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Abstract: The detection of early biomarkers and molecular mechanisms in Parkinson’s disease (PD) remains a 

challenge. Recent research has pointed to potential roles for peptidylarginine deiminases (PADs), a family of 

calcium activated enzymes, and associated post-translational protein citrullination/deimination in early stages 

of the disease, with a focus on hippocampal and cortex regions of the brain. Further analysis of brain region 

specific changes in PAD isozymes and identification of brain-region specific citrullinomes, therefore remain to 

be studied. This study assessed brain-region specific PAD isozyme expression (PADs 1-4; PAD6) and 

associated citrullinated protein targets in the 6-hydroxydopamine (6-OHDA) induced rat model of pre-motor 

PD. Cortex, hippocampus, striatum, midbrain, cerebellum and olfactory bulb were compared between 

controls/shams and the PD model. In cortex, a significant increase of PAD2 and PAD3 was observed in the PD 

model. In hippocampus, PAD3, PAD4 and PAD6 showed strongest levels, but with no significant changes 

observed between PD and controls. In striatum, a significant reduction in all PAD isozymes was observed in 

the PD model. In the olfactory bulb, PAD3 was significantly elevated in PD. In midbrain, PAD2, PAD4 and 

PAD6 showed strongest signal but with no significant changes between PD and controls. In cerebellum, a 

significant increase was seen in PAD3, PAD4 and PAD6 in the PD model. Citrullinated protein hits were most 

abundant in cortex and hippocampus, while for the PD model an increase in citrullinated hits was particularly 

observed in cortex and cerebellum, compared to controls. For all brain regions there was a considerable 

difference in citrullinated protein IDs between the PD model and the controls. Citrullinome associated KEGG 

pathways differed in the six brain regions; some were overlapping for controls and PD, some were identified 

for the PD model only, and some were identified in control brains only. KEGG pathways identified in PD brains 

onlywere: “Axon guidance”; “Spinocerebellar ataxia”; “Hippo signalling pathway”; “NOD-like receptor 

signalling pathway”; “Phosphatidylinositol signalling system”; “Rap1 signalling pathway”; “Platelet 

activation”; “Yersinia infection”; “Fc gamma R-mediated phagocytosis”; “Human cytomegalovirus infection”; 

“Inositol phosphate metabolism”; “Thyroid hormone signalling pathway”; “Progesterone-mediated oocyte 

maturation”; “Oocyte meiosis”; and “Choline metabolism in cancer”. Our findings highlight differences in 

PAD isozymes, citrullinated proteins and associated KEGG pathways between brain regions, in pre-motor PD. 

Keywords: peptidylarginine deiminase (PAD); citrullination/deimination; Parkinson’s disease; 

brain; cortex; hippocampus; midbrain; striatum; cerebellum; olfactory bulb; KEGG 

 

1. Introduction 

Molecular pathways in early stages of Parkinson’s disease (PD), including pre-motor PD, are an 

important area of research in the light of a lack of current treatment strategies and the need for 

identification of early biomarkers [1]. More than 10 million people worldwide live with PD, the 

second most common age-related neurodegenerative disorder, and 4% of affected people are 

diagnosed before the age of 50. The identification of early PD-related pathways that can serve as 
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novel drug targets and aid early diagnosis is therefore of pivotal importance. In combination with 

clinical and post-mortem human patient samples, which are in limited supply, the use of early-stage 

PD animal models offers promising avenues for in vivo assessment of novel molecular pathways and 

candidate pharmacological lead compounds for therapeutic intervention.  

Recent research has highlighted a role for peptidylarginine deiminases (PADs), a family of 

calcium activated enzymes that cause post-translational citrullination/deimination of proteins, 

through irreversible conversion of arginine to citrulline, and are associated with inflammatory and 

neurodegenerative diseases, including through altered self-epitopes, changes in protein interactions 

and epigenetic regulation [2], most recently also linked to PD [3–5]. 

PADs are found in 5 isoforms in mammals, show tissue specific expression and vary in 

preference for target proteins, with some shared targets [6]. Furthermore, beta sheets and intrinsically 

disordered proteins are more susceptible to citrullination/deimination and the position of the 

arginine also plays a role [7,8]. Importantly, a wide range of cytosolic, cytoskeletal, mitochondrial 

and nuclear associated proteins can undergo citrullination, leading to their modified functions, 

including loss of function, new acquired functions and protein moonlighting. PAD2 is considered the 

most ancestral and ubiquitously expressed PAD isozyme, while all isozymes have been linked to 

physiological and pathobiological processes [6,8–11]. The main PAD isozymes studied to date in the 

brain and in neurodegenerative disorders have been PAD2 and PAD4, including in development and 

ageing [12], Alzheimer’s disease (AD) [13,14], amyotrophic lateral sclerosis (ALS), prion diseases and 

in multiple sclerosis (MS) [15–21], as well as in acute brain injury [22–25], but importantly recently 

also highlighted in both human PD brain samples and in PD animal models [4,5,26]. Roles for PAD3 

have been described in CNS regeneration [27], in brain cancer [28,29], in neuronal stem cells [30] and 

neuronal viral infection [31]. Understanding of roles for PAD3 in neurodegeneration are limited, but 

recent research highlighted elevated PAD3 levels in PD post-mortem human brain samples [5] as 

well as in pre-motor PD rat cortex and hippocampus [4]. PAD1 has been associated with skin 

diseases, development, and some cancers [32–35]. Importantly PAD1 was also recently identified by 

our group to be elevated in human postmortem PD brain samples of hippocampus and cortex [5]. 

PAD6 is shorter than the other isozymes, shares less sequence homology with the other PAD family 

members and does not seem to bind calcium, contrary to the other isozymes [36]. PAD6 has been 

mainly studied for roles in early embryonic development, oocyte formation and embryo implantation 

[37,38], and some associations have been made with cancers [39]. Importantly recent roles for PAD6 

in the CNS have been highlighted, including in brains of hypoxia-challenged naked mole-rats [40] 

and in post-mortem human PD brain samples where PAD6 was detected in the brain vasculature by 

immunohistochemistry [5].  

As recent studies from both animal models and human post-mortem brain samples have 

identified increased PADs and citrullination at early PD stages [4,5], an investigation is now 

warranted into the brain-region specific citrullinomes in early stages of PD. The current study 

therefore used the previously published toxin-induced pre-motor PD rat model [4] to assess changes 

in PAD isozymes and citrullinated protein targets by proteomic analysis in the following brain 

regions: striatum, olfactory bulb, midbrain, hippocampus, cortex, and cerebellum. 

2. Results 

2.1. Brain Region Related Differences in PAD Isozyme Detection 

The six brain regions under study (cortex, hippocampus, midbrain, striatum, cerebellum and 

olfactory bulb) were assessed by western blotting for all five PAD isozymes (PAD1,2,3,4 and PAD6). 

Results are shown in Figures 1-3 and summarised in Table 1. PAD1 was observed at very low levels 

in all brain regions, with only a clear signal observed in control/sham striatum. In cortex, PAD2, 

PAD3, PAD4 and PAD6 were all detected, although protein bands for PAD2, PAD3 and PAD4 were 

not clearly defined in all samples, while PAD6 showed a strong band in most samples. Based on 

densitometry analysis (normalized with beta-actin) of the regions for the expected PAD bands (70-75 

kDa for PAD1-4, and 50-60kDa for PAD6, as indicated by arrows and brackets) a significant increase 
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of PAD2 and PAD3 was observed in the pre-motor PD cortex (Figure 1A-E). In hippocampus PAD3, 

PAD4 and PAD6 showed strongest levels of the PAD isozymes, although positive protein bands were 

somewhat blurred for PAD2 and PAD3, while PAD4 bands were more clearly detected and PAD6 

showed a strong positive band. No significant changes were observed for PADs in control versus pre-

motor PD hippocampus, albeit there was some trend for reduced PAD2,3 and PAD4 levels, and 

increased PAD6 levels (albeit not statistically significant) (Figure 1A-E). In addition, prohibitin levels 

were assessed as a marker of mitochondrial housekeeping, with some trend of reduced levels (but 

non-significant) in cortex and hippocampus of the PD group (Figure 1F). 

 

Figure 1. PAD isozyme and prohibitin protein detection in cortex (Ctx) and hippocampus (Hip) of 

sham/control (Ctr) and pre-motor PD (PD) rats. A) PAD1; B) PAD2; C) PAD3; D) PAD4; E) PAD6; F) 

Prohibitin (PHB). Protein levels were assessed in n = 3 brains per group and normalised against beta-

actin protein levels (fold-changes are shown); exact p-values are shown with significant differences 

indicated with a star *(p<0.05); mean and standard deviation are presented. Arrows (and brackets) 

indicate the area of the blot assessed for the predicted PAD protein bands (at 70-75 kDa for PAD1-4 

and 50-60 kDa for PAD6) and prohibitin (PHB, 27 kDa); note low detection of PAD1 in both cortex 

and hippocampus. 

In cerebellum, PAD1 levels were low, PAD2, PAD3, PAD4 and PAD6 showed positive signal, 

although bands were only clearly defined for PAD6. Based on densitometry analysis of the 70-75 kDa 

region for PAD1-4 and 50-60 kDa region for PAD6, a significant increase was observed for PAD3, 

PAD4 and PAD6 in PD cerebellum, compared with controls/shams (Figure 2 A-E). In midbrain, PAD1 

levels were negligible, while PAD2 and PAD6 were more strongly detected, and PAD3 and PAD4 

detected at lower level. The protein bands for PAD1-4 were furthermore not clearly defined, while 

PAD6 showed a more clearly detectable band (Figure 2 A-E). While no significant changes were 

observed for any of the PAD isozymes between control and PD midbrains, based on densitometry 

analysis normalized to beta-actin, there was some trend for decreased PAD2 and PAD4 (Figure 2 B 

and D). In cerebellum, prohibitin levels showed some elevation for the PD group, but not 

significantly, while this was not observed for midbrain. 
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Figure 2. PAD isozyme and prohibitin detection in cerebellum (Cer) and midbrain (Mid) of 

sham/control (Ctr) and pre-motor PD (PD) rats. A) PAD1; B) PAD2; C) PAD3; D) PAD4; E) PAD6; F) 

Prohibitin (PHB). Protein levels were assessed in n = 3 brains per group and normalised against beta-

actin protein levels (fold-changes are shown); exact p-values are shown with significant differences 

indicated with a star *(p<0.05); mean and standard deviation are presented. Arrows (and brackets) 

indicate the area of the blot assessed for the predicted PAD protein bands (at 70-75 kDa for PAD1-4 

and 50-60 kDa for PAD6) and prohibitin (PHB, 27 kDa). 

In the olfactory bulb, low detection of PAD1,2 and 3 isozymes was observed, with higher 

positive signal detected for PAD4 and PAD6, although PAD positive bands were all diffuse for 

olfactory bulb. In the PD olfactory bulb, a significant elevation for PAD3, and a trend for increased 

PAD4 and PAD6 (albeit non-significant) was observed based on densitometry analysis of these 

regions, normalized to beta-actin loading control (Figure 3 A-E). In striatum, positive signals for all 

PADs isozymes were observed, but with lowest detection of PAD6. Based on densitometry analysis 

of the PAD-positive region of the blot (as indicated by arrows and brackets) and normalized against 

beta-actin, a significant reduction of protein levels for PAD1, PAD2, PAD3, PAD4 and PAD6 was 

observed in PD striatum compared with controls/shams (Figure 2 A-E). Prohibitin protein levels were 

significantly increased in PD olfactory bulb, but no difference was observed in the striatum between 

the two groups (Figure 3F). 
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Figure 3. PAD isozyme and prohibitin protein detection in olfactory bulb (Ob) and striatum (Str) of 

sham/control (Ctr) and pre-motor PD (PD) rats. A) PAD1; B) PAD2; C) PAD3; D) PAD4; E) PAD6; F) 

Prohibitin (PHB). Protein levels were assessed in n = 3 brains per group and normalised against beta-

actin protein levels (fold-changes are shown); exact p-values are shown with significant differences 

indicated with a star *(p<0.05); mean and standard deviation are presented. Arrows (and brackets) 

indicate the area of the blot assessed for the predicted PAD protein bands (at 70-75 kDa for PAD1-4 

and 50-60 kDa for PAD6) and prohibitin (PHB, 27 kDa). 

Findings from the western blotting analysis in Figures 1-3 are summarized below in Table 1 for 

PAD protein levels detected in the six brain regions under study in the control (ctr) and pre-motor 

PD (PD) groups. It must be noted that in many of the rat brain regions, PAD isozyme detection with 

the human PAD-isozyme specific antibodies revealed blurred, rather than clearly defined bands, and 

therefore the region with expected PAD isozyme detection (70-75 kDa for PAD1-4 and 50-60 kDa for 

PAD6; as indicated by arrows and/or brackets) was assessed. In addition, individual variation within 

each sample group was observed, as reflected in the observation of a trend, rather than statistically 

significant differences; this is further summarized in Table 1. 

Table 1. Summary of PAD isozymes (PAD1,2,3,4 and 6) detection, as assessed by western blotting in 

sham/control (CTR) and pre-motor PD (PD) cortex, hippocampus, cerebellum, midbrain, olfactory 

bulb and striatum. Scoring, following normalization with beta-actin, is shown as + low positive, ++ 

medium positive, +++ high positive. Brackets () indicate that the full score is not reached; statistically 

significant differences (p < 0.05) are indicated by a red star (*). 

Brain region Exp group PAD1 PAD2 PAD3 PAD4 PAD6 

Cortex CTR (+) ++ + +++ ++ 

Cortex  PD (+) +++   * ++  * +++ +++ 

Hippocampus  CTR (+) + ++ ++ ++ 

Hippocampus  PD (+) (+) +(+) +(+) ++(+) 

Cerebellum  CTR + ++ + + + 

Cerebellum PD + ++ ++  * +(+)  * +(+)   * 

Midbrain CTR (+) ++ +(+) +(+) ++ 

Midbrain  PD + ++ +(+) + ++ 

Olfactory bulb CTR (+) + + +(+) + 

Olfactory bulb  PD + + +(+)  * ++ ++ 
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Striatum CTR ++ +++ ++ +++ + 

Striatum PD +     * +     * (+)   * +    * (+)   * 

2.2. Isolation of citrullinated target proteins from brain regions and silver staining 

Total citrullinated/deiminated proteins were isolated from brain tissue of the six brain regions, 

using the pan-citrulline F95 antibody and the catch-and-release immunoprecipitation kit, according 

to previously described methods [40]. The yield of citrullinated proteins was highest in cortex and 

hippocampus, as observed by silver staining of eluted fractions (Figure 4A), and citrullinated proteins 

were isolated at lower yield from cerebellum, midbrain, olfactory bulb, and striatum, as observed by 

silverstaining of the F95 enriched eluted proteins from each brain region (Figure 4B). Numbers of 

citrullinated proteins identified by LC-MS/MS analysis (see 3.4) per brain region, in control and PD 

groups, are summarised in Figure 4C. Highest numbers of citrullinated protein hits were detected in 

the cortex and hippocampus, while elevated numbers of total citrullinated hits were seen in the PD 

model for cortex and cerebellum, compared with controls. 

 

Figure 4. Citrullinated proteins, isolated by F95 enrichment from: A) cortex (ctx) and hippocampus 

(hip); B) cerebellum (cer), midbrain (mid), olfactory bulb (OB) and striatum (str). F95 enriched 

fractions are shown from sham/control (ctr) and pre-motor PD (PD) brain regions on a silver stained 

SDS-PAGE TGX 4-20% gel. C) A summary of numbers of citrullinated proteins (#F95) identified per 

brain region and with respect to experimental group (control/sham – ctr; PD-group) by LC-MS/MS 

analysis. 

2.3. Identification of the Brain Region Specific Citrullinomes by LC-MS/MS 

Citrullinated protein hits isolated per brain region were further assessed by LC-MS/MS analysis 

for identification of protein target hits. All protein hits identified were compared and numbers of 

individual and shared hits are summarised for the different brain regions in the Venn diagrams in 

Figures 5C-10C. Details on individual protein hits per brain region (control and PD) are in addition 

provided in Supplementary Tables S1-S12. Citrullinated protein hits were then used to create protein-

protein interaction networks for the citrullinome of each brain region using STRING analysis 

(https://string-db.org/; accessed 18th and 19th of March 2024). The resulting protein interaction 

networks are shown in Figures 5-10 (A and B). All KEGG pathways identified in association to the 

brain region specific citrullinomes are summarised in Table 2. 
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Table 2. KEGG pathways associated with the brain region specific citrullinomes. Protein interaction 

networks were built based on citrullinated protein hits names, per brain region (cortex CTX, 

hippocampus HIP, striatum STR, olfactory bulb OB, midbrain MID, cerebellum CER), in sham/control 

(ctr) and pre-motor PD (PD) brains. KEGG pathways were identified in STRING. All KEGG pathways 

identified are listed below and a tick (V) indicates the KEGG pathway associated with each brain-

region specific citrullinome. The columns for the PD brain regions are highlighted in grey. 

KEGG pathway 

Ct

r 

C

TX 

P

D 

C

TX 

Ct

rl

HI

P 

P

D 

HI

P 

Ctr 

ST

R 

P

D 

ST

R 

Ct

r 

O

B 

P

D 

O

B 

Ct

r 

M

B 

P

D 

M

B  

Ct

r 

CE

R  

P

D 

CE

R  

Oxidative 
phosphorylation 

V V V V V V V   V   V 

Synaptic vesicle cycle V V V V         V V  V 

Ribosome V V V V   V V   V  V  

Parkinson’s disease V V V V V V V   V V V V 

Retrograde 
endocannabinoid 
signalling 

V V V V     V   V    

Huntington disease V V V V V V V   V V V V 

Prion disease V V V V V V V   V V V V 

Gap junction V V V V     V   V V  V 

Non-alcoholic fatty 
liver disease 

V V V V V   V   V    

Thermogenesis V V V V V V V   V V  V 

Alzheimer’s disease V V V V V V V   V V  V 

GABAergic synapse V V V V         V    

Amyotrophic lateral 
sclerosis 

V V V V V   V   V V V V 

Endocrine and other 
factor-regulated 
calcium reabsorption 

V     V                 

Glutamatergic synapse V V V V     V   V   V 

Phagosome V V V V     V   V V  V 

Cardiac muscle 
contraction 

V V V V                 

Biosynthesis of amino 
acids 

V V V V     V   V  V  

Carbon metabolism V V V V         V    

Oestrogen signalling 
pathway 

V V V V   V V V V V V V 

Necroptosis V V V V         V    

Endocytosis V V V V         V V  V 

Metabolic pathways V V V V     V   V    

Cocaine addiction V V                     

Insulin secretion V V V V                 

Apoptosis V V V V           V   V  

cGMP-PKG signalling 
pathway 

V V   V                 
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Alcoholism V   V V                 

Pyruvate metabolism  V V V V         V  V  

Inositol phosphate 
metabolism 

  V                     

Phosphatidylinositol 
signalling system 

  V   V                 

Progesterone mediated 
oocyte maturation 

  V                     

Axon guidance   V                     

Oocyte meiosis   V   V                 

Cholinergic synapse V V V V                 

Spinocerebellar ataxia   V                     

Phospholipase D 
signalling pathway 

V                       

Rap1 signalling 
pathway 

  V                     

2-Oxocarboxylic acid 
metabolism 

  V V                   

Nitrogen metabolism   V V           V V   

Pentose phosphate 
pathway 

  V V                   

Fructose and mannose 
metabolism 

  V V V         V    

Bacterial invasion of 
epithelial cells 

V V V V           V     

Leukocyte 
transendothelial 
migration 

  V V                   

Morphine addiction  V V V V                 

Regulation of actin 
cytoskeleton 

  V V V                 

Citrate cycle (TCA 
cycle) 

V V V V         V    

Vasopressin-regulated 
water reabsorption 

  V V V                 

Arginine biosynthesis   V V V         V    

Glycolysis/Gluconeoge
nesis 

V V V V     V   V  V  

Central carbon 
metabolism in cancer 

V V V V         V    

SNARE interactions in 
vesicular transport 

  V V V                 

Alanine, aspartate and 
glutamate metabolism 

  V V V         V    

Cysteine and 
methionine metabolism 

  V V V         V    

HIF-1 signalling 
pathway 

V V V V         V    

Legionellosis     V V         V  V V 

Salmonella infection V V V V                 

Oxytocin signalling 
pathway 

V V V V                 

Tight junction   V V V                 
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mTOR signalling 
pathway 

    V                   

Viral carcinogenesis   V V V         V  V  

Collecting duct acid 
secretion 

    V                   

Glyoxylate and 
dicarboxylate 
metabolism 

    V V         V    

Butanoate metabolism     V                   

Dopaminergic synapse V V V V                 

Calcium signalling 
pathway 

V V V V                 

Ferroptosis     V V                 

Systemic lupus 
erythematosus 

    V V                 

Long-term depression V     V                 

Hippo signalling 
pathway 

      V                 

Staphylococcus aureus 
infection 

          V V V   V V   

Gastric acid secretion   V V       V       V   

Arrhythmogenic right 
ventricular 
cardiomyopathy 

            V V   V     

Influenza A             V           

Glucagon signalling 
pathway 

V V V V     V   V  V  

GnRH secretion V                       

Type II diabetes 
mellitus 

V V V V                 

Apelin signalling 
pathway 

V                       

Proteoglycans in cancer V V V                   

NOD-like receptor 
signalling pathway 

  V                     

Platelet activation   V                     

Cellular senescence V V                     

Yersinia infection   V                     

Human 
immunodeficiency 
virus 1 infection 

V V V V                 

Propanoate 
metabolism 

    V V                 

Serotonergic synapse V   V V                 

Beta-Alanine 
metabolism 

    V                   

Thyroid hormone 
signalling pathway 

      V                 

Fc gamma R-mediated 
phagocytosis 

      V                 

Choline metabolism in 
cancer 

      V                 

Spliceosome                     V    
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Antigen processing 
and presentation 

                V  V  

Protein processing in 
endoplasmic reticulum 

                V    

Human 
cytomegalovirus 
infection 

  V                    

2.4. Protein-Protein Interaction Network Analysis for the Brain Region Specific Citrullinomes in Pre-Motor 

PD versus Control Brains 

Protein-protein interaction networks for the citrullinated proteins identified in each brain region 

were created in STRING, comparing sham/control and pre-motor PD brain regions (Figures 5-10). 

The protein citrullinome networks for cortex, shams/controls and PD, are shown in Figures 5A and 

5B, respectively. As summarised in the Venn diagram in Figure 5C, 195 protein hits were identified 

as citrullinated targets specific to PD cortex, while 74 were only identified in control cortex, and 246 

citrullinated protein hits were common to both control and PD cortex. KEGG pathways associated to 

the cortex citrullinome were 25 for PD cortex, 7 for control cortex and further 43 KEGG pathways 

were identified as common between control and PD cortex; these are listed in Table 2. 

The 25 KEGG pathways which were identified as associated to the citrullinome of pre-motor PD 

cortex, but not found associated to the control cortex citrullinome were the following metabolic 

pathways: “Inositol phosphate metabolism”; “2-Oxocarboxylic acid metabolism”; “Nitrogen 

metabolism”; “Pentose phosphate pathway”; “Fructose and mannose metabolism”; “Alanine, 

aspartate and glutamate metabolism”; “Cysteine and methionine metabolism”; “Arginine 

biosynthesis”; “Vasopressin-regulated water reabsorption”; “Gastric acid secretion”; 

“Phosphatidylinositol signalling system”. Pathways relating to cell adhesion, cell survival and 

cellular communication were: “Rap1 signalling pathway”; “SNARE interactions in vesicular 

transport”; “Tight junction”; “Regulation of actin cytoskeleton”. Immune related pathways were: 

“NOD-like receptor signalling pathway”; “Leukocyte transendothelial migration”; “Viral 

carcinogenesis”; “Platelet activation”; “Yersinia infection”; “Human cytomegalovirus infection”. 

Developmental pathways were: “Progesterone mediated oocyte maturation”; “Oocyte meiosis”. 

Neuronal and neurodegenerative associated pathways were: “Axon guidance”; “Spinocerebellar 

ataxia”. 
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Figure 5. The citrullinomes of control and pre-motor PD rat cortex. A) Protein interaction networks 

of the protein citrullinome of sham/control rat cortex. B) Protein interaction network of the protein 

citrullinome of PD rat cortex. C) A Venn diagram representing number (#) of citrullinated protein hits 

(F95) and of associated KEGG pathways in sham/control and pre-motor PD cortex. . 

The protein citrullinome networks for hippocampus, from sham/control and PD groups, are 

shown in Figures 6A and 6B, respectively. As summarised in the Venn diagram in Figure 6C, 106 

protein hits were identified as citrullinated targets specific to PD hippocampus, while 144 were only 

identified in control cortex, and 257 citrullinated protein hits were common to both control and PD 

hippocampus. KEGG pathways associated to the hippocampus citrullinomes were 9 for PD 

hippocampus, 10 for control hippocampus and further 55 KEGG pathways were identified as 

common between control and PD hippocampus; these are listed in Table 2. 

The 9 KEGG pathways identified in PD hippocampus, but not in the citrullinome of the 

sham/control hippocampus were the following metabolic pathways: “Phosphatidylinositol 

signalling system”; “Endocrine and other factor-regulated calcium reabsorption”; “Choline 

metabolism in cancer”; “Thyroid hormone signalling pathway”. Pathways relating to cell growth, 

development and stem cell regulation were: “cGMP-PKG signalling pathway”; “Hippo signalling 

pathway”; “Oocyte meiosis”. Immune related pathways were: “Fc gamma R-mediated 

phagocytosis”. CNS related pathways were: “Long-term depression”. 

 

Figure 6. The citrullinomes of control and pre-motor PD rat hippocampus. A) Protein interaction 

networks of the protein citrullinome of sham/control rat hippocampus. B) Protein interaction network 

of the protein citrullinome of PD rat hippocampus. C) A Venn diagram representing number (#) of 

citrullinated protein hits (F95) and of associated KEGG pathways in control and pre-motor PD 

hippocampus. 

The protein citrullinome networks for cerebellum, from sham/control and PD groups, are shown 

in Figures 7A and 7B, respectively. As summarised in the Venn diagram in Figure 7C, 74 protein hits 

were identified as citrullinated targets specific to PD cerebellum, while 31 were only identified in 

control cerebellum, and 39 citrullinated protein hits were common to both control and PD cerebellum. 

KEGG pathways associated to the cerebellum citrullinomes were nine for PD, ten for control and 
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further six KEGG pathways were identified as common between control and PD cerebellum; these 

are listed in Table 2. 

The nine KEGG pathways identified in PD cerebellum, but not in the citrullinome of the control 

cerebellum were metabolic pathways: “Oxidative phosphorylation”; “Thermogenesis”. CNS and 

neurodegenerative linked pathways were: “Synaptic vesicle cycle”; “Alzheimer’s disease”; 

“Glutamatergic synapse”; “Gap junction”. Inflammatory pathways were: “Endocytosis”; 

“Phagosome” and “Apoptosis”. 

 

Figure 7. The citrullinomes of sham/control and pre-motor PD rat cerebellum. A) Protein interaction 

networks of the protein citrullinome of control rat cerebellum. B) Protein interaction network of the 

protein citrullinome of PD rat cerebellum. C) A Venn diagram representing number (#) of citrullinated 

protein hits (F95) and associated KEGG pathways in control and pre-motor PD cerebellum. 

The protein citrullinome networks for midbrain of control and PD groups, are shown in Figures 

8A and 8B, respectively. As summarised in the Venn diagram in Figure 8C, 19 protein hits were 

identified as citrullinated targets specific to PD midbrain, while 130 were only identified in control 

midbrain, and further 48 citrullinated protein hits were common to both control and PD midbrain. 

KEGG pathways associated to the midbrain citrullinomes were 4 for PD only, 25 for control and 

further 12 KEGG pathways were identified as common between control and PD midbrain; these are 

listed in Table 2. 

The four KEGG pathways identified to be specific for the citrullinome of PD midbrain, but not 

associated to the citrullinome of the control midbrain were inflammatory related: “Apoptosis”; 

“Staphylococcus aureus infection”; and “Bacterial invasion of epithelial cells”. In addition, 

“Arrhythmogenic right ventricular cardiomyopathy” was unique to the PD model. 
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Figure 8. The citrullinomes of sham/control and pre-motor PD rat midbrain. A) Protein interaction 

networks of the protein citrullinome of control rat midbrain. B) Protein interaction network of the 

protein citrullinome of PD rat midbrain. C) A Venn diagram representing number (#) of citrullinated 

protein hits (F95) and associated KEGG pathways in control and pre-motor PD midbrain. 

The protein citrullinome networks for olfactory bulb, from sham/control and PD groups, are 

shown in Figures 9A and 9B, respectively. As summarised in the Venn diagram in Figure 9C, 7 

protein hits were identified as citrullinated targets specific to PD olfactory bulb, while 45 were only 

identified in control olfactory bulb, and further 6 citrullinated protein hits were common to both 

control and PD olfactory bulb. KEGG pathways associated to the olfactory bulb citrullinomes were 

three shared between the control and PD model, while none was specific to the PD model only, and 

an additional 19 citrullinome associated pathways were identified for the control olfactory bulb; these 

are listed in Table 2. 
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Figure 9. The citrullinomes of sham/control and pre-motor PD rat olfactory bulb. A) Protein 

interaction networks of the protein citrullinome of control rat olfactory bulb. B) Protein interaction 

network of the protein citrullinome of PD rat olfactory bulb. C) A Venn diagram representing the 

number (#) of citrullinated protein hits (F95) and associated KEGG pathways in control and pre-motor 

PD olfactory bulb. 

The protein citrullinome networks for striatum, from sham/control and PD groups, are shown 

in Figures 10A and 10B, respectively. As summarised in the Venn diagram in Figure 10C, 10 protein 

hits were identified as citrullinated targets specific to PD striatum, while 20 were only identified in 

control striatum, and further 15 citrullinated protein hits were common to both control and PD 

striatum. KEGG pathways associated to the striatum citrullinomes were 3 for PD only, 2 for control 

and further 6 KEGG pathways were identified as common between control and PD striatum; these 

are listed in Table 2. 

The three KEGG pathways identified in PD striatum, but not in the citrullinome of the control 

striatum were: “Ribosome”; “Oestrogen signalling pathway”; and “Staphylococcus aureus infection”. 
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Figure 10. The citrullinomes of sham/control and pre-motor PD rat striatum. A) Protein interaction 

networks of the protein citrullinome of control rat striatum. B) Protein interaction network of the 

protein citrullinome of PD rat striatum. C) A Venn diagram representing citrullinated protein hits 

(F95) and number of associated KEGG pathways in control and pre-motor PD striatum. 

In addition to the KEGG analysis, brain-region specific citrullinomes were also assessed for 

Reactome pathways, and a comparison of total numbers of associated KEGG and Reactome pathways 

for all six brain regions, of sham/control and PD groups, is shown in Figure 11A. Reactome associated 

pathways were increased in the protein citrullinome networks of PD striatum, PD cerebellum, PD 

cortex and in PD hippocampus, versus controls. Reactome pathways associated to the brain region 

specific citrullinomes were reduced in olfactory bulb and midbrain of the PD model, compared to 

controls (Figure 11A). 

When assessing any changes in gene ontology (GO) pathways associated to the brain specific 

citrullinomes, increased numbers of Biological Process GO pathways were associated to the PD 

cerebellum and cortex; Molecular Function GO pathways were increased in PD cortex and 

hippocampus; and Cellular Component GO pathways were increased in PD striatum, cerebellum, 

and cortex; compared with controls (Figure 11B). There was a reduction in Biological Function GO 

pathways associated to the citrullinomes of the PD olfactory bulb, midbrain and hippocampus, 

compared to controls; Molecular function GO pathways were reduced in the citrullinomes of PD 

olfactory bulb, cerebellum and midbrain, compared to controls; while Cellular Component GO 

pathways were reduced in the citrullinomes of PD olfactory bulb, midbrain and hippocampus, 

compared with controls (Figure 11B). 
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Figure 11. The brain region specific citrullinomes of control and pre-motor PD rat brains. A) KEGG 

and Reactome pathways associated to the protein citrullinomes of the six brain regions assessed, in 

control and PD groups. B) Biological GO, Molecular Function GO and Cellular Component GO 

pathways associated to the protein citrullnomes of the six brain regions assessed, in control and PD 

groups. 

3. Discussion 

The detection of early molecular mechanisms in the onset of PD remains a challenge. Pre-motor 

PD patients display various non-motor symptoms, which include decreased sense of smell, 

gastrointestinal problems, depression, sleep disturbances and autonomic dysfunction [1]. Toxin-

induced rat models offer a valuable tool to investigate pre-motor aspects of PD and explore associated 

molecular alterations in distinct brain regions. Understanding of brain region specific changes in 

early PD is of considerable interest, including recent transcriptome profiling studies [41]. As previous 

research from our group has pointed to roles for PADs and associated post-translational protein 

citrullination/deimination, including findings from post-mortem human brain samples and the 6-

OHDA induced rat model [4], the same pre-motor PD model was used in the current study. We 

assessed brain-region specific PAD isozyme expression and associated citrullinated proteins in 

cortex, hippocampus, striatum, midbrain, cerebellum and the olfactory bulb. The five PAD isozymes 

(PAD1,2,3,4 and 6) were assessed by western blotting, while immunoprecipitation in conjunction 

with LC-MS/MS analysis were used for identification of citrullinated protein targets in these six brain 

regions and downstream protein interaction network analysis was carried out for the identification 

of associated KEGG and GO pathways. 

3.1. Brain Region Specific PAD Isozyme Detection 

In all six brain regions, PAD1 detection was negligible or very low, except in striatum. Notably, 

it must be highlighted that for many of the rat brain samples assessed, the PAD positive bands 

detected using anti-human PAD isozyme specific antibodies, for PAD detection in the expected size-

range of 70-75 kDa were blurred, while for some brain regions these were more defined. PAD6 overall 

showed the clearest positive band in the expected 50-60 kDa range. As anti-human PAD isozyme 

specific antibodies were used, this may have had some effect on species-cross reactive PAD isozyme 

detection by western blotting in these rat brains, although previously, the PAD2,3 and 4 antibodies 

showed positive in the same rat brains by immunohistochemistry [4]. These antibodies have though 

not been assessed by western blotting in rat brains before, which may explain some of the differences 

observed from immunohistochemistry [4] and western blotting results. 

In cortex, PAD2, PAD3, PAD4 and PAD6 were all detected, with significant increase in PAD2 

and PAD3 protein levels in the PD model (based on normalization with beta-actin as a loading 

control), compared with controls/shams. This may be correlated with the increased citrullinated hits 

observed for the PD group, also reflected in increased KEGG pathways associated with the PD cortex 

citrullinome. These findings do align with previous immunohistochemistry staining of this region in 

the same model [4] and in human post-mortem PD brain samples, where in anterior cingulate cortex 

PAD2 and PAD3 were particularly elevated at Braak stage 4, while the other PAD isozymes were 

though also elevated in the PD versus control brains [5]. 

In hippocampus, PAD3, PAD4 and PAD6 showed strongest levels, but there was some (non-

significant) trend observed for reduced PAD2, PAD3 and PAD4 levels, and increased PAD6 levels in 

the PD group, when normalizing the band region of interest with the beta-actin loading control. 

Interestingly, there was a considerable difference observed in the IDs of citrullinated protein hits 

between PD and control hippocampus which included 106 unique citrullinated proteins in PD 

hippocampus and 144 unique ones for control hippocampus. This was reflected in considerable 

differences observed in downstream KEGG and GO pathways for the respective citrullinomes. Our 

findings relate somewhat to previous immunohistochemical analysis of hippocampus in the same 

model, where PAD2,3 and 4 were detected [4], while in human post-mortem PD brain samples, we 

found that PAD2 and PAD3 were elevated in the PD hippocampus, particularly at Braak stage 4, 
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while increase in PAD4 was less. In the human PD brain samples, an increase in PAD6 was mainly 

linked to the brain vasculature while PAD1 was also found to be elevated in PD hippocampus [5]. 

Based on the western blotting analysis, in cerebellum, PAD1 levels were very low, although 

increased (non-significant) in the PD model, while PAD2 levels were similar in both groups. A 

significant increase was observed for PAD3, PAD4 and PAD6 in the PD model, indicating their 

possible contribution to increased citrullination hits in this brain region in the PD model and 

differences in the associated KEGG and GO pathway analysis of the respective cerebellum 

citrullinomes. 

In midbrain, PAD1 protein levels were negligible, while PAD2 and PAD6 positive signals were 

more clearly detected, but PAD3 and PAD4 at lower level. There was some trend for decreased PAD2 

and PAD4 protein levels in the PD model, which correlates with fewer citrullinated protein hits 

identified in PD midbrain, and this also correlated with fewer KEGG pathways unique to PD 

midbrain, compared with controls. It may be postulated that PAD-mediated effects on the substantia 

nigra (SN) at this stage may be negligible, but this will require further investigation. In a study on 

post-mortem human PD SN specimens, the detection of deiminated proteins in astrocytes was 

variable in both PD and controls SN specimens but deiminated proteins were present in the 

cytoplasm of SN dopamine neurones in PD samples [3]. 

In olfactory bulb, PAD2 and PAD6 showed a positive signal, while the other PADs were detected 

at lower levels, and a significant increase in PAD3 was observed in the PD group, also with a trend 

in increased PAD1, PAD4 and PAD6 protein levels. When assessing the citrullinomes, no specific 

KEGG pathway was associated with the citrullinome of the PD group only, and more citrullinated 

hits were overall identified in the control group, indicating that there is some modulation towards 

less citrullination in olfactory bulb in the early PD model; this will require further investigation. 

In striatum, a positive signal for all PAD isozymes was observed, with significant reduction of 

protein levels for all PADs in PD striatum, when normalizing the region for PAD positive bands with 

the beta-actin loading control. There was indeed more citrullination observed in striatum of the 

control/sham group, but still some differences in target protein and associated KEGG pathways 

between PD and controls; with 3 unique KEGG pathways associated with the PD striatum. 

The findings of our current study compare with our previous study, assessing cortex and 

hippocampal brain tissue sections from the same rat model by immunohistochemistry, where we 

identified most notable increased protein citrullination by positive F95 staining, in both cortex and 

hippocampus of the PD model, particularly in the brain vasculature, compared with controls [4]. This 

correlates to our citrullination enrichment results, showing most citrullinated hits from these two 

brain regions. In our previous study we had also identified by immunohistochemistry that histone 

H3 was particularly increased in the dentate gyrus of the rat pre-motor PD model [4] and this 

correlates with the findings of our current study in which LC MS/MS analysis identified histone H3 

as a citrullination target in PD hippocampus, while it was not present on the hit lists for the other 

brain regions. Histone H3 citrullination/deimination contributes to epigenetic regulation but also 

extracellular trap formation (ETosis), in relation to pathogenic, autoimmune and inflammatory 

conditions, including in brain injury [23,42]. Inhibition of pan-citrullination, including histone H3 

citrullination, with pan-PAD inhibitor Cl-amidine has been effective in reducing inflammatory 

responses in the CNS [23,27]. Studies from other groups have reported increased protein 

citrullination/deimination in post-mortem PD brains, including in surviving dopamine neurones in 

the SN, albeit at later stages of disease, while such staining was also reported not to be specifically 

restricted to Lewy bodies [3]. A study using F95 staining linked misfolded mutated alpha-synuclein 

protein to increased citrullination [43], and post-mortem analysis of prefrontal cortex from X-lined 

dystonia Parkinsonism patients showed elevation of PAD2 and PAD4 and increased histone H3 [44]. 

Notably, those PD related studies did not assess all five PAD isozymes. 

It must furthermore be noted that in our previous study on the rat pre-motor PD model [4], only 

PAD 2,3 and 4 were assessed by immunohistochemistry, while in this current study, all five PAD 

isozymes were assessed in the same rat pre-motor PD model by western blotting. Our findings 

provide additional information on PAD1 and PAD6, indicating notable protein levels of PAD1 in 
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striatum, but negligible detection in the other brain regions, and presence of PAD6 in all brain 

regions. Staining of post-mortem human brain samples of cortex and hippocampus, showed an 

increase of PAD1 levels in PD samples at Braak stage 4 and incidental Lewy body disorder [5]. No 

difference was observed in both regions between the two experimental groups here, however, PAD1 

was shown to be increased in the cerebellum and olfactory bulb of the PD model compared with 

controls/shams and decreased in the striatum of the PD model. However, as the anti-PAD antibodies 

used in both studies are generated against human PAD isozymes, some differences in reactivity for 

species specificity and furthermore, differences between the pre-motor PD rat model and human 

post-mortem PD brain samples at different Braak stages may be likely. 

In the context of dissecting the above identified changes in PAD isozyme detection by western 

blotting analysis and citrullinome patterns by LC-MS/MS analysis, considerations must include the 

fact that unchanged PAD protein levels do not necessarily reflect the calcium-catalysed activation of 

the PADs, which is necessary for citrullination/deimination of target proteins. In addition, a possible 

increase in some PAD isozymes at the protein level may allow for more availability of that specific 

isozyme for citrullination activity and affect the associated downstream citrullinome. Furthermore, 

as the PAD isozymes differ in their preference for target proteins [45], changes in individual isozymes 

in different brain regions may affect different downstream citrullination targets and contribute to 

brain-region specific citrullinomes, both linked to physiological as well as pathobiological processes. 

Redundancy of isozymes should also be considered; for example, PAD4 has a narrower target 

selection than PAD2, but with many overlapping targets, and interestingly, PAD6 has been shown to 

be upregulated in PAD2 and PAD4 knock-out mice [19]. 

In addition to assessing PADs, we used western blotting to assess changes in prohibitin, which 

is a mitochondrial housekeeping protein and was identified as a citrullinated protein target in PD 

cortex, and in both control cortex and hippocampus, by LC-MS/MS analysis. Prohibitin has 

previously been identified as a deimination target in the CNS [28] and while we observed some 

reduced levels of prohibitin in PD cortex and hippocampus, some elevation was observed in PD 

cerebellum and a significant increase in PD olfactory bulb. No change was seen in striatum or 

midbrain. Additional studies will be needed to determine whether citrullination differences in 

prohibitin further influence mitochondrial function in PD. 

3.2. Brain Region Specific Citrullinomes 

A considerable number of associated physiological and pathological KEGG and GO pathways 

was characterised when assessing the brain region specific citrullinomes. Some overlapped between 

sham/control and the PD model within each brain region, however, some were identified as common 

across various brain regions. In addition, some were only identified in PD brains, and others only in 

control brains. In addition to considering citrullinome associated pathways identified in PD brains 

only, citrullinated pathways that were identified in both control and PD, or in control brains only, 

should be taken into consideration. Our findings showed a loss of some citrullination associated 

KEGG pathways in PD, that were only identified in the controls, and this may indicate important 

roles for PADs in various physiological functions, which may be modified in PD and suggest 

unfavourable changes upon loss of citrullination of physiological pathways in PD. The various 

citrullinome associated KEGG pathways identified as shared, in PD only or in controls only, are 

summarised and briefly discussed in 3.2.1, 3.2.2 and 3.2.3. 

3.2.1. Citrullinome KEGG Pathways Shared in Sham/Control and PD Brains 

KEGG pathways that were overlapping for some of the control and PD brain region specific 

citrullinomes and related directly to neurodegeneration included: “Parkinson’s disease”; 

“Huntington disease”; “Prion disease”; “Alzheimer’s disease”; and “Amyotrophic lateral sclerosis”. 

PADs and citrullination have been shown in all these neurodegenerative diseases [13,14,16,17]. 

Additional overlapping KEGG pathways associated to neurodegeneration were “Cellular 

senescence”, which is an age-associated risk factor for inducing neurodegenerative diseases, 

including PD [46]; “Retrograde endocannabinoid signalling”, which is a lipid-based 
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neuromodulatory system with physiological and neurodegenerative associates in the CNS, including 

in PD, AD, HD, MS and ALS [47–50]; “Gap junction”, which play critical roles in CNS signalling and 

have received considerable attention in PD [51]; “Regulation of actin cytoskeleton”, which is critical 

in regulating cellular morphology and function in normal physiology and is modulated in 

neurodegenerative diseases [52]; “cGMP-PKG signalling pathway”, which is critical for regulation of 

neuronal cell survival and apoptosis, including in PD [53]; “Synaptic vesicle cycle” and “SNARE 

interactions in vesicular transport” which are critical for the regulation of exo- and endocytosis of 

vesicles in neuronal communication and retrograde transport, also linked to LRRK2 in PD [54,55]; 

“GABAergic synapse” and “Dopaminergic synapse”, both of which are strongly involved in 

dopamine transmission in health and disease, and well-studied in PD models [56], as well as 

“Cholinergic synapse” which plays key roles in CNS synaptic function and associated to synaptic 

and axon degeneration and cognitive decline, including in PD [57,58]. Further shared KEGG 

pathways between some control and PD regions were “Serotonergic synapse”, which is associated 

with motor and non-motor PD symptoms and an identified risk factor for PD [59] and “Long-term 

depression” which is well recognised as a clinical symptom in PD [60] however, underlying 

mechanisms are not well understood [61]. In addition, “Cocaine addiction”, “Alcoholism”, and 

“Morphine addiction” were also identified, and these link to the dopaminergic system and 

neurodegenerative disease, including PD [62–64]. The “Oxytocin signalling pathway” has 

multifaceted roles including in brain function, in neuroinflammation and various nervous system 

disorders, including PD [65,66]. “HIF-1 signalling” was also a shared KEGG pathway and has been 

implicated in PD relating to mitochondrial dysfunction, oxidative stress and protein degradation 

impairment [67,68]; as well as “Endocrine and other factor-regulated calcium reabsorption” and 

“Calcium signalling pathways” which underly PAD-activation but also catalyse many other 

neurodegenerative downstream pathways, including protein aggregation, mitochondrial and other 

organelle crosstalk pathways in PD [69–72]. In addition, “Ferroptosis” links to glia-neuron crosstalk 

and has potential multifaceted roles in PD pathology [73–76]; while “Arginine biosynthesis” is 

associated with the gut-brain axis crosstalk, including in PD [77]. Identification of the “Ribosome” 

pathway in the shared citrullinome analysis highlights possible roles for PADs in local protein 

synthesis in the brain [78], and may also influence mitochondrial function including in PD pathology 

[79]; while “Thermogenesis”, is related to mitochondrial function, synaptic transmission, 

neurodegeneration and activation of brown fat tissue in PD [80]. In addition, shared citrulliome 

KEGG pathways incuded “Glycolysis/Gluconeogenesis”, and “Citrate cycle (TCA cycle)”, both of 

which are important for ATP production, mitochondrial and neuronal function and highlighted as a 

target in neurodegenerative diseases, including PD [81–83]. Furthermore, “Glucagon signalling 

pathway”, “Type II diabetes mellitus”; and “Insulin secretion” have been identified to be linked 

target pathways for treatment in neuroinflammation, including in PD [84] and mitochondrial 

dysfunction associated links have also been made to “non-alcoholic fatty liver disease” [85]. 

Additional metabolic pathways with critical roles in cellular function and which were identified 

as shared between control and PD brain citrullinomes were: “Biosynthesis of amino acids”, “Carbon 

metabolism”, “Nitrogen metabolism”, “Pyruvate metabolism”, “Propanoate metabolism”; “2-

Oxocarboxylic acid metabolism”; “Pentose phosphate pathway”; “Fructose and mannose 

metabolism”; “Alanine, aspartate and glutamate metabolism”; “Cysteine and methionine 

metabolism”; “Glyoxylate and dicarboxylate metabolism”; “Vasopressin-regulated water 

reabsorption”; and “Gastric acid secretion”. Importantly, PD has been linked to various metabolic 

disorders, including at early stages of disease [86,87]. “Arrhythmogenic right ventricular 

cardiomyopathy” and “Cardiac muscle contraction” were furthermore associated to the shared 

KEGG citrullinomes, and this may be of interest as changes to cardiac function and cardiac 

dysfunction are observed in PD, with heart failure being the third leading cause of death in PD 

patients [88]. 

Shared control and PD brain citrullinome KEGG pathways linked to immunity and infection 

included: “Necroptosis”, “Endocytosis”, “Phagosome”; “Bacterial invasion of epithelial cells”; 

“Salmonella infection”; “Legionellosis”; “Staphylococcus aureus infection”; “Leukocyte 
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transendothelial migration”; and “Viral carcinogenesis”. Phagocytic and bactericidal activities are 

modulated in neurodegeneration, where infection with various pathogens, including bacteria and 

viruses, are a topic of interest in the risk associated with developing PD, following infection [89]. This 

may also be of considerable interest in relation to long-term neurological outcomes from SARS-CoV-

2 infection [90,91]. “Human immunodeficiency virus 1 infection (HIV-1)” was also a common shared 

citrullinome KEGG pathway and is associated to neurocognitive disorders (HIV-associated 

neurocognitive disorder (HAND)), characterised by synaptic loss and cognitive decline [92], and HIV 

infection is also thought to exacerbate age related brain disorders, including PD [93]. In PD, 

neuroprotective roles have been identified for the “Oestrogen signalling pathway”, which was an 

identified citrullinome KEGG pathway, and may link to observed sex differences identified in PD 

[94,95]. “Systemic lupus erythematosus” was also a shared KEGG citrullinome pathway for control 

and PD brains, and is an autoimmune multisystemic disease with complex interactions with PD and 

also associated to other cerebrovascular diseases [96–98]. 

3.2.2. Citrullinome KEGG Pathways in PD Brains Only 

When excluding any overlap with other control brain regions, KEGG pathways only identified 

in PD brain region associated citrullinomes were: “Axon guidance”, which is critical to neuronal 

function, connectivity and repair throughout the lifespan and in neurodegeneration including in PD 

[99–101]; and “Spinocerebellar ataxia”, which is a heterogenous group of progressive 

neurodegenerative ataxic disorders [102] and identified here for the first time in relation to 

citrullination. In addition, PD specific brain citrullinome pathways included “Inositol phosphate 

metabolism”, which has been linked to neuronal cytotoxicity in PD, including via increased 

mitochondrial Ca2+ [103]; “Thyroid hormone signalling pathway”, which has been linked to 

neurological disorders including several models of PD [104]; “NOD-like receptor signalling 

pathway”, which forms part of the inflammasome axis in several neurodegenerative disease 

including PD [105–107]; “Phosphatidylinositol signalling system”, which has been linked to 

neuroinflammatory responses, including autophagy, and their regulation in neurodegeneration and 

PD [108,109]; and “Platelet activation”, which are related to synaptic plasticity and neuronal 

differentiation in various brain regions and also reflective of inflammatory responses in 

neurodegeneration, including PD [110–112]. Further PD citrullinome specific pathways were “Hippo 

signalling pathway”, which is an evolutionary conserved signalling network with crucial roles in 

various biological processes including proliferation and differentiation, regeneration, development 

and immunity [113,114], and linked to early neurodegenerative processes, including in PD, AD, HD 

[115–117]; “Rap1 signalling pathway”, which has been identified as a molecular pathway in PD 

patients [118], including relating to blood markers in early PD [112]; “Fc gamma R-mediated 

phagocytosis”, which plays roles in brain development, is linked to neurodegenerative disease 

development [119] and has been identified as dysregulated in AD [120] ; and “Choline metabolism 

in cancer”, which may be relevant as choline metabolism has been linked to the gut-brain signalling 

axis, which is linked to neurodegenerative disease, including PD [121,122]. In addition, citrullinome 

KEGG pathways in PD brains only were“Human cytomegalovirus infection”, which has been 

associated to numerous neurological disorders including PD, AD, HD, autism, ataxia and brain 

tumours [123] and identified as one of several infectious pathogens in the aetiology of PD [124]; 

“Yersinia infection”, which may be relevant in relation to age associated changes in gut microbiota 

and possible increase susceptibility to PD [125]; “Progesterone-mediated oocyte maturation”, which 

has been linked to molecular mechanisms involved in PD via microarray analysis [126]; as well as 

“Oocyte meiosis”, which may link to studies on the PD associated LLRK2 kinase family, which has 

also been shown to have roles in oocyte meiosis via regulation of actin assembly and mitochondrial 

function [127]. The detection of PAD6 in all brain regions may possibly link to some of the 

developmental associated KEGG pathways identified in the brain citrullinome, given its known roles 

in developmental processes [128,129]. 
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3.2.3. Citrullinome KEGG Pathways in Sham/Control Brains Only 

There were some KEGG pathways associated with the citrullinomes of control brain regions 

only, which were not identified in brains of the PD group. These were: “Phospholipase D signalling 

pathway”, which plays important roles in normal brain function including regulation of the synaptic 

vesicle cycle in neuronal communication, neuronal morphogenesis, cytoskeleton modulation, neural 

stem/progenitor cell differentiation, and is a suggested therapeutic target in brain disorders, 

including PD and AD [54,130–133]; as well as “Butanoate metabolism” and “Beta-Alanine 

metabolism”, both of which are associated with the gut-brain axis, including in PD [77]. Additional 

citrullinome KEGG pathways in control brains only included “GnRH secretion”, which is related to 

brain connectivity including neuron maturation, synaptic transmission, cognition and olfaction, and 

identified as a therapeutic target in Down syndrome [134] and reported to stimulate histone 

citrullination and cytoskeletal dynamics [135]; “Collecting duct acid secretion”, which plays roles in 

acid-base homeostasis regulation [136]; and “Apelin signalling pathway”, which is related to 

multifaceted cellular regulatory roles, including in the hypothalamus, in neuronal function, 

neuroinflammation and neurodegenerative disease, including neuroprotective effects in PD 

pathogenesis [137–140]. Further citrullinome KEGG pathways in control brain regions only were 

“Spliceosome”, which are involved in the generation of circular RNAs and influence transcription, 

and are related to ageing, neuroinflammation, oxidative stress, and have been suggested as 

diagnostic and prognostic biomarker for neurodegenerative disease including PD [141,142]; “mTOR 

signalling pathway”, which is critical for the regulation of autophagy, apoptosis and cell 

proliferation, in gut brain axis signalling and plays important roles for neuronal survival including 

in PD, where it has been identified as a therapeutic target [143–146]; “Antigen processing and 

presentation”, which may link to brain homeostasis but also inflammatory responses, and has 

recently been highlighted in autoimmune features in neurodegeneration, including in PD [147–149]; 

“Influenza A”, which can infect the CNS and spread through the brain, and suggested as a possible 

factor inducing Lewy bodies in PD [150]; and “Protein processing in endoplasmic reticulum” which 

is critical for biosynthesis of proteins, their folding and assembly and protein quality control, while 

in neurodegenerative disease, including PD, this pathway plays roles in the unfolded protein 

response [151,152]. 

Overall, our findings highlight enrichment for citrullinated proteins associated to KEGG 

pathways for several neurodegenerative diseases, possibly indicating shared pathogenic mechanisms 

which may be differently modulated by citrullination in health and disease [4,153]. Collectively the 

identification of the above listed KEGG pathways associated with citrullinated proteins in control 

and/or pre-motor PD brain regions, highlights some differences between molecular and cellular 

pathways modulated by this post-translational modification, in the different brain regions, and may 

be relevant to PD disease progression. 

In our previous study on the same pre-motor PD rat model [4], circulatory citrullination 

signatures both in plasma and plasma extracellular vesicles (EVs), and associated KEGG pathways 

were assessed, and some correlation to KEGG pathways identified in the different brain regions in 

this current study can be made. Previously we identified “Parkinson’s disease”, “Huntington 

disease”, “Prion disease”, “Alzheimer’s disease”, “Retrograde endocannabinoid signalling”, 

“Oxidative phorphorylation”, “Oestrogen signalling pathway”, “Non-alcoholic fatty liver disease”, 

“SLE”, “Complement and coagulation cascades”, “Metabolic pathways” and “Apelin signalling” as 

citrullinome associated KEGG pathways in PD plasma and/or plasma-EVs [4]. Many of these KEGG 

pathways correspond to those identified for the citrullinomes of the PD brain regions in the current 

study, while some overlap with the control brain samples. The identification of which pathways in 

the circulatory plasma citrullinome can be best correlated with relevant changes in citrullinome 

signatures of the brain, and with respect to specific brain regions, will need further validation. 

Studies from other groups have reported increased protein citrullination/deimination in post-

mortem PD brains, including in surviving dopamine neurones in the SN, while such staining was 

reported not to be specifically restricted to Lewy bodies [3]. A study using F95 staining linked 

misfolded mutated alpha-synuclein protein to increased citrullination [43], and post-mortem analysis 
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of prefrontal cortex from X-lined dystonia Parkinsonism patients showed increased PAD2 and PAD4 

levels and histone H3 citrullination, [44]. Notably, those PD related studies did not assess all five 

PAD isozymes, contrary to our current study. Furthermore, an assessment of citrullinome signatures 

in PD brains and in different brain regions of PD, including PD models, has not been carried out 

before. In other neurodegenerative disease studies, PAD2 has been linked to Alzheimer’s disease, 

prion disease and amyotrophic lateral sclerosis [13,14,16,17], and in these studies other PAD isozymes 

have often not been assessed, partly due to previous brain studies focussing on PAD2 [12]. In the 

naked mole-rat, which is a hypoxia resistant animal, all PAD isozymes and the brain citrullinome 

were assessed, showing increased citrullination and elevated PAD1, PAD3 and PAD6 but reduced 

PAD2 and PAD4, and modifications in the brain citrullinome, following hypoxia challenge [40]. 

Increased citrullination has also been reported in the CNS in response to blast injury and traumatic 

brain injury [22,154], including with respect to different citrullination levels and targets between 

brain regions [22]. Differences in brain citrullinome protein targets between white and gray matter 

have been assessed in MS versus control brains [21] and sex-related differences have been identified 

in AD [155]. 

3.3. Possible Roles for Citrullination in the Gut-Brain Axis in PD 

Interestingly, various infection related pathways, inflammatory, and gut-brain axis pathways 

were identified as citrullinated in the pre-motor PD brains in the current study. The neuro-

microbiology of PD has received considerable interest [156]. Microglial activation and inflammatory 

responses linked to various pathogens, including parasitic, viral, and bacterial agents have been 

reported [89]. Several infection and pathogen linked KEGG pathways were identified in the current 

study linked to the brain citrulliome of both control and pre-motor PD rats. Whether and how 

citrullination may play roles in escalating neuroinflammatory responses and downstream 

neurodegeneration in relation to such infection-associated pathways may be of considerable interest 

in future studies. The central roles for PADs in the CNS, and their roles in various bacterial and viral 

infections, some of which are also related to neurological diseases [31,157–159] are of considerable 

interest in this context. This also includes long-term neurological outcomes in COVID-19 [90], which 

also has a gut-brain axis element, highlighting that further investigations may be of considerable 

interest in relation to downstream neurodegenerative pathways, including PD related ones [91,160–

162]. 

The gut, nasal and oral microbiota have received considerable attention in PD [163,164], but 

studies in relation to PADs and citrullination are still scarce. Porphyromonas gingivalis is strongly 

associated with citrullination in periodontitis [165] and has indeed been identified as one of various 

microbes in nervous tissues from several animal models of neurodegenerative diseases, including 

ALS, AD, and PD [166]. Importantly, bacterial presence of P. gingivalis, which itself has citrullinating 

activity and may affect the host citrullinome [167], has been identified in the brain of both AD and 

PD based on 16S rRNA next generation sequencing, assessing early, intermediate, and late stage of 

the diseases. In previous studies, P. gingivalis has been reported in hippocampus and cortex from 

control and PD donors [168], reported to be mainly of oronasal origin. Interestingly, in AD, 

modification of the oral microbiome appears to be more prominent than in the gut, and AD studies 

have also focussed on P. gingivalis [169]. It was shown that oral gingivitis impairs gut permeability 

and mediates immune responses associated with neurodegeneration in LLRK2 PD mouse models of 

late onset PD, and chronic periodontitis is a common type of peripheral inflammation associated with 

PD. It remains to be established whether P. gingivalis induced dysbiosis plays a role in 

pathophysiology of PD. Mice receiving oral P. gingivalis showed reduced dopaminergic neurones in 

the SN and activation in microgial cells [170]. Interestingly, PD has been shown to alter the 

composition of the subgingival microbiome of periodontitis [171]. P. gingivalis has also been linked 

to rheumatoid arthritis (RA), one of the most extensively studied PAD-pathology to date, including 

in association with periodontal disease [172]. P. gingivalis has also been shown to accelerate 

atherosclerosis [173]. In RA, citrullination is identified in relation to intestinal permeability and 

microbial imbalance [174], and it must furthermore be considered that many other microbes may be 
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able to cause citrullination of proteins in their hosts (both commensals and pathogens) due bacterial 

PAD-homologues (ADI) [175,176], and this may contribute to citrullination mediated inflammatory 

responses exacerbating various pathologies. 

The composition of the fecal microbiota in the PD model treated with placebo has been shown 

to be different from that in the sham animals and to be correlated with increased plasma levels of 

inflammatory markers and neuroinflammation [177]. Further studies will be needed to characterise 

the possible presence and function of P.gingivalis in the PD model. In addition, it may be of interest 

in future studies to assess oral, nasal and gut citrullinomes in PD to establish which proteins in the 

brain can be modified by citrullination mediated by P. gingivalis, or other types of infectious agents 

or commensals. The origin of PD onset has been debated, with some indication of origin in the gut, 

and PD is highlighted as a systemic inflammatory disease which is accompanied by bacterial 

inflammagens [178]. Hence the question remains whether some of the suggested gut-bran axis 

involvement in PD may be linked to citrullination and while this has not been studied yet, various 

studies have highlighted potential roles for P. gingivalis in PD [179], including in PD with cognitive 

impairment [180]. 

3.4. Future Prospects for PAD Inhibitors in PD 

Epigenetic mechanisms in PD, including post-translational modifications, are receiving 

increased interest as highlighted in recent studies [4,5,181–184]. As PADs may be a promising target 

in PD therapeutics, roles for the different isozymes must be better understood for the development 

of therapeutics utilising pan-PAD or PAD isozyme-specific targeting. Pharmacological PAD 

inhibitors include pan-PAD inhibitors Cl-amidine and BB-Cl-amidine, PAD2 inhibitor AMF30a, 

PAD3 inhibitor Cl4-amidine and PAD4 inhibitor GSK199 [45]; some of which have been applied in 

various CNS in vivo and in vitro models [23,25,27–29,185]. Considering choosing pan-PAD versus 

isozyme specific inhibitors may be important as PAD isozymes have different, and sometimes 

overlapping, preferences for target proteins and hence understanding of the physiological and 

disease related citrullinomes is also of importance. Future approaches for clinical PAD inhibitor 

treatment, both aimed at modulating total deimination via pan-PAD inhibitors, or a narrower range 

of deimination targets using PAD isozyme-specific inhibitors, still require further refinement and 

optimization in experimental models. 

This is the first study to attempt a detailed mapping of citrullinome changes in different brain 

regions in PD, in this instance using a pre-motor toxin-induced PD rat model, and to identify brain 

region specific differences in PAD isozyme expression. Findings of this study overall align with other 

studies reporting modulation of PADs and citrullination in neurodegenerative diseases. It will be 

important, in continuation of this current study and previously published studies, to identify 

citrullination patterns in samples from human PD cohorts and linking possible changes in circulatory 

PD signatures (plasma-EVs) to citrullination changes in brains. However, this will remain 

challenging as the citrullinome signatures from brains are only retrievable from post-mortem human 

samples. Comparisons with 6-OHDA in vitro human cell cultures, in addition to other PD animal 

models, including the A53T alpha-synuclein mouse model which is linked to early-onset PD, may 

nevertheless provide some information to help move the field forwards. It will also be of interest in 

future studies to compare outcomes in the 6-OHDA-PD model to the LPS-PD model, which has 

recently highlighted the replication of crosstalk between local and systemic inflammatory response 

[111], which are inherent in PD pathogenesis and pathophysiology. 

Based on recent studies and our current findings reported here, evidence is mounting for 

considerable roles for PADs and citrullination in PD, including at early stages of the disease. By 

increasing our understanding of PAD-mediated brain-region specific changes in disease progression, 

we will gain a better picture of the spatio-temporal roles for this post-translational modification in 

PD and its therapeutic potential. 
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4. Materials and Methods 

4.1. Pre-Motor PD Rat Model 

This study employed the 6-hydroxydopamine (6-OHDA) rat model to induce pre-motor 

Parkinson’s disease (PD) in male Sprague-Dawley rats (200-250g), adhering to ethical guidelines and 

regulatory approvals, including clearance from the Bloomsbury ethical committee and the Home 

Office as per the Animal Scientific Procedures Act 1986 (PPL PP3144142). 

The model, displaying non-motor symptoms without motor dysfunction, has been previously 

described in detail [4,186]. In brief, rats were randomly allocated to two experimental groups: Sham-

treated (control) and toxin-treated model (PD); n=3 animals per group were used for this study. The 

pre-motor PD model was established by intraperitoneal administration of either N-(2-chloroethyl)-

N-ethyl-2-bromobenzylamine (DSP-4 - 25mg/kg for the PD model) or sterile saline (for 

sham/controls) followed by bilateral striatal injections of 6-OHDA (15mg per striatum - coordinates 

from Bregma: AP +1.0 mm, ML +3.0 mm, DV −6.5 mm – PD model) or saline (sham) containing 0.9% 

of ascorbic acid under general anaesthesia. Rats were maintained for 3 weeks after surgery and were 

then perfused. Brains were removed and the different brain regions of interest (cortex, hippocampus, 

midbrain, striatum, cerebellum, and olfactory bulb) were dissected, snap-frozen in liquid nitrogen, 

and stored at -80°C for subsequent protein analysis. The experimental setup is summarized in Figure 

12. 

 

Figure 12. Experimental setup. Three animals per group were used for sham/control and the pre-

motor PD model, respectively. Brains were extracted at the end of the treatment and the six brain 

regions under study were excised and analysed for PADs by western blotting and for brain-region 

specific citrullinomes by proteomics analysis (LC-MS/MS). 

4.2. Protein Isolation from Brain Tissue 

Proteins were extracted from brain tissue from the different brain regions of PD induced and 

control animals (n=3 per group) according to previously described methods [40]. The six different 

brain regions under study (cortex, hippocampus, midbrain, striatum, cerebellum, and olfactory bulb) 

were individually homogenised in RIPA+ buffer (Sigma-Aldrich, Gillingham, UK, containing 10% 

protease inhibitor cocktail, Sigma-Aldrich) in 2 mL Eppendorf tubes on ice using a Mini Handheld 

Homogeniser (Kimble, DWK Life Sciences, VWR International). The homogenates were then gently 

pressed through a 23G needle into fresh Eppendorf tubes on ice, followed by gently pipetting up and 

down to eliminate any tissue clots. For each 100 mg of tissue, 500 µL of RIPA+ buffer was used. The 

brain tissue homogenates were incubated for 1.5 h at 4 °C on a rolling platform, pipetting up and 

down at regular intervals. For protein isolation, the homogenates were then centrifuged at 16,000× g 

for 30 min at 4 °C, collecting the protein containing supernatant, which was aliquoted and 

immediately frozen at −80 °C until further use. 

4.3. Western Blotting 

For Western blotting, a 100 µL aliquot of protein extract per sample was diluted with 100 µL 2× 

reducing Laemmli sample buffer (BioRad; containing 5% β-mercaptoethanol, Sigma-Aldrich) and 

boiled for 5 min at 100 °C. Samples were run by SDS-PAGE (4–20% TGX gels, BioRad, Watford, UK) 

at 165 V for 52 min, using a 5 µL aliquot per sample per lane. Proteins were transferred to 

nitrocellulose membranes using semi-dry transfer (1h at 15V), assessing even protein transfer by 

PonceauS red stain (Sigma-Aldrich) before blocking in 5% bovine serum albumin (BSA, Sigma-
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Aldrich) in TBS-T for 1 h at room temperature (RT). For detection of PAD isozymes, the membranes 

were incubated in primary antibodies overnight at 4 °C on a shaking platform as follows: PAD 

isozyme specific antibodies used were anti-human PAD1 (ab181762, Abcam Cambridge, UK,), PAD2 

(ab50257), PAD3 (ab50246), PAD4 (ab50247) and PAD6 (PA5–72059, Thermo Fisher Scientific, Hemel 

Hempstead, UK). The mitochondrial housekeeping protein prohibitin was also assessed using anti-

prohibitin (ab75771) on western blotting of the protein extracts from all six brain regions. All primary 

antibodies were used at 1/1000 dilution in TBS-T. Washing was carried out with TBS-T (3 × 10 min). 

Secondary antibody incubation was completed for 1 h at RT (using HRP-labelled anti-rabbit IgG; 

BioRad, diluted 1/3000 in TBS-T). Following washing (5 × 10 min in TBS-T), visualisation was carried 

out using ECL (Amersham Biosciences, Buckinghamshire, UK) and the UVP BioDoc-ITTM System 

(Thermo Fisher Scientific, Dartford, UK). All blots were re-probed with HRP-conjugated anti-β-actin 

antibody (ab20272, Abcam, 1/5000 in TBS-T), developed and imaged. For quantitative analysis of 

PAD isozymes and prohibitin, regions for protein bands in the expected size range of 70-75 kDa for 

PAD1-4, and 50-60 kDa for PAD6, as well as in the 27 kDa range for prohibitin,were normalised 

against β-actin positive bands following densitometry analysis using ImageJ. 

4.4. Isolation of Citrullinated Proteins from Brain Tissue 

To identify the brain-region specific citrullinomes, immunoprecipitation was carried out to 

isolate citrullinated/deiminated proteins from the different brain regions’ protein isolates using the 

F95 pan-citrulline antibody (MABN328, Merck, Watford, UK) [187]. For a representative citrullinome 

of each brain region (cortex, hippocampus, striatum, midbrain, cerebellum, olfactory bulb), protein 

extracts from 3 brains per experimental group (PD versus sham) were pooled (3 x 20 µL). 

Immunoprecipitation was carried out using the Catch and Release® v2.0 Immunoprecipitation Kit 

(17-500M, Merck) together with the F95 pan-citrulline antibody and the affinity ligand provided with 

the kit, according to the manufacturer’s instructions (Merck). F95 enrichment was carried out 

overnight, incubating the mini-IP columns at 4 °C on a rotating platform. Thereafter the citrullinated 

F95 bound proteins were eluted with the elution buffer provided with the kit, according to the 

manufacturer’s instructions (Merck) and assessed by SDS-PAGE and silver staining (BioRad Silver 

Stain Plus Kit) for protein yield and by LC-MS/MS analysis for the identification of individual 

citrullinated protein hits. 

4.5. Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS) 

For LC-MS/MS analysis, the F95-enriched eluates from each brain region were run 0.5 cm into a 

12% TGX gel (BioRad) and thereafter cut out as one band each, respectively; followed by in-gel 

digestion (Cambridge Proteomics, Cambridge, UK), according to previously described methods 

[4,40]. In brief, automated LC-MS/MS analysis was carried out using a Dionex Ultimate 3000 RSLC 

nanoUPLC (Thermo Fisher Scientific Inc., Waltham, MA, USA) system in conjunction with a 

QExactive Orbitrap mass spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). Peptide 

separation was carried out using reverse-phase chromatography and a Thermo Scientific reverse-

phase nano Easy-spray column (Thermo Fisher Scientific Inc). The LC eluent was sprayed into the 

mass spectrometer using an Easy-Spray source (Thermo Fisher Scientific Inc.). The m/z values of all 

eluting ions were measured in an Orbitrap mass analyzer, data dependent scans (selecting top 20) 

were employed for automatic isolation and generation of fragment ions using the HCD collision cell, 

measured using the Orbitrap analyser. Both singly charged ions as well as ions with unassigned 

charge states were excluded from selection for MS/MS. A dynamic exclusion window of 20 sec was 

also applied. Data were processed post-run using Protein Discoverer (version 2.1., Thermo Scientific), 

converted to mgf files and submitted Mascot (Mascot search algorithm; Matrix Science, London, UK). 

Search for hits was carried out against the UniProt Rattus_norvegicus_20181203 (31,558 sequences; 

17,280,660 residues) database with peptide and fragment mass tolerances respectively set at 20 ppm 

and 0.1 Da. The threshold value for significance was set at p < 0.05, and the peptide cut-off score was 

set at 35. 
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4.6. Protein-Protein Interaction Network Analysis 

To identify protein–protein interaction networks for rat specific citrullinated/deiminated 

proteins hits from the six different brain regions (brain-region specific citrullinomes), STRING 

analysis (Search Tool for the Retrieval of Interacting Genes/Proteins; https://string-db.org/) was used 

(accessed on 18th and 19th March 2024). The following functions were applied in STRING: “search 

multiple proteins”, the species database chosen was “Rattus norvegicus”, and “basic settings and 

medium confidence were applied. Colour lines between the nodes indicate the following evidence-

based interactions for network edges: “known interactions” (based on curated databases, 

experimentally determined), as well as “predicted interactions” (based on gene neighbourhood, gene 

fusion, gene co-occurrence, or via text mining, co-expression, or protein homology). Data for the 

pathway analysis of the protein networks were exported as STRING network images and as Excel 

files for KEGG and GO pathways and compared between brain regions from PD and sham rats, 

respectively. 

4.7. Statistical Analysis 

For comparison between datasets from PD versus control brains, GraphPad Prism version 10 

was used. T-tests were used to determine significance between groups for densitometry readings 

from western blotting analysis, showing mean and standard deviation (n = 3 per experimental group). 

Statistical significance was regarded as p < 0.05. STRING analysis was carried out with medium 

confidence in STRING (https://string-db.org/, accessed on 18th and 19th March 2024). 

5. Conclusions 

This is the first study to attempt a detailed mapping of citrullinome changes in different brain 

regions in PD, using a pre-motor toxin-induced PD rat model. Findings of the study highlight some 

brain region specific differences in PAD isozyme expression and the respective citrullinomes in 

cortex, hippocampus, striatum, midbrain and olfactory bulb of control versus pre-motor PD rat 

brains. We report both overlapping, control/sham and PD specific KEGG and Gene ontology (GO) 

pathways associated with the brain region specific citrullinomes relating to metabolic, immune, cell 

signalling and neurodegenerative disease related pathways. Our findings identify roles for PAD-

mediated citrullination in physiological and pathobiological processes, including in early stages of 

PD, highlighting their potential for future therapeutic avenues. 
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