease syndrome (ARDS) was a common clinical feature, other clinical com-

plications, including thromboembolic events, were identified as contributors to COVID-19 disease severity.2

Many studies have tried to characterize the determinants of clinically severe COVID-19. However, it is not well understood why some pa-

tients become critically ill while others hardly show any symptoms. Some host factors such as older age, male sex, and comorbidities (e.g.,

diabetes, obesity, cancer, or clotting disorders) have shown to significantly increase the chances of developing severe COVID-19.3,4

The international COVID-19HostGenetics Initiative5,6 and others7–14 have identified several loci associatedwith enhanced susceptibility to

SARS-CoV-2 infection and/or disease severity.15 These studies have provided a greater understanding of the mechanisms for COVID-19 dis-

ease pathogenesis. However, as more fine-grained phenotypic descriptions become available, together with deeper genetic sequencing

from ancestrally diverse patients, new genetic associations are expected to arise. Such associations may provide key insights for better

recognition and prioritization of the most vulnerable patients, enabling the application of precision medicine approaches.16 Individualized

strategies for patient prioritization may include a broader range of interventions, including earlier prescription of oral antivirals,17,18 repeated

vaccine boosters, social isolation measures, etc.
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A wide number of genetic variants have been associated with severe COVID-19, frequently pointing at immune response dysfunction.19,20

Among the most relevant genetic factors for immune dysfunction are genes located in the major histocompatibility complex (MHC). The hu-

man leukocyte antigen (HLA), MHC in humans, consists of a group of genes located on the short arm of chromosome 6. They encode surface

glycoproteins of two types, HLA class I or II molecules, with different tissue distribution andmolecular characteristics. This system is extremely

polymorphic, with multiple genes and allelic variants, although a given individual possesses only two alleles inherited in a Mendelian fashion.

The main function of the HLA molecules is to distinguish foreign invaders such as viruses and bacteria from the body’s own cells. Pathogen-

derivedpeptides (anchored in theHLAmolecule) are presented to T lymphocyteswhich, in turn, are activated, exerting their immune function.

T lymphocytes engage with HLA through a surface receptor (T cell receptor, TCR). These receptors are generated in the thymus by a random

rearrangement mechanism. Here genes from a group of TCRA and TCRB segments (in the case of abTCR) or TCRG and TCRD segments (in

the case of gdTCR) stochastically mobilize segments to generate TCR receptors. These rearrangements facilitate the development of a large

repertoire of diverse cells, enabling them to protect against distinct infections. Prior to exerting their function in the periphery, these newly

arranged TCR must be assayed against the HLA molecules present in the thymus. Only those able to establish cognate interactions with the

molecules will survive and exit to the periphery. Given the polymorphism of the HLA system and the stochastic rearrangement of TCR seg-

ments, the final TCR repertoire available to confront pathogens differs between individuals.

TCR gene alleles have long been considered immune response genes, but evidence has been lacking for diseases involving complex anti-

gens likewholemicroorganisms andbroad tissue autoantigens.Obvious relationships have been foundat the level of individual pathogenpep-

tides or autoantigenpeptides. TheHLAalleles are theprototypical immune responsegenes. However, they rarely impact on immune responses

against pathogens, although exceptions exist like HIV. The HLA protective alleles HLA-B*27, HLA-B*57, and HLA-B*58:01 present immunodo-

minant peptides such as Gag protein-restricted by HLA-B*27. TCR is a disulfide-linked membrane-anchored complex consisting of the highly

variable alpha and beta chains bound to the invariant CD3 chain. The variable domain of TCR alpha-chain and beta-chain have three comple-

mentarity-determining regions. The complementarity-determining region of the beta-chain is encoded in locus q34 of chromosome 7 and has

been shown to interact with antigens with a high degree of specificity.21 The role of HLA and TCR on COVID-19, however, remains unclear.

Herein, we report a genetic study performedon highly selected patients with severe COVID-19 hospitalized during the first wave inMadrid,

Spain, before the introductionof vaccines.Ourpatient cohortwas compiled followingstrict clinical inclusioncriteria, includingageyounger than

60 years, no comorbidities, and hypoxemic bilateral pneumonia. Controls were ancestry matched and bioinformatically processed in an iden-

tical manner to avoid batch effect biases. Our study yielded 25 high impact variants (21 frameshifts and 4 stop codons) at genome-wide signif-

icance (p value >5.0E-8) within the TRB locus of the q34 band in chromosome 7. Genes TRBV6-5, TRBV7-3, TRBV7-6, TRBV7-7, and TRBV10-1

contained at least 3 high impact alleles in heterozygosis from different variants, suggesting a possible mechanism of TRB loss of function via

compound heterozygosis. Our results support a role of T cell receptors via loss of function in the exacerbation of COVID-19 symptoms, poten-

tially leading to suboptimal and/or dysfunctional immune responses to SARS-CoV-2 infection as a major determinant of disease severity.

RESULTS

Description of clinical phenotypes

Figure 1 shows the four major clinical phenotypes of severe COVID-19 and the number of patients that exhibited conditions within each

group. Briefly, from the 74 cases, pulmonary manifestations were recorded in 72, extra-pulmonary conditions in 35, coagulation disorders

in 14, and systemic manifestations in 35.

Figure 1. Number of patients affected with symptoms in our highly selected population

Determinants of severe COVID-19 and major clinical phenotypes with numbers referring to patients with severe COVID-19 in our study population within each

group.
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Table 1 describes the set of 28 clinical terms split into the 4 overarching COVID-19 major clinical phenotypes along with the specific num-

ber of patients affected (right column). By decreasing order, the phenotypes affectingmore than 10 patients were pneumonia (N = 72), acute

respiratory syndrome disease (ARDS; N = 42), persistent fever (N = 30), ARDS and intensive care unit (ICU; N = 19), fatigue, malaise, headache

and arthromyalgia (N = 13 each), and hepatitis (N = 11). None of our patients developed stroke, peripheral arterial thrombosis, arthritis, sei-

zures, or myelitis.

Patients with severe COVID-19 were additionally sorted by the number of major COVID-19 phenotypes, which somewhat acted as a proxy

for a greater number of symptoms. Interestingly, the top 19 patients with the greatest number of COVID phenotypes were all males.

Analysis of high impact variants

Figure 2 illustrates samples origin, filtering, and data analysis. Figure 3 describes the initial break down of country of origin from samples

before filtering those that did not cluster within our controls’ Iberian Spanish (IBS) genetic distance. A total of 851,386 variants were identified

in the joint cohort of 167 severely affected cases (N = 74) and controls (N = 93). Overall 32,366 (3.80%) were novel variants. The total number of

high impact variants was 5,589, averaging 322 per exome. Of note, 1,477 high impact variants were rare (i.e., not present in gnomAD22), aver-

aging 53 per exome. Table 2 summarizes these numbers.

Case-control high impact differentially affected genes

We identified high impact variants predicted by Variant Effect Predictor (VEP).23 Genes containing high impact variants were further selected

for analysis as long as both case and control samples were affected in the same gene (to avoid case-control batch effects due to different

Table 1. List of medical terms for COVID-19 clinical manifestations

Phenotype Phenotype ID Patient Number (N = 74)

Pneumonia 1. 72

ARDS 2. 42

ARDS & ICU 3. 19

Skin—exanthema 4. 5

Heart—myocarditis 5. 1

Heart—arrhythmia 6. 3

Liver—hepatitis 7. 11

Kidney—glomerulonephritis 8. 0

Kidney—tubulopathy 9. 4

Neurological—encephalitis/encephalopathy 10. 7

Neurological—psychiatric (delirium, etc.) 11. 7

Neurological—polyneuropathy (neuropathy, Guillain-Barré, etc.) 12. 7

Neurological—myelitis 13. 0

Neurological—seizure 14. 0

Gastrointestinal—diarrhea 15. 8

Gastrointestinal—nausea/vomiting 16. 4

Endocrine dysfunction (thyroid, etc.) 17. 0

Musculoskeletal—myopathy 18. 1

Musculoskeletal—arthritis 19. 0

Bone marrow—blood cytopenia, pancytopenia/aplasia 20. 6

Pulmonary embolism 21. 8

Deep venous thrombosis 22. 4

Peripheral arterial thrombosis 23. 0

Stroke 24. 0

Ischemic heart event 25. 1

Disseminated intravascular coagulation 26. 3

Persistent fever 27. 30

Fatigue, malaise, headache, arthromyalgia 28. 13

A total of 28 termswere defined across 4 broad categories of symptoms: Pulmonary, Extrapulmonary, Coagulation, and Systemic. Each of our patients with severe

COVID-19 was assessed for each term. The right column provides a count of the number of patients affected within a selected set of 74 cases.
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coverages). This yielded a total of 1,119 genes containing at least 1 high impact mutation in both cases and controls. We identified signifi-

cantly different case/control genes with high impact mutations (Bonferroni-corrected p value = 0.05/1,118 = 4.47E-05). Table 3 records genes

with p values below this significance threshold. Overall, 12 out of the resulting 60 genes (20%) are T cell receptor genes. We carried over this

list of 60 genes for functional enrichment analysis.

Functional enrichment analysis

The resulting differently affected 60 genes were analyzed for functional enrichment using DAVID.24,25 We usedDAVID’s functional annotation

chart output to cluster groups of genes according to their enriched term score. In Table S1, we provide the non-redundant set of terms below

the significance threshold and their associated genes, ordered by the strength of their statistical significance.

A cluster of genes related to T cell receptors dominated the DAVID’s output table. The T cell receptor cluster enrichment score (Enrich-

ment Score: 5.21) is the top scoring functional cluster, followed by epidermal growth factor (1.00) and ANK repeat (0.99). Figure 4 shows

DAVID’s enrichment scores for term clusters resulting from analyzing those 60 genes.

Analysis of TCR gene cluster variants

Next, we focused on the analysis of high impact variants within genes of the top functionally enriched cluster. This analysis yielded 25 variants

with case-control allele frequency differences below a threshold of genome-wide significance (p value <5.0E-08; Table 4). These variants were

distributed among 8 of the 12 T cell receptor gene cluster and included TRBV7-8, TRBV7-7, TRBV7-6, TRBV5-5, TRBV6-5, TRBV10-1, TRBV7-3,

and TRBV30. All variants are relatively common (> 0.01 within the European population; NCBI’s ALFA Allele Frequency Aggregator26). These

25 variants include 4 stop gains (single nucleotide variant substitution) and 21 frameshifts (indels), all of them highly deleterious according to

CADD27 and localizedwithin the TRB locus on chromosome 7, at band 34within the long arm (7q34).Wedid not filter these variants by linkage

disequilibrium, given that they are all functional (consequence either frameshift variant or stop gained).

TCR loss of function via compound heterozygosis

Except for a few exceptions, most of the 25 variants of concern were heterozygous for the alternative allele in our patients. In order to test

whether loss of function might occur in both alleles in the remaining 8 T cell receptor genes, we counted high impact alleles within each

of them (TRBV5-5, TRBV6-5, TRBV7-3, TRBV7-6, TRBV7-7, TRBV7-8, TRBV10-1, TRBV30). If a gene harbors more than 1 high impact allele,

the chances for compound heterozygosis are greater and therefore the chances for gene inactivation. Because of the limitations of short

read sequencing, which does not distinguish phase between alleles in different variants, it still may be possible for two heterozygous high

impact variants to affect the same allele. As a consequence, we decided to classify as likely compound heterozygous loss of function the pres-

ence of at least three high impact alleles in a TCR. Table 5 shows counts of high impact alleles per patient for each of the TCR. For each patient

we therefore counted the number of high impactmutations within variants that already have been identifiedwith significant allele frequencies

in cases and controls. From a total of 25 variants of concern spanning 8 T cell receptor beta variable (TRBV) genes, we found these three

groups.

Figure 2. Flow chart illustrating samples origin, filtering, and data analysis (Bioinformatics workflow)

Here, we describe the different steps taken to analyze the patient data and come up with our variants of concern.

ll
OPEN ACCESS

4 iScience 26, 107735, October 20, 2023

iScience
Article



1. TRBV genes with likely inactivation through compound heterozygosis: mutations in all patients ranging from 3 to 8 (TRBV6-5, TRBV7-3,

TRBV7-6, TRBV7-7, TRBV10-1). There is an exception in TRBV7-3, with 1 patient having only two alleles.

2. TRBV genes with some patients showing potential for inactivation via compound heterozygosis (TRBV7-8, TRBV30). High impact alleles

are either absent or up to 3.

3. TRBV genes unlikely to be inactivated through compound heterozygosis (TRBV5-5). High impact alleles never make it to 2 for any

patient.

In a preliminary analysis, we could not find any exome sequencing reads flanking the TRBV genes that could suggest a recombination with

D genes (data are not shown).

Comparison with genetic markers previously reported as determinants of severe COVID-19

To date a number of genetic variants have been associated to COVID-19 disease severity. None of them, however, have implicated T cell

receptor genes. Table 6 shows the latest list of variants from the Genetics of Mortality in Critical Care (GenOMICC) study that are present

in our patient cohort.8 We chose only variants from the GenOMICC study because it involved severe COVID-19 patients and were produced

using whole genome sequencing data. For 23 lead variants from the GenOMICC study, our exome patient data covered 11 of them with suf-

ficient quality (STAR Methods). We calculated allele risk frequencies in our filtered case cohort (N = 74) and compared them to risk allele fre-

quencies in NCBI’s ALFA Europeans.We found no significant differences between allele risk frequencies in our filtered case cohort compared

to the European population (r = 0.9708; p value = 0.7327).

We looked into the Host Genetics Initiative for COVID-19 as a public independent dataset.28 We chose the subset of patients with very

severe COVID-19. This dataset included sequencing and microarray variant data from 21 studies across distinct European populations. We

downloaded this dataset in GRCh37 (A2_ALL_eur_leave_23andme). From our total of our 25 variants of concern recorded in Table 6, we

identified two that were included in the study. These two variants were rs17249 (7:142400325:G:T; Reverse Complemented Alleles) and

rs17267 (7:142812761:G:A). Both variants are stop codons and have allele frequencies of 0.4526 and 0.239, respectively, which is similar

to the European allele frequencies in the NCBI ALFA controls in Table 6. We found that both alternative alleles for these two variants

are present in all our cases (n = 74) in heterozygosis, which suggests a greater frequency than the one noticed by the HGI consortium.

No other variants from our dataset were present in this subset of Europeans with severe COVID-19. The lack of presence of most of

our variants could be due to differences in methodology and study population. Our methodology used exome sequencing from highly

selected Iberian Spanish (IBS) cases and controls, bioinformatically processed in the same way. We did not use a meta analysis of micro-

array, exome and whole genome studies, which implies different filtering and quality controls. For instance, we did not apply a linkage

disequilibrium filter, given that we only considered coding variants with high impact, being either frameshifts of stop codons. We included

Figure 3. Country of birth for the 98 cases with severe COVID-19 enrolled in the study (Case Cohort)

Overall 19 individuals were born outside of Spain.
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both rare and common variants in our analysis, with most of our variants being multinucleotide insertions or deletions, and not SNPs as it is

the case within the HGI dataset.

DISCUSSION

After performing whole exome sequencing of a selected sample of IBS patients with severe COVID-19, we found a group of TCR chain en-

coding genes more likely to be inactivated in our patient cohort. Our study identified 25 high impact heterozygous variants at the T cell re-

ceptor beta variable (TRBV) locus on human chromosome 7. Twenty of these variants were present in most patients suggesting likely TRBV

inactivation via compound heterozygosis of the following 5 genes: TRBV6-5, TRBV7-3, TRBV7-6, TRBV7-7, TRBV10-1. These genes are all part

of the TCR beta complex, participating in highly specific antigen recognition. Altogether our findings support that a genetic predisposition

may account for suboptimal and dysfunctional T cell responses in SARS-CoV-2 infection might favor the development of severe COVID-19.

A striking feature of SARS-CoV-2 infection is that it may produce a wide range of symptoms, from asymptomatic infections to acute res-

piratory distress syndrome. Other complications include thromboembolic phenomena and clinical manifestations due to specific organ

involvement (hepatitis, renal failure, cardiovascular events, neurological dysfunction, etc.).29 Although distinct inoculum sizes30 and different

coronavirus variants may determine differences in transmission and pathogenicity,31 host factors seem to largely explain the wide range of

clinical outcomes seen following SARS-CoV-2 infection. Among others, older age, male sex and the presence of comorbidities (obesity,

diabetes, prior lung disease, immunosuppression, etc.) are well-established predictors of severe COVID-19.34 Our data corroborate a pre-

dominance of male individuals among those with severe COVID-19 consecutively attended during the first wave of COVID-19 in Madrid,

Spain. For facilitating the search of host genetic determinants, older individuals and those with comorbidities were excluded from our study

cohort.

Our analysis used a set of matched ancestry case-control individuals whose exome data were processed and filtered using the same pro-

tocol. Variant data were analyzed using VEP, in order to discover high impact mutation (likely loss of function) count differences in cases and

controls.

In order to minimize biases and artifacts for observed differences in severe COVID-19 patient-affected genes, we followed a strict set of

filters, both at the level of variant and sample selection. Our genetic study targeted specifically a subset of apparently healthy individuals

younger than 60 years-old that developed severe COVID-19 and required hospitalization. We found a significant enrichment in loss of func-

tion at the TRB locus on the long arm of chromosome 7, at band 7q34. Recent reports from the GenOMICC uncovered seven risk genes asso-

ciated with severe COVID-19 infection located on chromosomes 6 (nearby where the HLA system lies in humans), 12, 19, and 21.8 Other

studies have investigated genetic determinants of severe COVID-19 in a much broader clinical population. In many of these studies, genes

that mediate immune responses have been found, particularly those clustering a region at chromosome 3 and others mediating interferon

responses.5–13 However, heterogeneity in ancestry study populations, clinical definition criteria, and methodological issues have resulted in

lack of uniform findings and recognition of overall impact of genetic markers on COVID-19 disease severity.32

Our results show the power of highly selective inclusion clinical criteria, together with the importance of selecting for high impact variants

and clustering of variants according to their annotated functions. Our method for variant selection and gene clustering allowed us to find

enrichment for loss of function in TCR genes. These are a class of T cell surface molecules that recognize the antigen-derived peptides pre-

sented by the MHC and are able to trigger a series of immune responses. Variants identified in our study suggest a mechanism for T cell

dysfunction/extenuation that could lead to severe COVID-19. There is evidence of terminally differentiated T cells or possibly exhausted

T cells in severe disease, with increased expression levels of the inhibitory receptors PD1, TIM3, LAG3,CTLA4,NKG2A, andCD39.33–38 Never-

theless, expression of these receptors could also reflect T cell activation. Our data provide evidence for a suboptimal or otherwise inappro-

priate T cell response associated with severe COVID-19.39

Table 2. Summary statistics of all genetic variants analyzed in the study population

Cases and controls (N = 167)

Variants processed 851,386

Average variants processed/exome 134,706

Novel variant occurrences 32,366

Novel variants (%) 3.80

Existing/known variants 819,020

Existing variants (%) 96.20

High impact 5,589

Exome average high impact 322

Rare high impact 1,477

Exome average rare high impact 53

From a total of 851,386 common variants in cases and controls 5,589 were of high impact, an average of 322 per exome.
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Table 3. Number of cases and controls with high impact variants within a gene (as identified by Ensembl’s Variant Effect Predictor)

Gene Name Cases (N = 74) Controls (N = 93) P Value

ADCK5 52 2 3.29E-13

AKR1C3 67 8 2.63E-13

ALDH3B2 2 27 6.55E-07

ANKDD1B 58 6 3.12E-12

ANKRD36 70 17 8.24E-10

B3GNT6 70 31 1.73E-05

C4orf50 31 1 1.39E-08

CASP12 70 4 2.10E-16

CCDC30 22 2 1.20E-05

CLDN5 57 22 1.57E-05

CNTNAP3 22 2 1.20E-05

CNTNAP3B 53 18 5.95E-06

COL6A5 66 4 2.08E-15

EPB41L4A 22 1 2.77E-06

FAM157A 30 2 1.14E-07

FAM182B 53 6 5.18E-11

FOXD4L3 52 2 3.29E-13

GALNT9 33 1 4.30E-09

GOLGA6L2 70 31 1.73E-05

HERC2 61 14 4.65E-09

IGHV3-64 28 1 8.07E-08

LENG9 63 5 4.79E-14

LTN1 36 8 5.24E-06

MAL2 70 7 1.36E-14

MUC5B 32 2 3.58E-08

NOTCH2 31 3 2.61E-07

NPIPB15 65 18 2.28E-08

OPLAH 70 11 1.81E-12

OR10D3 57 10 6.45E-10

OR11H7 47 4 1.09E-10

OR4C5 70 30 9.98E-06

OR5G3 53 15 5.87E-07

PLK5 31 2 6.40E-08

PRAMEF2 55 12 1.45E-08

SIX1 69 3 8.38E-17

SLC9B1 68 28 6.94E-06

TRAJ37 70 19 4.78E-09

TRAV19 30 5 5.48E-06

TRBV10-1 70 29 5.64E-06

TRBV30 40 8 6.45E-07

TRBV5-5 70 23 1.12E-07

TRBV6-5 70 21 2.45E-08

TRBV6-7 53 13 1.03E-07

TRBV7-1 43 10 9.84E-07

TRBV7-3 70 22 5.30E-08

(Continued on next page)
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We expect our findings might help prioritize patients more likely to suffer from severe COVID-19 as carriers of these genetic determinants.

Our results contribute to the much wider debate on the importance of analyses of diverse human ethnic groups, since we have only used

Iberian Spanish (IBS) patients to draw these results. Similar analyses in different populations will be therefore needed with a greater number

of patients and controls. In summary, we propose a crucial role of T cell receptor genes as determinants of severe COVID-19. Our findings

deserve further consideration by better powered studies and in distinct ethnic groups.

TCR functional gene cluster significantly enriched

A total of 60 genes were identified as having significantly different counts of high impact mutations. Overall, 12 out of these 60 genes were

TCR genes. Functional clustering analysis within these 60 genes confirmed the TCR beta gene cluster to be far more enriched than any other.

Apart from TCR, some of the remaining genes are evolutionarily related and already known to influence COVID-19 severity, such as genes of

mucin secretion (MUC5B)40 or the GOLGA6L2 family.41

New variant associations for T cell receptor beta variable (TRBV) genes

Functional enrichment analysis led us to analyze variants within the TRBV gene cluster. Overall, 25 high impact variants of concern spanned

eight TRBV beta encoding genes (TRBV5-5, TRBV6-5, TRBV7-3, TRBV7-6, TRBV7-7, TRBV7-8, TRBV10-1, TRBV30) displaying genome wide

Table 3. Continued

Gene Name Cases (N = 74) Controls (N = 93) P Value

TRBV7-6 70 12 5.53E-12

TRBV7-7 70 3 7.22E-19

TRBV7-8 34 1 2.40E-09

UBXN11 69 7 2.39E-14

UNKL 57 21 8.21E-06

USP17L10 41 12 1.55E-05

ZFPM1 70 23 1.12E-07

ZNF211 55 16 5.14E-07

ZNF598 70 12 5.53E-12

We included only genes where the difference between affected cases and controls have a p value <4.47E-05. P values are Bonferroni-corrected significantly

different affected genes. From a total of 1,119 genes with high impact variants in both cases and controls, 60 official gene names were identified as harboring

high impact mutations in cases and controls. Within this list of differentially affected genes 12/60 (20%) are T cell receptors, shown ordered alphabetically for

easier interpretation.

Figure 4. Gene cluster enrichment annotations

Results from functional enrichment analysis of top affected genes. The T cell receptor cluster enrichment score (DAVID Enrichment Score: 5.21) is the top scoring

functional cluster, followed by epidermal growth factor (1.00) and ANK repeat (0.99).
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Table 4. Variants of concern in T cell receptor beta variable genes

GENE RSID Chr Chr Start ChrEnd REF ALT Consequence

CADD

PHRED

Case

alleles

count

Control

alleles

count

Case

MAF

Control

MAF

Case

Control

P-Value

EUR

Sample

Size

EUR

MAF

Case

EUR

P-Value

TRBV7-8 rs752460700 7 142099588 142099588 C CACTG frameshift_variant 19.1 52 1 0.351 0.005 2.62629E-15 10574 0.038 2.832E-169

rs758031370 7 142099590 142099590 T TG frameshift_variant 23.1 52 1 0.351 0.005 2.62629E-15 10574 0.037 5.6577E-171

rs763698275 7 142099593 142099595 TTC T frameshift_variant 15.4 35 1 0.236 0.005 1.45773E-10 10574 0.029 9.6133E-101

TRBV7-7 rs1463284969 7 142119876 142119877 CG C frameshift_variant 16.4 74 2 0.500 0.011 9.75076E-21 11474 0.134 1.30317E-87

rs1461692463 7 142119879 142119879 C CCA frameshift_variant 23.5 74 3 0.500 0.016 4.42527E-20 4494 0.342 3.25993E-21

rs1163453604 7 142119881 142119882 GA G frameshift_variant 22.2 74 3 0.500 0.016 4.42527E-20 14202 0.109 3.1952E-114

TRBV7-6 rs1414820805 7 142139334 142139335 CG C frameshift_variant 16.9 74 14 0.500 0.075 4.40839E-14 20263 0.018 >5.0E-200

rs1440315119 7 142139337 142139337 C CCA frameshift_variant 25.0 74 14 0.500 0.075 4.40839E-14 4512 0.085 9.8566E-135

rs1180782962 7 142139339 142139340 GA G frameshift_variant 21.6 74 14 0.500 0.075 4.40839E-14 4512 0.088 5.4848E-131

TRBV5-5 rs747286228 7 142148969 142148969 A T stop_gained 23.2 74 25 0.500 0.134 8.26204E-10 18192 0.235 3.0043E-41

TRBV6-5 rs373875376 7 142180584 142180586 TCC T frameshift_variant 22.7 74 21 0.500 0.113 3.34905E-11 10574 0.340 5.21652E-22

rs775454437 7 142180591 142180593 TGG T frameshift_variant 22.3 74 21 0.500 0.113 3.34905E-11 17536 0.204 4.49808E-51

rs761774365 7 142180593 142180593 G GTTTT frameshift_variant 22.8 74 21 0.500 0.113 3.34905E-11 10574 0.338 3.15424E-22

TRBV10-1 rs17249 7 142231625 142231625 C A stop_gained 35.0 71 27 0.480 0.145 1.5867E-08 30772 0.457 1.77686E-10

rs999255927 7 142231780 142231780 C T stop_gained 29.5 74 24 0.500 0.129 3.84216E-10 4512 0.485 3.71185E-10

rs1395412038 7 142231793 142231793 A AT frameshift_variant 22.8 74 22 0.500 0.118 7.74139E-11 4512 0.483 2.9271E-10

rs1364171206 7 142231796 142231798 CCA C frameshift_variant 22.7 74 22 0.500 0.118 7.74139E-11 4512 0.481 2.56595E-10

rs1215288016 7 142231800 142231800 G GA frameshift_variant 22.1 74 21 0.500 0.113 3.34905E-11 4512 0.478 1.72077E-10

rs1296143203 7 142231805 142231805 C CTG frameshift_variant 16.0 74 21 0.500 0.113 3.34905E-11 4512 0.476 1.34619E-10

rs1216496208 7 142231808 142231810 GCC G frameshift_variant 18.3 74 20 0.500 0.108 1.41216E-11 4512 0.472 7.6761E-11

TRBV7-3 rs764426432 7 142247529 142247531 GGC G frameshift_variant 21.4 74 17 0.500 0.091 8.99976E-13 4512 0.482 2.69204E-10

rs751581456 7 142247535 142247535 G GAA frameshift_variant 20.6 74 17 0.500 0.091 8.99976E-13 4508 0.485 3.80278E-10

rs757429570 7 142247538 142247540 CTG C frameshift_variant 12.0 73 10 0.493 0.054 9.21051E-16 4512 0.305 5.06241E-25

rs781428044 7 142247541 142247541 C CAT frameshift_variant 19.5 73 11 0.493 0.059 2.96063E-15 4512 0.309 1.61172E-24

TRBV30 rs17267 7 142510446 142510446 G A stop_gained 38.0 52 11 0.351 0.059 8.27473E-10 33888 0.214 1.39201E-19

A total of 25 variants in GRCh37 were identified in 8 T cell receptor beta variable genes below genome-wide threshold of significance (p value <5.0E-08) for allele frequency differences in cases and controls. All

variants cluster within a region �0.5M nucleotides long in chromosome 7 at band 7q34. 21 of them are indels causing frameshift mutations, the rest single nucleotide stop gain variants. All of them are highly

deleterious according to CADD. A CASE_MAF = 0.500 means all cases are heterozygous for the alternative allele. Case control p value relates to chi squared statistical significance difference between allele

frequencies in our population of cases and controls. Case EUR p value relates to chi squared test differences between frequencies in the general European (EUR Sample Size) from NCBI’s ALFA allele

frequencies and the case population (Abbreviations: RSID = dbSNP ID; REF = Reference allele; ALT = Alternative allele; CADD_PHRED = Combined Annotation Dependent Depletion Phred Score;

MAF = Minor Allele Frequency; EUR_MAF = NCBI’s ALFA Allele Frequency Aggregator for the alternative allele).
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Table 5. T cell receptor beta variable (TRBV) genes with significantly different allele frequency variants between cases and controls

TCR GENES TRBV5_5 TRBV6_5 TRBV7_3 TRBV7_6 TRBV7_7 TRBV7_8 TRBV10_1 TRBV30

#Variants of Concern in Gene 1 3 4 3 3 3 7 1

PATIENT ID #HI Alleles #HI Alleles #HI Alleles #HI Alleles #HI Alleles #HI Alleles #HI Alleles #HI Alleles

AR5440 1 3 4 3 3 2 7 2

AR5443 1 3 4 3 3 3 8 0

AR5444 1 3 4 3 3 3 6 0

AR5445 1 3 4 3 3 0 6 1

AR5446 1 3 4 3 3 3 8 1

AR5447 1 3 4 3 3 3 7 0

AR5448 1 3 4 3 3 2 7 0

AR5449 1 3 4 3 3 2 6 1

AR5450 1 3 4 3 3 3 7 2

AR5451 1 3 4 3 3 0 7 0

AR5452 1 3 4 3 3 0 6 2

AR5454 1 3 4 3 3 3 7 0

AR5455 1 3 4 3 3 0 7 0

AR5457 1 3 4 3 3 2 7 0

AR5458 1 3 4 3 3 3 6 2

AR5459 1 3 4 3 3 3 8 0

AR5460 1 3 4 3 3 2 7 0

AR5461 1 3 4 3 3 0 7 0

AR5462 1 3 4 3 3 3 6 1

AR5463 1 3 4 3 3 3 7 0

AR5464 1 3 4 3 3 0 6 1

AR5465 1 3 2 3 3 0 7 2

AR5466 1 3 4 3 3 3 7 1

AR5467 1 3 4 3 3 2 7 0

AR5468 1 3 4 3 3 2 7 2

AR5469 1 3 4 3 3 3 8 0

AR5470 1 3 4 3 3 3 7 1

AR5472 1 3 4 3 3 3 6 0

AR5473 1 3 4 3 3 3 7 1

AR5474 1 3 4 3 3 0 8 0

AR5475 1 3 4 3 3 0 7 1

AR5476 1 3 4 3 3 0 8 0

AR5477 1 3 4 3 3 3 8 0

AR5478 1 3 4 3 3 0 7 1

AR5481 1 3 4 3 3 0 8 1

AR5484 1 3 4 3 3 0 7 0

AR5485 1 3 4 3 3 0 6 0

AR5486 1 3 4 3 3 3 6 0

AR5487 1 3 4 3 3 0 7 1

AR5488 1 3 4 3 3 3 7 2

AR5490 1 3 4 3 3 0 6 0

AR5492 1 3 4 3 3 3 7 0

(Continued on next page)
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significant (p < 5.0E-08) allele frequency differences. All of these variants are common (R0.236 frequency) in our case cohort, and also com-

mon (R 0.018) in the European population, according to the NCBI’s ALFA.Our relatively common variants of concern are compatible with the

�10% adult population who contract severe COVID-19 disease. Allele frequencies of these variants appear significantly different in our case

cohort compared to the European population (p value = 5.29E-06; ANOVASingle Factor), which suggests an enrichment of their frequency for

our cases with respect to Europeans. All of these variants are part of the hypervariant TCR V region of beta chains, yet they all are relatively

common and highly deleterious (CADD Phred score =>12.0).

Almost all observed high impact alleles from these 25 variants were heterozygous. If a T cell uses a non-productive TCR, it would there-

fore be free to rearrange another TRBV. If a particular TRBV is not available as it is the case in half of the alleles that have one of the var-

iants, the T cell may arrange the normal allele on the other chromosome. If we consider heterozygous high impact mutations in isolation, it

is therefore likely that the repertoire will not be affected unless the other chromosome gene copy contains another high impact mutation

Table 5. Continued

TCR GENES TRBV5_5 TRBV6_5 TRBV7_3 TRBV7_6 TRBV7_7 TRBV7_8 TRBV10_1 TRBV30

#Variants of Concern in Gene 1 3 4 3 3 3 7 1

PATIENT ID #HI Alleles #HI Alleles #HI Alleles #HI Alleles #HI Alleles #HI Alleles #HI Alleles #HI Alleles

AR5493 1 3 4 3 3 3 7 2

AR5495 1 3 4 3 3 2 6 1

AR5496 1 3 4 3 3 3 7 1

AR5497 1 3 4 3 3 3 6 0

AR5499 1 3 4 3 3 2 7 0

AR5500 1 3 4 3 3 2 8 1

AR5501 1 3 4 3 3 0 6 0

AR5502 1 3 4 3 3 3 7 2

AR5503 1 3 4 3 3 0 7 0

AR5506 1 3 4 3 3 3 7 1

AR5507 1 3 4 3 3 0 7 1

AR5508 1 3 4 3 3 3 6 1

AR5510 1 3 4 3 3 3 7 1

AR5511 1 3 4 3 3 3 8 0

AR5512 1 3 4 3 3 0 8 0

AR5513 1 3 4 3 3 0 8 1

AR5514 1 3 4 3 3 3 8 1

AR5516 1 3 4 3 3 2 7 0

AR5517 1 3 4 3 3 3 6 2

AR5518 1 3 4 3 3 2 7 1

AR5520 1 3 4 3 3 3 7 1

AR5521 1 3 4 3 3 3 6 1

AR5522 1 3 4 3 3 2 7 1

AR5524 1 3 4 3 3 3 7 2

AR5526 1 3 4 3 3 2 7 1

AR5527 1 3 4 3 3 2 8 0

AR5530 1 3 4 3 3 2 7 1

AR5533 1 3 4 3 3 2 6 0

AR5535 1 3 4 3 3 3 8 1

AR5536 1 3 4 3 3 0 8 2

AR5538 1 3 4 3 3 3 7 0

AR5539 1 3 4 3 3 3 6 0

For each gene we highlight the total number of variants of concern as well as the number of high impact alleles each patient has in each gene for those variants. In

red we highlight those genes containing more than 3 high impact alleles, indicating a potential loss of function in both alleles for the gene.
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from a different variant. The presence of two different mutated alleles at a particular locus can inactivate a gene, a process which is known

as compound heterozygosis. To ascertain whether compound heterozygosis could be present for each of these 8 TCRBV genes, we

counted high impact alleles within the same patient. We analyzed how many high impact alleles patients had within the 25 variants of

concern. We identified three groups of genes: (a) 5 TRBV genes where compound heterozygosis was likely for all patients because

they harbored more than 3 high impact alleles (TRBV6-5, TRBV7-3, TRBV7-6, TRBV7-7, TRBV10-1); (b) two where compound heterozygosis

was possible for some patients with 0–3 mutant alleles (TRBV7-8, TRBV30), and (c) one gene where no compound heterozygosis was

possible (TRBV5-5).

Because sequencing is unable to determine the phase of high impact alleles, we expect higher chances for high impactmutations affecting

both chromosomal copies with greater high impact alleles. More than 3 high impact alleles were counted for almost all patients in five genes

(TRBV6-5, TRBV7-3, TRBV7-6, TRBV7-7, TRBV10-1), suggesting their possible inactivation. Such inactivation of TRBV could lead to reduced

repertoire or poorer specific T cell activation for our 74 severe patients. A less specific immune response would result in a dysfunctional acti-

vation with a much broader cytokine and inflammatory systemic response.

The role of TCR in patients with severe COVID-19

To date, the role of TCR in COVID-19 severity has remained unclear. Some studies42–44 have shown that T cells play a prominent role in

COVID-19 susceptibility and severity. However, they have not been able to establish whether T cell responses are helpful or harmful. Prom-

inent lymphopenia has been observed in patients with severe disease, with abnormal T cell differentiation.45,46 Moreover, reduction of T cells

in the periphery is a prominent feature of many individuals with severe COVID-19. Given the high impact of the identified variants, our results

support that loss of function and inactivation of T cell receptors affecting the variable region in charge of binding to the peptide/MHC com-

plex as a genetic signature for severe COVID-19. TCR may therefore play a crucial role in the recognition of SARS-CoV-2 antigens by T cells,

accounting for a dysfunctional response for an exacerbation of symptoms in SARS-CoV-2 infection.

Risk allele frequencies do not differ from the general European population

We compared existing published genome-wide association variants from the GenOMICC consortium, which were unveiled in a large pop-

ulation of mostly Northern European individuals. The GenOMICC study provides a state-of-the-art analysis of host genomics associated with

disease severity, yielding 23 genome wide significant variants. From this list, 11 were covered with sufficient quality in our 74-case cohort. We

then compared risk allele frequencies observed in our case cohort against those of the general European population, yielding no significant

differences. The lack of significant differences in our case/control cohorts for GenOMICC risk alleles may be due to their small sample, the

peculiar characteristics of IBS ancestry or the different methodology we used. Our frequency concordance with the general European pop-

ulation, however, supports the validity of our variant frequency data, which, although small, follow the expected patterns observed for the

European population in an independent cohort (NCBI’s ALFA).

Limitations of the study

We acknowledge the modest size of our study population. We prioritized the use of strict clinical criteria to define severe COVID-19 in addi-

tion to checking a restricted ancestry-matched population. We also note that individuals used as controls in our study were from the general

Table 6. Lead variants from the GenOMICC study and their frequencies in our filtered case cohort of 74 IBS cases (IBS COV AF) with severe COVID-19

RSID Gene Chromosome

Chr_start

(GRCh37)

Chr_end

(GRCh37)

Risk

Allele

Odds

Ratio

Total

Alleles

Risk

Allele Count

IBS

COV AF

(n = 74)

EUR

Sample

Size

EUR

MAF

rs114301457 EFNA4 1 155039464 155039464 T 2.4 148 0 0 37,196 0.00519

rs7528026 TRIM46 1 155147781 155147781 A 1.4 142 9 0.0634 14,336 0.02741

rs41264915 THBS3 1 155167786 155167786 A 1.3 148 140 0.9459 30,840 0.89066

rs2271616 SLC6A20 3 45838013 45838013 T 1.3 148 21 0.1419 16,692 0.12197

rs343320 PLSCR1 3 146234909 146234909 A 1.2 148 10 0.0676 246,424 0.081871

rs28368148 IFNA10 9 21206605 21206605 G 1.7 148 2 0.0135 21,546 0.01109

rs61882275 ELF5 11 34504292 34504292 G 1.1 22 22 1 14,370 0.63319

rs117169628 SLC22A31 16 89262657 89262657 A 1.2 148 13 0.0878 22,920 0.11898

rs12610495 DPP9 19 4717672 4717672 G 1.3 148 57 0.3851 171,196 0.283651

rs73510898 ZGLP1 19 10416444 10416444 A 1.3 144 11 0.0764 29,172 0.06664

rs34536443 TYK2 19 10463118 10463118 C 1.5 148 6 0.0405 98,022 0.04200

Froma total of 23 variants in GenOMICC, our exome data covered 11 variants (shown here).We calculated risk allele frequencies in our case cohort and compared

them to risk allele frequencies in Europeans from NCBI’s ALPHA Allele Frequencies. MAF counts can be inferred from EUR sample sizes and their respective

EUR MAFs.
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population rather than confirmed SARS-CoV-2 infected individuals with no symptoms. This means that a very small proportion of our controls

could also be liable to suffer severeCOVID-19 following coronavirus infection. This is also reflected by design, where all high impact variants in

T cell receptors are present in cases and controls, albeit with significantly different frequencies. Despite this, our general population controls

allow us sufficient discriminatory power to statistically identify differences in affected genes when comparing cases and controls.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Manuel Corpas (m.corpas@

westminster.ac.uk).

Materials and availability

No new materials have been created as part of this manuscript.

Data and code availability

d COVID-19 whole exome sequencing deidentified data are available from the European Genome-Phenome archive with accession number

EGAC00001002480. IBS data from the 1000 Genomes Project is available under the data download portal of the consortium.

d The source code developed for the project and associated intermediary data (e.g., phenotype data, VEP outputs) are publicly available in

GitHub at https://github.com/manuelcorpas/11-Cov-MadrID.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw and processed data This paper EGA: EGAC00001002480

IBS data 1000 Genomes Project https://www.internationalgenome.org

Human reference genome NCBI build 37,

GRCh37

Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/genome/assembly/

grc/human/

Software and algorithms

BWA-MEM Heng Li46 https://doi.org/10.48550/arXiv.1303.3997

GATK4 Heldenbrand, J. R. et al.43 https://gatk.broadinstitute.org/hc/en-us/articles/

360036194592-Getting-started-with-GATK4

PLINK Purcell, S. et al.48 https://www.cog-genomics.org/plink/

bcftools Danecek, P. et al.49 https://samtools.github.io/bcftools/bcftools.html

Variant Effect Predictor McLaren, W. et al.50 https://www.ensembl.org/info/docs/tools/vep/index.html

Sift Sim, N.-L. et al.52 https://www.ensembl.org/info/docs/tools/vep/index.html

PolyPhen Adzhubei, I. et al.53 https://www.ensembl.org/info/docs/tools/vep/index.html

CADD Rentzsch, P. et al.54 https://www.ensembl.org/info/docs/tools/vep/index.html

Condel González-Pérez, A. & López-Bigas, N55 https://www.ensembl.org/info/docs/tools/vep/index.html

LoFtool Fadista, J. et al.56 https://www.ensembl.org/info/docs/tools/vep/index.html

MPC Samocha, K. E. et al.57 https://www.ensembl.org/info/docs/tools/vep/index.html

DAVID Huang, D. W. et al.60 http://david.abcc.ncifcrf.gov

Other

Best practices for variant discovery analysis Broad Institute https://gatk.broadinstitute.org/hc/en-us/sections/

360007226651-Best-Practices-Workflows

Best practices for variant discovery analysis

and quality control

NYU Center for Genomics and

Systems Biology (CGSB)

https://gencore.bio.nyu.edu/variant-calling-pipeline-gatk4/

1000G_phase1.indels.b37.vcf 1000 Genomes Phase I indel calls https://gatk.broadinstitute.org/hc/en-us/articles/

360035890811-Resource-bundle

1000G_phase3_v4_20130502.sites.vcf 1000 Genomes Phase 3 indel calls https://www.internationalgenome.org/category/phase-3/

gnomAD Whiffin, N. et al.51 https://gnomad.broadinstitute.org

ALFA: Allele Frequency Aggregator NCBI https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Consent for publication

In compliance with the provisions of the Declaration of Helsinki and the legislation in force in Spain regarding research with human beings,

patients were informed about their participation in this clinical study, clarifying that their participation was voluntary and did not imply any

change in his/her treatment or medical care compared to what s/he would receive if s/he did not participate. All patient informed and volun-

tary consents were obtained in writing (see supplemental information for consent forms and patient data collected).

Ethics approval

This study was evaluated and approved by the Clinical Research Ethics Committee of Hospital Clı́nico San Carlos (code number: 20/313-

E_COVID) in Madrid, Spain.

Study population

We retrospectively identified all consecutive individuals hospitalized at one large tertiary hospital in Madrid during the first wave of COVID-19

with confirmed SARS-CoV-2 infection and at least the following five clinical features: i) age younger than 60 years-old; ii) fever and respiratory

symptoms for more than 3 days; iii) arterial oxygen saturation below 93%; iv) bilateral pneumonia on imaging techniques; and v) absence of

comorbidities such as diabetes, obesity, immunosuppressive conditions, etc. This restrictive definition of severe COVID-19 resembles that of

the earlier Chinese studies lately adopted by the NIH.29 All patients were non-vaccinated at the time of sample collection.

Patient Clinical History

We annotated age, sex, country of origin, date of symptoms initiation, date for hospitalization and discharge, and whether there was admis-

sion to intensive care unit (ICU). We also recorded body mass index, smoking status, and whether patients had hypertension, diabetes melli-

tus, or other relevant medical conditions. Laboratory, radiology and information on treatment interventions was similarly recorded.

Our initial cohort of 98 cases included 33 women and 65 men. All patients were hospitalized and 22 of them needed intensive care unit

(ICU). The mean patient age was 51.1 years old. By sexes, the female average age was 49.0 and male 52.1 years old. The average stay in hos-

pital for all patients was 20.7 days while for females 12.2 andmales 25.0 days. For the subset of 22 patients who stayed at the ICU, the average

stay was 26.2 days while for females only it was 7.2 days while for males 30.4 days on average.

Clinical phenotypic characterization

Wedeveloped our own controlled vocabulary in order to describe in detail COVID-19 clinical phenotypes in our patients. Althoughwe consid-

ered using other COVID-19 phenotype ontologies, such as those offered by CIDO47 or HPO48 our need for further granular detail prompted

us to developour own.We therefore developed 28medical terms grouped into 4major clinical phenotypes, whichwere then checked for their

presence in each patient.

Case/control cohort

Whole bloodwas stored for all hospitalized COVID-19 patients as part of a larger study conducted by the hospital research unit. Severe illness

and intensive care unit (ICU) admission were recognized for 98 and 22 patients, respectively. For controls, we downloaded exome raw FASTQ

files from all available exomes within the Iberian Spanish (IBS) subpopulation of the 1000 Genomes Project (1000G). All exomes (205) were

bioinformatically processed in an identical manner as shown below.

METHOD DETAILS

Bioinformatics workflow

Figure 2 illustrates an overview of the study workflow. The details of howwe performed each of the steps are described in detail below.Whole

exome sequencing was performed for 100 selected cases. Bioinformatics processing for these 100 cases was also performed for the 1000

Genomes Project (1000G) exome data from the Iberian Spanish (IBS) subpopulation (n=107). A principal component analysis (PCA) was

then carried out to select from the 100 cases those that clustered within the IBS 1000G subpopulation. 74 cases were selected for further anal-

ysis. To control for batch effects, we only considered QC’d variants present in both cases and controls. Next, their protein effect was pre-

dicted. We performed a gene-based collapsing analysis, where we counted the number of cases and controls with high impact variants

per gene. Genes above a threshold of significant difference in cases and controls were then clustered using DAVID. High impact variants

within genes from the TCR cluster were then analyzed.

DNA extraction, library construction and exome sequencing of cases

A total of 100 blood samples were collected in 10 mL EDTA tubes. All samples were centrifuged at 3000 rpm for 10’ and a buffy coat was

isolated and frozen at -20�C until their use. Genomic DNA was isolated from buffy coat frozen samples with the Maxwell RSC buffy coat

DNA kit (Promega) using the Maxwell RSC Instrument (Promega), following manufacturer recommendations. After isolation, the purity of
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genomic DNA was analyzed by spectrometric analysis. Whole exome sequencing was performed using ExomeCapture-Seq capture KAPA

HyperExome on Illumina machines.

Genome alignment and variant generation

We generated variant calls for cases and controls using identical parameters. Our pipeline used GATK449 based on best practices for variant

discovery analysis from the Broad Institute50 and theNYUCenter for Genomics and Systems Biology (CGSB).51 BWA-MEM52 was used to align

all reads to GRCh37.

Genotyping, sample selection, and variant quality control summary

We performed quality control (QC) as indicated by the NYU Center for Genomics and Systems Biology (CGSB).51 Namely, from 716 initial

FASTQ files, we produced 100 BAM files, one for each of the samples sequenced. We noted that sample AR5463 had a premature end of

file, which we discarded. Read duplicates weremarked and alignmentmetrics and insert sizemetrics generated using Picard’s validation strin-

gency parameters as strict. All the reads in BAM files were then merged to a single new read-group. Base Quality Score Recalibration (BQSR)

was performed with a ‘gold standard’ set of indels and SNPs. These gold standard indels included 1000G_phase1.indels.b37.vcf (currently

from the 1000 Genomes Phase I indel calls), Mills_and_1000G_gold_standard.indels.b37.sites.vcf and the latest set from 1000G phase 3

(v4) for genotype refinement from 1000G_phase3_v4_20130502.sites.vcf.53 The recalibration was applied to all BAM files. Indels and SNPs

were processed and then filtered independently using parameters provided by the Broad Institute. For SNPs we used QD < 2.0,

FS > 60.0, MQ < 40.0, SOR > 4.0, MQRankSum < -8.0. For indels, QD < 2.0, FS > 200.0 and SOR > 10.0. It was found that one sample was

in triplicate. We therefore eliminated two of the three samples moving forwards. For controls, 14 samples were discarded due to corrupted

or premature end of FASTQ files. 98 cases and 93 controls successfully completed our alignment and variant call pipelines after QC. PCA

analysis confirmed that the remaining samples for analysis were not relatives.

Case sample selection

A total of 98 hospitalized patients with severe COVID-19, were identified using the inclusion criteria described above (cases) and sample QC

criteria. Although all cases were sampled in Madrid, a significant number (19.4%) of individuals had been born outside of Spain (Figure 3).

Weperformed a principal component (PC) analysis using PLINK54 and R to select only cases whose ancestry directlymatched that of 1000G

controls, selecting for further analysis only cases whose principal components clustered within the cluster of IBS 1000G controls. In order to

check the genetic ancestry of all samples, we compared them against all 1000G individuals (Figure S1), showing that the vast majority of pa-

tients clustered, as expected, within the 1000G European continent.

In order to eliminate the potential bias due to ancestral differences, we defined controls as exomes from Iberian Spanish (IBS) ancestry in

the 1000G that successfully completed our pipelines and quality controls (N=93). We then used principal component analysis to filter out

cases clustering outside of IBS controls. For that purpose, we used the first (PC1) and second principal components (PC2), selecting only those

cases whose PC1 and PC2 were > than the lowest of the controls, and < than the highest (Figure S2). This left us with 74 cases for further

analysis (22 female and 52 male).

Variant filtering

We concatenated indels and single nucleotide variant (SNV) files andmerged them via bcftools.55 All variants were further filtered by quality of

the call (QUAL>20) and read depth (DP>10). We also kept variants within autosomes, filtering out variants in the sexual chromosome pair and

mitochondria.

Variant effect prediction

The remaining variants were analyzed using Variant Effect Predictor (VEP).23 All analyses were configured via VEP’s interface to include gene

symbols, 1000 Genomes global minor allele frequency, gnomAD allele frequencies56 and all computational pathogenicity predictions (Sift,57

Polyphen,58 CADD,27 Condel (prediction + score),59 LoFtool60 and MPC61). We applied no VEP filtering other than selecting 1 consequence

per variant. For prioritization and selection of affected genes, we only kept those variants predicted by VEP as ‘high impact’ (i.e., the variant is

assumed to have high (disruptive) impact in the protein, probably causing protein truncation, loss of function or triggering nonsense medi-

ated decay).62

QUANTIFICATION AND STATISTICAL ANALYSIS

Prioritization and selection of affected genes

In order to ascertain differentially affected genes between cases and controls we counted the number of cases and controls harboring high

impact variants (as defined by VEP). For each gene we counted a) the number of cases with high impact mutations and b) the number of con-

trols with high impactmutations.We then rankedgenes according to the greatest difference of counts between cases and controls. To control

for differences in batch effects we only considered genes with high impact mutations in both cases and controls. We selected for further anal-

ysis only those genes differentially affected (cases vs controls) with a threshold P-value (chi-square) with Bonferroni correction < 4.47E-05

(=0.05 / 1,118 degrees of freedom (df); df= total number of genes: 1,119 - 1).
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Functional enrichment analysis

Differentially affected genes with P-value < 4.47E-05 were fed into the DAVID gene functional classification tool. This tool’s webserver

condensed our list of genes into functionally organized clusters of related genes or biology and useful functional (ontology-defined) anno-

tation to facilitate their interpretation.

Analysis of TCR gene cluster variants

The strongest functionally enriched cluster of 12 TCR genes was further analyzed. For that purpose, we identified all high impact variants

within these genes and calculated their allele frequencies in cases and controls. P-values using chi-square were calculated to identify

genome-wide significant allele frequency differences (P-value < 5.0E-08) between cases and controls. Their deleterious impact using

CADD, their consequence and allele frequencies in the European population (using NCBI Allele Frequency Aggregator (ALFA)) were also

assessed.

Estimation of TCR loss of function via compound heterozygosis

The presence of two different mutated alleles at a particular gene locus may cause complete gene loss of function, a mechanism known as

compound heterozygosis. To ascertain whether compound heterozygosis could be present in our study population, we counted high impact

allele mutants within each TCR gene. TCR genes with more than 3 heterozygous high impact alleles within the same patient were recorded.

Comparison with previously identified genetic markers of severity

Genome-wide association lead variants from the GenOMICC (Genetics of Mortality in Critical Care) study8 were retrieved. We focused on

variants from this study only, as this is the most complete and recent one researching COVID-19 variants affecting patient severity to date.

Observed allele risks from lead GenOMICC variants were counted in our case cohort to calculate their frequency. We only counted variants

with sufficient coverage in our gVCFs (Q=> 20). Observed frequencies from GenOMICC lead variants in our case cohort were compared to

European NCBI ALFA population frequencies for the same allele risks.

ADDITIONAL RESOURCES

Additional Supplemental Items are available from Mendeley Data at https://doi.org/10.17632/kxrzh8hgvp.1.
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