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Abstract 

Chemical-shift encoded MRI (CSE-MRI) is a widely used technique for the study of body 
composition and metabolic disorders, where derived fat and water signals enable the 
quantification of adipose tissue and muscle. The UK Biobank is acquiring whole-body 
Dixon MRI (a specific implementation of CSE-MRI) for over 100,000 participants. Current 
processing methods associated with large whole-body volumes are time intensive and 
prone to artifacts during fat-water separation performed by the scanner, making quan-
titative analysis challenging. The most common artifacts are fat-water swaps, where the 
labels are inverted at the voxel level. It is common for researchers to discard swapped 
data (generally around 10%), which is wasteful and may lead to unintended biases. 
Given the large number of whole-body Dixon MRI acquisitions in the UK Biobank, thou-
sands of swaps are expected to be present in the fat and water volumes from image 
reconstruction performed on the scanner. If they go undetected, errors will propagate 
into processes such as organ segmentation, and dilute the results in population-based 
analyses. There is a clear need for a robust method to accurately separate fat and water 
volumes in big data collections like the UK Biobank. We formulate fat-water separation 
as a style transfer problem, where swap-free fat and water volumes are predicted from 
the acquired Dixon MRI data using a conditional generative adversarial network, and 
introduce a new loss function for the generator model. Our method is able to predict 
highly accurate fat and water volumes free from artifacts in the UK Biobank. We show 
that our model separates fat and water volumes using either single input (in-phase 
only) or dual input (in-phase and opposed-phase) data, with the latter producing 
superior results. Our proposed method enables faster and more accurate downstream 
analysis of body composition from Dixon MRI in population studies by eliminating the 
need for visual inspection or discarding data due to fat-water swaps.

Keywords: Neural networks, Magnetic resonance imaging, Body composition, Artifact 
reduction

Introduction
The UK  Biobank is one of the largest collection of medical images in the world, and 
its abdominal imaging protocol produces a variety of magnetic resonance imaging 
(MRI) datasets that focus on basic structural and metabolic measurements in the tho-
rax, abdomen and pelvis. The UK  Biobank is currently acquiring images for 100,000 
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participants [1], with plans to scan as many of them as possible for a second time and has 
also performed a separate COVID-19 study [2]. Therefore, methodologies that produce 
minimal data waste and that all analyses resulting from this impressive collection will 
reach their full potential are essential. The primary dataset in the abdominal MRI proto-
col is a series of six acquisitions covering the neck-to-knee area of the body using a two-
point Dixon method (a specific implementation of chemical-shift encoded MRI), where 
two three-dimensional (3D) T1-weighted volumes are acquired resulting in voxel sig-
nal intensities that depend on the difference between magnetization in fat and water [3, 
4]. We will refer to the acquisitions in the UK Biobank as two-point Dixon MRI from 
now on to match the terminology used in [1]. Image reconstruction, performed by the 
MR scanner, attempts to separate the acquired volumes into pure fat and water signals. 
The presence of inhomogeneities in the static magnetic field during acquisition produces 
errors in fat-water separation performed on the scanner. When a voxel is incorrectly 
labelled during fat-water separation, this is known as a fat-water swap and usually occurs 
in a contiguous set of voxels associated with a specific tissue type, assuming a region-
growing algorithm has been used. In most studies, including the UK Biobank, the phase 
information is not provided to the end user making a full reconstruction using the com-
plex-valued MRI data impossible. However, the two magnitude-only 3D T1-weighted 
volumes acquired from the two-point Dixon sequence are retained and provide an 
opportunity to apply alternative reconstruction techniques.

Over the last decade MRI has become the gold standard for body composition, par-
ticularly when measuring adipose tissue, liver and pancreatic fat content. Some of these 
measurements have had an enormous impact on our understanding of metabolic condi-
tions such as type-2 diabetes and non-alcoholic fatty liver disease [5]. In addition to these 
measurements, the data from the UK Biobank abdominal MRI protocol covers multiple 
tissues and organs such as muscles, abdominal organs, bones, adipose tissue, etc., with 
the potential for a myriad of clinically-relevant variables. Previous work on two-point 
Dixon MRI from the UK Biobank has identified via visual inspection approximately 4% 
of the participants with at least one fat-water swap in the first 40,000 scans [6, 7] or as 
we have previously reported via neural-network based techniques [8] from image recon-
struction performed on the scanner. Using the neural-network based method in [8] ena-
bled a census of fat-water swaps for each of the six acquisitions, where 44% of all swaps 
occurred in the second series, covering the chest, while only 7% occurred in the first 
series (neck and shoulders), 8% occurred in the third series (abdomen) and 1% in the 
fourth series (pelvis)  [9]. Looking at the legs separately, 30% of swaps occurred in the 
fifth series (upper thighs) and 11% occurred in the sixth series (lower thighs and knees). 
Our previous method was part of an extensive image-processing pipeline and relied on 
one individual model for each of the magnitude-only Dixon series. This method had an 
error rate of approximately 1/1000, either not identifying a fat-water swap (false nega-
tive) or inducing a swap (false positive). Using that method, we were able to correct the 
majority of the swaps affecting entire series, though these models were not designed to 
identify more complicated fat-water swaps in the data leading to the motivation for the 
method we propose here [8].

While some reported analyses of two-point Dixon MRI made the decision to visually 
identify and discard data with fat-water swaps, reducing the overall number of subjects 
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in the study by generally around 10%  [6, 7, 10–13], others have applied correction in 
post-processing [4, 14]. Multi-point Dixon sequences ( > 2 echoes) have been developed 
partly to overcome this issue for fat separation and also enable fat quantification. Algo-
rithms to perform fat separation and quantification have been developed that utilise the 
magnitude-only or complex-valued data, or both [15–17]. It should be noted that com-
plex-based fat-water separation methods are sensitive to errors in the phase information 
from the source images and magnitude-based methods are insensitive to phase errors 
but are unable to fully quantify fat fraction in tissue [18]. In this work we will focus on 
the challenge of accurate fat separation, not fat quantification. From an operational point 
of view multi-point sequences come with the cost of longer acquisition times and may 
not be practical in protocols where speed is of the essence, and we believe the two-point 
Dixon technique will continue to be heavily utilised. In the case of the UK Biobank, the 
implementation of the two-point Dixon is a result of a trade-off between acquisition 
time, image quality and anatomical coverage.

The work to date on deep learning for several multiecho processing problems includ-
ing fat-water separation, shows that a variety of methodologies are successful, mostly 
based on the U-Net [19], using two-dimensional (2D) data. While some studies have per-
formed slice-by-slice predictions of 3D volumes, none of those found during the litera-
ture review describe fat-water separation in fully volumetric data. In this work, we train 
a model based on the conditional generative adversarial network (cGAN) architecture to 
perform swap-free fat-water separation in two-point Dixon MRI using 3D data, taking 
advantage of the paired nature of the input (in-phase and opposed-phase) and output 
(fat and water) volumes from the image acquisition and reconstruction performed on 
the scanner. We formulate fat-water separation as a style transfer problem, where swap-
free fat and water volumes are predicted from the paired in-phase and opposed-phase 
volumes. We develop a new loss function inspired by the MR physics of the Dixon tech-
nique and compare it to conventional L1 loss. Our implementation of the cGAN utilises 
3D patches for the neck-to-knee acquisitions.

Literature review
Few postprocessing methodologies have been proposed that both detect and correct 
fat-water swaps. Glocker et al. [20] proposed a method for automated swap correction 
in Dixon MRI using machine learning, where fat-water swap locations are detected in 
whole-body volumes and corrected by inverting the voxels (fat-to-water and water-to-
fat) where a swap was detected. Our previous method for swap detection and correc-
tion on a series-by-series basis also falls into this category  [8]. A variety of methods 
for improving fat-water separation have been developed, including methods based on 
region growing [21], spatial smoothing [22, 23], graph cuts [24, 25], patch-based meth-
ods [26] and the projected power method [27].

Recently, deep-learning methods based on convolutional neural networks (CNNs) have 
been applied to separate the in-phase and opposed-phase data from a two-point Dixon 
acquisition into fat and water channels in 2D: fat-water separation and parameter map-
ping in cardiac MRI [28] and fat-water separation in whole-body Dixon MRI by predicting 
the full volume slice-by-slice with the real and imaginary parts of the first echo time [29]. 
Two-echo input data was used for fat-water separation in [30]. In [31], the authors showed 
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that using the complex-valued data outperformed the magnitude-only data on its own for 
phase-based applications and reconstructions of 2D data for three different datasets. The 
authors in  [32] used CNNs to map parameters and estimate uncertainty for fat quantifi-
cation. Another recent effort for fat-water separation in 2D data that simultaneously esti-
mates R2* and field decay has been proposed [33]. The authors apply unsupervised training 
without using labels to exploit the underlying physical model, and show good agreement 
between models that used labels and those that did not. All the above methods were based 
on or closely related to the U-Net architecture  [19] for 2D data. A bi-directional convo-
lutional residual network has been shown to outperform the U-Net in multi-echo gradi-
ent recalled echo data, where the results improve when increasing the number of echo 
times [34]. In [35], the authors proposed a CNN model that separated fat and water using 
real and imaginary data from six echo times of single-slice knee and head multiecho MRI.

Generative adversarial networks (GANs) are known for their ability to generate realis-
tic outputs and have been broadly applied in medical imaging for tasks such as data aug-
mentation, image segmentation, image super resolution [36] or compressed sensing [37], 
using a variety of novel architectures that rely on adversarial training [38, 39]. GANs work 
by training generator and discriminator networks in an adversarial manner, where the lat-
ter can enable the use of unlabeled or unpaired data and yield high perceptive quality in 
the output. GANs have shortcomings which include the difficulty of assessing their qual-
ity and the possible introduction or removal of abnormalities [39, 40]. These issues make 
GANs potentially unreliable for use in a diagnostic setting. A popular example of a GAN 
is the cycleGAN [41], which allows unpaired style transfer but relies on extensive compu-
tational resources. Applications in medical imaging, where paired data is uncommon, can 
benefit from this method; for example, to improve generisability of CT segmentations [42]. 
Another example of a GAN architecture is the conditional generative adversarial network 
(cGAN), which has been proposed for paired image-to-image style transfer [43]. It relies on 
paired data and an additional L1 loss that conditions the model output to match its input. 
In a medical imaging context, this means the anatomy in the output is guided to match 
the input, which is an ideal way to control the biological accuracy of the generated output. 
Conditional GANs have also been broadly applied in medical imaging for tasks such as data 
augmentation, image reconstruction and segmentation [38, 44]. A recent study has applied 
the cGAN architecture, using six-channel 2D data, to perform fat-water separation in addi-
tion to predicting the field map and R2* values [45]. The authors showed that their method 
outperforms a standard U-Net. The work to date by the deep learning community shows 
that a variety of methodologies, mostly based on the U-Net and using 2D data, perform 
well for several multiecho processing problems including fat-water separation. When more 
echoes are used as input, the performance of deep learning models improves. Some authors 
have performed slice-by-slice predictions of 3D volumes but none of those found through 
the literature review have performed fat-water separation in fully volumetric data.

Materials and methods
Data

The two-point Dixon technique produces two separate volumes, in-phase (IP) 
and opposed-phase (OP). The IP and OP volumes are acquired at times of maxi-
mum (in-phase) and minimum (opposed-phase) difference, respectively, and are 
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used to derive water (W) and fat (F) volumes, where in theory W = |IP + OP|/2 and 
F = |IP − OP|/2  [3, 4]. In this study, we used the two-point Dixon  MRI from the 
UK  Biobank abdominal imaging protocol  [1]. The acquisition was performed in six 
separate series with common parameters: TR = 6.69 ms, TE = 2.39/4.77 ms, FA = 10◦ 
and bandwidth = 440 Hz. All scans were performed using a Siemens Aera 1.5T scan-
ner (Syngo MR D13) (Siemens, Erlangen, Germany). Image reconstruction on the Sie-
mens scanner had access to the complex-valued data (both magnitude and phase) and 
utilised proprietary algorithms to perform online fat-water separation. The magnitude-
only versions of all four volumes (IP, OP, F, W) were available for our experiments. We 
performed minor preprocessing to assemble the six series into a single volume for each 
channel [8] (Fig. 1a–d).

There are a variety of challenging fat-water swaps in the UK Biobank two-point Dixon 
MRI datasets, of which the most common are those affecting entire series (Fig.  1i, j). 
More complex swaps include partial swaps that cover only a fraction of the volume or 
swaps related to the multiple series acquired. For example, the top of the liver may be 
swapped when it appears in the second series and is isolated from all other tissue by the 
lungs (Fig. 1e, f ), or one of the abdominal muscles may be swapped when isolated from 
all other tissue by internal fat (not shown). Localised fat-water swaps may also occur 
due to inhomogeneities at the boundary of the field of view (Fig.  1k, l). Swaps occur 
more frequently in subjects of extreme sizes (large and small), therefore not being able to 
quantify or even completely discarding these subjects may introduce bias in population 
studies.

For the training data, we selected 1027  participants as swap-free ground truth data 
for our experiments. Visual inspection of the fat and water volumes provided by the 
UK  Biobank was performed for each participant to ensure no substantial swaps were 
present. Swaps, when present, only occur in the fat and water volumes, meaning the 
IP and OP volumes used as model input are always free of swaps. We performed this 
careful visual inspection to guarantee the absence of swaps in the data used as training 
labels, in order for the network to learn swap-free separation. The participants were cho-
sen to cover a broad range of age, gender and body composition. During the process of 
quality control, we also identified more than 70 participants with at least one fat-water 
swap in the original F and W volumes. We used those scans to verify the performance of 
our technique by visual inspection. When developing the neural network model we used 
the IP and OP volumes as our input data and the F and W volumes as the training labels. 
Demographics and anthropometrics for all of the participants are provided in Table 1.

Proposed model

Given the fact that the four volumes obtained from the two-point Dixon MRI technique 
are paired, and the aim of this work is to produce anatomically identical voxel-to-voxel 
predictions, we based the models for our fat-water separation experiments on the cGAN 
architecture [43]. We define a generator G such that F̂ , Ŵ = G(IP,OP) is a direct map-
ping of the fat and water volumes from the in-phase (and opposed-phase) volumes, and 
a discriminator D that jointly determines whether or not the predicted volumes are truly 
fat and water. The objective function for the cGAN is given by
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where the loss is driven solely by the performance of the discriminator. It has been 
shown that additional terms in the cGAN objective function may be added to ensure the 

(1)LcGAN(G,D) = EF ,W [logD(F ,W )] + EIP,OP[1− logD(G(IP,OP))],

Fig. 1 Dixon MRI data provided for representative UK Biobank participant: a in-phase, b opposed-phase, c fat 
and d water signals. Fat and water series with a partial swap e, f at the top of the liver, g, h a swap in a portion 
of the left arm and torso, i, j a swap in both legs and k, l localised swaps due to field inhomogeneities at the 
boundary of the field of view. Red arrows indicate fat-water swaps

Table 1 Demographics and anthropometrics for participants from the UK Biobank imaging cohort 
used in model development and evaluation, separated by gender

Values are reported as mean ± standard deviation and range in parentheses

Women Men

N 566 545

Age 62.63 ± 7.05   (49, 79) 63.96 ± 7.35   (49, 79)

Weight (kg) 66.23 ± 9.54   (33, 120.8) 81.95 ± 10.46   (57.5, 129.8)

Height (cm) 162.91 ± 6.12   (143, 181) 176.18 ± 6.79   (150, 193)

BMI (kg/m2) 24.95 ± 3.26   (13.39, 41.8) 26.38 ± 2.83   (18.57, 37.93)
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predictions are similar to the ground truth, in our case F and W were used as ground-
truth labels in the L1 loss term

ensuring that each individual prediction matches the ground truth data. The solution

is obtained by minimising the contribution of the generator to the objective function 
against a discriminator that tries to maximise it and the L1 term.

Fat and water volumes are predicted from the input volumes, illustrated in Fig. 2. The 
generator follows a U-Net architecture  [19] with six levels consisting of 3D convolu-
tional layers (orange) with filter size 4 and stride 2, instead of pooling layers to move to 
the lower resolution levels. As the full volume dimensions were simply too large to be 
used as is, we set the input size to (128, 128, 128) in order to overcome memory limita-
tions. The number of filters are indicated at each level in Fig. 2. Up-sampling (blue) is 
performed via 3D transpose convolutional layers with filter size 4 and stride 2. The num-
ber of filters are indicated at each level. The discriminator network follows a sequential 
architecture using 3D convolutional layers with filter size 4 and stride 2 (green) except 
the last two layers with stride 1 (dark green), to adjust the PatchGAN discriminator net-
work to assess the volumes on a patch size of (16, 16, 16) voxels [43].

We created a data generator for the training process, which on every iteration selects 
a random participant and randomly crops a cube with (128, 128, 128) voxels of the input 
data, as well as the matching paired W and F volumes for the output ground-truth labels. 
The data are jointly normalized to the 99th percentile of the maximum across the inten-
sities of all channels to have all channels on the same scale between 0 and 1, and avoid 
spikes in signal intensity.

We chose the number of epochs and learning rate based on an initial fine-tuning 
experiment with 800 participants and 200 out-of-sample data as in the validation experi-
ments. We performed a parameter sweep from 0.0001 to 0.01, in steps of 0.01 and 
0.001, and found the best results and faster convergence to be with the original cGAN 

(2)L1(G) = EF ,W [�(F ,W )− (F̂ , Ŵ )�1],

(3)G = arg min
G

max
D

LcGAN(G,D)+ �L1(G)

Fig. 2 Proposed 3D cGAN architecture with IP and OP signals as input and separated F̂ and Ŵ signals as 
output. Filter numbers for each convolutional block are provided. The contracting path of the generator is in 
orange and the expansive path is in blue. The discriminator is shown in green, the different shades indicate 
the change in stride length
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implementation values of 0.0002  [43]. The hyperparameter � was set to  100 following 
the original implementation of the cGAN model in  [43]. This value is similar to pre-
vious applications of the cGAN model to 3D medical imaging datasets  [46, 47]. The 
batch size was limited by memory constraints, as we are working with large 3D arrays. 
We ran our experiments on a GeForce RTX 2080 Ti 12GB GPU, code in python 3.7.2, 
Keras 2.2.4 [48] with a tensorflow 1.13 backend. We trained the model using the Adam 
optimizer and batch size 2 until convergence of the generator at 100 epochs. Genera-
tor network weights of our best performing model trained on 1000 subjects, and code 
to process a test subject of UK Biobank Dixon MRI, will be available upon publication 
(https:// github. com/ recoh/ fat_ water_ separ ation).

Experiments

We trained three separate models with varying input data and also evaluated a new loss 
function. Our first experiment utilised only the IP volume as input data to the cGAN, 
a single-input model, and the swap-free F and W as ground-truth data to perform fat-
water separation IP → F̂ , Ŵ  using the L1 loss for the generator (Eq. 2) in a supervised 
manner. The second experiment used both the IP and OP volumes as inputs, to perform 
fat-water separation IP,OP → F̂ , Ŵ  via a dual-input model. For the third experiment, 
we propose a new Dixon loss function that exploits the physical model describing the 
relationship between the derived fat and water channels from the acquired IP and OP 
volumes in two-point Dixon  MRI. This is a similar approach followed by  [49] for R2* 
estimation and [33], where the authors incorporated physical models normally used to 
estimate final parameter maps in single-slice (two-dimensional) data. These approaches 
remove the dependency for ground truth labels and could have significant impact on 
problems where labeled data are difficult to obtain or where ambiguities in the data and/
or model lead to corrupted predictions, such as fat-water swaps. Similar to the second 
experiment, this generator model used the IP and OP as model inputs to perform the fat-
water separation IP,OP → F̂ , Ŵ  . We define IP and OP error terms using the IP and OP 
inputs as well as the Ŵ  and F̂  generator predictions, and combine them into a Dixon loss 
for the generator:

This Dixon loss function replaces the L1 loss in (3). We did not perform an equivalent 
fourth experiment with the Dixon loss for the single-input model generator. This is 
because there are obvious solutions when minimising for the in-phase data on its own 
IP = Ŵ + F̂  , and no other constraints being added to training. Obvious solutions where 
the relationship holds would be with either the Ŵ  or F̂  data being empty, and the model 
output being equivalent to IP.

Evaluation

To quantitatively evaluate the output of the models in our three experiments, we pre-
dicted the entire neck-to-knee F̂  and Ŵ  volumes by performing multiple patch-based 
predictions that cover the entire input volume. For each subject, we divided the IP (and 
OP) channels into twelve smaller volumes of (128, 128, 128) to match the model input 
size and reassembled the F̂  and Ŵ  predictions to obtain a full volume of (224, 174, 370) 

(4)L2(G) = EIP[||IP − (Ŵ + F̂)||2] + EOP[||OP − |Ŵ − F̂ |||2].

https://github.com/recoh/fat_water_separation
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voxels. In voxels where multiple predicted values were produced, due to overlapping 
input volumes, only the first predicted value (from left-to-right, anterior-to-posterior, 
superior-to-inferior) was used to reassemble. Visual inspection of the predictions across 
the test data did not contain obvious artifacts from the patch-based algorithm. This is 
confirmed with the representative dataset in Additional file  2. It has been shown that 
using the most straightforward method for combining multiple predicted values does 
not sacrifice performance [50].

For all three experiments, we performed four-fold cross-validation using 800 images in 
a 75–25 split. We trained final models on the 800 subjects for each of the three experi-
ments and evaluated them on the 227 subjects kept aside for testing. We used the struc-
tural similarity index measure (SSIM)  [51] and peak signal-to-noise ratio (PSNR) to 
assess the predicted F̂  and Ŵ  volumes against the original data, as given by the fat-water 
separation performed on the Siemens scanner. The PSNR is given by

where MPI is the maximum pixel intensity and MSE is the mean squared error. SSIM is 
defined via

where µx and µy represent averages of the reference image windows x and y, respectively, 
of the test images, σ 2

x  and σ 2
y  are the variances of the reference image windows and σxy is 

their covariance. The terms C1 and C2 are dynamic range constants. SSIM values range 
from −1 to +1 , the latter which is only achieved for two identical images. We computed 
the SSIM using the default sliding window size ( 11× 11× 11) on the entire predicted F̂  
and Ŵ  volumes.

Even though PSNR and SSIM are broadly used as the go-to metrics when it comes to 
assess image reconstruction quality, these metrics have drawn criticism for not neces-
sarily corresponding to visual quality as observed by humans [52]. Since reconstructed 
medical images may be intended for further analyses, an assessment of the impact of the 
image quality on such analysis is of value, and has led to the development of semantic 
interpretability score (SIS)  [53], which was inspired by Inception scores in GANs that 
assesses how well networks identify objects in generated images [54] and offers a solu-
tion of the shortcomings of GANs. The SIS may be calculated if expert manual anno-
tations and a pre-trained segmentation model are available. The SIS is defined as the 
Dice overlap between segmentations generated using the reconstructed data and the 
manual annotations, where the scores are normalised by the average Dice score from 
the ground-truth images. The normalisation is performed to enable a comparison of the 
segmentation performance based on the reconstructed images against the baseline per-
formance of the segmentation model on ground-truth images.

Due to the nature of swapped data, quantitative evaluation of swap correction using 
image quality metrics is not possible. The original data that would be used as ground 

(5)PSNR = 10 · log10

(

MPI2

MSE

)

,

(6)SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ 2
x + σ 2

y + C2)
,
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truth is inherently flawed and may not be used for this purpose. For example, if our 
model output F̂  and Ŵ  is correct and free of swaps, but the original F and W volumes 
contain a swap, then the SSIM or PSNR would not be indicative of that improvement 
as they depend on the ground truth to be artifact-free. Similarly, the SIS score relies 
on an artifact-free ground truth image to compare the segmentations from the recon-
structed image, which is not possible if the ground truth image is corrupted. However, 
the absence of swaps in our predictions may be verified via visual inspection, as well as 
highlighted from difference images between the original data and the model predictions. 
We predicted the F̂  and Ŵ  volumes for more than 70 participants that were affected by 
swaps identified when selecting the training datasets, and performed visual inspection 
on the volumes to identify whether or not the models were able to successfully perform 
fat-water separation where the scanner software failed.

As a final qualitative evaluation of our model on swapped data, we used the predicted 
fat and water channels (F̂ , Ŵ ) to perform segmentations using publicly available code [8, 
55] in order to highlight the importance of correct fat-water separation. We also imple-
mented the dixonfix method by Glocker et al. [20] to compare our method with a closely-
related alternative where the code is publicly available. In [20], the authors trained the 
model using 23 subjects. Acknowledging the fact that we have more training data availa-
ble, we trained the dixonfix method using 150 (limited by computational resources) fully 
assembled volumes of size (224, 174, 370), a factor of 6.5 times more in terms of num-
bers of subjects compared with the original publication and possibly more in terms of 
array size. Instead of performing fat-water separation, dixonfix predicts binary labels of 
swap locations via an intermediate step of fat-water separation using a regression forest. 
Swap labels are then computed using a graph-cuts algorithm. The labels are used to swap 
the fat and water data back into the original channel.

Results
Quantitative evaluations of the three models, using four-fold cross validation on 800 par-
ticipants, are provided in Table 2. The dual-input supervised model is clearly superior to 
the single-input supervised model, exhibiting higher SSIM and PSNR values for all runs 
in the cross-validation experiment. The dual-input model trained with generator Dixon 
loss performs better than the single-input supervised model but worse than the dual-
input L1 generator model. This makes sense since the Dixon generator loss model does 
not benefit from ground truth labels, but has twice as much input information as the 
single-input model. Final models, trained on all 800 scans utilised in the cross-validation 
experiments and evaluated against an out-of-sample test set of 227 scans, are shown in 
Table 3. SSIM, PSNR and SIS values are shown in Table 4. The SIS values are based on 
spleen, kidney, liver and iliopsoas muscle segmentations for 65 different subjects with 
manual annotations. The manual annotations were performed by trained radiographers, 
following a standard operating procedure for each organ, and visually inspected for qual-
ity control. Representative examples may be found in Additional file 1. The SIS confirms 
the high level of quality from our model output, where the dual-input supervised model 
has the best performance across the organ segmentations. Figure 3 shows the ground-
truth data, predictions and their absolute difference for the fat and water volumes of a 
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participant in the testing set (coronal and sagittal views). An alternative version of the 
figure is provided in Additional files 2 and 3, where the dynamic range of the absolute 
differences has been reduced.

Model predictions and the original data from the scanner for participants affected by 
various fat-water swaps are provided in Fig. 4. These examples were selected to illustrate 
the performance of our model in a variety of scenarios; for example, data that are not 
affected by major swaps, data affected by swaps that cover an entire series in the acquisi-
tion (Fig. 4a, c), data displaying complex partial (Fig. 4b, d, e) and/or boundary (Fig. 4f, 
g) swaps. The absolute difference images in Fig. 4 highlight where the original data have 
been affected by a fat-water swap in the scanner reconstruction but the model correctly 
predicted the fat and water signal. Visual inspection of all the other data affected by 
swaps showed that the model is able to perform correct fat-water separation where the 
scanner’s proprietary software failed.

Figure  6 provides examples of 3D segmentations using data that suffered from fat-
water swaps (top row) and the segmentation when using our model predictions (bottom 

Table 2 Quantitative assessment of fat and water predictions compared with the original data, 
using four-fold cross-validation on 800 scans

Values reported are the average and standard deviation. The three models are: single-input IP → F̂ , Ŵ  , dual-input 
IP,OP → F̂ , Ŵ  and dual-input (Dixon generator loss) IP,OP → F̂ , Ŵ

Model Run Water Fat

SSIM PSNR (dB) SSIM PSNR (dB)

IP → F̂ , Ŵ 1 0.919 ± 0.011 24.28 ± 0.78 0.945 ± 0.009 24.70 ± 0.84

2 0.913 ± 0.012 24.07 ± 0.70 0.942 ± 0.008 24.45 ± 0.75

3 0.926 ± 0.009 24.74 ± 0.77 0.942 ± 0.008 25.07 ± 0.83

4 0.919 ± 0.010 24.35 ± 0.74 0.945 ± 0.010 24.55 ± 0.81

IP,OP → F̂ , Ŵ 1 0.961 ± 0.006 28.99 ± 0.91 0.975 ± 0.004 29.67 ± 0.96

2 0.962 ± 0.005 28.94 ± 0.82 0.972 ± 0.003 29.00 ± 0.80

3 0.966 ± 0.005 29.41 ± 0.83 0.976 ± 0.004 29.58 ± 0.85

4 0.963 ± 0.005 29.10 ± 0.84 0.974 ± 0.004 29.41 ± 0.83

IP,OP → F̂ , Ŵ 1 0.930 ± 0.010 25.11 ± 0.83 0.953 ± 0.007 25.37 ± 0.91

(Dixon generator loss) 2 0.928 ± 0.008 25.51 ± 0.85 0.949 ± 0.007 25.51 ± 0.85

3 0.935 ± 0.009 25.94 ± 0.91 0.952 ± 0.008 26.14 ± 0.96

4 0.924 ± 0.009 25.36 ± 0.89 0.951 ± 0.008 25.35 ± 0.88

Table 3 Quantitative assessment of fat and water predictions compared with the original data, 
using all 800 scans from the cross-validation experiments for training and an out-of-sample test set 
of 227 scans for evaluation

Values reported are the average and standard deviation

Model Water Fat

SSIM PSNR (dB) SSIM PSNR (dB)

IP → F̂ , Ŵ 0.926 ± 0.010 24.77 ± 0.73 0.949 ± 0.008 25.22 ± 0.79

IP,OP → F̂ , Ŵ 0.967 ± 0.005 29.47 ± 0.86 0.977 ± 0.004 29.74 ± 0.91

IP,OP → F̂ , Ŵ 0.939 ± 0.008 26.48 ± 0.90 0.953 ± 0.007 26.73 ± 0.92

(Dixon generator loss)



Page 12 of 19Basty et al. Journal of Big Data            (2023) 10:4 

row) for the following organs and tissue (from left to right): abdominal subcutane-
ous adipose tissue, left kidney, spleen, and left/right iliopsoas muscles (red and green, 
respectively). Predictions of four images with uncommon abnormalities are shown in 
Fig. 5. The predictions shown in Figs. 3, 4 and 5, as well as the underlying volumes used 
for the 3D segmentations in Fig. 6, are outputs of the final dual-input model, which per-
formed the best across all of our experiments.

An assessment of the false positive rate between dixonfix and our method, using 50 
out-of-sample subjects that were free of swaps, showed that our model did not induce 
a single false positive. Specific examples of induced fat-water swaps from the dixonfix 
method, with comparisons to our method, are provided in Additional files 4 and 5. On 
average, the dixonfix method induced 4.29 swaps inside the body, with an average mis-
classification of 10,803 ± 9400 voxels per subject, which amounts to roughly 171 ml.

Discussion
It is common for researchers to discard two-point Dixon MRI data due to the presence 
of fat-water swaps in the reconstructed data produced by the scanner software. While 
these issues may make the data challenging, especially for non-imaging experts, we 
believe the two-point Dixon technique (and chemical-shift encoded MRI in general) is 
a powerful and efficient tool for body composition studies and therefore warrants dedi-
cated post-processing techniques to improve fat-water separation. Our proposed model 

Fig. 3 Predicted values were performed on a participant in the test set, where the model was trained on 
all 800 participants in the training set. Absolute differences are displayed in the original image intensities. 
Performance metrics calculated on the 3D volume are: SSIMW = 0.953 , SSIMF = 0.970 , PSNRW = 29.80 dB 
and PSNRF = 29.85 dB
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ensures that all data acquired in a study produces accurate quantitative results and that 
no resources, volunteers, patients, or user time are lost.

We have shown that our single- and dual-input models are able to predict swap-free 
fat and water data. Processing the entire neck-to-knee volumes, for example those 
found in the UK Biobank abdominal protocol, takes approximately eight seconds per 
scan. We have established the high quality of our results through quantitative metrics 
such as PSNR and SSIM (with average values consistently > 0.95 ) for the dual-input 
model in both cross-validation experiments (Table 2) and out-of-sample test data on 
final versions of the models (Table  4). Separate quantitative evaluations, based on 
segmentation performance via the SIS, have highlighted the excellent performance 
of our models, where the dual-input model was superior. We have shown qualitative 

Fig. 4 Model predictions where the original separated fat and water signals contained swaps: a full swap 
of the fourth series, b partial swap in second series, c swap in one leg, d swap at the top of the liver, e 
complex partial swap in the kidneys, spleen, and subcutaneous fat, f complex partial swap in the back and 
arm muscles at the edge of the field of view and g a partial swap at the extremities of the body due to 
inhomogeneities in the magnetic field at the boundary. Absolute differences are displayed in the original 
image intensities
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performance on scans where the scanner software failed to adequately separate the 
fat and water signals during reconstruction visually (Fig. 3), and by comparing to the 
dixonfix method in order to establish our method does not induce fat-water swaps 
(false positives) (Additional files 4 and 5). As a final qualitative validation to highlight 
the impact of this work, we used predicted F̂  and Ŵ  volumes as input to segmenta-
tion models and have shown (Fig.  6) how using corrected data enables meaningful 
segmentations. To illustrate robustness of the model, model predictions are provided 
for participants with a variety of abnormalities (Fig.  5). The model is able to accu-
rately perform fat-water separation even when the input data contains structures that 
the model was not trained on, as shown with cysts in Fig.  5a, c, severe image arti-
facts such as signal dropout in Fig.  5b or rare anatomical malformations such as a 

Fig. 5 Model outputs for rare cases of various abnormalities: a kidney cysts, b hip implant and complex 
partial swap in the muscles, c large liver cyst and d horseshoe kidney. Absolute differences are displayed in 
the original image intensities

Fig. 6 Impact of fat-water swaps on 3D segmentations. The top row shows segmentations generated using 
data that contained fat-water swaps and the bottom row shows segmentations of the same tissue and 
organs using swap-free predictions from our model. From left to right: abdominal subcutaneous fat, left 
kidney, spleen and iliopsoas muscles (left is red and right is green)
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horseshoe kidney in Fig. 5d. Even though the data was entirely corrupted around the 
hip implant in Fig. 5b, the model correctly separated the surrounding tissue where the 
original data contained a partial swap in the muscle. The low errors in the difference 
images shown in Fig. 3, as well as the regions not affected by swaps in Figs. 4 and 5, 
further highlight the high fidelity of the predictions to the ground truth data.

We successfully separated fat and water volumes for Dixon MRI in our three experi-
ments, where the best model utilised both the in-phase and opposed-phase data as 
input with an L1 loss function. We showed that our method correctly separates IP 
and OP volumes and eliminates a wide variety of fat-water swaps, including those 
explicitly excluded from the training data (e.g., swaps that completely cover one of 
the series acquired, cover half the series in the legs, top-of-the-liver swaps). Minor 
fat-water swaps located at the boundary of the field of view or only involving the arms 
were included in the training data as they occur infrequently and at random anatomi-
cal locations. We hypothesise that the infrequency and randomness of these types of 
swaps in the training data means that the model ignores them when optimising the 
generator. In Fig. 4, particularly rows e-g, it appears that the model ignored and mini-
mised the effect of the those swaps even though they were almost certainly present in 
the training data.

While the method is broadly applicable to two-point Dixon volumes, the particular 
models we trained are intended for UK  Biobank Dixon MRI and may not work on 
data obtained using different acquisition parameters. This is a common issue encoun-
tered in highly-specialised deep learning experiments. We have benefited from the 
fact that the UK Biobank is a large-scale database with a fixed acquisition protocol. 
We anticipate that the model may be applied to similar acquisitions, such as the first 
two echos from a three-point Dixon scan or a two-point Dixon acquisition at a differ-
ent field strength or from a different scanner manufacturer. However, caution should 
be exercised. Given the scanner-based fat-water reconstruction should be available, a 
quick application on a small number of datasets will provide the end user with con-
structive feedback using a quantitative performance metric like SSIM or PSNR. Given 
the range of the demographics and anthropometrics in the UK  Biobank imaging 
cohort we believe that the model is applicable to other adult populations, and poten-
tially applicable to adolescent or young-adult populations. Again, caution should be 
exercised since fundamental anthropometric values may be outside the ranges in the 

Table 4 Quantitative assessment of fat and water predictions compared with the original data, 
using the data of 65 subjects with manual annotation data

In addition to PSNR and SSIM, we computed the semantic interpretability scores (SIS) for the spleen, kidney, liver and 
iliopsoas muscle segmentations

Model Water Fat SIS

SSIM PSNR (dB) SSIM PSNR (dB) Spleen Kidney Liver Iliopsoas

IP → F̂ , Ŵ 0.927 ± 0.011 24.83 ± 1.00 0.950 ± 0.011 25.25 ± 1.12 0.858 0.802 0.965 0.935

IP,OP → F̂ , Ŵ 0.967 ± 0.008 29.47 ± 1.57 0.976 ± 0.009 29.73 ± 1.67 0.926 0.934 0.988 0.990

IP,OP → F̂ , Ŵ 0.941 ± 0.009 26.50 ± 1.42 0.959 ± 0.010 27.01 ± 1.56 0.895 0.898 0.965 0.959

(Dixon generator loss)
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UK Biobank imaging cohort. Further investigation will need to be performed in order 
to assess the broader applicability on different acquisition protocols and populations.

When assessing the false positive rate of our model and comparing it to the dixon-
fix method, no false positives were detected while the latter introduced on average an 
error of approximately 10,000 incorrectly-swapped voxels per subject, corresponding to 
roughly 171 ml in volume. This could have a significant impact on downstream analyses 
of structures such as visceral adipose tissue, muscles and in particular smaller abdominal 
organs (liver, spleen, kidneys, etc). While the authors in [20] pointed out that all swaps 
were corrected, they did underline the fact that every prediction induced false positives 
in the 3D volume. These incorrectly-swapped voxels may appear in unimportant areas 
of the data, but we observed some induced swaps in structures such as skeletal muscle 
and adipose tissue. Depending on the downstream analyses performed after fat-water 
swap correction, such small errors may be acceptable. Further assessment on the impact 
of fat-water swap corrections with consistent false positives or false negatives (i.e., fat-
water swaps that are ignored) in large-scale population studies is an interesting direction 
of investigation but outside the scope of this work.

Conclusions and future work
We have shown that our method allows for fast and reliable fat-water separation, the best 
results were produced by our dual-input model. We have also shown that our method 
correctly separates the fat and water volumes where the scanner did not, without intro-
ducing false negatives. We have highlighted the impact of our contribution by perform-
ing segmentations of original swapped data. By doing this, we illustrate the high quality 
of our predictions. Given the accuracy of the predictions demonstrated here we recom-
mend applying our methodology across all Dixon datasets in the UK Biobank imaging 
cohort, eliminating the need to identify acquisitions that have been corrupted by fat-
water swaps. This will save the end user a substantial amount of time and resources in 
image processing and improve the performance of downstream quantitative analyses.

The CNNs were trained on original fat and water channels and produced good results 
with the model predictions, however, CNNs are known for being highly specific and 
not able to generalise well. While the method is broadly applicable to two-point Dixon 
volumes, our model is intended for UK Biobank Dixon MRI. We expect the model to 
perform well on similar acquisition protocols and on similar adult populations. Caution 
should be exercised when applying our model outside of the UK Biobank.

Future work will involve incorporating more of the preprocessing steps from our 
image analysis pipeline (https:// github. com/ recoh/ pipel ine) into the neural-network 
model. For example, the input is assumed to have bias-field correction performed but 
this is computationally expensive. If our model assumes the input volumes (in-phase and 
opposed-phase) are not bias-field corrected, but trained using the bias-field corrected fat 
and water volumes, then the model will learn to correct the signal intensities in addition 
to producing accurate fat-water separation. This has the potential to decrease process-
ing time by an order of magnitude. It is possible that the models already perform well on 
such unprocessed data and is something we will assess quantitatively going forward.

The current version of our model does not operate on the full volume, due to memory 
constraints. We believe the process would further benefit from operating on the entire 

https://github.com/recoh/pipeline


Page 17 of 19Basty et al. Journal of Big Data            (2023) 10:4  

volume instead of the current patch-based implementation. Finally, we will explore possi-
bilities of turning our third experiment, using the Dixon loss function for the generator, into 
a fully self-supervised framework where the discriminator will only utilise the in-phase and 
opposed-phase channels as ground truth for the perceptive loss, completely removing the 
need for the fat and water ground-truth data in training.

Abbreviations
MRI  Magnetic resonance imaging
GAN  Generative adversarial network
cGAN  Conditional generative adversarial network
CNN  Convolutional neural network
2D  Two dimensional
3D  Three dimensional
PSNR  Peak signal-to-noise ratio
MPI  Maximum pixel intensity
MSE  Mean squared error
SSIM  Structural similarity index measure
SIS  Semantic interpretability score
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