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Abstract: Meat quality plays a significant role in the consumers’ health condition; hence,

the constant pursuit for techniques capable of objective and accurate quality assessment by

the meat industry. Multispectral imaging and electronic noses are valuable techniques for

the rapid and non-destructive detection of meat spoilage. In order to take advantage of the

complementary information provided by these two different sensing devices, a high-level

data fusion strategy was explored. Through this fusion scheme, the aim of this work is

to estimate initially the population of total viable counts of Pseudomonas spp., Brochothrix

thermosphacta and lactic acid bacteria, and then to categorize the status of the meat samples

into three classes (fresh, semi-fresh, and spoiled). The issue of small size available datasets

was addressed by generating additional “virtual” sample sets, through the use of neural

networks. Neuro-fuzzy based regression models were implemented and their outputs were

combined in order to estimate these microbiological populations. Following the evaluation

of these estimations, it can be argued that the most efficient prediction was obtained through

the fusion of these sensing devices, the coefficients of determination, the residual prediction

deviation, and the range error ratio exceeded the 0.98%, 5.4%, and 14.73%, respectively. In

parallel, the classification rate for the grouping of the testing samples into three classes was

perfect. Based on the acquired results, the proposed analytical concept could potentially

provide an alternative approach towards the efficient detection of meat spoilage.

Keywords: neural networks; fuzzy logic; meat spoilage; feature selection; multispectral

imaging; electronic nose; machine learning

1. Introduction

One of the main concerns for the food industry is related to the quality and cost of

their products, as consumers always take into consideration these factors [1]. Thus, food

quality and safety levels have always been a central issue for discussion, as well as for

taking appropriate actions to address them. The consumption of meat, which is generally

considered to be an essential part of our diet, is due to the fact that it is rich in protein and

contains high physiological value. This type of consumption, which includes pork, beef,

and poultry, is increasing worldwide every year, and based on the 2017 report from the

Organization for Economic Co-operation and Development (OECD), it was predicted that

the average meat consumption per person could approach to 35.5 kg globally by 2024 [2].

A market survey has indicated that, alongside the growth of meat consumption, meat

quality is gradually becoming an essential issue in the consumers’ purchasing decisions [3].

Despite the fact that meat is considered to be a good source of protein and other essential

nutrients, it is also a suitable environment for the growth and survival of spoilage and
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pathogenic microorganisms. Spoilage occurs when the formation of off-flavors, off-odors,

discoloration, or any other changes in physical appearance or chemical characteristics

make the food unacceptable to the consumer. Changes in the muscle characteristics are

due to native or microbial enzymatic activity or to other chemical reactions. However, not

all bacteria are responsible for the spoilage effect; there is only an initial small group of

microorganisms in meat, named as specific spoilage organisms (SSOs) [4]. In meat products,

SSOs metabolize the available substrates during storage, thus leading to changes in the

meat quality and odor. The current procedure for checking the levels of meat spoilage is

performed either subjectively, based on a sensory assessment, or through a microbiological

analysis. Such sensory assessments usually utilize the human senses of a trained test panel

to provide evidence related to color, smell, and taste, as well as the overall quality and

acceptance of the meat sample. This approach, though widely utilized for the classification

of meat samples, has some weaknesses, such as the high cost for training the taste panel, the

reproducibility of the evaluation, and the potential low comparability between panels [5].

Alternatively, the conventional microbiological approach to food sampling has

changed little over the previous decades and it is based on the recording of bacterial

counts for a given sample as a quantitative indicator of spoilage. These bacterial counts

include the total viable count (TVC), Pseudomonas spp., Brochothrix thermosphacta, Enterobac-

teriaceae, and lactic acid bacteria. The “standard plate count” approach was used as the

main microbiological method where the sample, after the preparation and dilution stages,

is mixed with a general agar media, incubated, and then the colonies are counted after

48 h. Despite its simplicity, it is a time-consuming process which employs an enormous

amount of culture media, a large number of sterile test materials, as well as large incuba-

tion spaces. Biosensors represent one advanced method that was developed to provide

faster microbiological information compared to the conventional microbiological approach.

In the field of microorganism detection, adenosine triphosphate (ATP) bioluminescence,

an effective biosensor, acts by measuring the ATP levels in bacterial cells in a culture in

order to calculate the number of cells present. Although the detection time is about one

to four hours, the problem with this method is that the ATP present in the meat has to

be destroyed before the microbial ATP can be measured [6]. Alternatively, a polymerase

chain reaction (PCR) has successfully been used to detect microorganisms by amplification

of the target DNA and detecting the target PCR products. This specific type of nucleic

acid-based detection method requires the presence of intact nucleic acid sequences in the

sample. Thus, the DNA from non-viable microorganisms can lead to false positive results.

Another limitation is the time factor, as this can be a time-consuming method compared to

ATP [7].

While some of these methods are superior to others, and most of them provide ad-

equate results, their main drawback, at present, is the time taken to acquire results. The

optimal solution for the food industry would be a rapid, non-destructive, reagent-less,

quantitative, and relatively inexpensive method for microbiological analysis. Thus, inex-

pensive, fast, and non-invasive methods have been explored for this purpose: to provide an

alternative and reliable solution for meat spoilage detection. Such methods include various

analytical lab instruments, like Fourier transform infrared spectroscopy (FTIR) [8], hyper-

spectral and multispectral imaging systems [9], Raman spectroscopy [10], and electronic

noses (e-nose) [11]. The detection “capability” of these analytical instruments is based on

the hypothesis that any produced metabolic activity from each meat sample is considered to

be an individual “signature”, which practically contains important information for the level

of quantitative indicators responsible for spoilage [12]. However, the main issue with these

new techniques is how to associate their produced output with the indicators responsible

for spoilage, as well as with the output of a sensory assessment for the overall quality and
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acceptance of the meat sample. Fortunately, with the advancement of computing software,

algorithmic models have been trained (offline) to associate sensorial outputs with meat

quality indicators, and then the final developed models can be utilized as rapid decision

models without the need of additional microbiological tests.

Due to the complexity of the chemical-based characteristics that appear in food

products, the application of a single analytical instrument/sensor may not be suffi-

cient, and multi-sensor data fusion techniques, combining the outputs of multiple in-

struments/sensors, could provide an alternative challenge for improving the level of the

assessment of food quality [13].

Data fusion is an emerging branch in chemometrics that analyzes the combination of

information provided by different instruments, since various sources of data can potentially

provide complementary information compared with the case of a single data source. Three

different fusion strategies have been designed, commonly named low-level data fusion

(LLF), mid-level feature fusion (MLF), and high-level decision fusion (HLF) [14]. The LLF

involves the collection of data from different sensors for the same samples, which are

then directly concatenated into a single matrix (after proper pre-processing) to obtain a

new, larger dataset. The limitations of LLF include the presence of a high volume of data

and the possible predominance of one data source over the others. Unlike LLF, the MLF

(feature level fusion) strategy integrates a feature extraction step which can incorporate

adequate original information, with the extracted features combined to build quantitative

or qualitative models. Previous issues encountered by the LLF are somehow resolved

in the MLF, as extraction significantly reduces the data dimensionality. In this scheme,

feature selection techniques and principal component analysis (PCA) are widely employed.

Feature level fusion is very useful for non-commensurate type data, i.e., if sensors are

looking for different physical parameters. However, the real challenge in this strategy is to

find the optimal combination of extracted features and pre-processing that describes the

significant variation of the original sensorial responses and provide the best final model. In

the HLF (decision level fusion), models are separately developed for each individual sensor

and the respective results are then integrated into a single final response. One advantage

of this scheme is that each individual produced model is treated independently; as such,

inferior performance from one model does not worsen the overall performance, unlike the

other fusion strategies. The challenge with this scheme, however, is that special care is

required to determine the most accurate individual models so that the combination of their

outputs will produce a superior performance.

Several approaches of the data fusion methods have been employed for meat quality

monitoring in terms of discrimination, adulteration, and prediction. Such case studies have

led to an interest in exploring data fusion methodologies that could decrease the uncertainty

of individual results and enable a superior performance in prediction. In one study, a

decision fusion method based on hyperspectral imaging (HSI) and an electronic nose

(e=nose) technique for moisture content prediction in frozen-thawed pork was explored

by comparing various approaches to extract the required features, while a partial least

squares (PLSR) regression model provided the prediction for moisture [15]. In another

study, the prediction of two important indicators, namely the total volatile basic nitrogen

(TVB-N) and TVC, for evaluating the quality of chicken fillets was investigated through the

use of two different HSI techniques, visible near-infrared (Vis-NIR) and NIR. Quantitative

predictions using PLSR were calculated after the feature wavelength selection [16]. A

low-cost e-nose was fused with Fourier transform-near-infrared (FT-NIR) spectroscopy to

detect the level of beef adulteration with duck. The TVB-N, protein, fat, total sugar, and

ash contents were measured to investigate the differences in basic properties between the

raw beef and the duck, while extreme learning based machine models were developed to
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identify the adulterated beef and predict the adulteration levels [17]. Robert et al. explored

the fusion of different spectroscopic techniques for meat analysis. Mid infrared (MIR), near

infrared (NIR), and Raman spectroscopy were fused in an LLF scheme to estimate fatty

acid composition in processed lamb using PLSR models [18]. In a prior study, Robert et al.

investigated the performance of LLF, MLF, and HLF schemes of Raman and infrared

spectroscopy to predict pH and the percentage of intramuscular fat content (% IMF) for red

meat quality parameters utilizing PLSR models. The HLF approach proved able to provide

the best performance for the pH parameter, while the LLF showed promising results in

predicting the percentage of IMF quality [19].

The main objective of this paper is to detect beef spoilage during aerobic storage

at various temperatures (0, 4, 8, 12, and 16 ◦C) through an advanced intelligence-based

decision support system. An HLF strategy of spectral information acquired by a multi-

spectral imaging (MSI) system and volatile fingerprints of odor profile obtained through

an e-nose will be utilized as a basis for the development of the proposed decision system.

The proposed analytical framework aims not only to predict the levels of meat indicators

(total viable counts, Pseudomonas spp., Brochothrix thermosphacta, and lactic acid bacteria)

encountered in beef samples but to categorize beef samples into three distinct classes (i.e.,

fresh, semi-fresh, and spoiled).

Data quantity is generally an issue of concern for machine learning applications, as

small datasets usually do not lead to a robust classification/prediction performance. How

to create some additional information from a small dataset is thus of considerable interest.

In the proposed fusion of MSI and e-nose devices, unfortunately, the individual obtained

sensorial data are not only limited but not equal in terms of the number of samples. This

latter issue practically introduces an inconsistency in fusing the information acquired by

different types of sensors. In this research, an efficient methodology for creating additional

“virtual” sample sets, thus improving the accuracy of the proposed decision support system,

was proposed. Inspired by the way the radial basis function (RBF) neural network manages

to approximate levels of microorganisms [20], a forward modeling process was used

to create additional “virtual” outputs for the levels of the meat indicators that need to

be predicted. In addition, an inverse RBF-based modeling process was used to create

additional “virtual” sensorial outputs for both the MSI and e-nose systems. The enhanced

datasets for both instruments, which include the additional “virtual” information, are then

subjected to a feature selection analysis, based on the Boruta algorithm, to identify the most

important features for both sensors. The selected features are then utilized as inputs to

regression models built to approximate relevant meat indicators for each sensorial device.

The related models’ outputs are then combined to provide the overall prediction. Finally,

based in these final predictions, a simple implemented classifier predicts the class of meat

samples also utilizing information from the provided sensory assessment. As the “heart”

of the proposed analysis is related to the development of accurate regression models for

each meat indicator, an adaptive fuzzy logic neural system (AFLS) was employed for this

task. Testing performances of the AFLS models are compared against the models usually

employed to related food microbiological applications, such as the PLSR and the multilayer

perceptron (MLP), as well as against traditional machine learning models, such as support

vector machines (SVM) and extreme gradient boosting (XGBoost), using a number of

established evaluation metrics. The overall “idea” of the implemented methodology is to

highlight the concept of multi-fusion analysis using advanced learning-based models in

the area of food microbiology.



Sensors 2025, 25, 3198 5 of 31

2. Experimental Case

2.1. Sample Preparation and Microbiological Analysis

The whole experimental work, as well as the related information acquired from

the application of the MSI and e-nose instruments to beef samples, was performed at

the Agricultural University of Athens, Greece. All detailed information related to the

microbiological as well as the sensorial analysis of the beef samples used in these tests can

be found in [5,21]. In brief, small pieces of fresh beef fillets were stored at the following

temperatures 0, 4, 8, 12, and 16 ◦C, under aerobic conditions, in incubators for up to 434 h,

subjected to storage temperature, until the spoilage effect was identified. This limited range

of temperatures was chosen to reflect adequately the monitoring of the spoilage effect, also

taking into consideration the practical limitations in such type of experiments. Due to time

and cost constraints, generally it is not possible to collect a wide range of real samples in

the area of food analysis, thus a suitable data analysis can assist researchers to overcome

this practical limitation. Duplicate samples were then collected for these storage conditions

at specific distinct time-steps in order to be utilized for the microbiological as well as the

sensorial-based analysis.

For the microbiological analysis, the following media were utilized to calculate specific

meat indicators. Total viable counts were enumerated on plate count agar (PCA), while

Pseudomonas spp. and Brochothrix thermosphacta were cultivated on a Pseudomonas CFC

selective agar (CFC) and a streptomycin thallous acetate actidione (STAA) agar medium,

respectively. Finally, for the case of lactic acid bacteria, enumeration was performed via

Man–Rogosa–Sharpe (MRS) agar. The acquired growth data were log10 transformed and,

through a model developed by Baranyi, specific kinetic parameters of microbial growth

(maximum growth rate as well as lag phase length) for the estimation of these four meat

indicators were calculated [21]. For this research study, although 84 beef samples were used

in microbiological analysis as well as in the MSI-based experiment, only a subset, compris-

ing 58 samples, was utilized in the e-nose experiment. This inconsistency in the number of

real samples utilized in these two sensorial-based experiments has been addressed through

the creation of additional synthetic data in order to maintain a uniformity during the fusion

data analysis.

The growth curves for the total viable counts (PCA agar), Pseudomonas spp. (CFC

agar), Brochothrix thermosphacta (STAA agar), and lactic acid bacteria (MRS agar) for the

obtained beef samples at these specific temperatures as a function of storage time are

illustrated at Figure 1a–d. An inspection at these graphs revealed that the growth rate of

the total viable counts graph increased faster as the storage temperature increased. This

is in agreement with the concept that any potential increase in temperature also affects

the number of bacteria responsible for spoilage. The maximum specific growth rate of

Pseudomonas seems to be comparable to the total viable counts, but also higher than of that

of the other two remaining microorganisms, with Brochothrix thermosphacta following very

closely. Finally, although the growth rate for lactic acid bacteria was always below the

others, such difference is diminished as the storage temperature increases.

2.2. Sensory Assessment

In parallel to the microbiological analysis, a sensory evaluation of the beef samples was

performed by a sensory panel at the same time intervals also used in the microbiological

analysis [5,21]. The evaluation was performed in artificial light, and all samples were left

to reach ambient temperature before starting the assessment where samples were scored

based on the perception of color, smell, and taste. The color and odor were determined

before and after cooking (20 min at 180 ◦C in a preheated oven), whereas taste was defined

after cooking.
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Figure 1. Growth curves for total viable counts (a), Pseudomonas spp. (b), Brochothrix thermosphacta (c),

and lactic acid bacteria (d) at various temperatures.

A three-class evaluation scheme was performed with one class to be associated with

the beef samples, that are characterized by the absence of off-flavors and are suitable

for consumption (fresh). Bright colors typical of fresh oxygenated meat were considered

to be an indication of fresh meat. Another class that corresponded to clearly off-flavor

development for which the sample was of an unacceptable quality was characterized

as spoiled. In this category, putrid, sweet, sour, or cheesy odors were considered to be

indicators of possible microbial spoilage. Finally, the remaining samples were categorized

as semi-fresh. For this group, an indication of change from that of typical fresh meat

(i.e., less bright red color, odor and flavor slightly changed, but still acceptable quality)

was observed.

Table 1 provides a summary of growth ranges for all meat indicators (shown with

their agar medium used) and their association with the groupings provided by sensory

assessment. These results again indicate the direct relation of temperature and bacteria

growth ranges. In most cases, a clear separation between the classes can be shown, although

in some cases a small overlapping of growth ranges between classes can be observed. This

can be explained by the fact that microbiological and sensory assessments were performed

independently and potential errors, either by the sensory panel or by the computational

model used to extract the growth ranges, can be found. Nevertheless, the information

included in Table 1 is considered to be valuable, as the main objective of this research is

the prediction of growth for each meat indicator, as well as the prediction of class through

the use of an intelligent model which will utilize sensorial outputs and temperature/time

parameters as model descriptors.
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Table 1. Categorization of growth ranges for all meat indicators.

Class Temp PCA CFC STAA MRS

◦C (log10CFU/g) (log10CFU/g) (log10CFU/g) (log10CFU/g)

Fresh (F)

0 3.208–3.742 2.809–3.643 2.048–2.920 1.887–2.444

4 3.146–3.712 3.397–4.375 2.866–3.091 2.479–2.426

8 3.058–4.336 2.815–4.665 2.236–3.796 1.989–2.785

12 3.502–4.514 3.042–4.994 1.864–4.235 2.516–3.727

16 3.566–3.807 3.544–3.652 2.791–2.859 2.617–2.861

Semi-fresh (SF)

0 4.099–5.818 4.40–6.748 3.761 4.975 2.012–3.455

4 3.507–7.005 4.77–7.204 3.544–6.892 2.61–4.707

8 5.688–6.762 5.364–7.151 4.324–6.096 3.672–4.879

12 4.989–7.854 5.284–8.047 4.364–6.531 4.042–5.579

16 6.263–6.371 6.229–6.948 5.397–5.566 4.919–5.232

Spoiled (S)

0 6.907–8.947 7.163–9.002 5.55–7.187 3.237–4.284

4 7.76–9.884 8.063–9.753 6.393–8.038 4.416–6.261

8 7.241–9.539 7.116–9.512 6.161–8.206 4.896–7.04

12 7.947–9.345 7.907–9.335 7.031–8.117 5.898–7.035

16 7.453–9.714 7.402–9.459 6.704–8.037 5.784–7.924

2.3. Electronic Nose Acquisition

The acquired volatile fingerprints of odor profile from each meat sample were ob-

tained through the use of the Libra e-nose [5]. The instrument, which was produced by

Technobiochip (Elba Island, Italy) [22], is composed by an array of eight 20 MHz quartz

crystal microbalance (QCM) transducers/sensors coated with different poly-pyrrole poly-

mer films and deposited by the Langmuir–Schaefer technique via a KSV 5000 instrument

(KSV Instruments, Helsinki, Finland). These polymer films were produced by the reaction

of pyrrole with different compounds (i.e., aldehydes); Table 2 summarizes the aldehydes

used for the chemical synthesis and the poly-pyrrole derivatives obtained.

Table 2. Active matrix used to coat the QCM sensors of the Libra e-nose.

Sensor Aldehydes Polymers–Derivatives

1 Phenanthrene-9-aldehyde Poly[2-(9-phenanthryl-ylmethyl)]-1H-pyrrole

2 trans-cinnamaldehyde Poly{2-[2-(2E)-3-phenylprop-2-enyl]}-1H-pyrrole

3 Ferrocene carboxaldehyde Poly(ferrocene)-1H-pyrrole

4 4-ethoxy-3-hydroxybenzaldehyde Poly[(2-ylmethyl)-2-2ethoxyphenol]-1H-pyrrole

5 Benzaldehyde Poly[2-(benzyl)]-1H-pyrrole

6 Thiophene-2-carboxyaldehyde Poly[2-(thien-2-ylmethyl)]-1H-pyrrole

7 1-acethyl-3-indole carboxaldehyde Poly[1-acetyl-1H-indole]-1H-pyrrole

8 Anisaldehyde Poly[2-4(methoxybenzyl)]-1H-pyrrole

These piezoelectric, in nature, transducers were placed in a measuring chamber. The

measuring chamber was held at a constant temperature during the measurements by a

thermostatic electronic system, while a flow system formed by a micro-electric valve and

a micro-pump transmits the gas sample to the measuring chamber. The functionality of
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each sensor is based on the mass variation (∆m) of the quartz surface, due to a direct

interaction between the sensing element and the volatile compounds. Based on a relation,

known as the Sauerbrey Law, the frequency–mass relationship can be defined, thus the

maximum increment of frequency between the initial and final frequency, after the sensor’s

exposure to the gas sample (∆fmax), can be obtained and used as the sensor’s response

for that specific volatile compound [23]. These sensors operate like biological receptors,

and the integrated data analysis system allows us to transpose information that the sensors

extract from an odor in an “olfactory image” analogous with our “sensation” of a smell.

The detection of odors is based on the perception that different odors are associated

with different “olfactory” images. This characteristic differentiates an e-nose from gas

chromatography where single molecular types inside a gaseous mixture are identified.

In the e-nose case, an odor is recognized as a whole, showing thus the synergic activity

of different molecular species into a single “olfactory” image. For each measurement, a

small beef fillet sample was introduced inside a 100 mL volume glass jar and left at room

temperature (20 ± 2 ◦C) for approx. 15 min (including the necessary cleaning of the sensors

in order to perform a single measurement) to enhance desorption of volatile compounds

from the sample into the headspace. The headspace was then pumped over the e-nose

sensors and the generated signal was recorded by a computer. Data related to the volatile

extracted information from the e-nose was further utilized towards the development of the

proposed intelligent-based analytical framework. The responses of all sensor signal classes

for meat samples stored at 4 ◦C are shown in Figure 2. Based on the three-class evaluation

scheme by the evaluation taste panel, the acquired 58 beef samples processed through the

e-nose based experiment were classified as fresh (15 samples), semi-fresh (19 samples), and

finally spoiled (24 samples).

  

Figure 2. Illustration of “volatile” responses at 4 ◦C (a) & responses based on different classes (b).

The e-nose signal responses, shown in Figure 2a, reveal a “rapid” slope characteristic

which can be seen in the middle of the graph. The area of this slope is related to semi-fresh

samples, at 4 ◦C, and a storage time between 73 and 144 h is “allocated” by the sensory

assessment to samples belonging to that specific category. Figure 2b illustrates the responses

of the e-nose sensors to samples belonging to different classes for samples stored at 0 ◦C.

2.4. Multispectral Imaging Acquisition

Images of the beef fillets were captured through the use of VideometerLab (Videometer

A/S, Hørsholm, Denmark), which acquired multispectral images at 18 distinct wavelengths

ranging from visible to the NIR region, and the values of the measured wavelengths were

405, 435, 450, 470, 505, 525, 570, 590, 630, 645, 660, 700, 850, 870, 890, 910, 940, and 970 nm.
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Each meat sample, presented in a Petri dish, was set in a specially made (Ulbricht) sphere,

which was coated with matte titanium paint to ensure a uniform reflection of the projected

light so that a uniform light formed on the entire sphere. A monochrome CCD imaging

sensor on top of the sphere gathered the surface reflections and recorded the data. Light-

emitting diodes (LEDs) were set at the rim of the sphere and each wavelength of LEDs with

narrowband spectral radiation distribution was evenly distributed across the entire edge.

The result was a monochrome image with 32-bit floating point precision for each LED type,

providing, at the end, a multispectral 3D cube of dimensionality 1280 × 960 × 18 [24].

The associated VideometerLab (version 2.12.39) software was used to perform imaging

tasks, such as image segmentation, into discrete regions. Following the segmentation

process for each specific wavelength, the mean reflectance spectrum was calculated by

averaging the pixels’ intensity in the region of interest (ROI). The acquired mean reflectance

values (totally 18 attributes) for each meat sample practically constitute the “spectral

signature” for that specific sample.

Figure 3a illustrates an example of the mean reflectance spectra acquired from the beef

fillet samples at various temperatures at the same time step (i.e., 24 h). It is interesting

to note that these specific samples have been categorized, by the sensory assessment, as

fresh samples, with the exception of the sample with temp = 16, which was classified

as semi-fresh. The schematic shown in Figure 3a reveals not only the complex dynamic

systems that characterize these biological cases (i.e., the prediction of meat indicators) but

the influence of time and temperature parameters to the behavior of such cases. Figure 3b

illustrates the spectral responses of beef samples stored under the same temperature but

collected at different time-steps, thus providing an indication of the applicability of the

specific sensorial method to detect meat spoilage.

  

Figure 3. Illustration of selected MSI-based spectral responses (a) & spectral responses based on

different classes (b).

A close look at these selected “mean” spectra in Figure 3a lead to some interesting

conclusions. Although these selected samples are associated with different temperatures,

their “mean” spectra follow a common pattern, where an increased trend in the reflectance’s

magnitude, especially for the visible part (400–700 nm), can be noticed, while their related

reflectance values are decreased in the near infrared range. According to the literature,

most of the spectral information used for meat discrimination is contained in the visible

and near infrared region [25], therefore the adopted feature selection process using the

Boruta method will try to verify this specific scenario. Following the sensory assessment

review, the 84 meat spectral samples obtained through the MSI-based experiment were

categorized as fresh (16 samples), semi-fresh (20 samples), and finally spoiled (48 samples).
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3. Synthetic Data Acquisition and Proposed Analytical Framework

The availability of data in terms of high quality/quantity is essential for the success

of various applications across a wide range of fields. Large datasets are needed because

of the basic idea that insights from such datasets may adjust decision-making and reveal

previously unnoticed patterns. Unfortunately, small dataset conditions exist in many fields,

such as food analysis, disease diagnosis, fault diagnosis, or deficiency detection in mechan-

ics, among others. In many cases/applications, it is not possible to obtain a large amount

of information, due to a number of reasonable causes. The main reason that small datasets

cannot provide adequate information, unlike large datasets, is that gaps between the sam-

ples may exist; even the domain of the samples cannot be ensured [26]. Thus, it is difficult

with a small dataset to approximate the pattern of high order nonlinear functions through

a standard machine learning model, since small sets have shown weakness in providing

the necessary information for forming population patterns. Hence, for a learning system

that lacks sufficient data, the knowledge learned is sometimes unacceptably rough or even

unreliable. Faced with this issue, the addition of some artificial data to a learning model

in order to increase its learning accuracy is one effective approach. In virtual/synthetic

data generation, the existing knowledge obtained from a given small dataset helps to create

virtual samples to improve performance in regression/classification tasks.

In this research, small datasets have been utilized in both sensorial experiments. In

the MSI-based case, spectral information and the related microbiological analysis from

84 beef samples were acquired, while for the e-nose-based case, a subset of used data

(i.e., 58 samples) were utilized to provide volatile organic compounds (VOCs) from odor

samples presented in the e-nose device. This inconsistency of data quantity in these two

sensorial experiments, creates a serious problem, and needs to be addressed before applying

any regression/classification techniques in the proposed fusion scheme. Thus, the first

objective of this section is focused on how to create additional “virtual” microbiological

data from the initial 84 beef samples, and then how to generate additional “sensorial”

MSI/e-nose responses. The final goal is eventually to create a larger dataset through

the usage of real/virtual data for both MSI and e-nose cases, and then to proceed to the

proposed data analysis.

3.1. Synthetic Data Acquisition

In this work, an efficient data expansion technique was utilized for the obtained small

dataset to create a new “virtual” sample set for the microbiological analysis. Inspired

by the way the radial basis function (RBF) neural network approximates a nonlinear

function through Gaussian local-basis functions, an RBF network was employed for each

“microorganism case” (i.e., total viable counts, Pseudomonas spp., Brochothrix thermosphacta

and lactic acid bacteria), utilizing the experimental microbiological data (i.e., 84 samples)

as a training set [27]. Four dedicated RBF networks using the orthogonal least squares

(OLS) learning algorithm have been constructed and with a smaller sampling time, through

a two-inputs network, a “continuous growth curve” was obtained for each case. The

RBF inputs included temperature level and sampling time-step, while the output was

related to the specific microorganism predictions. Each “continuous growth curve” was

verified against the real experimental data. Based on these continuous curves, 46 additional

“virtual” microbiological data were obtained.

Figure 4 illustrates a sample of these growth curves for these four microorganisms

at 0 ◦C temperature. Although in most cases there is a very close match between real

and virtual data, in some other cases, some discrepancy can be noticed (such as for lactic

acid bacteria). Such approximation performances can be explained by the fact that neural

networks are very good models for nonlinear function approximation with good inter-
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polating abilities. The results shown in the case of lactic acid bacteria illustrate that the

generation of “virtual” data is an outcome of a learning process without the effect of data

overfitting. Following this modeling procedure, a complete mixed real/virtual dataset

that incorporates microbiological predictions for 130 samples has been created. This final

microbiological dataset was then used to predict the class of these new “virtual” samples.

  

  

Figure 4. Modeling of microorganisms’ growth curves via RBF networks.

In this case, a multilayer neural network (MLP) with a two hidden layers structure was

utilized. Its input vector consisted of the four “microorganisms” indicators, the temperature

and time sampling, while the output node was dedicated to the class of the sample. The

84 real samples were used as the training set, while the newly acquired 46 “virtual” data as

the testing set. Rather than trying to create a distinct classifier, an effort has been made to

“model” the classes [28] via a regression procedure. This is an efficient and alternative way

to build a classifier without the need/complexity to define, in the model, the number of

classes via multiple outputs.

Initially, values of 10, 20, and 30 have been used, respectively, to associate the three

classes with a cluster center. During the identification process, the output values in the

range of [5, 15] were associated to the “fresh” class with the cluster center 10, values

of [15.01, 25] were associated to the “semi-fresh” class with the cluster center 20, and

finally values of [25.01, 35] were associated to the “spoiled” class with the cluster center

30. Figure 5 illustrates the classification results of these “virtual” data for the temperature

of 0 ◦C, where a clear consistency with the real data can be observed. The creation of

additional microbiological data for the “microorganisms” cases as well as the MLP-based

classifier for the classes definition is considered to be a “forward modeling” process, where

through some known information (i.e., time, temperature), an unknown parameter needs

to be predicted (i.e., growth rates, classes).
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Figure 5. Modeling of classes for “virtual” data using an MLP neural network.

However, the creation of “virtual” sensorial data is a more complicated task. In this

paper, inspired by the inverse identification of electronic nose data [29], a similar procedure

was adopted.

The MSI and e-nose outputs consist of 18 wavelengths and eight chemical sensorial

responses, respectively. All these attributes are considered to be independent, in the sense

that their individual responses are not dependent on the outputs of the others. Based

on this assumption, a specific RBF network was employed to model each one of these

attributes. In total, 26 dedicated RBF networks were trained to approximate the behavior of

the devices’ outputs.

The rationale of using an RBF over an MLP neural network, is that an RBF network

is a scheme that represents a function of interest by using members of a family of locally

supported basis functions [30]. The input vector for all RBF models included the four

microbiological indicators, temperature, sampling time, and the class, whereas the e-

nose/MSI outputs were considered to be the desired outputs. Based on this analysis,

72 additional “virtual” e-nose sensorial data (i.e., eight sensors per sample) and, similarly,

46 “virtual” MSI sensorial data (i.e., 18 wavelengths per sample) were created. Figure 6

illustrates the virtual/real sensorial outputs from three e-nose sensors (1st, 3rd, 8th) for

0 ◦C. A consistency between real vs. virtual outcomes can be observed. The aim of

this procedure was to produce additional sensorial outputs that satisfactorily capture the

nonlinear dynamics of the real sensorial outputs. No extreme or out-of-range responses

have been monitored through this process.

Similarly for the case of the MSI system, Figure 7 illustrates a sample of various

wavelengths where real and virtual data are shown. More specifically, results from four

(1st, 8th, 12th, 16th) wavelengths for 0 ◦C are illustrated. In system identification theory,

the inverse modeling process is considered more challenging from the forward one, as in

some cases, the inverted model cannot approximate adequately the inverse mapping of the

actual process [31]. The use of RBF networks, which utilize local basis functions, provides

an advantage over MLP neural networks, where a “global” approximation of the process is

attempted compared to the “local” approximation of the RBF network.

In order to evaluate the quality of the produced virtual data, two correlation matrices

of the real and all data have been produced, respectively, using MATLAB (v.2021a). Figure 8

illustrates the correlation matrices for both the real (left) and all data (right) for the case of

the e-nose system. For the correlation of the real samples, 58 sensorial outputs were utilized;

while, for the all-data case, the complete set of 130 samples, which included the newly

acquired virtual sensorial outputs, were utilized. A close correlation score of the matrix that

also includes virtual data compared to the matrix that incorporates only real data reveals a
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high level of consistency and validity. There are not significant deviations from the original

“real” correlation matrix, which suggests that the addition of extra “virtual” data, is able to

capture the complexity and behavior of the underlying data.

 

Figure 6. Real/virtual e-nose sensorial data for 0 ◦C.

 

Figure 7. Real/virtual MSI sensorial data for 0 ◦C.

Similarly to the e-nose case, relative correlation matrices for the MSI case are shown

in Figures 9 and 10, revealing a similar pattern to the previous case behavior. For the

correlation of the real samples, 84 sensorial outputs were utilized; while, for the all-data case,

the complete set of 130 samples, which included the newly acquired virtual wavelength

outputs, were utilized. The equivalent average correlation scores for real and all data were

0.723 and 0.684, respectively. Both cases reveal that the addition of the new “virtual” data

did not jeopardize the quality of the overall data.

The average correlation score for the real and complete correlation matrices were

0.7603 and 0.7323, respectively, showing similar correlation characteristics.
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Figure 8. Correlation matrices (real (left), all data (right)) for the e-nose sensorial outputs.

Figure 9. Correlation matrix of real data for the MSI wavelength outputs.

Figure 10. Correlation matrix of all data for the MSI wavelength outputs.

Another useful metric to check the quality of the produced “virtual” data, is the

mutual information (MI) criterion. The MI criterion measures how much knowing the

value of one variable reduces the uncertainty about the value of the other. In other words,

it explores how much information about one variable is contained in the other. The MI
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values are always non-negative, with larger values indicating a stronger relationship. In

this research, the “mutinformation” R function from the infotheo R package (R version 4.2.3)

has been utilized to calculate the MI for real and all data matrices. Figure 11 illustrates

the MI matrices for the e-nose case. The average MI score for the real and the complete

MI matrices for the case of the e-nose were 3.85 and 4.32, respectively, showing a level of

resemblance. The addition of the “virtual” sensorial outputs did not have any change that

could be considered to be unacceptable.

  

Figure 11. MI matrices (real (left), all data (right)) for the e-nose system.

Correlation and MI matrices seem to explain the results shown in Figure 6. Similarly to

the e-nose case, relative correlation matrices for the MSI case are shown in Figures 12 and 13

revealing a behavior similar to the previous case behavior, although with lower MI scores.

 

Figure 12. MI matrix of real data for MSI wavelength outputs.

Following the graphs at Figures 12 and 13, the related average scores for the MSI

system were 1.76 and 1.46 for the real and complete data, respectively. It has to be mentioned

that, for all MI cases, the “mutinformation” R function utilized the option to compute the

entropy of the empirical probability distribution. In summary, both correlation and mutual

information are ways to measure the relationship between two variables. However, they
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capture slightly different aspects of this specific relationship. While correlation measures

the degree to which the variables move together, mutual information measures the amount

of information they share.

Figure 13. MI matrix of all data for MSI wavelength outputs.

3.2. Integrated Analytical Framework

Figure 14 illustrates the proposed analytic concept, following the imaging and volatile

information acquisition from the MSI and e-nose systems, respectively. Although the

schematic illustrates the various steps of analysis, in reality this framework can be realized

into two stages. During the first stage, the offline part, the acquisition of spectral and

volatile organic compounds together with the related microbiological analysis needs to be

performed. Obviously, this is a time-consuming process, but it is required for the feature

selection analysis and the training of the various regression models, and eventually for

the training of the classifier which will predict the class of meat sample. The main idea of

this first stage is to build offline accurate models that will diminish the need of performing

microbiological analysis to each testing meat samples.

These models then could be used in the second stage, the online analysis of the meat

samples, where a fast response for the quality of the meat is required. In frequent time

periods, with the acquisition of new samples, the offline models can be updated/retrained

and then used later in the online analysis. The acquired spectral dataset consists of the mean

reflectance spectrum, while the relevant e-nose dataset includes sensorial responses ex-

pressed as frequency variations (∆f). Thus, for each meat sample, a vector of 18 wavelength

attributes, eight e-nose responses, and information related to storage time and temperature

was considered to be its input “signature”.

One essential issue in data analysis is to determine which actual sensorial attributes

could be considered important, thus reducing the initial high-dimensional feature space

provided by the sensorial systems. In the proposed framework, the Boruta feature selec-

tion (FS) method has been adopted, which is a well-known FS technique, and has been

implemented around the random forest (RF) algorithm.
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Figure 14. Proposed concept for data analysis.

The development of regression models that incorporate all available information, is the

next step of the analysis. The main aim at this stage is to associate the sensorial information,

the storage time, and the temperature with the outcomes of the microbiological analysis. As

illustrated in Figure 14, for each sensorial system and for each meat indicator, an individual

regression model based on neuro-fuzzy principles has been implemented. Neuro-fuzzy

models as learning systems incorporate into their “knowledge” information derived from

their interpolation abilities. This is an advantage of such systems compared to traditional

microbiological models which are built based on specific temperature information. Asso-

ciated regression predictions are then combined through an average fusion approach in

order to produce the final predictions for each meat indicator. These predictions together

with information from the storage time and temperature are then utilized in a simple PLSR

model to predict the class of meat samples.

4. Data Analysis Methodologies

4.1. Features Selection Scheme

The Boruta algorithm belongs to the wrapper family of features selection methods,

and is implemented around the random forest (RF) technique [32]. The RF algorithm is

based on the combination (or ensemble) of many decision trees. Random sampling of either

dataset or input features are the main characteristic of this scheme.

The Boruta algorithm is based on the same concept, and by adding randomness to the

model and gathering results from the ensemble of randomized samples, the influence of

random fluctuations and correlations that could result in a false outcome can be reduced.

During its operation, the so-called shadow attributes are added in the original dataset, as the

focus is to check the significance of real predictor variables against these shadow attributes
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through statistical testing and several runs of the RF algorithm. Figure 15 illustrates the

results for wavelength attributes acquired from the MSI system, as well as the storage time

and temperature parameters, revealing the importance of their related attributes; while,

in Figure 16, the related Boruta-based results are shown for the case of the e-nose. For

both cases, the newly created complete dataset, comprising 130 samples was utilized. The

columns in green are considered to be important attributes, while the ones in red are not.

Some attributes, shown with a yellow color, are considered to be “uncertain”. In these

two figures, the three blue bars have been introduced by the algorithm itself and represent

shadowMax, shadowMin, and shadowMean attributes.

Figure 15. Boruta extracted features for the total viable counts (MSI case).

Figure 16. Boruta extracted features for the total viable counts (e-nose case).

The specific analysis shown in Figure 15 is associated with the total viable counts

case, utilizing spectral information from the MSI system. Although the time parameter is

considered to be an important factor, temperature, on the other hand, receives much less

confidence. Similarly, results from the equivalent dataset for the total viable counts for the

e-nose case are illustrated in Figure 16. A significant difference in this case is that both time

and temperature parameters are considered potentially to be the best features.

The Boruta algorithm was implemented in R via the related Boruta R-package

(R version 4.2.3). The user can adjust the strictness of the algorithm by adjusting the

p values, that default to 0.01, and the maxRuns, which is the number of times the algorithm

is run. The higher the maxRuns the more selective you are in picking the variables. The

default value is 100, and has been used in this study. Table 3 summarizes all the results
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related to both the e-nose and the MSI cases. Illustrated results reveal that only six e-nose

features were most important, while seven wavelengths were considered to be the most

useful attributes for the case of the MSI system. The selected wavelengths from the Boruta

scheme “verifies” the suggestion extracted from [25], as the most important information is

mainly provided from the wavelengths located at the visible part of the MSI system.

Table 3. Summary of the selected by Boruta Attributes.

Sensors (Meat Indicators)
Selected Features

(Sorted by Importance Levels)

E-nose: Total Viable Counts (PCA) time, temp, e1, e8, e3, e7, e4, e6

E-nose: Pseudomonas spp. (CFC) time, temp, e1, e8, e7, e3, e4, e6

E-nose: Brochothrix thermosphacta (STAA) time, temp, e1, e8, e3, e7, e4, e6

E-nose: Lactic Acid Bacteria (MRS) temp, time, e1, e8, e3, e7, e4, e6

MSI: Total Viable Counts (PCA) m12, m11, m9, time, m10, m8, m1, m2

MSI: Pseudomonas spp. (CFC) m12, m11, time, m9, m10, m8, m1, m2

MSI: Brochothrix thermosphacta (STAA) m12, m11, m9, m10, time, m8, m2, m1

MSI: Lactic Acid Bacteria (MRS) m12, temp, m11, m8, m9, m10, time, m4

4.2. Adaptive Fuzzy Logic System (AFLS)

Fuzzy logic systems represent the imprecision found in real-world problems using

if/then rules expressed in a natural language. Although neural networks (NNs) have good

learning abilities, fuzzy logic systems lack such characteristics. The main idea in neuro-

fuzzy (NF) systems is to merge the capabilities of model-free and trainable systems and the

noise tolerance of NNs with the ability of dealing with imprecise situations from the fuzzy

set theory. ANFIS is a classic example of the NF approach, where the number of fuzzy rules

is related to the number of input variables as well as the number of membership functions

for each input. The proposed AFLS scheme does not follow ANFIS’s architecture, as the

number of memberships for each input variable is directly associated to the number of rules;

hence, the “curse of dimensionality” problem that usually appears in the ANFIS scheme is

significantly reduced. In addition, AFLS utilizes a defuzzification approach, namely area of

balance (AOB), which tries to resemble the well-known, but computationally expensive,

centroid of area (COA) defuzzification scheme [33]. The AFLS structure is illustrated at

Figure 17. AFLS’s parameters can be trained like an NN approach; however, the overall

structure follows the process of a fuzzy logic system.

The first layer is the fuzzification layer and its nodes represent the fuzzy sets used

in the antecedent parts of the fuzzy rules. A fuzzification node receives an input and

determines the degree to which this input belongs to in the node’s fuzzy set. The outputs

of this layer are the values of the “Gaussian-shape” membership functions (MF) for the

input values.

µFm
i
(xi) = exp

[

−
(xi − cm

i )
2

2(bm
i )

2

]

(1)

where cm
i and bm

i are the center and spread parameters of the membership function for the

ith input and the mth rule. The next layer is the inference layer, which is related to the rules’

firing strength. Since each fuzzy rule’s antecedent part has an AND connection operator,
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in this paper, the firing strengths are calculated using the product T-norm operator (i.e.,

multiplication). Thus, the output of this layer has the following form:

µm(x) =
n

∏
i=1

µFm
i
(xi), m = 1, 2, . . . , M (2)

where µFm
i
(xi) is the membership value of the ith input of rule m. The number of rules at

this layer is equal to the number of MFs allocated to each input variable, thus minimizing

the problem of the excessive number of rules usually encountered in the case of the ANFIS

model. The most popular defuzzification methods in fuzzy logic systems are the centroid of

area (COA) and center average (CA) schemes. Although more accurate than the latter, the

former is well known for its computational cost. Centroid calculation returns the centroid

of the area formed by the consequent membership function, the membership value of its

rules and the max–min or max- product inference. Some of the COA’s main characteristics,

such as the center of gravity and the use of the shape of membership function, have been

adopted in the proposed AOB scheme [33].

Figure 17. Schematic for the AFLS architecture.

In general, the calculation of the output, y, is defined as follows:

yp =

M

∑
m=1

µmLm
p ym

p

M

∑
m=1

µmLm
p

(3)

where yp is the pth output of the network, µm is the membership value of the mth rule, Lm
p is

the spread parameter of the membership function in the consequent part of the pth output

of the mth rule, and ym
p is the center of the membership function in the consequent part of

the pth output of the mth rule. The gradient descent learning algorithm was applied for the

training phase in order to update its various parameters. The update equations for ym
p , Lm

p ,

cm
i , and bm

i are as follows:

ym
p (n + 1) = ym

p (n) + my[y
m
p (n)− ym

p (n − 1)]− ηy
∂J

∂ym
p
|n (4)
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Lm
p (n + 1) = Lm

p (n) + mL[L
m
p (n)− Lm

p (n − 1)]− ηL
∂J

∂Lm
p
|n (5)

cm
i (n + 1) = cm

i (n) + mc[c
m
i (n)− cm

i (n − 1)]− ηc
∂J

∂cm
i

|n (6)

bm
i (n + 1) = bm

i (n) + mb[b
m
i (n)− bm

i (n − 1)]− ηb
∂J

∂bm
i

|n (7)

where, Jk the objective function is defined as follows:

Jk =
1

2

P

∑
p=1

(yp(xk)− dp(xk))
2 (8)

with P is the number of outputs, dp is the desired response of the pth output, and yp(xk) is

defined as in Equation (3). The AFLS architecture has been implemented in MATLAB (ver.

R2021a, Mathworks.com).

5. Learning Models for Regression and Classification Tasks

The main objective in this paper is the efficient estimation of the level for each of

these specific” microorganism cases” (i.e., total viable counts, Pseudomonas spp., Brochothrix

thermosphacta and lactic acid bacteria) through the fusion of the MSI and e-nose systems. In

addition to selected sensorial outputs, information related to specific time-steps at which

beef samples were analyzed during storage and temperature levels was considered to be

an additional input to the various employed learning models. A follow-up objective is

to predict the class of testing meat samples to their “quality” class (i.e., fresh, semi-fresh,

spoiled). A simple PLSR model has been employed to predict the “class” of these samples,

receiving as inputs, information from temperature, time storage, and the predicted fusion

estimations for each microorganism case. One of the key elements of the proposed frame-

work, shown in Figure 14, are the regression models to estimate related “microorganism”

cases. The AFLS scheme has been employed as a regression model, while the obtained

results are compared with those obtained by the MLP neural networks, support vector

machines (SVM), extreme gradient boosting (XGBoost), and PLSR models. The MLP, SVM,

and XGBoost algorithms are considered very popular in the area of machine learning,

while PLSR has been extensively used in food microbiological applications. In fact, PLSR’s

low complexity, and its ability to provide generally satisfactory results, have attracted the

interest of researchers in this specific application field.

The final dataset for each sensorial case (MSI/e-nose) consisted of 130 meat samples,

which also incorporated the additional “virtual” generated samples. For each sample

(real/virtual), sensorial outputs, storage time and temperature information, type of class,

and the estimation of the level for each of these specific “microorganism cases” has been

available. In this research study, two schemes have been considered for the training/testing

stages. In the first scheme, the initial (MSI/e-nose) datasets were divided into training

subsets with approx. 89% of the data and testing subsets with the remaining 11% (i.e.,

15 samples). For these testing subsets, only real samples/sensorial responses were con-

sidered. These 15 testing samples were common in both the MSI and e-nose experiment

and, for each temperature, three representative samples were selected. More specifically,

samples at 48, 168, and 359 h time steps were chosen for 0 ◦C, at 24, 12, and 311 h for

4 ◦C, at 24, 69, and 175 h for 8 ◦C, at 16, 48, and 100 h for 12 ◦C and at 12, 36, and 77 h for

16 ◦C. In total, five testing samples were allocated to each meat class. For the second train-

ing/testing scheme, the leave-one-out cross-validation (LOOCV) has been employed. This

is a well-known procedure applied in cases where the number of observations/samples is
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small, and the separation of the dataset into training and testing subsets is considered that

it would result in insufficient training of the leaning model [34].

The performance of these learning regression models has been evaluated through a

number of well-established metrics. The measure of goodness-of-fit for model comparison

in food microbiology is performed with the squared correlation coefficient (R2). This metric

can be explained as the ratio of the variance of the predicted responses from the objective

related responses. It is considered to be a suitable evaluation criterion only under the

condition that the error is normally distributed and not dependent on the mean value. In

reality, for the case of bacteria growth, the distribution of the error is not clearly known,

thus this metric should be used with caution, particularly in nonlinear-based regression

models [35]. Similarly to general purposes regression case studies, evaluation metrics,

such as the mean absolute percentage error (MAPE), the root mean squared error (RMSE),

the standard error of prediction (SEP), the absolute percentage error (APE), and the mean

absolute error (MAE) metrics, have also been explored in this research. Finally, three

chemometric metrics, which are used extensively in spectroscopic applications, namely

residual prediction deviation (RPD), range error ratio (RER), and the ratio of performance

to interquartile distance (RPIQ), were also utilized in this paper. The RPD is calculated

as the ratio of the standard deviation of the desired variable to the RMSE. Any model

with an RPD value above three is generally assumed to be an excellent model in terms

of reliability. The ratio of performance to interquartile distance (RPIQ), which is defined

as an interquartile range of the observed values divided by the RMSE, is considered to

be a metric of model validity that is more objective than the RMSE. A larger RPIQ value

is considered to be desirable. Finally, the range error ratio (RER) is equal to the range in

the observed values (i.e., the maximum value minus the minimum value) divided by the

RMSE. Any RER value above 10 is considered to be desirable [36].

5.1. “Regression” Task

All regression models for each microorganism case have been implemented utilizing

the same input vector which is illustrated in Table 3. Initially, models were developed

based on the reduced (115/15) dataset scenario. Using a trial and error method, it has been

found that the chosen number of fuzzy rules was ranged between 10 and 16 for these AFLS

models used to approximate the specific microorganism case for each sensorial system. The

number of membership functions for each input variable is directly associated with the

number of rules; hence, each input signal is “distributed” through Gaussian functions with

different centers and widths to every rule node via a product operator. The values of the

parameters (centers and widths) of the Gaussian membership functions have been adjusted

by the gradient descent (GD) learning algorithm that was utilized as a learning scheme.

Although the AFLS scheme shared with the MLP model the same learning algorithm, the

training time was completed in less than 1000 epochs, much faster from the equivalent time

used to train the MLP neural network.

For all these microorganism cases, illustrated via the name of the agar medium used,

scatter plots of the predicted (via AFLS) vs. the observed testing samples for the reduced

case are illustrated in Figures 18 and 19, which reveal a very good distribution around the

line of equity (y = x), with the vast majority of the data included within the ±0.5 log area,

especially for the fusion (i.e., average) scheme.
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Figure 18. AFLS prediction models for PCA and CFC cases.

   

Figure 19. AFLS prediction models for STAA and MRS cases.

Even though the fusion scheme seems to be more accurate, it is interesting to notice

the performances of the e-nose and MSI cases from these figures. It is rather difficult to

confirm which sensorial device is the winner. This is due to the fact that the e-nose sensors

and MSI wavelengths “capture” different characteristics of the same meat sample. Such

diversity in the acquired results from the MSI and the e-nose is evidence of the validity of

the sensor fusion hypothesis.

The testing performance of all the developed models to predict the above mentioned

microorganism cases in the beef samples, in terms of statistical indices, are presented in

Tables 4 and 5. Even though fusion (via averaging) results for all the microbiological cases

are superior, it is interesting to notice that the obtained individual per device results are

acceptable, by checking especially the chemometric metrics for RPD, RER, and RPIQ. Such

values reveal a clear robustness of the produced AFLS models.

Traditionally, in machine learning based applications, a common practice is to compare

any proposed algorithm against other well-established methods in order to validate the

chosen approach. In this research, four alternative regression models have also been

developed. An MLP network utilizing two hidden layers, as well as a partial least squares

regression (PLSR) scheme have also been implemented, due to the fact that these two

schemes have been widely utilized in such applications. Additionally, support vector

machine (SVM) and extreme gradient boosting (XGBoost) models, widely used in machine

leaning, have been added due to the fact these specific algorithms are usually considered
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to be “competitors” to neural networks. The performance of all these models to predict the

above mentioned microorganism cases for both the MSI and e-nose scenarios, in terms of

statistical indices, are presented in Tables 6–9.

Table 4. Performance of developed AFLS models for the total viable counts and Pseudomonas spp.

PCA (Agar Medium) CFC (Agar Medium)

Statistical Indices MSI/AFLS E-Nose/AFLS Fusion MSI/AFLS E-Nose/AFLS Fusion

Root mean squared error (RMSE) 0.4308 0.3274 0.3403 0.3435 0.4020 0.2816

Mean absolute percentage
error (MAPE)

6.5593 4.9241 5.0147 4.8042 5.9302 4.1374

Standard error of prediction (SEP %) 6.9755 5.3001 5.5088 5.3841 6.3013 4.4150

APE 98.3894 73.8616 75.220 72.0636 88.9525 62.0615

MAE 0.3577 0.2683 0.2841 0.2912 0.3037 0.2348

Residual Prediction
Deviation (RPD)

5.6951 7.4953 7.2113 6.8991 5.8948 8.4133

Range Error Ratio (RER) 15.2440 20.0626 19.3024 17.9403 15.3289 21.8781

Ratio of Performance to
Interquartile distance

11.6884 15.3831 14.8002 15.0470 12.8568 18.3497

R-squared (R2) index 0.9866 0.9905 0.9903 0.9887 0.9847 0.9924

Table 5. Performance of developed AFLS models for Brochothrix thermosphacta and lactic acid bacteria.

STAA (Agar Medium) MRS (Agar Medium)

Statistical Indices MSI/AFLS E-Nose/AFLS Fusion MSI/AFLS E-Nose/AFLS Fusion

Root mean squared error (RMSE) 0.4562 0.4304 0.3949 0.2992 0.2906 0.2343

Mean absolute percentage
error (MAPE)

7.1527 7.4047 6.4982 6.2377 6.1811 5.5705

Standard error of prediction (SEP %) 8.6887 8.1971 7.5206 6.9581 6.7587 5.4489

APE 107.2905 111.071 97.4723 93.5653 92.7165 83.5570

MAE 0.3575 0.3373 0.3240 0.2159 0.2128 0.1803

Residual Prediction
Deviation (RPD)

4.6746 4.9549 5.4007 6.0966 6.2764 7.7852

Range Error Ratio (RER) 12.7553 13.5202 14.7365 16.9449 17.4447 21.6383

Ratio of Performance to
Interquartile distance (RPIQ)

9.5077 10.0779 10.9845 11.0430 11.3687 14.1016

R-squared (R2) index 0.9761 0.9789 0.9820 0.9877 0.9865 0.9915

The performance of the classic MLP neural network can be considered to be acceptable,

although inferior to the related AFLS performance. Especially for the e-nose/STAA case,

the MLP model, built with the backpropagation learning algorithm, achieved a rather

comparable performance against the equivalent AFLS model. However, such performances

were achieved with a relative high computational cost (more than 10,000 epochs). A

two hidden layers structure was adopted for all models, while the number of nodes in the

first and second hidden layers were ranged between 16 and 20 and 8 and 12, respectively.

Overall, both the AFLS and MLP models revealed their robustness in predicting such

complex dynamic characteristics as these microorganisms, regardless of the sensorial
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device used, proving that these learning architectures can be considered to be general

purpose learning schemes.

A support vector machine (SVM) is a powerful machine learning approach based on

statistical learning theory. Its advantages over the MLP models include a global optimal

solution and robustness to outliers. In the context of regression, SVM aims to find a

hyperplane that maximizes the margin between the predicted values and the actual values.

It utilizes the so-called support vectors, which are the data points closest to the hyperplane,

to define the regression line. The specific SVM used in this research involves epsilon support

vector regression (ε− SVR). The value of epsilon is used to measure the error between

the predicted and the real values in a high-dimension space, and its value is determined

based on practical experience. For this specific case study, SVR models were implemented

in R using the e1071 R package. The penalty coefficient C was ranged to values >200, the

gamma (γ) parameter that controls the smoothness of the decision boundary in the feature

space was set to values >0.01, while the epsilon tolerance value was set to values >0.03.

The results shown in Tables 6–9 reveal an inferior regression performance over the MLP

network; however, these results could be considered to be acceptable as the calculated

RPD was greater than three. Similarly to the MLP case, the SVM revealed a rather stable

performance regardless of the sensorial device used.

Table 6. Performance of machine learning models for the total viable counts.

Statistical Indices
(PCA)

MSI/MLP E-Nose/MLP MSI/SVM E-nose/SVM MSI/XGB E-Nose/XGB MSI/PLS E-Nose/PLS

RMSE 0.4457 0.4872 0.5764 0.5943 1.0214 0.4699 1.2866 1.3004

MAPE 7.0985 7.8585 10.1085 8.8193 15.5995 6.8770 21.9661 20.9216

SEP 7.2155 7.8871 9.3320 9.6212 16.537 7.6078 20.8308 21.0542

APE 106.4782 117.8780 151.6279 132.2893 233.9923 103.1557 329.4915 313.8234

MAE 0.3852 0.3839 0.4959 0.4506 0.7404 0.3704 1.1137 1.0281

RPD 5.5057 5.0369 4.2570 4.1290 2.4022 5.2218 1.9071 1.8869

RER 14.7370 13.4820 11.3946 11.0521 6.4301 13.9770 5.1046 5.0504

RPIQ 11.2996 10.3374 8.7368 8.4742 4.9303 10.7169 3.9140 3.8725

R-squared (R2) 0.9858 0.9802 0.9766 0.9691 0.9097 0.9805 0.8754 0.7018

Table 7. Performance of machine learning models for Pseudomonas spp.

Statistical Indices
(CFC)

MSI/MLP E-Nose/MLP MSI/SVM E-Nose/SVM MSI/XGB E-nose/XGB MSI/PLS E-Nose/PLS

RMSE 0.4077 0.4748 0.5612 0.6457 0.8082 0.5397 1.2042 1.3235

MAPE 6.9344 7.6559 9.1870 10.7023 12.1288 7.3531 20.1532 19.0529

SEP 6.3909 7.4438 8.7976 10.1217 12.6693 8.4612 18.8773 20.7480

APE 104.0153 114.8391 137.8048 160.5343 181.9317 110.2960 302.2983 285.7942

MAE 0.3360 0.3698 0.4941 0.5069 0.6007 0.4478 1.0098 0.9391

RPD 5.8122 4.9901 4.2222 3.6699 2.9319 4.3901 1.9677 1.7903

RER 15.1140 12.9763 10.9794 9.5431 7.6242 11.4160 5.1169 4.6555

RPIQ 12.6765 10.8836 9.2087 8.0041 6.3946 9.5749 4.2916 3.9047

R-squared (R2) 0.9889 0.9791 0.9741 0.9602 0.9474 0.9745 0.8867 0.8197
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Table 8. Performance of machine learning models for Brochothrix thermosphacta.

Statistical Indices
(STAA)

MSI/MLP E-Nose/MLP MSI/SVM E-Nose/SVM MSI/XGB E-Nose/XGB MSI/PLS E-Nose/PLS

RMSE 0.5118 0.4609 0.6323 0.5182 0.9828 0.6154 1.1933 1.1775

MAPE 8.8372 8.5708 11.5118 8.1113 16.9262 11.4935 23.0652 20.7943

SEP 9.7480 8.7772 12.0431 9.8691 18.7183 11.7213 22.7277 22.4261

APE 132.5582 128.5623 172.6772 121.6690 253.8926 172.4024 345.9773 311.9145

MAE 0.4192 0.3718 0.5537 0.3910 0.7318 0.5059 0.9883 0.9073

RPD 4.1666 4.6275 3.3726 4.1155 2.1699 3.4652 1.7871 1.8111

RER 11.3692 12.6267 9.2026 11.2297 5.9208 9.4552 4.8763 4.9419

RPIQ 8.4745 9.4119 6.8595 8.3706 4.4133 7.0479 3.6348 3.6837

R-squared (R2) 0.9704 0.9748 0.9553 0.9726 0.8915 0.9570 0.8402 0.8217

Table 9. Performance of machine learning models for lactic acid bacteria.

Statistical Indices
(MRS)

MSI/MLP E-Nose/MLP MSI/SVM E-Nose/SVM MSI/XGB E-Nose/XGB MSI/PLS E-Nose/PLS

RMSE 0.3537 0.3487 0.4548 0.4077 0.7101 0.3248 0.8838 1.1389

MAPE 7.1321 8.8841 10.7273 9.9954 15.5532 6.5759 20.8279 26.8953

SEP 8.2249 8.1092 10.5769 9.4815 16.5126 7.5522 20.5536 26.4858

APE 106.9813 133.2616 160.9088 149.9311 233.2984 98.6381 312.4180 403.4299

MAE 0.2565 0.2872 0.3916 0.3374 0.5270 0.2633 0.7071 0.8834

RPD 5.1576 5.2312 4.0107 4.4741 2.5690 5.6170 2.0639 1.6016

RER 14.3351 14.5396 11.1473 12.4352 7.1402 15.6119 5.7364 4.4516

RPIQ 9.3421 9.4754 7.2647 8.1040 4.6533 10.1742 3.7384 2.9011

R-squared (R2) 0.9807 0.9813 0.9671 0.9764 0.9159 0.9841 0.8775 0.7734

The XGBoost algorithms belong to the group of ensemble learning, specifically boost-

ing, where multiple weak learners (typically decision trees) are jointly used to create a

robust and accurate predictive model [37]. The goal is to minimize a loss function, and each

weak learner is projected to correct the errors in the present ensemble. The algorithm’s

strength stems from its ability to balance predictive accuracy and regularization, making it

flexible and suitable for a wide range of machine learning applications. In this research,

the XGBoost R package was employed to apply this algorithm for this application. The

results shown at Tables 6–9 reveal some diversity in terms of the sensorial device used

and the specific microorganism case. Generally speaking, the application of XGBoost to

the MSI cases was disappointed. A very low RPD value, along with the other metrics,

proved the difficulty of this algorithm to handle this specific regression application. On the

other hand, the e-nose application was much more improved, especially with the cases of

PCA and STAA, where the algorithm really achieved a remarkable performance. Finally,

a partial least squares regression (PLSR) scheme was applied to the same datasets. The

PLS models were constructed using the same input vectors as the previous models, while

the PLS_Toolbox (v. R9.1) software in association with MATLAB was used to perform the

PLS analysis. The SIMPLS algorithm was chosen as the appropriate optimization scheme.

The algorithm calculates the PLS factors directly as linear combinations of the original

variables. These factors are determined so as to maximize a covariance criterion, while

obeying certain orthogonality and normalization restrictions. It is well known that, in

the modeling of real complex processes, linear PLSR has some difficulties, since most real

problems are inherently nonlinear and dynamic. Although the method has a very low

computational cost, and has wide applicability in food microbiological applications, the
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obtained results in all cases were rather disappointing. A close inspection at these results

reveals that, for the case of the PLSR scheme, the obtained RPD values revealed that such a

model cannot be considered to be acceptable/preferable.

Additionally, for each microorganism case, the proposed AFLS architecture was imple-

mented in a LOOCV scenario for both the MSI and the e-nose components. Tables 10 and 11

illustrate the related results via the same performance indices. Similar to the previous

scenario, even in the LOOCV scheme, the proposed average fusion scheme outperformed

the individual sensorial performances.

Table 10. Performance of AFLS models for the total viable counts and Pseudomonas spp. (LOOCV).

LOOCV PCA CFC

Statistical Indices MSI/AFLS E-Nose/AFLS Fusion MSI/AFLS E-Nose/AFLS Fusion

Root mean squared error (RMSE) 0.2874 0.2527 0.2641 0.2300 0.2801 0.2285

Mean absolute percentage
error (MAPE)

3.7146 3.3232 3.4696 2.7251 3.6827 2.8026

Standard error of prediction (SEP %) 4.1151 3.6183 3.7819 3.2029 3.9012 3.1830

APE 482.901 432.012 451.051 354.2651 478.7495 364.341

MAE 0.2169 0.1978 0.2041 0.1754 0.2176 0.1755

Residual Prediction
Deviation (RPD)

7.5110 8.5421 8.1726 9.0345 7.4173 9.0909

Range Error Ratio (RER) 23.7522 27.0132 25.8446 30.1961 24.7906 30.3843

Ratio of Performance to
Interquartile distance (RPIQ)

14.5431 16.5397 15.8242 15.9582 13.1015 16.0576

R-squared (R2) index 0.9911 0.9931 0.9925 0.9939 0.9912 0.9939

Table 11. Performance of AFLS models for Brochothrix thermosphacta and lactic acid bacteria (LOOCV).

LOOCV STAA MRS

Statistical Indices MSI/AFLS E-Nose/AFLS Fusion MSI/AFLS E-Nose/AFLS Fusion

Root mean squared error (RMSE) 0.2647 0.2884 0.2512 0.2038 0.1995 0.1826

Mean absolute percentage
error (MAPE)

3.8102 4.4230 3.6768 4.0068 3.8460 3.5722

Standard error of prediction (SEP %) 4.4848 4.8860 4.2556 4.3433 4.2504 3.8910

APE 495.3237 574.9856 477.985 520.8866 499.9811 464.381

MAE 0.2019 0.2255 0.1938 0.1601 0.1493 0.1399

Residual Prediction
Deviation (RPD)

6.8744 6.3100 7.2447 8.3649 8.5479 9.3373

Range Error Ratio (RER) 23.9570 21.9901 25.2473 29.6170 30.2648 33.0598

Ratio of Performance to
Interquartile distance (RPIQ)

11.6597 10.7024 12.2877 15.2465 15.5800 17.0189

R-squared (R2) index 0.9909 0.9876 0.9905 0.9937 0.9931 0.9944

In summary, these regression results justified the need for advanced learning methods

to regression tasks related to food analysis. The generic algorithms in machine learning,

like MLP and SVM, proved their suitability, even if they have been outperformed by the

hybrid neuro-fuzzy models. However, it was a surprise to see algorithms well known for

their regression capabilities, like XGBoost, produce such diverse experience. One of the
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lessons learned by this research is that we always need to provide “tailored” solutions to

specific problems. Unfortunately, in such types of applications, it is also rather restricted

to accommodate an enormous amount of experimental data. Therefore, researchers need

to search for methodologies that will enable them to create additional “virtual” data. In

this research, through the use of RBF neural networks, additional data (microbiological as

well as sensorial) were created, keeping the number of available temperatures constant. It

might be interesting, in a future work, to investigate the creation of additional data in an

expanded range of temperatures, and then to explore how a set of experimental data in a

given temperature will perform in a regression task (through the interpolation abilities of

learning based systems).

5.2. “Classification” Case Study

The final step in the proposed analytic framework is related to the identification of the

class of testing meat samples. For this specific step, a simple PLSR scheme was employed in

order to predict the type of class (i.e., fresh/semi-fresh/spoiled) of meat. This PLSR scheme

was applied in the reduced scenario case (115 training vs. 15 testing samples respectively).

The input vector consisted of the final four microorganism prediction levels (PCA, CFC,

STAA and MRS) after the fusion, storage time, and temperature while the output of the

regression model corresponded to the three-class cases (10, 20, and 30) which correspond

to fresh/semi-fresh/spoiled classes. Details of the proposed PLSR scheme is shown in the

following equation:

class = −0.954 − 0.0195 ∗ time − 0.1624 ∗ temp + 1.591 ∗ PCA

+2.432 ∗ CFC + 1.903 ∗ STAA − 2.2963 ∗ MRS
(9)

Table 12 shows the related PLSR results on the testing dataset. It is clear that a 100%

classification rate has been achieved, thereby verifying the validity of the framework

concept shown at Figure 14.

Table 12. Classification results for the testing dataset.

Time Temp PCA CFC STAA MRS
Desired

Class
PLSR

Prediction
PLSR Result

(Final)

48 0 3.47515 3.3747 2.3816 2.1003 10 11.559 10
168 0 4.5838 5.38975 4.34245 2.45425 20 18.805 20
359 0 8.21335 8.7311 6.39665 4.0456 30 29.239 30
24 4 3.2697 3.3064 2.5853 2.26775 10 10.888 10
120 4 5.5187 6.03515 4.73315 3.7837 20 19.840 20
311 4 9.3794 9.4273 7.93495 6.1031 30 31.278 30
24 8 3.81395 4.07665 3.1419 2.62495 10 13.217 10
69 8 6.13685 6.1534 5.2455 4.3246 20 21.189 20
175 8 9.1766 9.3283 7.932 6.78135 30 31.155 30
16 12 3.6754 3.79265 3.39145 2.96915 10 11.497 10
48 12 6.8696 6.8725 5.44085 4.9119 20 22.888 20
100 12 8.88765 8.89565 7.7497 6.72955 30 30.228 30
12 16 3.8322 3.79655 2.95985 3.15915 10 9.926 10
36 16 6.82745 7.197 5.9492 5.69395 20 22.367 20
77 16 9.203 9.132 7.85485 7.19205 30 30.242 30

Although, in this specific case study, only two individual sensing devices were utilized

and their subsequent fusion was based on a simple average scheme, such a concept could

be easily extended to include additional sensors and thus more advanced fusion strategies

could be applied.
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6. Conclusions

In this research, a proposed machine learning based framework for the detection of

meat spoilage through the fusion of MSI and e-nose information has been investigated. The

limitation of small size available datasets was addressed with the generation of additional

“virtual” microbiological and sensorial data through the use of radial basis function neural

networks. Feature selection analysis for each sensorial device was performed via the Boruta

algorithm, while the AFLS NF regression models were employed to approximate each

microorganism case through a high level fusion scheme. The performance of the AFLS

models was evaluated through a number of established metrics, and compared successfully

against the MLP, SVM, XGBoost, and PLSR models. Finally, a simple PLSR model was

employed to predict the type of testing for the meat samples into three distinct classes,

namely fresh, semi-fresh, and spoiled. Even though the performance of the implemented

analytical framework was great, a number of open issues still remain. Future work will

concentrate on modifying the existing analytical framework by incorporating additional

sensorial information, such as FTIR, and utilizing an ensemble stacking model instead

of the classic average fusion scheme. Although it achieved a robust performance, the

AFLS model needs to be modified, as currently the number of fuzzy rules are chosen

by the user. It would be interesting to automate this structural process by introducing a

clustering component that will determine the number of input memberships/fuzzy rules.

Neural networks are considered to be the most advanced techniques of automated data

generation. They can handle much richer data distributions than traditional algorithms,

such as decision trees. Although currently, an RBF neural network was utilized as the data

generator, alternative algorithms based on neural network principles, such as variational

autoencoders and generative adversarial networks, could provide an alternative solution.

Obviously, the application domain can be expanded by investigating a freshness assessment

for pork, poultry, and fish products. Similarly, the quality evaluation of fruits is of particular

interest, through the use of multiple sensorial devices. Finally, authentication and control

of adulteration are crucial for the meat and olive oil industry to ensure levels of quality for

their products, as well as to safeguard the health and safety of consumers.
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