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Agriculture is one of the most essential industries since it provides food for the entire population worldwide. 
Maintaining limited water resources is a challenging problem in this field, as growing healthy vegetables and 
fruits require consistent plants watering. To automatize this maintenance, software companies started developing 
solutions utilizing artificial intelligence tools to forecast soil moisture levels from past observations of soil 
humidity, weather and irrigation, measured by different sensors. This forecast is useful for irrigation decisions 
support and crop growth monitoring. Even though such solutions are widely developed, still, a transparent, unified 
methodology how forecasting models for irrigation management from sensors should be designed and evaluated 
is still missing. In this paper, we provide such methodology from analysis of state-of-the-art scientific articles 
presenting forecasting methods for soil moisture from sensor data. This review tackles several research question 
of how to forecast future soil moisture level from sensor-based past observations of soil moisture, weather and 
irrigation information. Furthermore, we follow the standard Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses procedures for literature search analysis in computer science. As a result of literature search, 
we summarized 60 scientific articles presenting soil moisture forecast published from 2014 to 2024. In conclusion, 
we present the main challenges in forecasting soil moisture and suggest how they can be addressed.

1. Introduction

Agriculture plays a significant role in the Gross Domestic Product 
worldwide since it is the population’s primary food source. A large 
amount of water is needed to nourish the conditions for healthy plant 
growth. Water management is complex since weather variables are 
hardly unpredictable (for instance, rain, temperature, solar radiation, 
wind, etc.) [76,12]. At the same time, this weather-related information 
can be modelled and measured automatically with Internet-of-things 
(IoT) devices placed in the soil. As examples, there exist Artificial Intelli-
gence (AI) solutions for soil moisture (SM) measurements with different 
types of IoT sensors [26,86]. Recently, some IoT edge-based innovative 
systems were developed for vegetable cultivation [39] and irrigation 
scheduling [88]. Some collected sensor-based SM measurements were 
recently publicised by investigators online [84]. With such data avail-
ability, other scientists started investigating software solutions offering 
step-ahead predictions/forecasts for time-series data in the agricultural 
domain [20,21]. Many of these solutions utilise field-installed IoT sen-
sors, measuring soil water levels within their location. The low cost and 
affordability of these sensors made it possible to measure the water level 
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of the land automatically [58]. Even though many articles have been 
published in this domain, a unified framework on how such AI solu-
tions should be developed and deployed still needs to be retained. A 
recently published review surveys main SM prediction techniques and 
recaps the primary data and methods used for future soil moisture fore-
cast [61]. Still, this survey aims to cover additional agricultural-related 
problems, such as:

1. sensor types being used for SM measurements,
2. weather variables assessed for forecasting,
3. irrigation information integration,
4. feature types to be generated from sensor-based measurement,
5. evaluation of the forecasting models.

To provide a unified methodology for SM forecast development from 
sensor data, in this literature survey, we examined different devel-
oped software solutions based on a systematic review technique by the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA 2020) [59,42]. Following the PRISMA guidelines, we define 
the main research questions this survey aims to solve in this work. Fur-
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Table 1
Research Questions definition.

RQ id RQ definition

RQ №1 How to forecast future soil moisture level from sensors-based past observations 
of soil moisture, weather and irrigation information?

RQ №2 What type of sensors can be used for SM forecasting?
RQ №3 What type of methods/models can be implemented for SM forecasting?
RQ №4 What type of features can be generated to train the forecasting models?
RQ №5 How were the models evaluated?
RQ №6 For what purposes the forecasting models were used?

Table 2
Digital Library Sources, Related Search String and Imported Studies Outcome. An asterisk (*) was used as a wildcard to broaden the search 
for words starting or ending with a keyword.

Digital Source Search Text 
ACM Digital Library [Title: soil] AND [Title: moisture] AND [[Title: forecast*] OR [Title: predict*] OR [Title: estimat*]] AND [E-Publication 

Date: (02/01/2014 TO 02/29/2024)]
IEEE Digital Library (((“Document Title”: “soil moisture” AND ((“Document Title”: “forecast*”) OR (“Document Title”: “predict*”) OR 

(“Document Title”: “estimat*”))))) 2014 - 2024
ISI Web of Science (TI=(soil moisture forecast*) OR TI=(soil moisture estimat*) OR TI=(soil moisture predict*)) Timespan: 2014-02-19 to 

2024-02-19 (Publication Date) Languages: English, Research Areas: Remote Sensing or Computer Science
Scopus TITLE (soil) AND TITLE (moisture) AND (TITLE (predict*) OR TITLE (estimat*) OR TITLE (forecast*)) AND PUBYEAR > 

2013 AND PUBYEAR < 2025 AND (LIMIT-TO (SUBJAREA, “COMP”) OR LIMIT-TO (SUBJAREA, “ENGI”)) AND 
(LIMIT-TO (LANGUAGE, “English”))

Springer Link ‘SOIL AND MOISTURE’ where title contains “SOIL AND MOISTURE FORECAST*” OR “SOIL AND MOISTURE PREDICT*” 
OR “SOIL AND MOISTURE ESTIMAT*” within English Computer Science 2014-2024

thermore, we provide the search resources and strings used for this 
purpose. In addition, we describe the outcome of the literature analysis 
and suggest future directions. This survey aims to help computer scien-
tists apply specific methodologies for developing forecasting systems for 
the SM based on the past observation of sensors’ data and weather- and 
irrigation-related information.

2. Research questions

To better describe the problem of SM forecast, we pose several re-
search questions (RQs). These RQs are posted in Table 1.

These questions are further answered below in Section 5.

3. Search procedure

3.1. Conducting search

We follow the search procedure defined by the PRISMA 2020 state-
ment [59], a standard procedure for performing literature surveys. 
Following this guideline, for the literature sources, we employed five 
databases, those are: 1) ACM Digital Library 1; 2) IEEE Digital Library 2; 
3) ISI Web of Science 3; 4) Scopus 4; 5) Springer Link.5

The search was performed using relevant search terms formed by two 
groups of keywords related to (i) ‘soil moisture’ and (ii) ‘forecasting’. 
The search was conducted on February 19, 2024, and included a filter 
to select studies which were published in English after 2014 in computer 
science, engineering or remote sensing domains. The search strategy in-
cluded the query on the study title based on the defined string: ‘soil AND 
moisture AND (prediction OR estimation OR forecasting)’. Search 
strings for each of the sources are given in Table 2. Wildcards (*) are 
used to broaden the search for words starting or ending with the key-
word.

The amount of imported papers per data source is indicated below:

1 http://portal.acm.org.
2 http://ieeexplore.ieee.org.
3 http://www.isiknowledge.com.
4 http://www.scopus.com.
5 http://link.springer.com.

1. ACM Digital Library - 45;
2. IEEE Digital Library - 281;
3. ISI Web of Science - 486;
4. Scopus - 472;
5. Springer Link - 873.

After the papers were searched in each data source by the search 
string, they were uploaded to the web platform Parsifal 6 - a dedicated 
software tool for literature review. It is an instrument that supports re-
searchers in performing systematic literature reviews. In this platform, 
we further marked papers as selected or rejected based on the below 
criteria.

3.2. Selection criteria

To be included in the literature review, the study needed a sensor as 
the primary source to forecast the value. In addition, the studies allowed 
the use of weather and irrigation-related features as dependent variables 
on the sensors. To shorten the search outcome, we also excluded all 
the papers utilizing satellite-based sensing, thus focusing only on the 
documents where the data was collected with the earth-located sensors. 
All inclusion and exclusion criteria are described in Table 3.

The statistics of selection procedure outcome per digital source are 
shown in Fig. 1(a). This figure indicates that most articles have been 
found by Springer Link search, while only 2% of papers were selected 
further for a quality assessment instrument. On the other hand, the ACM 
Digital Library search resulted in 45 articles, where 9% have been se-
lected as being accepted.

3.3. Quality assessment instrument

After the papers were selected, they were further analyzed for qual-
ity purposes. The Parsifal.al platform allows quality scores for each of 
the collected papers to be defined based on the defined questions. The 
quality assessment checklist qualifies papers with some issues with their 
content for rejection. We included several questions and their related an-

6 https://parsif.al/.
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Table 3
Inclusion and Exclusion Criteria for studies.

Inclusion Criteria Exclusion Criteria 
1 paper applied methodology on the real data set paper did not report an evaluation of the method 
2 paper is about forecasting soil moisture from time series paper is not about forecasting future soil moisture value 
3 paper is about soil moisture prediction for irrigation paper is not related to the irrigation 
4 paper reported the metrics on the data set paper is not related to the soil moisture values 
5 paper was published in the conference paper did not apply the method on climatic data 
6 paper was published in the journal paper was not published in the computer science domain 
7 paper used data collected with earth-located sensors paper used satellite-based sensing 

Fig. 1. Statistics for PRISMA search outcome. 

swers with the score per answer. This quality checklist was formed from 
six questions posed below.

Quality Assessment Questions Checklist:

1. Was this paper published in the computer science domain?
2. Did this paper use climatic features to predict soil moisture?
3. Is this paper related to the earth- and sensor-based measured val-

ues?
4. Is the data set of their results available?
5. Did this paper present metrics for their methodology?
6. Is this paper about forecasting soil moisture from time series?

Possible Answers and their Scores:

• yes ( + 1)
• not known (0)
• no (-1)
• not only climatic (-2)

4. Search results

The selection process described above led to the inclusion of 60 pa-
pers. The search results are shown in Fig. 6. The distribution of the 
accepted articles per year, as depicted in Fig. 1(b), reveals a notable 
surge in the number of papers published in this domain, peaking in 2023. 
This increase underscores the escalating interest and research activity in 
the field. 

The articles were further analyzed to understand which countries the 
collected data sets are coming from. All related countries and amount 
of publications mentioned in these countries are shown in Fig. 2. This 

figure shows that the primary data sources for the SM forecast are from 
China (16 papers), the United States of America and India (10 papers 
each). These countries probably have good investment support from the 
government, thus, the research for smart agriculture is expanding dra-
matically. Surprisingly, four scientific articles utilized data sources from 
the small country of Mongolia, the same as those found in Australia, al-
though Australia is more prosperous regarding research funding. Some 
countries are missing in this map: for instance, Italy, although the pri-
mary investment source in this country is agriculture [14].

5. Main findings

To better understand the SM forecast domain, it’s essential to sum-
marize the main findings from the studies retrieved. This section pro-
vides some aspects of the SM forecasting field, including sensor types, 
forecasting methods, feature generation, and evaluation metrics. This 
knowledge is further summarized in Appendix (Table 6), with informa-
tion about the articles’ publication year, and related aspects.

5.1. General pipeline for SM forecasting

The RQ№1 addresses a general design methodology for SM fore-
casting modelling. One of the known pipelines can be given as follows 
(adopted from [16]):

1. Smart irrigation system with strategic placement of sensors;
2. Data collection & processing;
3. Variability analysis & grouping data over time domain;
4. Developing spatiotemporal machine learning models.
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Fig. 2. Data sets distribution by countries. 

Table 4
Sensors for soil moisture measurement grouped by their types (extended from [26,86]).

Group Sensors Types Sensors Names 
Volumetric water content 

sensors (VWM)
Capacitance Spectrum SMEC300, SM100; Sentek Enviroscan, 

Diviner 2000; METER 5TE, 5TN
Time Domain Reflectometry (TDR) Acclima true TDR 315, 315L, 310 S; Spectrum Field 

Scout TDR; CS 655, 650 tec
Frequency Domain Reflectometry (FDR) SM3002B
Neutron probe CPN-Instrotek; Troxller; CNC503A [6]
Resistive-based VH400

Soil water tension sensors Tensiometers Irrometer tensiometers, etc.
Granular matrix sensors Irrometer watermark sensors, etc.

Satellite-based sensing Cosmic-ray neutron sensing Hydroinnova CRS-1000
Satellite Soil Moisture Active Passive

Some other researchers developed a parallel definition for the fore-
casting pipeline, e.g., in [81]:

i. Data preprocessing;
ii. Smooth non-white noise sequence;

iii. Calculate autocorrelation function and partial autocorrelation;
iv. Model recognition;
v. Estimate the value of the unknown parameter in the model;

vi. Model inspection (if failed, then return to the step №4);
vii. Predict the future movement of the series.

5.2. Sensors for soil moisture estimation

Recent AI forecasting solutions made it possible to predict future sen-
sor values from past observations, especially if the sensors are of good 
quality and the data coming from sensors is well processed. Unfortu-
nately, most of the sensors have problems with their installation and 
deployment, and some researchers have tried to investigate this prob-
lem. This section briefly introduces different sensors used for forecasting 
and answers the RQ№2.

The sensors for soil moisture measurements can be divided into three 
types depending on the technology they measure: 1) volumetric wa-
ter content (VWM); 2) soil tension when placed in the soil profile; 3) 
satellite-based sensing (adopted from [26,86,80,1]). The granularity of 
the sensors’ types and their examples are shown in Table 4.

Each of the sensors’ categories has some advantages and limita-
tions. VWM includes several other sub-categories: capacitance, Time 
Domain Reflectometry (TDR), Frequency Domain Reflectometry (FDR), 
Neutron probe, and Resistive-based. The capacitance sensors measure 
the impedance or the capacitance of a buried probe or planar structure, 

which depends directly on the permittivity of the soil [40] (Fig. 3d). 
TDR measures the travel time of a reflected wave of electrical energy 
along a transmission line [16] (Fig. 3c). FDR use the soil as a capacitor 
to measure the maximum resonant frequency in the electrical circuit and 
relate the resonant frequency to water content [15] (Fig. 3b). The neu-
tron probe method uses the characteristic property of hydrogen nuclei 
in water molecules to scatter and to slow down neutrons [40] (Fig. 3f). 
The resistive-based sensor measures the current which goes through the 
soil, and then it measures the resistance value to measure the moisture 
level [63] (Fig. 3a). Some attempts have been made to compare specific 
types of sensors [75]. Recently researchers compared capacitance and 
resistive-based sensors and showed that the resistive one is less sensi-
tive than the capacitance [18]. Still, the comparison of sensors should 
be investigated further.

Examples of soil water tension sensors are tensiometers and granular 
matrix sensors. A tensiometer is a device that mimics the operation of a 
plant’s root, measuring the ease with which a plant can absorb water up 
from the soil [40] (Fig. 3e). Granular matrix sensors employ a porous 
material like a gypsum block or a granular matrix with embedded elec-
trodes. Satellite-based sensing is a sensor that measures soil moisture 
from a far distance with the help of a satellite.

5.3. Forecasting methods

The RQ№3 addresses different forecasting models which can be im-
plemented for SM prediction. Most forecasting models are supervised 
machine learning ones and can be divided into three main categories: 
(i) regression-based, (ii) classification-based, and (iii) simulation and 
modelling. The model’s division is outlined in Table 5.
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Fig. 3. Sensors used for soil moisture forecasting. 

5.3.1 Regression-based Methods. This model type solves the forecast-
ing problem with a sliding window algorithm applied to time-
series data, further generating features for each window and ap-
plying regression-based machine learning models for predicting a 
continuous number of sensor values.

5.3.2 Classification-based models. Typically, they measure whether 
someone should irrigate in the following days. A particular study 
focuses on classification-based solutions, including models such 
as ResNet50 (a 50-layer Convolutional Neural Network), DT (De-
cision Tree), KNN (K-Nearest Neighbours), Logistic Regression, 
Naive Bayes, RF (Random Forest), and SVM (Support Vector Ma-
chines) [12].

5.3.3 Simulation and Modelling. This type of SM forecast is presented 
by statistical analysis and correlation examination performed be-
tween soil moisture and other variables, for instance, precipita-
tion [69]. In addition, the effects of anthropogenic forcing (e.g., 
greenhouse gases, anthropogenic aerosols, and land use change) 
largely affect the prediction trend and should also be consid-
ered [65].
Modelling represents soil moisture prediction problems from the 
factors directly influencing the wetness (rain, humidity, wind, 
etc.). For instance, modelling formulation is shown as the follow-
ing (adopted from [32]):

𝑊 = 𝑘
𝑃 −𝐸

−𝑊𝑓

+ 𝑏+ 𝜀 (1)

where 𝑊 - soil moisture water, 𝑊𝑓 - evaporation, 𝑃 - precipita-
tion, 𝐸𝑓 - latent heat flux (Energy Flux); 𝑘 and 𝑏 are coefficients 
learned per sensor.

Furthermore, regression- and classification-based model division is 
further distinguished into several groups based on their algorithm be-
hind. These groups are defined as follows:

i. Bayesian Theory: the models utilizing Bayes Theory.
ii. Parametric Regression: the models presenting forecast problem as 

linear dependant task.

iii. Regularization: the models utilizing penalty and regularization as 
their main contribution.

iv. Optimization: the main feature of the models is how they perform 
optimization.

v. Dimensionality reduction: these models utilize the dimensionality re-
duction method for regression tasks.

vi. Ensemble Learning: these models combine multiple models, utilizing 
advantages and decreasing the weaknesses of each of them.

vii. Non-parametric Regression: data-driven approaches which model de-
pendency with the target value with some function. Some represen-
tatives include different types of Convolutional Neural Networks 
(CNN).

5.4. Features generation and selection

Different features selected/generated for the process of forecasting 
are not limited to air temperature, solar radiation, surface soil temper-
ature, relative humidity, time-related variables (when the value was 
measured), and lagged soil moisture [48], wind speed, radiation, rain-
fall and evapotranspiration [15]. As feature selection plays a significant 
role in the model performance, utilizing the most important features for 
the training is essential. We summarise all the features mentioned in the 
found articles to answer RQ№4.

For organization purposes, all features are grouped into specific cat-
egories based on where they originated (e.g., from the soil, air, rain, or 
irrigation). These features’ groups with their definitions are outlined as 
follows:

5.4.1 Soil-related features.
In this group, we consider soil physical characteristics which in-
clude all the aspects that one can see and touch, or measure.
(a) Soil Moisture is an indicator of soil wetness. Usually measured 

by sensors. Several factors affect the change in soil water 
content: e.g., rainfall, irrigation, deep soil and groundwater 
recharge for soil moisture in the root zone, evaporation be-
tween plants, crop transpiration, deep leakage, etc. [23].
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Table 5
Models types granularity in sensor-based SM forecasting.

Problem-Related Model Type Models

Regression Bayesian Theory Naive Bayes, Probabilistic Particle Filter, Relevance Vector Machine

Parametric Regression Linear Regression: Additive Exponential Accumulative Representation (AEAR), 
Autoregressive integrated moving average (ARIMA), Linear Regression (LR), 
Seasonal Auto-Regressive Integrated Moving Average (SARIMA), Vector 
Autoregression (VAR), Weighted Linear Regression (LR)
Non-linear Regression: Exponential Smoothing (ES), Polynomial Regression (R), 
Variational Mode Decomposition

Regularization Elastic-Net, Lasso R, Ridge Regression (RR)

Optimization Arithmetic optimization algorithm (AOA), Hyperparameters tuning over 
Seasonal Trend Decomposition Based on Loess (HyperSTL), Sparrow Search, 
Genetic Algorithm (GA)

Dimensionality reduction Principal Component Analysis (PCA)

Ensemble Learning Boosting: Adaptive Boosting (AdaBoost), Boosting, Extreme Gradient Boosting 
(EGB), Gradient Boost Machine (GBM), Histogram-Based Gradient Boosting 
(HBGB), eXtreme Gradient Boosting (XGBoost)
Boostrap aggregation: Bagging
Others: Max-Voting, Multiple Linear Regressions (MLRs), Stacking

Non-parametric Regression Gaussian Process, Prophet, Support Vector Machines (SVM), Decision Tree (DT), 
Random Forest (RF), Naive Accumulative Representation (NAR), K-Nearest 
Neighbours (KNN)
Neural Networks: Artificial Neural Networks (ANNs), Convolutional Neural 
Network (CNN), Deep Learning, Dynamic ANNs, Extreme Learning Machine 
(ELM), Elman ANNs, Encoder-decoder, Graph Neural Network (GNN), 
Multilayer Perceptron Feed-Forward Network (MLP-FFN), Neural basis 
expansion analysis for interpretable time series forecasting (N-BEATS), Cuckoo 
Search supported ANN (NN-CS), Modified Flower Pollination Algorithm 
supported ANN (NN-MFPA), Particle Swarm optimization supported ANN 
(NN-PSO), Spectral Temporal Graph Neural Network (StemGNN)
Recurrent Neural Network: LSTM (Long Short-Term Memory Network), 
Bidirectional Long Short-Term Memory (BLSTM), CNN-LSTM, Convolutional 
Long Short-Term Memory (ConvLSTM), Attention-LSTM, Recurrent Neural 
Networks (RNN)
Self-Attention mechanism: Informer

Classification Bayesian Theory Naive Bayes

Non-linear Regression Logistic R
Non-parametric Regression SVM, DT, RF, KNN

Neural Networks: ResNet50

Simulation and modelling Simulation Simulation

Modelling Modelling

Fig. 4. Soil types employed for forecasting [37,78]. 

(b) Soil Temperature (ST) is an indicator of soil temperature. Like 
SM, it is measured by sensors.

(c) Soil Type indicates which kind of soil was used in the study [2]. 
It can be classified (but not limited to) based on soil texture: 
1 - coarse, 2 - medium, 3 - medium fine, 4 - fine [24]. Another 
classification is made based on the soil inner material: in [78], 
soils were differentiated as ‘sandy loam’ (Fig. 4a), ‘silty loam’ 
(Fig. 4b), ‘silt’ (Fig. 4c) [37], and ‘clay’ (Fig. 4d).

(d) Leakage Depth is one of the factors affecting SM, depending 
on the soil types and indicates how deep water can leak into 
the soil [23].

(e) Soil evaporation is a dynamic process which can be divided 
into several stages [29]. The following formula expressed 
it [27]:

𝐸𝑇 = 𝑥0 + 𝑥1𝐸1 + 𝑥2𝐸2 (2)

where 𝐸1 includes relative humidity, air temperature, radia-
tion and the velocity of ground wind, and 𝐸2 latent heat of 
vaporization per unit mass and global radiation, 𝑥0, and 𝑥1
are constant parameters.

(f) Soil electrical conductivity measures the ability of soil water to 
carry electrical current [33].

(g) Sandy Proportion is a ratio of sand in the land [57].
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(h) Soil ph is a measure of the acidity or basicity (alkalinity) of a 
soil [7,16].

(i) Infiltration Rate is a velocity or speed at which water enters 
into the soil [16].

(j) Land Cover is one of the static physiographic attributes [47].
5.4.2 Air-related features.

These characteristics represent physical characteristics of air (in-
cluding wind) at some specified time point.
(a) Air temperature indicates how warm/cold air is [52].
(b) Atmospheric pressure is air weight [57], can be expressed by 

formula [25]:

𝑃ℎ = 𝑃0𝑒
− 𝑔ℎ𝑀

𝑅𝑇 (3)

where 𝑃ℎ - pressure at height ℎ, 𝑃0 - sea level pressure, 𝑔 -
gravitational acceleration constant, 𝑅 - Boltzmann’s constant, 
𝑇 - absolute temperature, 𝑀 - mass of one air molecule.

(c) Wind direction the direction from or to which wind is blow-
ing [33].

(d) Wind Speed reports how fast the current wind flow is at a cer-
tain time. The formula for wind speed is given as follows [16]:

𝑆 =
√

𝑢2 + 𝑣2 (4)

where 𝑢 is the magnitude of the wind vector in the east-west 
direction, and 𝑣 is the magnitude of the wind vector in the 
north-south direction.

(e) Humidity is the concentration of water vapour present in the 
air [37].

(f) Drought - binary value that states whether the sensor is out-
of-threshold [20].

(g) Vapour pressure deficit can be expressed by formula [24]:

𝐷 =𝐸(𝑇 ) −𝐸(𝑇𝑑 ) (5)

where 𝐸 stands for the saturation vapour pressure following 
Magnus’s formula, 𝑇 is the average temperature, and 𝑇𝑑 is the 
average dew-point temperature.

(h) Latent heat flux is heat exchange per unit area at constant tem-
perature [32]. It involves a transition from gas to liquid, or 
vice-versa, by absorbing (releasing) energy.

(i) Wet bulb temperature is the lowest temperature that can be 
reached under current ambient conditions by the evaporation 
of water only [45].

(j) Air Flow Rate measures the amount of air per unit of time 
that flows through a particular device (e.g., airflow meter or 
anemometer) [46].

(k) Air 𝐶𝑂2 indicates how much 𝐶𝑂2 in the air [46].
(l) Dew Point - a temperature the air must cool to become com-

pletely saturated with water [23].
5.4.3 Rain-related features.

The aspects representing information about precipitation quantity 
are included in this group.
(a) Rainfall indicates how much rain it was at a certain pe-

riod [23].
(b) Precipitation indicates information about water amount in the 

atmosphere [3].
(c) Runoff - precipitation that reaches a surface stream without 

ever passing below the soil surface [89].
5.4.4 Irrigation-related features.

These features constitute information about irrigation activity 
performed within the specified field.
(a) Water Pressure - a force that makes a flow of water strong or 

weak [20].
(b) Water Amount - information about how much water was given 

to a certain location [23].
5.4.5 Sun-related features.

Characteristics providing knowledge about current sun effects.

(a) Solar Radiation - an amount of sun energy sent through space 
by electromagnetic waves [74].

(b) Light intensity measures the intensity of sunlight [46].
(c) Sunrise Time indicates time when the sun rises [46].
(d) UV index - the ultraviolet index, or an international standard 

measurement of the strength of the sunburn-producing ultra-
violet radiation [46]

(e) Sun hours refers to sunshine duration, or period during which 
it was sunny [57].

(f) Longwave Radiation indicates the amount of heat radiated 
from the Earth to the space [83].

(g) Shortwave Radiation is the sunlight amount coming from the 
space. It can be described as the amount of heat from the sun 
at a certain period [83].

(h) Illuminance - the amount of light falling on, or illuminating, a 
given surface [71].

5.4.6 Relief-related features.
These features supply facts about terrain where the measurements 
are performed.
(a) Elevation - information about the height above or below a 

fixed reference point [55].
(b) Slope - a measure of change in elevation. It is defined as the 

ratio of the vertical change to the horizontal change between 
two distinct points on the line [55].

5.4.7 Vegetation-related features.
(a) Crop Evapotranspiration represents soil evaporation and the 

water a crop uses for growth and cooling purposes [74].
(b) Age of plant indicates how old is certain plant [20].
(c) Vegetation Type is related to the information about the plant 

type (e.g., vinegar, apple, orchard, etc.) [62].
(d) Vegetation Indices is a surface reflectance combination of two 

or more wavelengths used in remote sensing to highlight a 
vegetation property [10].

(e) Skin Reservoir Content is the amount of water in the vegetation 
canopy and a thin layer of soil [21].

(f) Leaf wetness shows the water amount in the leaf at a certain 
point [45].

5.4.8 Weather forecast-related features.
Aspects posses knowledge about current weather situation.
(a) weather prediction system designed for both atmospheric re-

search and operational forecasting applications [79].
5.4.9 Snow-related features.

Characteristics showing facts about current snow level.
(a) snow depth [4].

5.5. Evaluation

Different researchers employed several various evaluation met-
rics [22,53]. Addressing RQ№5, we classify these metrics according 
to forecasting methods granularity outlined in Section 5.3.

5.5.1 Regression-based metrics

i. MSE is mean squared error:

𝑀𝐴𝐸 = 1
𝑛 

𝑛 ∑
𝑖=1 

||𝑦𝑖 − 𝑦′
𝑖
|| (6)

where 𝑦′
𝑖

- predicted value or model forecast, 𝑦𝑖 - real value 
or actual SM, 𝑛 - total number of observations.

ii. RMSE is root mean squared error.

𝑅𝑀𝑆𝐸 =

√√√√1
𝑛 

𝑛 ∑
𝑖=1 

(
𝑦𝑖 − 𝑦′

𝑖

)2
(7)

iii. Bias is used for checking if the SM prediction is over- or 
underestimated [48].
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𝐵𝑖𝑎𝑠 =
∑𝑛

𝑖=1
(
𝑦𝑖 − 𝑦′

𝑖

)
𝑛 

(8)

iv. Unbiased RMSE describes fluctuation amplitude between 
predicted SM and observed SM.

𝑢𝑏𝑅𝑀𝑆𝐷

=

√√√√√∑𝑛

𝑖=1

((
𝑦𝑖 −

1
𝑛 
∑𝑛

𝑗=1 𝑦𝑗

)
−
(
𝑦′
𝑖
− 1

𝑛 
∑𝑛

𝑗=1 𝑦
′
𝑗

))2

𝑛 

=

√√√√√√⎛⎜⎜⎝
√∑𝑛

𝑖=1
(
𝑦𝑖 − 𝑦′

𝑖

)
𝑛 

⎞⎟⎟⎠
2

−𝐵𝑖𝑎𝑠2 (9)

v. R2 is the coefficient of determination, which measures the 
proportion of the variation in the dependent variable that is 
predictable from the independent variable(s).

𝑅2 = 1 −
∑𝑛

𝑖=1
(
𝑦𝑖 − 𝑦′

𝑖

)2
∑𝑛

𝑖=1

(
𝑦𝑖 −

1
𝑛 
∑𝑛

𝑗=1 𝑦𝑗

)2 (10)

vi. MAPE is mean absolute percentage error. In some studies, 
scientists referred to mean absolute relative error (MARE).

𝑀𝐴𝑅𝐸 = 100%
𝑛 

𝑛 ∑
𝑖=1 

|||||𝑦𝑖 − 𝑦′
𝑖

𝑦𝑖

||||| (11)

vii. MASE is mean absolute scaled error [24].

𝑀𝐴𝑆𝐸 =
1
𝑛 
∑𝑛

𝑖=1
|||𝑦𝑖 − 𝑦′

𝑖

|||
1 

𝑛−1
∑𝑛

𝑖=2
||𝑦𝑖 − 𝑦𝑖−1|| (12)

viii. SMAPE is symmetric mean absolute percentage error [24].

𝑆𝑀𝐴𝑃𝐸 = 100%
𝑛 

𝑛 ∑
𝑖=1 

|||𝑦𝑖 − 𝑦′
𝑖

|||(||𝑦𝑖||+|||𝑦′𝑖 |||)
2 

(13)

ix. Max error is maximum absolute error, which is particularly 
important for SM forecast since the SM peaks estimation is 
critical for irrigation [9].

𝑀𝑎𝑥𝐸𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥 
𝑡=1,...,𝑛

||𝑦′𝑖 − 𝑦𝑖
|| (14)

x. R is the Pearson correlation coefficient measured between 
real and predicted values.

𝑟 =

∑𝑛

𝑖=1

(
𝑦𝑖 −

1
𝑛 
∑𝑛

𝑗=1 𝑦𝑗

)(
𝑦′
𝑖
− 1

𝑛 
∑𝑛

𝑗=1 𝑦
′
𝑗

)
√∑𝑛

𝑖=1

(
𝑦𝑖 −

1
𝑛 
∑𝑛

𝑗=1 𝑦𝑗

)2∑𝑛

𝑖=1

(
𝑦′
𝑖
− 1

𝑛 
∑𝑛

𝑗=1 𝑦
′
𝑗

)2
(15)

xi. Mean biased error indicates a tendency of the model to 
underestimate or overestimate the real value. The perfect 
model has a value close to zero.

𝑀𝐵𝐸 = 1
𝑛 

𝑛 ∑
𝑖=1 

(
𝑦′
𝑖
− 𝑦𝑖

)
(16)

xii. NSE is Nash-Sutcliffe efficiency coefficient (𝐸𝑁−𝑆 ) which 
is standard quantitative statistical performance evaluation 
measures [56].

𝐸𝑁−𝑆 = 1 −
∑𝑛

𝑖=1
(
𝑦′
𝑖
− 𝑦𝑖

)
∑𝑛

𝑖=1

(
𝑦𝑖 −

1
𝑛 
∑𝑛

𝑗=1 𝑦𝑖

) (17)

xiii. Residuals measures the difference between predicted and 
actual values.

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖 = 𝑦𝑖 − 𝑦′
𝑖

(18)

xiv. Accuracy in some studies was defined as forecast accuracy. 
It can be calculated by taking the absolute difference be-
tween the forecast and actual values divided this difference 
by the actual value [16].

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1
𝑛 

𝑛 ∑
𝑖=1 

|||||𝑦𝑖 − 𝑦′
𝑖

𝑦𝑖

||||| (19)

5.5.2 Classification-based metrics Sometimes, when the SM levels 
have discrete distribution, the SM forecast is considered a classifi-
cation problem. The models were evaluated using various classifi-
cation measures. Let 𝐹𝑃 be false positives, 𝐹𝑁 be false negatives, 
𝑇𝑃 be true positives, 𝑇𝑁 be true negatives. The measured met-
rics for classification problems can be defined as follows.

i. Accuracy is the model’s overall accuracy.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(20)

ii. Precision is the ability of the model to avoid false positives.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(21)

iii. Recall is the ability of the model to detect positive cases.

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(22)

iv. F1 is the harmonic mean of precision and recall.

𝐹1 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙
(23)

v. AUC is the area under the Receiver Operating Characteristic 
curve.

The above-posted metrics cover mostly all typical evaluation assess-
ment methods performed in the field of SM forecasting.

5.6. SM forecasting models usage

The soil moisture (SM) prediction serves several purposes across a 
variety of fields, including water resource management, crop farming, 
and disaster prevention. These purposes are outlined below to address
RQ№6:

5.6.1 irrigation planning. It optimizes irrigation schedules to ensure 
that crops receive adequate moisture [35,12,11,3]. In addition, 
this scheduling can consider crop harm estimation [88]. Another 
term is used for this purpose is smart irrigation [79,16].

5.6.2 water saving. It is essential factor in investing in research, result-
ing in large amount articles written for irrigation management 
and scheduling [74,72,12].

5.6.3 precision farming. The further purpose of SM future estimation is 
for crop farming [20] and optimal plant growth [7,54].

5.6.4 drought monitoring. An efficiency of predictability of drought 
events can be considered [47].

6. Discussions

This literature review provides an overall analysis of current de-
velopments in the field of SM forecast from sensor-based observations 
including SM, irrigation and weather information. Some interesting in-
sights were gained from the distribution graphs of articles for some 
aspects mentioned in Section 5. These insights are shown in Fig. 5. As 
such, the first conclusion comes from the sensor types used in the past 
ten years (see Fig. 5a). In Section 5.2, we outlined nine groups for each 
sensor type mentioned by the researchers in the SM forecast domain. As 
expected, not all these sensor groups were employed for the SM fore-
cast. We can see from the pie chart that the largest segment is labelled 
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Fig. 5. Papers statistics insight: distribution of different related features used in studies for soil moisture forecasting within 2014-2024. 

“Not known”, accounting for 40%, indicating a significant portion of the 
sensors whose type is unidentified. The second-largest category is FDR, 
which represents 21.5% of the total. Following this is the Capacitance 
category, making up 18.5%. Smaller contributions come from Cosmic-
Ray sensors, comprising 7.7%, and TDR (Time Domain Reflectometry), 
which accounts for 6.2%. Even less significant are Resistive-based sen-
sors, contributing 4.6%, and the Neutron Probe category, which is the 
smallest at 1.5%. At the same time, some sensor types were not referred 
to at all, e.g., tensiometers and granular matrix sensors. This situation 

can be considered a research gap for scientists who want to advance the 
SM prognosis. Some articles were published about cosmic-ray neutron 
sensing. At the same time, we noted at the beginning of this study that 
it covers only earth-located sensors for SM collection and forecast.

The second insight comes from the sensor position depth distribu-
tion, shown in Fig. 5b. The depth level where the sensor is placed is 
indeed vital for SM moisture estimation: a small amount of precipita-
tion does not reach a certain level of the earth, and sensors can not 
capture rain information. Some studies reported depth position within a 
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wide range without explicit information on the interval’s specific values 
(e.g., 0-20 cm, 7-28 cm). Hence, these intervals were then equally dis-
tributed between an existing range of depths (e.g., if the article reported 
a range of 0-20 cm interval, then we consider this article to have sensor 
depth positions for 2 cm, 4 cm, 5 cm, 7 cm, 10 cm, 15 cm, 20 cm, respec-
tively). Overall, the data shows that the most common lengths are 15 
cm and 30 cm, with both having the highest count of articles, reaching 
peaks of 19 and 16, respectively. In contrast, articles of shorter lengths, 
such as 2 cm, 4 cm, and 5 cm, are relatively less frequent, with counts 
below four each, probably due to the inefficiency of SM collection at this 
position. Similarly, lengths above 60 cm show minimal representation, 
except for the spike at 100 cm, which has approximately 10 articles. 
The chart highlights a tendency for articles to cluster around medium 
lengths, particularly between 10 cm and 40 cm, with notable fluctua-
tions within this range.

Further, the third insight is about soil-related data distribution 
shown in Fig. 5c. As expected, SM is the most utilized feature for SM 
forecast: more than 90% of studies reported it. Interestingly, ST is the 
second most frequent feature reported by the researchers: 24 out of 60 
articles used it. The third most utilized feature is soil type (around seven 
papers delivered their models using it). These parameters are probably 
the most evident when building a forecasting system. Other prominent 
values are soil evaporation (9% of articles operated it) and soil electrical 
conductivity (5% of studies correspondingly).

The subsequent exciting distribution of air-related features is shown 
in Fig. 5d. One can see that air temperature is the most frequent parame-
ter being used in prognosis systems. This aspect is followed by humidity 
and wind speed, the second and third most frequently employed param-
eters. We suggest including such parameters to deliver well-established 
estimation systems is essential.

In addition, metrics allocation among studies are provided in Fig. 5e. 
Not surprisingly, RMSE is the most frequent evaluation metric. The sub-
sequently followed most-used metrics are MAE (with more than 50% 
reported articles), R2 (with 29 reported papers), MSE (with 20 reports), 
MAPE (with 14 articles) and Accuracy (with six documents). Consid-
ering these metrics for forecasting systems planned to be designed is 
essential.

Another graph shows sun-related feature distribution among the 
studies in Fig. 5f. From this image, it’s clear that SR is an obvious param-
eter affecting SM, and a large amount of sun heat is correlated with SM. 
In addition, light intensity also plays an essential role: at least six studies 
have reported this. The other features can be considered as weaker prog-
nosis providers as they were reported in only a few papers: sun hours, 
UV index, illuminance, longwave and shortwave radiation, and sunrise 
time.

The last but not least meaningful plot shows the distribution of fore-
casting methods among the articles in Fig. 5g.

From this Figure, one can conclude that SVM, LSTM and ANNs are 
forecasting methods which were used the most (with 37%, 33% and 
31% overall studies registering them, respectively). Not surprisingly, 
RF and ARIMA are the second most-used methods: 13 and 14 articles 
delivered them accordingly. Several studies employed such methods as 
LR, KNN, DT, GBM, Modelling, Naive Bayes, Lasso R and PCA. Only a 
few papers reported Logistic R, RR, Polynomial R, RNN, SARIMA, ES, 
Encoder-decoder, and BLSTM. All the other methods were only used in 
a single article.

7. Conclusion

This literature review is a deep dive into the cutting-edge forecasting 
systems designed for future SM prediction, using sensor-based mea-
surements of SM, weather, and irrigation information. We outline the 
existing research advancements in the SM forecasting field to provide a 
unified framework for designing SM forecasting systems and highlight 
areas that warrant further investigation. The review answers six research 
questions, each crucial to understanding the sensor types, various fore-

casting methods, feature generation scenarios, and evaluation methods 
used in current systems. Following the standard procedure for literature 
review in the computer science domain, we detail the search unique 
strings used to identify the articles included in this review, demonstrat-
ing the rigour of our survey approach. Our search spanned five different 
e-sources: ACM Digital Library, IEEE Digital Library, ISI Web of Science, 
Scopus, and Springer Link, resulting in the inclusion of 60 studies in this 
review. These articles were carefully analyzed to address the posed re-
search questions, and we delivered an analysis of several distribution 
figures for each related question. In conclusion, we provide potentially 
interesting research gaps in SM prognosis from sensor-based observa-
tion.

From the reported results, one can see that some recently developed 
software solutions report precise accuracy for SM prognosis, which is 
unsurprising considering how Artificial Intelligence has advanced the 
general forecasting domain. At the same time, we notice some unre-
solved issues: first, it needs to be clarified which type of sensors deliver 
better performance, accuracy, and battery life cycle efficiency. Some 
attempts have been made to find a way to address this problem, e.g., 
in [18], but only a couple of sensors have been included for compari-
son. Another open research question relates to the computation memory 
necessary for each forecasting method: memory limit is the most impor-
tant consideration when deploying an automatic system in small devices 
(e.g., chips). The researcher still needs to analyze this aspect. The third 
unresolved issue pertains to features and their significance. The research 
question here is which features can better enhance the performance of 
forecasting methods. While several features relied solely on SM mea-
surements, other studies still rely on more than this. The sub-sequential 
question then becomes: to what extent can all potential features be uti-
lized? In addition, SM estimation models must be incorporated into 
recommendation systems for plant growth or irrigation scheduling. Sev-
eral studies have described such systems [82,68], without considering 
SM predictive models. These are some of the challenges that await fu-
ture research, offering exciting opportunities for further exploration and 
innovation in the field.
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Appendix A

Fig. 6. Flowchart of the study screening procedure according to PRISMA. 
Table 6
Literature review summary.
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14 [52] Unk 20, 

40, 
60

SM Air 
temperature, 
Atmospheric 
pressure, Wind 
direction, 
Wind speed, 
Humidity

Rainfall - SR - - MAE ELM - 2 years Australia -

20
15 [46] Unk - SM, ST, 

Soil Type
Air 
temperature, 
Humidity, Air 
Flow Rate, Air 
CO2

- - Light 
intensity, 
Sunrise 
Time, UV 
Index

- - MSE, 
R2, 
RMSE

ANNs - Unk India -

20
16 [30] resistive-

based
10, 
5

ST, SM Wind speed, 
Air 
temperature, 
Humidity

Precipita-
tion

- SR - - MAE, 
MSE, R2

Relevance 
Vector 
Machine, 
SVM

- 8 years United 
States

-

20
16 [66] Neutron 

Probe, TDR
10-
30

SM - - - - - - MAE, 
MAPE, 
RMSE

Bagging, 
ANNs, SVM

- 9 years United 
States, 
Australia

-

20
17 [8] capaci-

tance
5, 
10, 
15, 
20, 
28, 
30

SM - - - - - - MAE, 
RMSE

HyperSTL - 1 year United 
States

-

20
17 [55] FDR 10 SM, Soil 

Type
Air 
temperature

Precipita-
tion

- - Elevation, 
Slope

- Accu-
racy, 
MSE

DT, KNN, 
LR, Logistic 
R, SVM

- 1 year Romania -

20
17 [67] FDR 30 SM Wind speed, 

Air 
temperature

Rainfall - - - - RMSE ANNs - 6 
months

China -

(continued on next page)
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Table 6 (continued)
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18 [3] cosmic-ray - SM, soil 

type
Wind speed, 
Air 
temperature, 
Humidity

Precipita-
tion

- SR - - MAE, 
R2, 
RMSE

Dynamic 
ANNs

- 4 years United 
Kingdom

-

20
18 [17] Unk - ST Air 

temperature, 
Humidity

- - - - - RMSE NN-MFPA, 
MLP-FFN, 
NN-PSO, 
NN-CS

- 1 year Canada -

20
18 [23] Unk - Leakage 

Depth, 
SM

Dew Point Rainfall ✓ - - Crop 
Evapo-
transpira-
tion

MAE, 
R2, 
RMSE

Modelling - 58 
years

China -

20
18 [27] resistive-

based
Unk SM, Soil 

Evapora-
tion

Air 
temperature, 
Humidity

- - SR - - Accu-
racy, 
MSE, R2

MLRs, RR, 
SVM, 
Weighted 
LR

- 1 week India -

20
18 [57] Unk 0-

20, 
20-
40

Sandy 
Propor-
tion, SM

Atmospheric 
pressure, Wind 
speed, Air 
temperature, 
Humidity

Precipita-
tion

- Sun hours, 
UV index

- - Accu-
racy, R2, 
RMSE

ANNs, RF, 
SVM

- 2 years China -

20
18 [64] capaci-

tance
5 SM - - - - - - MSE, R2 LSTM, 

MLRs, SVM
- 6 
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2 years

United 
States

-

20
19 [72] capaci-

tance
Unk SM, ST Humidity - - UV index, 

SR
- - MSE, R2 Elastic-Net, 

GBM, 
MLRs, RF

✓ 37 days India -

20
19 [13] FDR 10, 

20
ST Air 

temperature, 
Atmospheric 
pressure, 
Humidity, 
Wind speed

Precipita-
tion

- - - - MAE, 
MSE, 
RMSE, 
R2

CNN, - 4 years China -
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20 [5] Unk 10, 
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racy
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ANNs, 
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- 7 years Romania -
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40
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Air 
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MAE, 
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ANNs, RF, 
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✓ 3 years France -
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20 [51] Unk - SM - - - - - - MAE, 

MAPE, 
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ARIMA, 
Gaussian 
Process

- 4 years China -
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20 [62] FDR - SM Air 
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Humidity

- - - - Vegeta-
tion Type

LR, Naive 
Bayes, PCA, 
SVM

- 3 
months

India -

20
20 [63] capaci-

tance, TDR
5 SM - Rainfall - - - - MSE, R2 MLRs, 
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United 
States, 
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-
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20 [73] capaci-
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50, 
80

SM - - - - - - MAE, 
MAPE, 
MSE, 
RMSE

LSTM - 1 year India -

20
21 [15] FDR 10, 

20, 
40, 
5, 
80

SM

W
in

d s
pe

ed
 

A
ir
 te

m
pe

ra
tu

re
 

H
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it
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Rainfall - SR -

V
eg

et
at
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V
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et
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n T

yp
e 

C
ro

p E
va
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tr

an
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ir
at

io
n Bias, R2, 

RMSE, 
Unbi-
ased 
RMSE

RF - 2 years Nether-
lands

-
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Table 6 (continued)
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20
21 [21] Unk 0-7 ST, SM, 

Soil Evap-
oration

Air 
temperature, 
Humidity, 
Dew Point

Rainfall - Light 
intensity

- Skin 
Reservoir 
Content, 
Vegeta-
tion 
Index

MSE, R2 SVM - 1 year India -

20
21 [24] Unk 0-7, 

7-
28, 
28-
100, 
100-
289

SM, Soil 
Type

Vapor-
pressure 
deficit, Air 
temperature

Precipita-
tion

- - - - MAE, 
MASE, 
SMAPE

ARIMA, 
RNN, 
LSTM, RF

- 9 years Serbia -

20
21 [33] Unk Unk SM, ST, 

Soil elec-
trical 
conduc-
tivity

Wind 
direction, 
Wind speed, 
Air 
temperature, 
Humidity

Rainfall - Light 
intensity

- - MSE, R2 SVM - 1 year China -

20
21 [37] Unk - SM, ST Wind 

direction, 
Wind speed, 
Air 
temperature, 
Humidity

Rainfall - Light 
intensity

- Vegeta-
tion Type

MAE, 
MAPE, 
RMSE

LSTM, 
ANNs, PCA

- 3 years China -

20
21 [41] FDR 10, 

45, 
80

SM - - - - - - MAE, 
MSE, 
RMSE

ARIMA, 
LSTM, 
Prophet

- Unk India -

20
21 [50] FDR - SM, ST Air 

temperature, 
Humidity

- - - - - MAPE, 
R2, 
RMSE

LSTM - 3 
months

China -

20
21 [71] Unk Unk ST, Soil 

electrical 
conduc-
tivity, SM

Air 
temperature, 
Humidity

- - Illumi-
nance

- - MAE, 
MSE

ANNs - 2 
months

China -

20
21 [74] capaci-

tance
10, 
20, 
30, 
40, 
50

SM Vapor-
pressure 
deficit, Wind 
speed, Air 
temperature

- - SR - Crop 
Evapo-
transpira-
tion

- Simulation - 2 
months

Spain -

20
21 [79] Unk 20, 

40, 
60

SM, Soil 
Type

Air 
temperature, 
Humidity, 
Wind speed

Precipita-
tion

- SR - - MAE, 
MAPE, 
R2, 
RMSE

DT, GNN, 
LR, LSTM, 
ANNs, RF

✓ 4 years Brazil -

20
22 [4] Unk 10, 

100, 
200, 
40

Soil evap-
oration, 
SM

- - - - - - MAPE, 
RMSE, 
MAE

RNN, 
LSTM, 
SVM, RF, 
Elman 
ANNs

9 years Mongolia ✓

20
22 [7] capaci-

tance
- SM, Soil 

ph
Air 
temperature, 
Humidity

- - Light 
intensity

- - MAE, 
RMSE

LSTM, 
SARIMA

- 18 days Sri Lanka -

20
22 [9] capaci-

tance, FDR
5, 
10, 
15, 
20, 
28, 
30

SM - - - - - - MAPE, 
max 
error

NAR, 
AEAR, 
ARIMA, 
SVM, 
Polynomial 
R, LSTM, 
SEM

- 1 year United 
States

-

20
22 [16] TDR 120, 
30, 
7, 
90

Infiltra-
tion Rate, 
SM, Soil 
Type, Soil 
pH

Air 
temperature, 
Vapor-
pressure 
deficit, 
Humidity

- - SR - - Accu-
racy

LR, LSTM, 
Lasso R, 
Modelling, 
SVM

- 1 year Australia -

(continued on next page)
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Table 6 (continued)
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20
22 [45] Unk 15, 

30, 
45

SM Air 
temperature, 
Wet bulb 
temperature, 
Humidity

Precipita-
tion

- - - Leaf 
wetness

MAE, 
R2, 
RMSE

AdaBoost, 
GBM, 
HBGB, LR, 
Lasso R, RF, 
RR, 
XGBoost

- 2 years Turkey -

20
22 [48] Unk 5 SM, ST Air 

temperature
Precipita-
tion

- - - Vegeta-
tion Type

Bias, 
MAE, 
R2, Un-
biased 
RMSE

Encoder-
decoder, 
LSTM

- 18 
years

China, + -

20
22 [49] FDR 4 SM, ST, 

Soil Type
- - - - - MAE, 

RMSE
ARIMA, 
LSTM, SVM

- 6 
months

China -

20
22 [77] capaci-

tance and 
FDR

30, 
60

SM - - - - - - R, Mean 
biased 
error, 
NSE, 
RMSE

ANNs, 
Probabilis-
tic Particle 
Filter

- 4 years United 
States

-

20
23 [12] Unk - SM, ST Wind 

direction, 
Wind speed, 
Air 
temperature, 
Humidity

- ✓ Illumi-
nance

- - AUC, 
Accu-
racy, F1, 
Preci-
sion, 
Recall

ResNet50, 
DT, KNN, 
Logistic R, 
Naive 
Bayes, RF, 
SVM

- - United 
States

-

20
23 [28] resistive-

based
Unk SM, ST Air 

temperature, 
Humidity

- - SR - - MSE, R2 GBM, 
MLRs, RF

- 40 days India -

20
23 [31] Unk 10, 

100, 
40

SM Air 
temperature, 
Wind speed

Precipita-
tion

- - - - MAE, 
MAPE, 
RMSE

ARIMA, 
LSTM

- 1 year China -

20
23 [32] Unk - Soil evap-

oration
Latent heat 
flux

Precipita-
tion

- - - - Residu-
als, R2

ARIMA, 
Modelling

- 9 years Mongolia -

20
23 [34] Unk 5 SM Wind speed, 

Air 
temperature, 
Humidity

Rainfall - - - - R, 
MAPE, 
R2, 
RMSE

RF, SVM - 40 
years

Bangladesh -

20
23 [36] Unk 0-10 SM - - - - - - MAE, 

R2, 
RMSE

Informer, 
PCA, Varia-
tional Mode 
Decomposi-
tion

- 16 
years

China -

20
23 [38] FDR 30 SM, ST Air 

temperature, 
Humidity

- - - - - MAE, 
RMSE

Attention-
LSTM, GA, 
LSTM, 
ANNs, SVM

- 9 years Canada -

20
23 [44] cosmic-ray - SM Air 

temperature, 
Atmospheric 
pressure, Wind 
direction, 
Wind speed, 
Humidity

Precipita-
tion

- Longwave 
Radiation, 
Shortwave 
Radiation, 
SR

MAE, 
MSE, 
R2, 
RMSE

BLSTM, 
LSTM, 
CNN-LSTM

- 6 years United 
Kingdom

-

20
23 [54] FDR - SM, ST, 

Soil ph
Atmospheric 
pressure, 
Humidity, 
Wind speed, 
Air 
temperature

Precipita-
tion, 
Rainfall

- Sun hours - - MAE, 
MSE, 
NSE, R2, 
RMSE

Bagging, 
Boosting, 
Max-
Voting, RF, 
SVM, 
Stacking

- 3 years India -

20
23 [56] Unk 2, 

25, 
50

SM, ST Wind speed, 
Air 
temperature

Rainfall - - - - MAPE, 
NSE, R2, 
RMSE

Deep 
Learning, 
MLRs, 
ANNs, SVM

- 1 year India -

20
23 [60] TDR 10, 

20, 
30

SM, ST Air 
temperature, 
Humidity

Precipita-
tion

- - - - MSE, R2 LSTM - 1 year South 
Korea

-
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Table 6 (continued)
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20
23 [70] capaci-

tance
Unk SM, ST Air 

temperature, 
Wind speed, 
Humidity

Precipita-
tion, 
Rainfall

- Light 
intensity

- Vegeta-
tion 
Indices

R, MSE KNN, Lasso 
R, ANNs, 
RF, SVM

- 6 
months

Africa -

20
23 [78] capaci-

tance and 
FDR

30 SM - - - - - - RMSE ANNs - 9 years United 
States

-

20
23 [81] Unk - SM - - - - - - MAE, 

MAPE
ARIMA, 
ANNs

- 8 days China -

20
23 [85] FDR - SM, ST, 

Soil elec-
trical 
conduc-
tivity

Air 
temperature

- - - - - MAE, 
MSE, R2

AOA, ELM, 
ANNs, SVM

- 8 
months

China -

20
23 [89] Unk 10, 

100, 
200, 
40

Soil evap-
oration, 
SM

Wind speed Runoff - - - Vegeta-
tion 
Indices

MAE, 
MAPE, 
RMSE

BLSTM, 
Encoder-
decoder, 
LSTM

- 11 
years

Mongolia -

20
23 [88] cosmic-ray 10, 

30, 
60, 
100

SM, Soil 
electrical 
conduc-
tivity

Air 
temperature, 
Humidity, 
Atmospheric 
pressure, Wind 
speed

Precipita-
tion

- Longwave 
Radiation, 
Shortwave 
Radiation

- Crop 
Evapo-
transpira-
tion

RMSE, 
R2

Modelling ✓ 1 year US -

20
24 [47] cosmic-ray 0-7, 

0-10
Land 
cover, ST, 
SM

Wind speed, 
Air 
temperature

Precipita-
tion

- Longwave 
Radiation, 
Shortwave 
Radiation

Elevation - R, RMSE ConvLSTM - 8 years China -

20
24 [19] capaci-

tance
100, 
15, 
30, 
5, 
50, 
60, 
90

ST, SM Air 
temperature

Precipita-
tion

- - - - MAE, 
MAPE, 
RMSE

Naive 
Bayes, 
VAR, ES, 
ARIMA, 
EGB, RF, 
N-BEATS, 
StemGNN

- 2 years United 
States +

-

20
24 [43] cosmic-ray - SM, ST Atmospheric 

pressure, 
Humidity

Precipita-
tion

- SR - - MAE, 
MSE, 
R2, 
RMSE

LSTM - 6 years United 
Kingdom

-

20
24 [87] Unk 10, 

100, 
200, 
40

Soil evap-
oration, 
SM

Atmospheric 
pressure, 
Visibility, 
Wind speed, 
Air 
temperature

Precipita-
tion, 
Rainfall

- - Elevation - MAE, 
R2, 
RMSE

ARIMA, 
LSTM, 
ANNs, 
SARIMA, 
Sparrow 
Search

- 10 
years

Mongolia -

Appendix B. Supplementary material

Supplementary material related to this article can be found online at 
https://doi.org/10.1016/j.atech.2024.100692. 

Data availability

I have provided data as supplementary material. Statistical analysis 
will be made available on request.
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