
Machine Learning Prediction of Susceptibility to Visceral 

Fat Associated Diseases 

Abstract. Classifying subjects into risk categories is a common chal-

lenge in medical research. Machine Learning (ML) methods are widely 

used in the areas of risk prediction and classification. The primary objec-

tive of such algorithms is to use several features to predict dichotomous 

responses (e.g., healthy/at risk). Similar to statistical inference model-

ling, ML modelling is subject to the problem of class imbalance and is 

affected by the majority class, increasing the false-negative rate. 

In this study, we built and evaluated thirty-six ML models to classify 

approximately 4300 female and 4100 male participants from the UK Bi-

obank into three categorical risk statuses based on discretised visceral 

adipose tissue (VAT) measurements from magnetic resonance imaging. 

We also examined the effect of sampling techniques on the models when 

dealing with class imbalance. 

The sampling techniques used had a considerable impact on the classifi-

cation and resulted in an improvement in risk status prediction by facili-

tating an increase in the information contained within each variable. 

Based on domain expert criteria the best three classification models for 

the female and male cohort visceral fat prediction were identified. The 

Area Under Receiver Operator Characteristic curve of the models tested 

(with external data) was 0.78 to 0.89 for females and 0.75 to 0.86 for 

males.  

These encouraging results will be used to guide further development of 

models to enable prediction of VAT value. This will be useful to identify 

individuals with excess VAT volume who are at risk of developing met-

abolic disease ensuring relevant lifestyle interventions can be appropri-

ately targeted.  

Keywords: Machine Learning, Imbalanced Learning, UK Biobank, Ran-

dom Under Sampling, Synthetic Minority Over-Sampling Technique 

(SMOTE), Visceral Fat. 
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1 Introduction 

Real-world data are often imbalanced and lack uniform distribution across classes. 

Classification of imbalanced datasets is a significant challenge across both industrial 

and research domains [1]. There are multiple approaches to tackle class imbalance [2], 

of which data enrichment is the most straightforward. Other more sophisticated meth-

ods include varied sampling techniques [3], cost-sensitive learning [4], [5], feature se-

lection; more complex strategies include meta learning [6], combining classifiers [7], 

and algorithmic modifications [8]. 

When resampling methods are applied, questions over their suitability are often raised 

[9]. For example: is the new resampled dataset representative of the population in rela-

tion to the response variable? Is it acceptable to artificially generate synthetic data of 

class subjects when training Machine Learning (ML) classification models? It has been 

argued that by using sampling methods, the original class ratio is lost during the training 

process and that this affects the accuracy metrics [10]. Similarly, training ML models 

with synthetic data may compromise accuracy measures by deceiving the process of 

cross-validation sampling [11]. 

In this paper, we compare the classification performance of six ML algorithms (Na-

ïve Bayes, Logistic Regression, Artificial Neural Network, Decision Tree, Logistic 

Model Tree, and Random Forest) in predicting discretised visceral fat ranges associated 

with the development of long-term diseases in a multiclass classification problem. The 

new models were built using Random Under Sampling (RUS) [8] and Synthetic Mi-

nority Over Sampling Technique (SMOTE) [12] sampling techniques applied to highly 

imbalanced training data (in the female cohort case), and on less severe imbalance (in 

the male cohort case). This study suggests the most suitable models meeting the domain 

experts’ success criteria. The data imbalance characteristic causing the transition in 

classifier training performance was monitored visually by Adaptive Projection Analysis 

(APA) [13] and numerically via Information Gain (IG) attribute evaluation [14], [15]. 

The deployment of machine learning modelling in this study aims at tackling a long-

term real-world disease burden; Obesity affects an increasing number of adults in the 

UK [16], with obesity-associated changes in adipose tissue (AT) predisposing to meta-

bolic dysregulation [17] and other disorders. Distribution of AT, in particular the accu-

mulation of visceral adipose tissue (VAT) and liver fat, is a critical factor in determin-

ing susceptibility to diseases [18], [19]. Excess VAT and liver fat play a significant role 

in the pathogenesis of type 2 diabetes, dyslipidaemia, hypertension and cardiovascular 

disease [20]. 

Current strategies for the treatment of obesity and its associated co-morbidities have 

focused on lifestyle improvements [21], [22]. Such a focus aims to reduce VAT and 

liver fat, via calorie restriction and/or exercise, the impact of which are associated with 

improved insulin sensitivity, decreased blood pressure and lower circulating lipid levels 

[17], [23], [24]. Large scale analysis of the compartmental distribution of AT is often 

limited due to the expense and time required to employ the requisite imaging tech-

niques. The UK Biobank (UKBB) provides a comprehensive means of assessing the 

relationship between body composition and lifestyle in a large population-based cohort 

of adults. Having such a large dataset could increase the presence of a pattern in the 
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data, without it machine learning algorithm can’t sufficiently learn to produce effective 

results. 

The primary goal of this study is to identify the best models to predict VAT levels 

in a cohort of female and male individuals from the UKBB. The study is a cross sec-

tional assessment of 4327 female and 4126 male individuals from the UKBB multi-

modal imaging cohort [25], aged 40-70 years and scanned chronologically between 

August 2014 and September 2016. 

The paper is structured as follows: In Section 2, the methodology, methods and ap-

proaches used in this study are presented. In Section 3, the experimental design is 

shown. The results are documented in section 4, with the discussion and conclusions 

Sections 5 and 6. 

2 Methodology 

For VAT prediction, multi-class ML classification models were applied to predict sus-

ceptibility to disease (risk) based on the discretised amount of VAT. Two groups of 

2292 female and 2191 male subjects were used to train six ML algorithms using 10-

fold cross-validation in three different scenarios. In relation to their cohort, the trained 

models were tested on two new groups of external data of 2035 and 1935 female and 

male cases, respectively. Fig. 1 shows the methodology: multiple imbalanced datasets 

with the same predictor variables were modified with sampling techniques and used for 

modeling using the six ML algorithms. Selected performance metrics of the models 

were compared after training in the evaluation phase. IG was monitored for all predictor 

variables at every stage. 

 

 

Fig.1 The methodology adopted in this work, showing the different steps followed  

Where TD = Targeted dataset, RUS = Random Under Sampling, SMOTE = Synthetic Minority 

Oversampling Technique, ML = Machine Learning, NB = Naïve Bayes, LR = Logistic Regres-

sion, ANN = Artificial Neural Network, C4.5, LMT = Logistic Model Tree, RF = Random For-

est, TPR = true-positive rate, FPR = false-positive rate, AUC = Area under receiver operator 

characteristic curve 
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2.1 Data Collection Protocol 

This cross-sectional study includes data from 8453 individuals included in the UKBB 

multimodal imaging cohort. The UKBB had approval from the North West Multi-Cen-

tre Research Ethics Committee (MREC), and written consent was obtained from all 

participants before their involvement. The data was acquired through the UK Biobank 

Access Application number 23889.The age range for inclusion was 40-70 years, with 

exclusion criteria were: metal or electric implants, medical conditions that prohibited 

MRI scanning or planned surgery within six weeks before the scanning date. The sub-

jects were scanned chronologically between August 2014 and September 2016. The 

visceral adipose tissue (VAT) volumes were acquired as part of the UKBB dataset. 

Anthropometry measurements were collected at UKBB assessment centers; height 

was measured using the Seca 202 height measure (Seca, Hamburg, Germany). The av-

erage of two blood pressure measurements, taken moments apart, was obtained using 

an automated device (Omron, UK). Images were acquired at the UK biobank imaging 

Centre at Cheadle (UK) using a Siemens 1.5T Magnetom Aera. The participants' height 

and weight were recorded before imaging screening which later was utilised to calculate 

the Body Mass Index (BMI).  

For physical activity assessment data, a touchscreen questionnaire was used to col-

lect information on sociodemographic characteristics and lifestyle exposures 

(http://www.ukbiobank.ac.uk/resources/). Specific questions on the frequency and du-

ration of walking (UK biobank field ID: 864, 874), moderate physical activity (884, 

894) and vigorous physical activity (904, 914) events allowed the calculations of met-

abolic equivalent-minutes per week (MET-min/week) for each individual. Participants 

were excluded from the calculations and analysis if they selected ‘prefer not to answer’ 

or ‘do not know’ to any of the possible six questions on physical activity used to calcu-

late the MET score (n=868). 

2.2 Information Gain Evaluation Algorithm 

Information and entropy levels within independent variables were monitored using an 

Information Gain Attribute Evaluator Algorithm [15]. This algorithm evaluates the 

worth of each attribute by measuring information gained with respect to the class in 

combination with a ranker algorithm that ranks the attributes by their influence on the 

class [14][15][26]. 

2.3 Adaptive Projection Analysis (APA) 

APA uses a linear projection to display high dimensional data into 3-dimensions by 

allowing the user to drag points in an interactive scatter plot to find new views [13]. 

These views indicate the classes which can be separated, the attribute combinations 

which are most associated with each class, the outliers, the sources of error in the clas-

sification algorithms, and the existence of clusters in the data [27]. 
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2.4 Data Preprocessing   

Pre-processing (preparation) steps are applied to the training dataset depending on var-

ious observed characteristics within the data, i.e., dataset dimensions, units of measure-

ments and distribution. Preprocessing the data aims to change classifiers behavior in 

the modeling phase. Some forms of classifier behavior changes are adding bias towards 

a response group, adding more weight to a feature and taking a classification cost into 

account. Dataset class imbalance requires the training dataset to undergo re-sampling 

processes. Resampling methods are one of many different approaches known to im-

prove imbalanced learning [2-8]. The application of resampling techniques enhances 

the training dataset in the form of data reduction or enrichment. The following two 

resampling techniques were applied in this study. 

Random Undersampling (RUS). This approach consisted of selecting a subset of the 

majority class to balance the data [8]. In this approach (Fig. 2), some of the majority 

class records were removed at random. However, it was recognised that deleting rec-

ords could lead to loss of important information or patterns which may have been rele-

vant to the learning process [28]. Denoting the majority class L and the minority class 

S, r was defined as the ratio between the size of the minority and majority classes [3]. 

We performed random under-sampling of L to achieve a balanced ratio of r=1. The 

imbalanced r ratios before RUS were r(females) = 0.14 and r(males) = 0.43. 

 

𝑟𝑓𝑒𝑚𝑎𝑙𝑒𝑠 =
|𝑆|

|𝐿|
= 0.14                 𝑟𝑚𝑎𝑙𝑒𝑠 =

|𝑆|

|𝐿|
= 0.43 

 

 

Fig.2 Illustration of random undersampling technique  

Synthetic Minority Oversampling Technique (SMOTE). SMOTE is an over-

sampling technique developed by Chawla [12]. It aims to enhance the minority class 

by creating artificial examples in the minority class (Fig. 3). For each data point x in S 

(the minority class), one of its k-nearest neighbours (k=5) was identified. The k 

neighbours were randomly selected, and artificial observations were generated and 

spread in the area between x and the nearest neighbours. These synthetic points were 

added to the dataset in class S. The artificial generation of the data points differed from 

the multiplication method [16] to avoid the problem of overfitting. 
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Fig.3 Illustration of synthetic minority oversampling technique  

2.5 ML Modelling 

The classification process in this study uses a predictive learning function that classifies 

an observation into one of three predefined (labeled) classes. The six ML classification 

algorithms selected for this study have different learning schemes such as graphical 

model-based classifiers, curve-fitting algorithms, tree-based techniques and ensemble 

learners. The use of such a variety is to examine the effect of different learning schemes 

on the final results.  

Naïve Bayes (NB). A probabilistic graphical model-based machine learning classifier 

used for classification tasks. The foundation of the classifier is the Bayes Theorem [29]. 

It also assumes that predictor variables are independent and that all predictor variables 

have an equal effect on the response outcome. Despite the simplified assumptions of 

Naïve Bayes classifiers, they were reported to be useful in complex real-world situa-

tions [30]. 

Logistic Regression (LR). LR is a deterministic curve-fitting technique which pro-

duces a probability-based model that accounts for the likelihood of an event occurring 

(the value of the class variable) depending on the values of the predictors (categorical 

or numerical) [31], [32]. 

Artificial Neural Network (ANN). ANNs are used to fit observed data, unusually high 

dimensional datasets characterised by noise and missingness (pollution). Neural net-

works comprise elementary autonomous computational units, known as neurons. Neu-

rons are interconnected via weighted connections and organised in layers (an input 

layer, hidden layers and an output layer). In this study, a Multi-Layer Perceptron (MLP) 

ANN with a sigmoid activation function was used, [17] as a curve-fitting classifier. 

Decision Tree (C4.5). The C4.5 algorithm is used in data mining as a Decision Tree 

Classifier which generates a decision, based on a sample of data. In this method, a new 

data point is predicted (classified) via a series of tests to determine its class. The tests 

hierarchically assemble a tree of decisions, hence ‘decision tree’ [15], [33], [34]. 
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Logistic Model Tree (LMT). LMT is an ensemble model with a tree structure but with 

LR functions at the leaves level. The LMT structure comprises a set of non-terminal 

nodes and a set of leaves (terminal nodes). LMT is designed to adapt to small data 

subsets where a simple linear model offers the best bias-variance trade-off [31]. 

Random Forest (RF). RF is another ensemble learner and a generalisation of standard 

decision trees proposed by Breiman based on bagging (Bootstrap Aggregation) from a 

single training set or random not pruned decision trees [18]. Bootstrap Aggregation is 

used to combine the predictions of the individual trees [19]. 

 

All the six methods used for this study were implemented in Weka [35] (with default 

parameters settings), with the C4.5 using the J48 implementation. 

2.6 Out-of-Sample Testing 

Out of sample testing is also known as cross-validation [11] aims to test the model's 

capability of predicting (classifying) new data that was not used for training it. Cross-

validation provides an insight on how the model will generalize to a new unknown 

dataset. 

Cross-validation can be performed in several rounds (folds) 𝑘 (see Fig. 4). A fold of 

cross-validation involves partitioning a sample of data into subsets, performing the 

model’s training on one subset, and testing the model on the other subset. Where mul-

tiple rounds of cross-validation are performed using different partitions, the test results 

are averaged over the folds to estimate the model's classification performance. 

 

 

Fig.4 Illustration of k-fold cross-validation  
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2.7 Model Evaluation 

The following measures were chosen to evaluate the performance of each model: accu-

racy (later reported as Correctly Classified Instances ratio or ‘CCI’) true-positive rate 

(TPR, also known as sensitivity or recall), specificity, false-positive rate (‘FPR’), pre-

cision (‘Prcn’), area under the receiver operator characteristic curve  (‘ROC’), and F-

measure (‘F-m’) [36]-[38]. The latter is a harmonic mean of precision and recall. Prac-

tically, a high F-measure value indicates that both recall and precision are high, mean-

ing fewer subjects misdiagnosed with a disease or risk of disease. The F-measure is 

essential to assess the model performance when classifying very imbalanced data [37]. 

 

True Positive (TP), True Negative (TP), False Positive (FP) and False Negative 

(FN). TP is the number of correctly classified instances in a risk group (class), TN is 

the number of correctly classified instances in other groups, FP also known as false 

alarm or type-I error is the number of incorrectly classified instances in healthy and 

moderate groups as at risk and FN also known as type-II error is the number of incor-

rectly classified instances in a risk group. 

 

Accuracy (CCI). Model accuracy is the ratio of all examples in a dataset which were 

correctly classified. Also known as Correctly Classified Instances ratio CCI. 

 

𝐶𝐶𝐼 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Recall. Also, knowns as sensitivity or true positive rate (TPR); assume having a group 

whose members are at risk of a disease, the true positive rate (TPR) in a risk class 

(group) is the ratio of number of subjects who were predicted correctly as at risk to the 

total number of subjects of risk group (both predicted correctly and incorrectly). 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Specificity. Specificity is also known as true negative rate (TNR); Assume having a 

group who are risk-free of a disease (Healthy class), the true negative rate in a risk-free 

class is the ratio of number of subjects were predicted correctly as at risk-free to the 

total number of subjects of risk-free group (both predicted correctly and incorrectly). 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

Precision (Prcn). This performance metric is also known as positive predictive value 

(PPV) which is the ratio of true positive (TP) predictions to all correctly and incorrectly 

predicted positive predictions (TP+FP)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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F-measure (F-m). Also known as the harmonic mean of precision and recall. Practi-

cally, a high F-measure value indicates that both recall and precision are high which 

means the less subjects are misdiagnosed with a disease or risk. This metric is important 

to assess the model performance when classifying minority class. 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑐𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑐𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

Area under the curve (AUC) – The area under the receiver operator characteristic 

(ROC) curve is a method to comparing classifiers performances. From the ROC graph 

example in Fig. 5, it is possible to obtain an overall evaluation of quality. AUC is the 

fraction of the total area which falls under the ROC curve. FPR is the false positive rate. 

The AUC is calculated by  

 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑥)) 𝑑𝑥
1

𝑥=0

 

 

The AUC value is in the range of 0.5 to 1, where 0.5 denotes a bad performing classifier 

and 1 denotes an excellent performing classifier. In medical diagnosis, experts seek 

very high AUC value. 

 

 

 

Fig.5 Illustration of AUC classification metric 

 

Confusion matrix. It is also known as the error matrix. Fig. 6 shows all outcomes of 

the classification formulated into 𝑚 × 𝑚 matrix. The confusion matrix layout is useful 
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when visualising the performance of a classification algorithm. Each row of the matrix 

represents the predicted instances in a class while each column represents the actual 

instances in a class. 

 

Fig.6 Classification confusion matrix layout  

3 Experimental Design 

VAT- related disease susceptibility was based on the following MRI response labels 

(Fig. 7): Healthy, Moderate and Risk defined according to VAT volume. In females; 

VAT volume of ≤2 litres was deemed ‘Healthy’ (H); VAT volume >2 litres but ≤5 litres 

was classed as ‘Moderate’ (M); VAT volume >5 litres was classified as ‘Risk’ (R) [39]. 

In males; VAT volume ≤3 litres was deemed ‘Healthy’ (H); VAT volume was >3 litres 

but ≤6 litres, was classed as ‘Moderate’ (M); VAT volume >6 litres, was classed as 

‘Risk’ (R) [39]. The training datasets contained ten data variables reported in Table 1, 

with the VAT in liters being the class determination response variable. All nine predic-

tor variables in Table 1 were selected as input features by domain experts based on their 

correlation with VAT prediction in previous studies which are discussed in section 5. 

The UK Biobank Physical Activity Index (UKBB PAI or PAI) was created by do-

main experts [40] using data collected during physical activity assessment; comprising 

a total of 27 outcomes, 23 outcomes reflecting activity and four reflecting inactivity 

(see Table 2). An individual’s response to questions was scored with values between -

1 and +1 and combined cumulatively to give a final score. with an increasingly negative 

score implying a progressively unhealthier phenotype. For binary variables 0 indicated 

absence of the parameter, 1 the presence. 

 

 

 



11 

 

Table 1. Descriptive statistics of variables in the Targeted Dataset (TD)  

Female Cohort (n=2292) 

Numeric selected dataset variables Median Mean (Min, Max) 

Response variable    

Visceral adipose tissue volume (VAT in litres) 2.2 2.5 (0.1, 9.7) 

Predictor variables    

Waist Circumference (WC in cm) 80.0 81.6 (55.0, 126.0) 

Pre-imaging Weight (W in Kg) 66.0 68.3 (42.0, 128.0) 

BMI (in kg/m2) 24.8 25.7 (15.5, 48.0) 

Hip circumference (HC in cm) 100.0 100.9 (77.0, 147.0) 

Standing height (H in cm) 163.0 163.0 (141.0, 194.0) 

Systolic blood pressure (SBP in mmHG) 133.0 134.5 (87.0, 225.0) 

Diastolic blood pressure (DBP in mmHG) 77.0 77.8 (45.0, 120.0) 

Physical Activity Index (PAI) 0.5    0.6 (-12.0, 15.5) 

Age at recruitment (AGE in years) 55.0   54.6 (40.0, 70.0) 

Male Cohort (n=2191) 

Response variable    

Visceral adipose tissue volume (VAT in litres) 5.6 4.7 (0.35, 9.63) 

Predictor variables    

Waist Circumference (WC in cm) 102.0 92.5 (66.0, 138.0) 

Pre-imaging Weight (W in Kg) 104.0 82.5 (53.0, 155.0) 

BMI (in kg/m2) 33.0 26.6 (18.0, 48.0) 

Hip circumference (HC in cm) 116.5 101.1 (83.0, 150.0) 

Standing height (H in cm) 176.0 176.1 (152.0, 200.0) 

Systolic blood pressure (SBP in mmHG) 159.0 141.9 (99.0, 219.0) 

Diastolic blood pressure (DBP in mmHG) 84.5 80.8 (51.0, 118.0) 

Physical Activity Index (PAI) 3.0 0.5 (-12.0, 18.0) 

Age at recruitment (AGE in years) 55.0 56.4 (40.0, 70.0) 

 

 

Fig.7 The response labels of VAT- related disease susceptibility  

 

 

 

 



12 

Table 2. UK Biobank outcomes used in creating the physical activity index 

UK BB ID Outcome Units 

816 Job involves heavy lifting Categorical 

864 Days/week walked 10+ minutes Days/Week 

874 Duration of Walks Minute/Day 

884 Days/week moderate physical activity 10+ minutes Days/Week 

894 Duration of moderate activity min Min/Day 

904 Days/week vigorous physical activity 10+ minutes Days/Week 

914 Duration of vigorous activity Minute/Day 

924 Usual walking pace Categorical 

943 Frequency of stair climbing in last 4 weeks Categorical 

971 Frequency of walking for pleasure in last 4 weeks Categorical 

981 Duration of walking for pleasure Categorical 

991 Frequency of strenuous sports in last 4 weeks Categorical 

1001 Duration of strenuous sports Categorical 

1011 Frequency of light DIY in last 4 weeks Categorical 

1021 Duration of light DIY Categorical 

2624 Frequency of heavy DIY in last 4 weeks Categorical 

2634 Duration of heavy DIY Categorical 

3637 Frequency of other exercises in last 4 weeks Categorical 

3647 Duration of other exercises Categorical 

6164 Types of physical activity in past 4 weeks Categorical 

104900 Time spent doing vigorous physical activity Categorical 

104910 Time spent doing moderate physical activity Categorical 

104920 Time spent doing light physical activity Hours 

806 Job involves mainly standing or walking Categorical 

1070 Time spent watching television Hour/Day 

1080 Time spent using computer Hour/Day 

1090 Time spent driving Hour/Day 

Targeted dataset (TD). The TD was the first dataset modelled. The TD contained 2292 

female and 2191 male records, from the UKBB cohort. Table 1 shows the summary 

statistics of all TD’s variables. The TD was highly imbalanced in the female cohort and 

less severely imbalanced in the male cohort in relation to records numbers per class: In 

the females’ TD class H had 1002 subjects, class M had 1128 subjects, and class R 

contained only 162 subjects. In the males’ TD class H had 489 subjects, class M had 

1125 subjects, and class R contained 577 subjects. The class imbalance of TD can be 

observed via APA visualisation in Fig. 8. 

Random under-sampled (RUS) dataset. This dataset was a reduced subset of TD. A 

subset of each majority class was randomly removed to balance the data. As a result of 

applying RUS to the females’ TD, each of the H, M and R classes ended up with 162 

subjects. While in the males’ TD each of the H, M and R classes ended up with 489 

subjects. The effect of RUS can be observed APA visualisation in Fig. 8. 

Synthetic Minority Over-Sampled (SMOTE) dataset. This dataset was obtained as 

a result of applying SMOTE to the numeric data variables of TD. By doing so, the three 

VAT classes became more closely balanced. In the female cohort, class H had 1002 
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subjects, class M had 1128 subjects, and class R contained 1296 subjects. In the male 

cohort, class H had 1125 subjects, class M had 1125 subjects and class R contained 

1125 subjects. The effect of SMOTE can be observed via APA visualisation in Fig. 8. 

 

 

Fig.8 Adaptive projection visualisation of Targeted Dataset, Random Under Sampled dataset 

and SMOTE dataset variables 

IG Evaluation Algorithm was used to measure the information levels for independent 

variables in relation to the class variable. The measurement and ranking of IG in each 

independent variable in TD, RUS and SMOTE training sets are presented in Section 3. 

The Test Dataset. The ML models were tested on a new group of 2035 females from 

the UKBB female cohort and a new group of 1935 males from the UKBB male cohort. 

The same ten variables as per the training datasets, were used to test all models. Table 

3 shows their summary statistics. Like the TD, the female Test Dataset was also highly 

imbalanced: class H had 823 subjects, class M had 1039, and class R contained only 
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173 subjects. The males Test Dataset was less severely imbalanced: class H had 468 

subjects, class M had 906, and class R contained 561 subjects. 

Table 3. Descriptive statistics of variables in the test set 

Female Cohort (n=2035) 

Numeric test dataset variables Median Mean (Min, Max) 

Response variable    

Visceral adipose tissue volume (VAT in litres) 2.4 2.7 (0.2, 10.0) 

Predictors variables    

Waist Circumference (WC in cm) 80.0 81.6 (55.0, 142.0) 

Pre-imaging Weight (W in Kg) 67.0 68.7 (39.0, 136.0) 

BMI (in kg/m2) 25.2 25.9 (14.4, 54.5) 

Hip circumference (HC in cm) 100.0 101.3 (73.0, 156.0) 

Standing height (H in cm) 163.0 162.7 (145.0, 195.0) 

Systolic blood pressure (SBP in mmHG) 129.0 130.4 (87.0, 196.0) 

Diastolic blood pressure (DBP in mmHG) 76.0 76.6 (45.0, 115.0) 

Physical Activity Index (PAI) 0.0 0.1 (-12.5, 18.0) 

Age at recruitment (AGE in years) 55.0 54.6 (40.0, 70.0) 

Male Cohort (n=1935) 

Numeric test dataset variables Median Mean (Min, Max) 

Response variable    

Visceral adipose tissue volume (VAT in litres) 7.2 4.9 (0.3, 14.1) 

Predictors variables    

Waist Circumference (WC in cm) 101.0 93.3 (63.0, 139.0) 

Pre-imaging Weight (W in Kg) 100.0 83.4 (50.0, 150.0) 

BMI (in kg/m2) 32.5 26.9 (17.0, 48.0) 

Hip circumference (HC in cm) 109.5 101.4 (78.0, 141.0) 

Standing height (H in cm) 178.5 175.8 (156.0, 201.0) 

Systolic blood pressure (SBP in mmHG) 142.0 137.1 (75.0, 209.0) 

Diastolic blood pressure (DBP in mmHG) 83.5 79.9 (47.0, 120.0) 

Physical Activity Index (PAI) 2.8 0.5 (-12.0, 17.5) 

Age at recruitment (AGE in years) 55.0 56.0 (40.0, 70.0) 

4 Results 

4.1 ML Models Training Results 

From the confusion matrices in Table 4, the model training accuracies for the female 

cohort, presented as Correctly Classified Instances ratio (CCI) or True Positive Rate 

(TPR) of all methods were computed, they showed that resampling methods resulted in 

an improvement in CCI compared to the original TD. When the performance of the LR, 

ANN, C4.5 and RF models for the female cohort was evaluated, it was apparent that 

the RUS dataset was poorer than when the TD data set was used, Fig. 9. 
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The AUC for each of the trained models were in the range of 0.783 (for RF on 

SMOTE) to 0.96 (for C4.5 on TD). These values indicate that the trained models did 

not sacrifice much precision to achieve a good recall value on the observed data points. 

The RF model achieved the highest TPR (0.850) when trained on the SMOTE dataset, 

while the C4.5 model achieved the lowest TPR (0.714) when trained on the RUS da-

taset. 

By observing the confusion matrices for all models after training on all the TD and 

RUS datasets, it is clear that the number of incorrectly classified instances for class R  

highly decreased for the models trained on the RUS dataset compared to those trained 

on the TD. However, when evaluating the minority class accuracy performance in Fig. 

10, it is notable that all trained models benefitted from the sampling methods, exhibiting 

consistent TPR improvement for class R in each model. 

The accuracies (CCI) of the models for the male cohort were calculated from Table 

4. SMOTE resampling resulted in a consistent improvement in CCI as compared to the 

original TD. SMOTE resampling resulted in a consistent improvement in CCI as com-

pared to the original TD. The training performance of all models for the male cohort 

using the RUS dataset was reduced compared to the same algorithms trained on the TD. 

The AUC for each of the trained models were in the range of 0.729 (for C4.5 on TD) 

to 0.923 (for RF on SMOTE). These values indicate that the trained models did not 

sacrifice a lot of precision to obtain a good recall value on the observed data points. 

The RF model trained on the SMOTE dataset achieved the highest TPR (0.793), while 

the C4.5 model trained on the RUS dataset achieved the lowest TPR (0.631). 

Examination of the confusion matrices for all models trained on the TD vs the RUS 

datasets demonstrated that the number of subjects incorrectly classified as class H 

instead of class R increased for models trained on the RUS dataset compared with those 

trained on the original TD despite the removal of 88 subjects from the original R group 

as a result of RUS. The number of correctly classified instances for class H increased. 

However, when evaluating class R accuracy performance (see Fig. 10), it is notable that 

all trained models benefitted from the sampling methods, exhibiting consistent TPR 

improvement for class R in each model. 
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Fig.9 Comparison of performance metrics across trained models in different cohorts 

4.2 Models Test Results 

The models derived above were tested on a further dataset (female, n = 2035; male 

n=1935). When the CCI values for all models were compared using the female cohort, 

the CCI decreased to a maximum degradation of 6.2% when testing the C4.5 model 

trained on the RUS dataset against the same algorithm trained on the original TD. LMT 

model built with SMOTE dataset achieved an overall test accuracy improvement of 

6.83% when compared to TD. 

In the female cohort (see Fig. 11) RF models achieved the best TPR of 0.770 when 

trained on the TD dataset. LMT model achieved the least TPR of 0.681 when trained 

on the TD dataset. The ROC area across all tested models ranged between 0.786 (for 

C4.5 on SMOTE dataset) and 0.889 (for LR on TD). These values indicate hardly any 

loss of precision whilst achieving a good recall value on the observed data points. For 

evaluating risk class, R, the TPR performance (Fig. 10) classified the risk group with 
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the highest level of 0.798 was achieved by RF on RUS. RF also achieved the greatest 

TPR improvement in test with a difference of 0.463 between RUS and TD. NB ranked 

last, with just 0.121 in minority class TPR improvement between NB on SMOTE and 

TD. These results can be visualised in the confusion matrixes in Table 4. The RF model 

trained on SMOTE correctly classified the highest number of instances (138 of the orig-

inal 173) in class R. The model which performed the worst in TPR performance for the 

class R was C4.5 trained on TD, which only correctly classified 43 instances. 

In male cohort subjects; when comparing the CCI for all models, CCI decreased with 

a maximum degradation of 11.9% when testing the RF model trained on the SMOTE 

dataset compared to the same model built on the TD. All models built on the TD showed 

an overall model accuracy improvement on test datasets, the highest model accuracy 

improvement 4.0% was achieved with C4.5 model trained on TD dataset when com-

pared to all other models. The models’ overall accuracy improvements in test were also 

observed for NB, LR and MLP models trained on RUS dataset with the greatest im-

provement of 1.2% on NB when compared to all models built with RUS dataset. All 

models build with SMOTE dataset suffered an overall model accuracy degradation in 

test except for NB overall accuracy that remained unchanged.   

In the male cohort, it was observed that in test, LR models achieved the best TPR of 

0.733 when trained on TD dataset (see Fig. 11). LMT model achieved the least TPR of 

0.730 when trained on TD dataset. The ROC area across all tested models ranged be-

tween 0.753 (for C4.5 on SMOTE) and 0.864 (for LR on both TD and SMOTE, and 

LMT on TD). These values indicate that also, the tested models do not sacrifice much 

precision to obtain a good recall value on the observed data points. 

When observing class R, the TPR performance results in Fig. 10 show that consistent 

improvements were made in classifying the risk group with the highest level of 0.836 

achieved by LMT on RUS.  

LMT also achieved the greatest TPR improvement in test with a difference of 0.164 

between LMT on RUS and LMT on TD, while MLP ranked last, with just 0.05 in class 

R TPR improvement between MLP on RUS and TD. This comparison is demonstrated 

in the confusion matrixes in Table 4. The LMT model trained on RUS correctly classi-

fied the highest number of instances (469 of the original 561) in class R. The model 

which performed the worst in TPR performance for class R was NB trained on TD, 

which only correctly classified 361 instances. 

 

 

Fig.10 Risk class TPR performance for trained and tested models per cohort 
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Table 4. All cohorts VAT Prediction Models Confusion Matrices 
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Fig.11 Comparison of performance metrics across all tested models 

The effect of using a variety of ML algorithms with different learning schemes is 

examined. At a model level, Fig.8 shows a small difference between the minimum and 

the maximum TPR test performances per dataset in each cohort. In the females, tested 

TD, RUS and SMOTE models showed only differences of 0.1, 0.06 and 0.05 respec-

tively between the highest and the lowest performing algorithms. A similar pattern is 

found in the males; Tested TD, RUS and SMOTE models showed differences of 0.06, 

0.07 and 0.07 respectively between the highest and the lowest performing algorithms. 

C4.5 showed consistency in achieving the least TPR among all tested models. 

At a class level, taking the risk group into account for this comparison, Fig. 10 

demonstrates relatively large differences between the minimum and the maximum TPR 

test performances for R class in each cohort. In the females, tested TD, RUS and 

SMOTE models showed a high R class accuracy differences of 0.34, 0.13 and 0.25 

respectively between the highest and the lowest performing algorithms. A lesser TPR 

differences were found in the males TD, RUS and SMOTE models of 0.08, 0.13 and 
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0.12 respectively between the highest and the lowest performing algorithms. NB 

showed consistency in scoring the lowest TPR among all tested models. 

4.3 Attribute Information Gain Results 

In the female cohort training datasets, when considering the IG   for each variable across 

all datasets (Fig. 12), the IG increased in each attribute for RUS and SMOTE datasets 

compared to the TD. By comparing the IG ranking of variables in each dataset, it is 

apparent that WC achieved the highest IG value in all the three datasets. The dominance 

in WC ranking was also accompanied by an increase of its values (from TD to RUS 

and SMOTE). Such an increase correlates directly with the increase in class R TPR 

performance in all trained models except for NB where RUS model overtook SMOTE 

by a small TPR positive margin of 0.092. From Fig. 12, SMOTE boosted the infor-

mation within each variable (Table 5). This boost, in turn, increased the ability to dif-

ferentiate class R from other classes in the TD, which in turn increases the class R TPR 

(see Fig. 10). The APA multi-dimensional visualisation (see Fig. 13) shows the im-

proved class R discrimination per dataset. 

In the male cohort training datasets, when considering the measured IG for each 

variable across all datasets (Fig. 12), it is observed that the IG increased in each attribute 

for SMOTE dataset and some of the attributes for RUS dataset compared to the TD. By 

comparing the IG ranking of variables in each dataset, it was apparent that waist cir-

cumference (WC) achieved the highest IG value in all the TD and RUS datasets while 

BMI achieved the highest IG value in the SMOTE dataset. The advancement in BMI 

ranking in SMOTE dataset correlates directly with the increase in class R TPR perfor-

mance in all trained models. SMOTE resampling technique amplified the information 

within each variable (Fig. 12). This amplification, in turn, increased the class R border 

density with other classes in the training dataset, which in turn increased class R TPR 

in training (see Fig. 10). The APA visualisation showing the enhancement in class R 

borders density per dataset is shown in Fig. 13. 

 

Table 5. The Information Gain evaluation of all features per dataset 
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Fig.12 Information Gain evaluation comparison of all variables per dataset 

 

Fig.13 Adaptive projection visualisation of all classes and the effect of sampling methods 

4.4 Domain Experts’ Results 

The misclassification of healthy subjects by a predictive model could result in costly 

and unnecessary follow-up examinations whilst false-negative misclassifications might 

result in an individual not receiving an important intervention. In this application, apart 

from potential cost, there would be few adverse effects associated with healthy/moder-

ate risk subjects being misclassified, as such subjects would be encouraged to undertake 

lifestyle-based interventions to improve their health. Therefore, in this scenario the best 

models to adopt would be those which minimise the number of subjects misclassified 

as at ‘risk’, so they may initiate interventions at an appropriate time. Confusion matrices 

play an essential role in helping researchers define the best-suited model for use in 

future trials. When analysing the confusion matrices (Table 4), from both the female 

and male cohorts three models from each cohort were identified as satisfying the do-

main experts’ criteria. These models are reported in Table 6. They may not necessarily 

occupy the highest ranks when their performance metrics were compared to the others. 
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Table 6. Domain compliant prediction models a) For females n (LMT RUS Trained) = 486; n 

(LR SMOTE Trained) = 3426; n (RF RUS Trained) = 486. n (all Tested) = 2035.  

b) For males n (LMT RUS Trained) = 1467; n (LMT SMOTE Trained) = 3375; n (RF RUS 

Trained) = 1467. n (all Tested) = 1935. For the F-m metric, m=1 
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5 Discussion 

The overall goal of this study was to predict visceral adipose tissue (VAT) content in 

male and female participants from the UKBB and to apply machine learning methods 

to classify these subjects into risk categories. VAT has consistently been shown to be 

associated with the development of metabolic conditions such as coronary heart disease 

and type-2 diabetes. The ability to predict and classify this variable, using simple an-

thropometry without the need for costly MRI scanning, will have a significant impact 

on the identification of subjects likely to benefit most from life-style based interven-

tions [41]. The models tested here input features that include age, waist and hip circum-

ferences, weight, height, BMI, blood pressure and level of physical activity, all varia-

bles previously demonstrated to significantly correlate with VAT [42].  

 

Previous UKBB studies [39] [40] have demonstrated significant correlations of anthro-

pometry measurement and physical activities with VAT, with significant gender differ-

ences in the distribution of VAT, as well as by age; Hence separate models were built 

for females and males participants. In the same study, an index of physical activity, the 

UKBB-PAI, was proposed which correlated more strongly with VAT outcomes than 

established questionnaires, such as the International physical activity questionnaire 

(IPAQ) and lifestyle Index. Additionally, its findings challenged previous studies [42], 

[43], [44], and describes only a weak correlation between age with VAT, even after 

adjusting for BMI, and UKBB-PAI. It was also noted that the influence of UKBB-PAI 

parameters was comparable to that of age, and that it provided more effective means 

representing the physical activity measures to discriminate between Health, Moderate 

and Risk classes. 

 

With domain experts' advice, the current study selected the above-mentioned variables 

(age, blood pressure, body mass index, height, hip circumference, physical activity in-

dex, waist circumference and weight) as input features on which to base the ML VAT 

prediction models. However, to understand the influence of each feature on VAT and 

their reliability to predict three distinct ranges associated with various long-term con-

ditions, information theory was used to evaluate each feature in relation to the 3 differ-

ent classes, Healthy, Moderate and at Risk. The IG evaluation algorithm was utilised to 

evaluate the worth of each input feature independently [15] against the class unlike 

correlation analysis carried out in previous studies [39]. One way to interpret the cal-

culated IG values is the possible presence of associations between each feature and the 

class labels in each cohort. In the female cohort, the strength of the association in the 

IG varies (see Table 5), with HC, WC, BMI and W providing the greatest contribution, 

whilst the physical activity, age, H, SBP and DBP showed the least in both TD and 

RUS training datasets. A similar dominance in IG ranking is observed in the SMOTE 

dataset, with HC, WC, BMI and W showing the strongest associations with VAT. An 

analogous pattern was found in male subjects. This information theory approach into 

the models' features adds an additional layer of details to observed correlations reported 

in previous studies by describing the strength of each feature to discriminate between 

the Health, Moderate and at Risk classes. 
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When considering the TD and RUS datasets which contain observations from the 

participants rather than generated artificial synthetic data, there was no association be-

tween age and VAT (given zero IG) in the males and only a weak association in the 

female cohort, with the discretised VAT ranges similar to the weak correlation de-

scribed in previous studies. Though this may challenge previous studies that have re-

ported a linear relationship between age and VAT [42], [43], [44], our results may re-

flect the somewhat smaller age range included in the UKBB (40-70yrs), compared with 

previous studies (17-70yrs) [42]. However, this may also relate to a data problem in the 

machine learning community known as data heterogeneity [45].   

 

The lack of association of UKBB-PAI with discretised VAT classes, reflects the previ-

ously reported [46] [47] low correlation between physical activity and this fat depot, 

and may in part arise from to the poor reliability of the recorded frequencies and dura-

tions of physical activities. The level of granularity in the input data variables always 

determines the level of details in the prediction model possible outputs. Depending on 

the assessment design, detailed observations may be grouped during or after data col-

lection into frequencies, categories and scores. This grouping is considered a variable 

transformation. Variable transformation aims to create better features at exposing pat-

terns in the data. However, the transformation process could also lead to engineering a 

new feature that is less powerful suppressing important trends offered by its detailed 

(raw) components. 

 

It could also be argued that the implementation of such low-cost measures may lack the 

susceptibility to errors if studied within large populations [48]. However, there are 

many newly developed physical activities questionnaires (PAQs) which do not appear 

to perform substantially better than existing tests with regards to reliability and validity 

[49], [50], [51]. The variability of these PAQs and their ineffectiveness leads to a cause 

known in the data science community as detail aggregation. Variables in datasets often 

fall within two types; either detailed (Granular) or aggregated (Summaries). ML mod-

eling prefer detailed variables over summary variables. Detailed data often represent 

summary variables and better at showing patterns. Take daily walking which forms part 

of PAI calculations as an example. Previous studies [52], [53] showed that daily walk-

ing is linked to reductions in VAT. However, its significance is curbed when combined 

with other variables in PAI calculations. Data granularity is a macro structural feature. 

Granularity refers to the amount of detail captured in any measurement such as time to 

the nearest minute, the nearest hour, or simply differentiating morning, afternoon, and 

night, for instance. Decisions about macro structure have an essential impact on the 

amount of information that a data set carries, which, in turn, has a very significant effect 

on the resolution of any model built using that data set [54]. Therefore, we must 

acknowledge that physical activity is a complex behavior that is hard to measure accu-

rately even at a low degree, in case of memory recollection, or a high degree, by using 

monitoring electronic devices. However, it is a real challenge to record the interactions 

among physical activity various elements (variables). The PAI structure that combines 

sets of variables with transformed scores could be introducing bias, which stresses the 

natural structure of the original variables states in a dataset so that the data is distorted. 



25 

Hence the PAI may be less representative of the real world than the original, unbiased 

variables form. 

 

The understanding of the effect of data aggregation by domain experts enhances feature 

selection strategies of how variables are used in predictive modeling. Some derived 

(aggregated) variables may increase the representation of trend within a dataset which 

by turn, show higher IG evaluation and act as a stronger predictor in modeling. For 

example, BMI is directly obtained from height and weight (calculated as weight in kilo-

grams (W) divided by height (H) in meters squared). From our analysis, H maintained 

its IG evaluation to zero in both RUS and TD datasets, by dividing body mass over two 

exponents of the base H, this seems to expose better trends. Aggregated variables may 

require checking for calculations integrity from detailed variables. For numeric fea-

tures, aggregated variables come in many forms such as averages, sums, multiplication 

and ratios. Categorical features can be combined into a single feature containing com-

bination of different categories. Variable aggregation must not be overdone as to not 

overfit models due to misleading combined features. Wrongly derived variables may 

show false significance or insignificance in the analysis [54]. 

 

For ML modeling, tackling the imbalanced class problem has a significant impact on 

the performance of standard machine learning algorithms. Classification performance 

in the training phase is severely impacted by class separability. Training standard ML 

algorithms with highly imbalanced overlapping classes without any adjustment to the 

training set results in an accuracy bias towards the majority class. In this study, we 

observed that applying the two methods (RUS and SMOTE) was used to adjust the 

class imbalance in the classification training phase at the dataset level, which in turn, 

amplified the IG in many input features. It remains unclear as to whether other remedies 

for imbalanced data classifications, such as Cost-Sensitive and Ensembles Learning 

(which are implemented at algorithmic level), could result in better performances [4], 

[6], [55]. The advantages of sampling techniques evaluated here, however, include sim-

plicity and transportability. Nevertheless, they are limited by the amount of IG manip-

ulation as a result of their application resulting in biased predictions towards the minor-

ity class. The excessive use of such techniques could result in overfitting of the models. 

In this study, for the female cohort case, the original dataset was highly imbalanced. 

Traditional ML algorithms were sensitive to higher information gains. They tended to 

produce superb performance results in training, but when testing the models, the overall 

model accuracy often dropped below the training phase performance.  

However, for the male cohort, the class imbalance in the original dataset was less 

severe; therefore, traditional ML algorithms were less sensitive to higher information 

gains and tended to produce close performance results in training and test. The overall 

model accuracy often dropped below the training phase performance, which was the 

case for all models trained with the SMOTE dataset. On the contrary, the models’ test 

accuracy outperformed the training accuracy when each algorithm was trained on TD; 

this situation also occurred in NB, LR and MLP trained with RUS dataset. The cause 

of such competitive accuracy test results may be attributed to the increase in IG per 

feature in the test dataset as compared to the TD (Fig. 12). A higher IG in a variable 

indicates higher observations’ purity per class. Having higher IG in multiple features 
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enhances class separability and leads to improvement in classification accuracy. In 

other words, the higher the IG in a dataset the easier the dataset to be learned and to be 

predicted. 

In both cohorts, the UKBB datasets utilised in this study showed that applying the 

correct level of sampling without disrupting the original data distribution, together with 

the desired choice of performance metrics and slight manipulation of IG levels pro-

duced a prediction solution which could be developed further with algorithmic modifi-

cations [8]. Among all eighteen models for each cohort presented in this study, six 

models satisfied the domain experts’ success criteria for this specific domain problem. 

For the female cohort, these were LMT and RF built with RUS sampled dataset, and 

LR built with SMOTE sampled dataset. For the male cohort, they were LMT and RF 

built with RUS sampled dataset, and LMT built with SMOTE sampled dataset. 

The difference in ML algorithms learning schemes proved to have a minimal impact 

on the whole model accuracy. ML algorithms are biased towards achieving the highest 

model’s accuracy. But the effect of learning scheme becomes largely noticeable in im-

balanced datasets when the minority classes accuracies are compared. In the testing 

results analysis, learning schemes impact was seen to increase with the class imbalance 

severity in datasets compared to balanced datasets.       

 

This domain problem is the first to use the discretised MRI VAT variable ranges to 

describe the health status of participants and to label instances. At present, it would be 

impractical to compare the results of this study to any other research from the same 

domain. However, this work will be followed by further analyses where additional 

methods to improve the outcomes will be investigated. 

6 Conclusion 

Our study shows that the application of traditional machine learning algorithms to da-

tasets of phenotype variables offers a fast and inexpensive solution to predict visceral 

fat by aligning the classification task to predict specific VAT ranges. The selection of 

a multi-class prediction task in this study is strategic. It identifies individuals who are 

at higher risk of developing metabolic conditions and are more likely to benefit from 

focused lifestyle intervention to reduce visceral fat. The design of the case study of a 

multi-class prediction, by separating the risk group from a moderate group, helped in 

selecting models that minimise incorrect classification of those who are at high risk as 

healthy. Achieving a zero False Negative Rate (FNR) when classifying risk patients as 

healthy guarantees that any individual to miss treatment intervention belongs to the 

moderate group rather than the risk group. The process of training various ML algo-

rithms with 10-Fold Cross-Validation and testing the models with external groups of 

females and males of similar ratio to the training data makes this study suitable for 

follow-up research in medical screening to identify subjects that may require treatment 

intervention. 
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