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ABSTRACT 

 

Quorum sensing is a well-established system of communication adopted by a number 

of bacterial, and some fungal, populations. This cell density dependent phenomenon is 

based on the accumulation of small diffusible molecules, termed as quorum sensing 

molecules, in the extracellular milieu until a threshold concentration triggers alteration 

in the expression of specific genes culminating in variety of responses including 

virulence, bioluminescence, sporulation, biofilm formation and secondary metabolites 

production. 

In Bacilli, quorum sensing is mediated by small peptides that control competence, 

sporulation, and the production of certain secondary metabolites in a cell density 

dependent fashion. Two divergent pathways, triggered by the ComX pheromone and 

the Competence and Sporulation Factor (CSF), are engaged in the control of these 

processes.  

B. licheniformis NCIMB 8874 is a bacterium with industrial relevance for the 

production of the antimicrobial agent bacitracin. This organism is genetically related 

to Bacillus subtilis, whose quorum sensing is regulated by the comQXPA operon. 

This study aimed to investigate the role of the comQXPA locus in B. licheniformis 

NCIMB 8874 and the production of potential signalling molecules in this bacterium. 

Production of signalling molecule/s in B. licheniformis NCIMB 8874 was confirmed by 

the significant increase (p>0.05) in srfA expression in response to the addition of 

supernatants of B. licheniformis NCIMB 8874 cultures in their late exponential phase 

to low cell density cultures of B. subtilis reporter strains, carrying a srfA-lacZ fusion. 

The investigation of quorum sensing-regulated secondary metabolites production 

established production of lichenysin, -polyglutamic acid and extracellular proteases, 

whose biosynthesis is impaired in bacteria with disrupted comQXPA clusters. 

Bioinformatics studies on B. licheniformis NCIMB 8874 genome sequence confirmed 

the presence of essential quorum sensing-related genes, such as the comQXPA 

gene cluster, comK, mecA and comS. Moreover, in silico analysis allowed the 

identification of members of the Rap and Phr families, which aid the regulation of cell 

density dependent phenomena in B. subtilis.  
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The results presented in this work positively indicate that B. licheniformis NCIMB 

8874 cell-cell communication operates in analogy with the well established 

comQXPA-controlled pathway of B. subtilis.  
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AIM 

 

The overall aim of this work is to study the potential quorum sensing process in the 

Gram-positive bacterium Bacillus licheniformis NCIMB 8874 and to investigate the 

role of putative extracellular diffusible (quorum sensing) molecule(s) in this bacterium.  

To this end the following objectives were addressed: 

 

 Investigation of the effect of B. licheniformis spent medium containing potential 

signalling molecule(s) on the expression of quorum sensing-regulated genes 

in B. subtilis reporter strains. 

 Investigation of the production of secondary metabolites under the control of 

the quorum sensing cluster comQXPA.  

 Investigation of the effect of B. licheniformis spent medium containing potential 

signalling molecule(s) on the production of secondary metabolites such as the 

antimicrobial agent lichenisyn, -polyglutamic acid and proteases.  

 Genetic characterization of the cell-cell communication in B. licheniformis 

NCIMB 8874.  
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INTRODUCTION  

 

 
1.1 Quorum Sensing: Discovery and Definition 

 

―A few words are necessary on the mass-action of bacteria. It is a common 

observation, one made by the writer at least a hundred times, that in culture media 

not exactly adapted to the needs of the organism, a scanty inoculation may not give 

any growth—not even after a long time—whereas a copious one will lead to a growth 

which gradually clouds the fluid or covers the solid....The only explanation I can think 

of is that a multitude of bacteria are stronger than a few, and thus by union are able 

to overcome obstacles too great for the few (Smith, 1905).‖ 

For centuries, recognition and co-operation between cells in the unicellular bacterial 

world have been considered very unlikely, although co-operative behaviour between 

bacterial cells can be highly advantageous in their life cycle, particularly when they 

are involved in processes such as conjugation, symbiosis and niche adaptation, 

production of secondary metabolites, and population migration. However, the notion 

that bacteria are simple organisms with little capacity to interact with one another has 

been dramatically challenged by the discovery in bacterial populations of a complex 

system of communication consisting of diffusible chemical signals (Nealson et al., 

1970a). The first indication of bacterial cell-cell communication was introduced in 

1965, when Tomasz suggested that the regulation of competence in Streptococcus 

pneumoniae was aided by a hormone-like extracellular product (Tomasz and Beiser, 

1965). This hormone-like molecule was later recognized as a peptide, a widespread 

signal in cell-cell communication amongst Gram-positive bacteria (Dunny and 

Leonard, 1997, Lazazzera and Grossman, 1998). 

However, cell-cell signalling and coordinated microbial group behaviour was officially 

ascertained by Nealson and co-workers, who reported that the bioluminescence 

developed by the marine bacterium Vibrio fischeri (formerly Photobacterium fischeri) 

in its symbiotic relationship with the Hawaiian squid Euprymna scolopes (E. scolopes) 

was controlled by one or more signalling molecules accumulating in the extracellular 
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milieu as a function of cell growth (Nealson et al., 1970a). The relationship between   

E. scolopes and V. fischeri represents a noticeable example of cooperative 

development and growth for both the fish and the bacterium:  whilst the 

luminescence provided by V. fisheri is advantageous for the squid as it serves as a 

system for communication, defence, and/or attraction, the bacterium, in turn, exploits 

its host as a stable source of nutrients (McFall-Ngai and Ruby, 1991, Ruby and 

McFall-Ngai, 1992). V. fischeri cells do not emit light in their free-living state, since 

the low cell densities occurring in seawater (100 cells mL-1) do not allow the signal 

accumulation up to the threshold level. However, when V. fischeri infects the light 

organ of the squid, where the cell density reaches 1010-1011 cells mL-1, the signal 

molecules can accumulate to an adequate concentration to trigger the transcription of 

genes encoding the luminescence enzymes (Eberhard, 1972, Eberhard et al., 1981a, 

Eberhard et al., 1986). Figure 1.1 depicts the various stages of the infection and 

colonisation of Euprymna scolopes light organ by V. fisheri.  

 
 

Figure 1.1: Infection and colonization of E. scolopes light organ by V. fischeri cells. 

(a) 1 hour post-inoculation: a small aggregate (orange arrow) of GFP-labelled V. 

fischeri cells (green) forms above a pore of the light organ (b) 2-4 hours post-
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inoculation:   V. fisheri cells migrate from the aggregate to the pores. (c) 4-6 hours 

post-inoculation: V. fischeri cells migrate through a pore and into a duct of the light 

organ (Cells within the duct appear yellow). (d) The light organ of E. scolopes is fully 

colonized by V. fisheri cells. White arrows indicate the location of the pores in all 

panels (Taken from Nyholm et al., 2000). 

 

The mechanism by which V. fischeri regulates bioluminescence was originally called 

―autoinduction‖ (Nealson, 1977), but later research on the mechanism of cell 

communication suggested that autoinduction was only one of the common features 

characterising the phenomenon. Microbial cell-cell signalling has become known as 

―Quorum Sensing‖ (Fuqua et al., 1994), upon the principle that the communication 

among the population can only be successful when the concentration of external 

signal reaches a threshold or "quorum." Once a critical cell mass is reached, a 

number of target genes is activated or repressed for the development of processes 

that necessitate the cooperation of a large number of cells in order to be effective 

(Surette and Bassler, 1998).  

Since its discovery cell to cell communication has been established in numerous 

microbial species, where it has been associated with processes such as 

bioluminescence, antibiotic production, conjugative DNA transfer, sporulation, 

virulence, biofilm formation and biosurfactant production (Swift et al., 2001).  

Signal molecules implicated in cell-to-cell communication are known as autoinducers 

or quorum sensing molecules and their function is to  regulate gene expression in 

other cells of the community which in turn control a number of bacterial responses 

(Nealson et al., 1970b) . 

 
1.2 Quorum sensing mechanisms and regulation  

 

1.2.1 Characteristics of a quorum sensing molecule  

 

Bacterial cells produce and secrete a wide variety of small molecules with diverse 

specific roles in the modulation of metabolic activities characterising natural microbial 

communities, which might potentially be involved in cell-cell signalling and 
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communication (Yim et al., 2006). The term ―quorum sensing molecule‖, however, 

can only be assigned to those small, diffusible molecules with an established role in 

cell communication. Based on the literature it is possible to enlist some important 

factors that are common amongst all the quorum sensing molecules that have been 

reported to date. 

Therefore, for a molecule to be classified as a quorum sensing molecule, it needs to 

fulfil all of the following characteristics: 

 The molecule is produced at a basal level throughout the cell growth, but the 

quorum sensing response is only initiated at a certain stage, which is species 

specific. This is usually determined by the cell density of the organism, or 

certain physiological conditions, or in response to changes in the environment 

(Winzer et al., 2002b). Examples are secondary metabolite production 

(Bainton et al., 1992b), sporulation (Weinrauch et al., 1990), competence 

regulation (Magnuson et al., 1994), virulence determination (Zhu et al., 2002a) 

and morphological differentiation (Ochi, 1987).  

 The molecule must be synthesised inside the cell and later secreted in the 

extracellular milieu where it is recognised by a specific receptor, such as the 

ComX pheromone regulating competence development in B. subtilis (Winzer 

et al., 2002b, Magnuson et al., 1994).  

 Accumulation of the compound after a critical threshold concentration should 

produce a concerted response from all the cells belonging to the microbial 

population under study, such as the development of bioluminescence in         

V. fisheri cells after colonisation of the light organ of the squid (Winzer et al., 

2002a, Nealson et al., 1970, Winzer et al., 2002b).  

 The molecule must be able to elicit a similar response when added 

exogenously to the null mutant cultures as it would do when endogenously 

expressed by the producer organism, as shown for the reinstatement of 

carbapenem production in Erwinia carotovora by exogenous addition of N-(3-

oxohexanoyl) homoserine lactone (Bainton et al., 1992a, Winzer et al., 

2002b). 
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 The molecule must exert a response in the host organism which is not only 

related to metabolising or detoxifying the molecule itself. An example is the 

activation of virulence determinants by N-(3-oxododecanoyl)-acyl-homoserine 

lactone in Pseudomonas aeruginosa (Winzer et al., 2002a, de Kievit and 

Iglewski, 2000, Winzer et al., 2002b).  

 

 

The extent of the response generated by a chemical signal is the most important trait 

that needs to be taken into account when assigning a quorum sensing function to a 

given molecule (Winzer et al., 2002b), as the other criteria are met by many other 

molecules. Molecules such as toxic metabolites or by-products, for example, build up 

in the extracellular milieu throughout the growth and might trigger a stress response 

once they reach a critical concentration. In such circumstances the molecules cannot 

be considered intercellular signals, as the cell population is purely acting in response 

to the toxic effect generated by the accumulation of such compounds in the 

environment. Likewise, certain compounds secreted in the extracellular medium, 

such as antibiotics, are able to induce their specific uptake machinery, thereby 

influencing the expression of genes involved in unrelated metabolic pathways. 

Indeed it has been suggested that antibiotics might be considered as quorum 

sensing molecules due to their capacity to modulate gene expression at sub-growth-

inhibitory concentrations (Yim et al., 2006). However, though some antibiotics, such 

as nisin from Lactobacillus lactis  (Quadri, 2002) or subtilisin from Bacillus subtilis 

(Kleerebezem et al., 2004, Kleerebezem et al., 1997), are well established quorum 

sensing molecules, there exist a wide number of antibiotics whose involvement in 

cell-to-cell communication has not been determined. In conclusion quorum sensing 

molecules are involved in the regulation of processes whose purpose is far more 

complex than the mere metabolising toxins or nutrients; they enable the entire 

bacterial population to benefit from their number (cell density) or to prepare for the 

problems connected with it (Winzer et al., 2002b). 
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1.2.2 Quorum sensing in Gram negative bacteria  

 

1.2.2.1 N-acyl-homoserine lactones  

 

The first Quorum Sensing molecule to be elucidated was N-3-oxo-hexanoyl-

homoserine lactone (3-oxo-C6-HSL) the autoinducer responsible for the activation of 

bioluminescence in V. fischeri (Eberhard et al., 1981b). The process regulating 

bioluminescence in V. fischeri is well established and can be simplified as depicted in 

Figure 1.2.  

 

Figure 1.2: Quorum sensing process in Gram negative bacteria. Acyl homoserine 

lactones (AHLs) are produced by LuxI and are detected by LuxR-type protein. AHLs 

diffuse into the extracellular space in response to the changes in the surrounding 
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environment. AHLs bind to LuxR and activate the transcription of the lux operon 

(luxICDABEG) (Adapted from Miller and Bassler, 2001). 

 

The LuxI protein catalyses the synthesis of 3-oxo-C6-HSL which upon interaction 

with the transcriptional regulator LuxR, triggers the transcription of the lux operon 

(luxICDABEG), thus leading to the activation of luciferase gene (Engebrecht et al., 

1983).  

Since 3-oxo-C6-HSL discovery many quorum sensing molecules have been 

identified, which vary within different groups of micro-organisms. It has been widely 

accepted that Gram-negative bacteria utilise various AHLs to regulate the 

mechanisms which help them to adapt to changes in the environment (Withers et al., 

2001). AHL signals appear to be dedicated molecules produced with the sole 

purpose of mediating specific quorum sensing processes. 

Most Gram-negative bacteria synthesise more than one AHL which are characterised 

by a homoserine lactone (HSL) ring whose β- and γ-positions are unsubstituted, 

whilst the α-position features an N-acylation with a fatty acyl group. Different AHLs 

are usually characterised by acyl chains with variable length, saturation level and 

oxidation state. The chemical structure of some AHLs regulating quorum sensing in 

Gram-negative bacteria is listed in Table 1.1. Although in the majority of cases the 

acyl chain has an even number of carbon atoms (C4–C18), AHLs with acyl chains 

containing 5 or 7 carbons have also been identified (Horng et al., 2002, Lithgow et 

al., 2000). In AHL-dependent quorum sensing systems the specificity of the 

transcriptional activator protein (usually a LuxR homologue) for its cognate AHL 

depends on both the length of the acyl side chain and chemical modification at the β- 

position of the HSL ring (Horng et al., 2002, Lithgow et al., 2000). 

AHL signals are amphipathic molecules which can diffuse through the phospholipid 

bilayer of the cell membrane as well as move through the aqueous intracellular and 

extracellular milieus: this property derives from the balance between the 

hydrophilicity of the HSL ring and the hydrophobicity of the acyl side chain (Pearson 

et al., 1994, Kaplan and Greenberg, 1985). 
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The shortest AHL signals identified to date are N-butanoylhomoserine lactone (C4-

HSL) and N-hydroxybutanoylhomoserine lactone (3-hydroxy-C4-HSL) (Cao and 

Meighen, 1989, Winson et al., 1995) and the future discovery of natural HSL-derived 

signals with shorter acyl chains is considered unlikely due to the AHLs chemical 

properties. 

Yates and co-workers showed that the AHLs concentration in cultures of Yersinia 

pseudotuberculosis and Pseudomonas aeruginosa (two human pathogens producing 

AHLs with acyl side chains ranging from 4 to 12 carbons in length) peaked during the 

exponential phase of growth and suddenly dropped at the onset of the stationary 

phase. However, no enzyme responsible for the inactivation of AHLs was identified in 

the extracellular medium of these organisms (Yates et al., 2002).  

The rapid decrease in AHLs concentration was found to be caused by pH-dependent 

lactonolysis (hydrolysis of the HSL ring) due to the increase in pH registered at the 

onset of stationary phase and caused by  release of ammonia from aerobic 

degradation of peptides as carbon and energy sources (Yates et al., 2002).This 

phenomenon was found to be dependent on the length of the acyl side chain, as 

AHLs with longer chains are less susceptible to ring opening. Therefore, AHLs 

require an N-acyl side chain of at least four carbons in length in order to be functional 

under physiological conditions in mammalian tissue fluids, and the longer the acyl 

side chain the more stable the AHL signal molecule (Yates et al., 2002).  

AHL signal molecules are employed by several bacteria, where they regulate a 

number of processes. Examples are:  serine protease production in Aeromonas 

hydrophila regulated by N-butanoyl-HSL; carbapenem synthesis by Erwinia 

carotovora controlled by N-(3-oxohexanoyl)-HSL and virulence determinants in 

Pseudomonas aeruginosa  activated by N- (3-oxododecanoyl)-HSL (Miller and 

Bassler, 2001a).  

Each system consists of an AHL receptor and signal transducer, homologue to V. 

fisheri LuxR, and a cognate AHL signal molecule which is synthesized by a luxI 

homologue. Once a threshold extracellular concentration of the autoinducer is 

reached, the regulatory protein binds to its cognate signal molecule in order to 
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modulate target gene(s) expression. Several AHL-dependent quorum sensing 

systems have been shown to possess multiple LuxR/LuxI/AHL modules 

 
Table 1.1: Chemical structure of some quorum sensing signals present in Gram-
negative bacteria. 

Signal Molecule Organism 

Acyl-homoserine lactones 

(Eberhard et al., 1981a) 

3-oxo-C6-HSL 

 

O

N
H

O

O

O  

 

Vibrio fischeri 

 

 

Alkyl quinolones 

(Pesci et al., 1999) 

 

2-heptyl-3-hydroxy-4(1H)-quinolone 

 

N
H

O

OH

 

Pseudomonas 

aeruginosa 

 

Fatty acid methyl esters 

(Flavier et al., 1997) 

3-Hydroxylpalmitic acid methyl ester 

 

MeO

O OH

 

Ralstonia solanacearum 

 

Long chain fatty acids 

(Huang and Lee Wong, 2007) 

cis-Δ2-11-methyl-dodecenoic acid 

 

COOH  

Stenotrophomonas 

maltophilia 

 

Autoinducer-2 

(Schauder et al., 2001) 

DPD 

 

OH

O

O

OH

 

 

Vibrio harveyi 
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1.2.2.2 AHLs biosynthesis by LuxI homologues 

 

As previously highlighted, the enzymes responsible for AHLs synthesis are usually 

members of the LuxI protein family. These enzymes function as AHL synthases when 

provided with S-adenosylmethionine (SAM) as the amino donor (source of HSL ring 

moiety)  and an appropriate acyl–Acyl Carrier Protein (acyl-ACP) as an acyl chain 

donor (Moré et al. 1996; Jiang et al. 1998; Parsek et al. 1999). SAM binds to LuxI, 

followed by the appropriate acyl-ACP. Subsequently, SAM forms an amide bond with 

the acyl group, thus leading to the release of holo-ACP. Lactonization of the HSL ring 

occurs and the product, AHL, is liberated together with methylthioadenosine (Fuqua 

and Winans, 1996, Sitnikov et al., 1995, Parsek et al., 1997, Salmond et al., 1995).  

 All LuxI-type proteins appear to be AHL synthase orthologues, which catalyse the 

formation of the amide bond between the acyl side chain and the amino group of 

SAM. However, given that several AHLs have been identified with structurally 

different acyl side chains, the members of the LuxI family of protein must be selective 

towards the acyl-ACPs involved in the catalysis (Andersson et al., 2000, Choi and 

Greenberg, 1991, Devine et al., 1989); LuxI homologues are characterised by protein 

sequence ranging from 194 to 226 amino acids and although sequence alignment 

revealed that most of them have low sequence homologies, a sequence of ten 

invariant residues was found in the N-terminal region of each polypeptide (Fuqua et 

al., 1995, Parsek et al., 1997). Therefore it has been proposed that the less 

conserved C-terminal region might be involved in binding of the appropriate acyl-ACP 

and delivery of the acyl group to the active site (Fuqua et al., 1995, Parsek et al., 

1997).  

 

Two LuxI homologues, EsaI from Pantoea stewartii and LasI from 

Pseudomonas aeruginosa were found to belong to the GCN5-related N-

acetyltransferase protein family through analysis of their crystal structures (Gould et 

al., 2004, Watson et al., 2002). Although EsaI and LasI produce AHLs characterised 

by different side-chain lengths (3-oxo-C6-HSL and 3-oxo-C12-HSL respectively) 

studies conducted on their structures has revealed a common binding site for the 

http://rstb.royalsocietypublishing.org/content/362/1483/1119.full#ref-94
http://rstb.royalsocietypublishing.org/content/362/1483/1119.full#ref-64
http://rstb.royalsocietypublishing.org/content/362/1483/1119.full#ref-101
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acyl-ACP phosphopantetheine prosthetic group. In EsaI a threonine residue (Thr140) 

of the acyl-chain binding site was found to block the activity of the enzyme against 

unsubstituted acyl-ACPs (Gould et al., 2004, Pearson et al., 1994, Watson et al., 

2002, von Bodman et al., 1995). EsaI mutants with a threonine 140-to-alanine 

substitution showed a dramatic shift in AHL production from 3-oxo-C6-HSL to C6-HSL 

(Watson et al., 2002). Loss of specificity was also observed in the LasI mutants 

obtained by converting the threonine residue to a number of other amino acids 

identified in the same position in different AHL synthases. This study confirmed that a 

specific threonine residue in the acyl-chain binding site has an important role in 

determining the specificity showed by the members of the AHL synthase family 

towards 3-oxo-acyl-ACPs. Comparison of specific AHL synthase sequences and their 

product AHLs suggested that whereas the Thr140 is related to the production of 3-

oxo-HSLs, alanine and glycine residues at the same position correlate with 

unsubstituted AHLs whilst serine is associated with the production of 3-hydroxy-HSLs 

(Watson et al., 2002).  

 The production of specific AHLs by a given LuxI-type is dependent on the available 

acyl-ACP pools in the cell, which in turn is susceptible to metabolic changes. Bacteria 

produce fatty acids by extending the chain length of acyl-ACP through the addition of 

two carbons from malonyl-coenzyme A. As a consequence, it has been shown that 

AHLs production in a bacterium can be altered by modulating the fatty 

acid biosynthetic pathway. P. aeruginosa mutant strains with reduced FabG (-

ketoacyl-ACP reductase) activity have an impaired ability to elongate acyl-ACPs, 

resulting in the production of AHLs with shorter chains when compared with the wild-

type (Hoang et al., 2002). 

LuxI homologues are not the only enzymes involved in AHL(s) production, as another 

AHL synthase, namely LuxM, has been identified in Vibrio harveyi, where it is 

positively involved in bioluminescence regulation (Bassler et al., 1993). Further 

studies on this enzyme have led to the discovery of LuxM homologues in other Vibrio 

species, e.g.  AinS in V. fisheri (Hanzelka et al., 1999, Milton et al., 2001).  

Although the amino acid sequences of both AinS and LuxM do not show any 

similarity to LuxI, both the enzymes have been implicated in the synthesis of AHL(s) 
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using similar precursors to those identified for LuxI homologues (Bassler et al., 1993, 

Gilson et al., 1995). However, in contrast with LuxI-type proteins, whose primary 

sources for AHL side chains are acyl-ACPs, AinS was shown to use indifferently 

octanoyl-ACP or octanoyl-CoA conjugates as precursors for octanoyl-HSL 

biosynthesis. Acyl-ACP conjugates and acyl-CoA derivatives have different functions 

in bacterial cells, the formers being intermediates in fatty acid synthesis and the latter 

employed as intermediates of fatty acid oxidation. It has been hypothesized that V. 

fisheri cells might benefit from AinS flexibility towards its fatty acyl substrates under 

conditions that lead to an imbalance between these precursors pools. Whether this 

mechanism of action is shared by LuxM in the synthesis of 3-hydroxy-butanoyl-HSL 

has yet to be determined (Hanzelka et al., 1999). 

While the involvement of LuxM in the activation of bioluminescence has been 

established, no target gene has been identified for the AinS/octanoyl-HSL module so 

far.  The identification of a DNA sequence resembling the lux box (a promoter 

element required to activate lux gene expression) upstream to ainS seems to indicate 

that ainS gene expression might be regulated by the LuxI-LuxR quorum sensing 

system (Gilson et al., 1995). Furthermore, it has been postulated that octanoyl-HSL 

might compete with 3-oxohexanoyl-HSL (LuxI product) for binding to LuxR, thus 

modulating the activity of the LuxI-LuxR quorum sensor (Kuo et al., 1996).  

Autoinducers produced via LuxM-type proteins, on the other hand, do not interact 

with a LuxR-type transcriptional regulator. In V. harveyi, for example, the sensor for 

3-hydroxy-C4-HSL, named LuxN, is a histidine-kinase protein (Bassler et al., 1993, 

Bassler et al., 1994a), whose interaction with AHLs in the periplasm triggers a 

phosphorelay cascade which results in the activation of the target quorum sensing 

dependent genes (Camara et al., 2002, Croxatto et al., 2004).  

 

A third potential AHL synthase (HdtS) was identified in P. fluorescens, which does 

not belong to either the LuxI or LuxM family. This lysophosphatidic acid 

acyltransferase is a protein of approximately 33 kDa capable of directing the 

synthesis of N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone (3OH,C14:1-HSL), 
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N-decanoylhomoserine lactone (C10-HSL) and N-hexanoylhomoserine lactone (C6-

HSL) (Laue et al., 2000). 

 

1.2.2.3 AHLs recognition and response: LuxR-type proteins  

 

Genetic and biochemical studies on V. fischeri LuxR protein and its homologues, 

mostly performed in E. coli, have contributed to the identification of these proteins as 

AHL receptors in Gram negative bacteria quorum sensing systems (Gilson et al., 

1995, Hanzelka and Greenberg, 1995). LuxR from V. fisheri contains 250 amino acid 

residues and it was found to be a two-domain polypeptide, whose folding into active 

confirmation is aided by the chaperone GroEL/ES complex (Adar et al., 1992, Adar 

and Ulitzur, 1993, Dolan and Greenberg, 1992). Members of the LuxR family are 

characterised by sequence identity of 18–23%, though two clusters of higher 

sequence conservation have been identified which represent the AHL(s) interaction 

domain in the N-terminus of the protein and the DNA binding motif located on the C-

terminal domain. Specific functions have been assigned to specific LuxR regions 

through analysis of a number of luxR products comprising either single-amino-acid 

alterations or deletions in the N- or C- terminus (von Bodman et al., 1998, Parsek 

and Greenberg, 2000, Parsek et al., 1999, Chai et al., 2001, Chancey et al., 1999).  

The best evidence for the receptor activity of LuxR-type proteins has been obtained 

through analysis of purified preparations of these proteins. When purified TraR from 

A. tumefaciens and CarR from Erwinia carotovora were mixed with their cognate 

acyl-HSLs (3-oxo-octanoyl-HSL and 3-oxo-hexanoyl-HSL, respectively) in an 

equimolar ratio of acyl-HSL to protein, the formation of a stable complex could be 

observed (Welch et al., 2000, Zhu and Winans, 1999).  

Studies performed on truncated LuxR proteins have confirmed that the N-terminal 

region mediates the binding to recognized AHL signals, as derivatives of  LuxR from 

V. fisheri and LasR from P. aeruginosa lacking their N-terminal domanins led to 

constitutive transcription of quorum sensing target genes (Hanzelka and Greenberg, 

1995). A model has been postulated whereby amino acids located at the extreme N-
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terminus might be involved in the repression of the luxR gene in the absence of AHL 

signal. Interaction with the cognate AHL(s) causes a change in LuxR conformation 

which leads to exposure of the C-terminal domain, thereby relieving it from inhibition 

(Choi and Greenberg, 1991, Pesci et al., 1997, Anderson et al., 1999). Binding to the 

specific AHL signal has been suggested to also stimulate LuxR multimer formation 

and association to the lux boxes upstream of the lux operon (Chancey et al., 1999). 

Both the HSL ring and the acyl chain might be involved in interactions with LuxR 

(Passador et al., 1996, Schaefer et al., 1996) 

The C-terminal region of LuxR homologues, comprising an essential helix-turn-helix 

motif (HTH), is required for DNA binding and transcriptional activation (Shadel et al., 

1990, Slock et al., 1990). LuxR-type proteins belong to the FixJ-NarL superfamily 

(Kahn and Ditta, 1991), consisting of two-component-type response regulators, 

whose DNA binding activity is regulated by phosphorylation of a conserved aspartate 

residue in the amino-terminal domain of the proteins. Therefore, it is not surprising 

that no significant sequence similarity has been detected between the N-terminal 

regions of LuxR homologues and members of the FixJ-NarL group (Kahn and Ditta, 

1991), as the specific function of the N-terminus of LuxR-type proteins is to interact 

with AHL(s) (Fuqua et al., 1994). Despite the lack of similarity in their N-terminal 

regions LuxR-type proteins and other members of the FixJ-NarL superfamily show 

common features in their mechanisms of action.  

A helix-turn-helix (HTH) motif which characterizes the DNA-binding regions of most 

transcription factors has been identified in the C-terminal region of LuxR-homologues 

(Fuqua and Greenberg, 1998), whilst the so-called C-terminal tail was shown to be 

critical for activation of luxICDABEG but not for luxR autoregulation, thus indicating 

that this region might be involved in contacting RNA polymerase necessary for 

activation rather that in DNA binding  (Chai et al., 2001).  

LuxR-type proteins usually activate transcription by interacting with DNA sequences 

associated with their target genes. A 20-bp palindromic sequence, known as lux box,  

located at 42.5 bp upstream of V. fischeri luxICDABEG operon has been identified as 

the binding site for LuxR (Devine et al., 1989, Gray et al., 1994, Egland and 

Greenberg, 1999). Trascriptional activation mediated by LuxR homologues occurs 
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when the AHL/LuxR-type protein complex binds upstream of the transcriptional start 

site and recruits RNA polymerase through direct contact (Vannini et al., 2002, Zhang 

et al., 2002). DNA sequence elements characterized by sequence identity with the 

original lux box have been detected upstream of promoters of genes regulated by 

LuxR-type proteins in a number of bacteria. These lux-type boxes are characterized 

by lengths ranging from 18 to 22 bp and are usually located just upstream of the -35 

promoter element (Egland and Greenberg, 1999, Stevens and Greenberg, 1999). 

 

The process undertaken by LuxR homologues in response to the accumulation of 

AHL signals to the threshold concentration abides by specific steps which can be 

summarized as follows (Fuqua et al., 1994):  

1. Bind specifically with cognate AHLs;  

2. Conformational changes and alterations in multimerization of the protein upon 

binding of the signal molecule; 

3. Interaction with specific regulatory sequences upstream of target genes; 

4. Activation of transcription.  

 

1.2.3 Autoinducer-2 and LuxS mediated quorum sensing 

  

It has been recently discovered that bioluminescence in Vibrio harveyi is controlled 

by a complex mechanism which shares characteristics found in both typical Gram-

negative and typical Gram-positive quorum sensing systems. Analogous to other 

Gram-negative bacteria, V. harveyi secretes and responds to an AHL-type signal 

called Autoinducer 1 or   AI-1 (Bassler et al., 1993). Similar to Gram-positive bacteria 

the AHL-mediated processes in V. harveyi employ a two-component signal 

transduction system. Moreover, a novel signalling molecule, named Autoinducer 2 or 

AI-2 was found in V. harveyi (Schauder et al., 2001, Chen et al., 2002).   

Both AI-1 and AI-2 play a part in regulation of the transcription of the luciferase 

operon luxCDABEGH. Whilst the AI-1 is a conventional AHL (N-(3-hydroxybutanoyl)-

L-homoserine lactone) encoded by luxLM, the AI-2, encoded by luxS, does not show 
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similarity with other known signalling molecules. AI-2 is a furanosyl borate diester 

synthesised from SAM (the same substrate involved in AHLs synthesis) after a 

number of enzymatic reactions, described in Figure 1.3. The enzymatic reaction 

involving a SAM-dependant transmethylase deprives SAM of a methyl group leading 

to the formation of S-adenosyl-homocysteine. In the presence of enzyme Pfs            

(S-adenosylhomocysteine/5’-methylthioadenosine nucleosidase) an adenosine 

molecule is released by the toxic S-adenosyl-homocysteine (SAH) which gets 

hydrolysed to S-ribosylhomocysteine (SRH). LuxS then catalyses the cleavage of 

SRH, which results in the formation of homocysteine and the AI-2 precursor, known 

as DPD (4, 5-dihydroxy-2, 3-pentanedione). DPD is a highly unstable compound that 

readily cyclizes to form various furanone ring structures such as the AI-2 (Bacon 

Schneider et al., 2002, Bassler et al., 1997b, Bassler et al., 1997a, Surette et al., 

1999a).  

 

 

Figure 1.3: Autoinducer-2 biosynthetic pathway: a SAM-dependant transmethylase 

removes a methyl group from SAM leading to the formation of SAH. The toxic SAH 

releases an adenosine molecule through a reaction catalysed by Pfs, which result in 

SRH formation. LuxS then catalyses the cleavage of SRH in homocysteine and the 

AI-2 precursor, known as DPD (4, 5-dihydroxy-2, 3-pentanedione). DPD readily 

cyclizes to form the AI-2 (Bassler et al., 1997b, Surette et al., 1999b). 

 

The detection of AI-1 and AI-2 signals occurs via the cognate hybrid sensor kinases 

called LuxN and LuxPQ which convey information to a common phosphorelay protein 

called LuxU, which in turn transfers the signal to the response regulator protein LuxO. 

At low cell densities, the concentration of both the autoinducers is lower than the 
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threshold required for the activation of quorum sensing mechanism. At these 

concentrations, the LuxN and LuxQ sensors autophosphorylate on their conserved 

His residues and then phosphorylate the conserved Asp residues in their response 

regulator domains (Freeman and Bassler, 1999, Freeman et al., 2000). Subsequently, 

both sensors transfer their phosphate groups to LuxU which is responsible for LuxO 

phosphrylation. The activated LuxO triggers repression of the luxCDABEGH operon. 

However at high cell-densities a high concentration of AI-2 leads to the 

dephosphorylation of LuxQ by a phosphatase thereby leading to activation the 

luciferase gene operon (Freeman and Bassler, 1999, Martin et al., 1989, Showalter 

et al., 1990, Bassler et al., 1994a, Bassler et al., 1994b). A schematic representation 

of this mechanism is depicted in Figure 1.4.  

Although originally described in V. harveyi AI-2 is now known to be produced by 

more than 70 bacterial species, and homologous of the enzyme LuxS have been 

found in several bacteria whose genomes have been sequenced. Moreover, AI-2 

molecules produced by heterologues organisms were found able to activate 

luminescence in a V. harveyi reporter strain. These results taken together suggest 

the hypothesis that the AI-2 may be a universal signal molecule, which intriguingly, 

appears to be used by different organisms for diverse purposes (Schauder et al., 

2001, Bassler et al., 1997b). 

Microarray analysis performed on a luxS null mutant of enterohaemorrhagic E. coli 

(EHEC) showed how AI-2 signalling affects a large regulon consisting of 5–10% of 

the E. coli genome. In particular, genes involved in cell division, along with ribosomal 

and tRNA genes resulted to be downregulated by LuxS, whereas upregulated genes 

included several virulence factors such as genes involved in flagella biogenesis, 

motility and chemotaxis. Later, 242 genes of E. coli were found to respond to the 

presence of AI-2, when it was added to conditioned medium. These genes are either 

related to virulence or to processes such as cell division and morphogenesis (DeLisa 

et al., 2001). LuxS is also concerned in the production of the type III secretion 

apparatus responsible for cell adherence to the intestinal epithelia in both EHEC and 

enteropathogenic E. coli (Sperandio et al., 1999).  
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Regulation of virulence development in Porphyromonas gingivalis and Actinobacillus 

actinomycetemcomitans, two Gram-negative oral pathogens (Chung et al., 2001, 

Fong et al., 2001, Burgess et al., 2002), and Salmonella typhimurium (Taga et al., 

2001, Taga et al., 2003) has been shown to be a cell density-dependent 

phenomenon controlled by the AI-2/LuxS complex (Fong et al., 2001, McNab et al., 

2003). 

Virulence gene expression and biofilm formation in Vibrio cholerae are triggered by 

both AI-2 and the species-specific AI-1. V. cholerae cells use their signalling 

molecules to induce the production of virulence factors at low cell density and 

repress them at higher cell density (Miller et al., 2002). In particular, genes involved 

in biofilm formation and the production of cholera toxin, together with several other 

virulence-associated genes are expressed at low cell density when the concentration 

of the autoinducer is too low to be detected (Zhu et al., 2002b). All these gene 

products allow V. cholerae cells to adhere to intestinal epithelial cells and cause the 

diarrheal disease cholera. As the autoinducer concentration increases at high cell 

density, the expression of virulence-related genes is inhibited. Simultaneously, the 

accumulation of quorum aensing molecules induces the expression of the hap gene 

encoding the Hap protease. The role of this protease is suggested to be that of a 

―detachase‖, allowing V. cholerae to be freed from the intestine walls in order to re-

enter the environment  (Finkelstein et al., 1992).  
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Figure 2.4: Model for quorum sensing process in V. harveyi regulated by both AI-1 

and AI-2. A complex two-component signal transduction system is responsible for 

detection of the autoinducers and signal transmission to the luciferase structural 

operon (luxCDABEGH ).  

 

The AI-2 has been also identified in a number of Gram-positive bacteria, such as 

Streptococcus pyogenes where it regulates the expression of two virulence factors. 

Lyon and co-workers showed how mutation in luxS of S. pyogenes caused a 

decrease in the secretion and processing of a virulence-associated cysteine protease 

and an increase in the production of the virulence factor streptolysin S. These results 

suggest a similar level of complexity in the AI-2 control of signalling pathway for V. 

cholerae and  S. pyogenes, both including either positive and negative regulation 

(Lyon et al., 2001).  



 

Page | 22  

 

The detection of a LuxS-dependent signalling in Bacillus anthracis and Bacillus 

cereus has been recently reported and the regulation of density-dependent gene 

expression and pathogenesis can be related to this ―universal‖ cell communication 

pathway. A putative luxS gene located on the chromosome of B. subtilis 168 showed 

a high level of identity with both luxS orthologues from B. cereus and B. anthracis. 

The luxS gene from B. subtilis has been overexpressed in E. coli and the purified 

LuxS unambiguously proven to be a ribosylhomocysteinase catalyzing the 

conversion of   S-ribosylhomocysteine to homocysteine and 4, 5-dihydroxy-2, 3-

pentanedione, which is the precursor of all known active forms of AI-2 (Hilgers and 

Ludwig, 2001, Pei and Zhu, 2004, Ruzheinikov et al., 2001, Schauder et al., 2001, 

Winzer et al., 2002b). These results demonstrate that B. subtilis possesses an active 

luxS active gene, which codes for an active AI-2 recognized by the AI-2-dependent 

signalling system of a      V. harveyi reporter strain. LuxS role in the regulation of B. 

subtilis multicellular behaviour is still unknown. The potential relation between AI-2-

dependent quorum sensing and sporulation has been investigated and the 

expression of the regulatory protein SpoOA was not affected by LuxS activity 

(Lombardia et al., 2006). Moreover, a luxS-negative mutant strain has been shown to 

retain a typical spore development (Hamon and Lazazzera, 2001, Chu et al., 2006). 

Additionally, LuxS did not affect the expression of abrB and sinR, two other genes 

which have a key role in biofilm formation and multicellular behaviours in B. subtilis. 

On the other hand, SpoOA had a negative effect on luxS expression, implying that 

the regulation of luxS expression in B. subtilis is a complex process  controlled by 

both the AI-2-dependent feedback loop and the master regulatory proteins SpoOA 

and SinR (Lombardia et al., 2006). 
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1.2.4 Quorum sensing in Gram positive bacteria 

 

Quorum sensing in Gram-positive bacteria is neither regulated by a LuxI/LuxR 

system, nor involves an N-acyl homoserine lactone-like signal molecule. Cell-cell        

communication in these bacteria is controlled by a two-component system, consisting  

of a histidine kinase and a response-regulator, which triggers signal transduction by 

using  phosphorylation to convey information (Kleerebezem et al., 1997, Bassler, 

1999). Signal molecules employed by Gram-positive bacteria are usually small, either 

unmodified or post translationally modified peptides (Bassler, 2002) secreted via an 

ATP-binding cassette (ABC) exporter protein. Signalling peptides synthesised by 

Gram positive bacteria are ribosomally generated, but the pathways employed for the 

biosynthesis of the functional, extracellular end product are characterised by a 

considerable diversity. The signalling peptides are assumed to be produced 

constitutively throughout the growth, subsequently reaching a threshold 

concentration at a certain cell density. Accumulation of the signal in the extracellular 

medium is ―sensed‖ by the histidine kinase, which auto-phosphorylates on an 

invariant histidine residue in its cytosolic transmitter domain and then gives the 

phosphate group to a conserved aspartate residue in the receiver domain of the 

response regulator (Parkinson and Kofoid, 1992, Parkinson, 1995). Development of 

competence for uptake of DNA by Bacillus subtilis and Streptococcus pneumoniae, 

microcin production by Lactobacillus sake and virulence determination in 

Staphylococcus aureus are some of the processes regulated by quorum sensing in 

Gram-positive bacteria, as listed in Table 1.2 (Bassler, 1999, Dunny and Leonard, 

1997) . The general mechanism for peptide-mediated quorum sensing in Gram 

positive bacteria is represented in Figure 1.5.  
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Table 1.2: Chemical structure of some quorum sensing signals present in Gram-
positive bacteria. 

Signalling molecule Functions Organism Mechanism 

Peptide 
Bacteriocin 

production 

Lactic acid bacteria spp. 

(Brurberg et al., 1997) 

Two-component system-

biosynthetic promoters 

Peptide Competence 
Streptococcus pneumonia 

(Havarstein et al., 1995a) 

Two-component signal 

transduction. 

Modified Peptide Nisin production 
Lactococcus lactis 

(Kuipers et al., 1995a) 

Two-component system-

biosynthetic promoters 

Modified peptide Virulence 
Staphylococcus aureus 

(Balaban and Novick, 1995) 

Two-component system-

regulatory RNA promoter 

-Butyrolactone 
Secondary 

metabolism 

Streptomyces griseus 

(Miyake et al., 1990) 

Internalisation/Promoters 

for antibiotic biosynthetic 

genes. 
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Figure 1.5: Quorum sensing mechanism in Gram-positive bacteria. Cell-cell 

communication is mediated by small peptides in response to changes in cell-density. 

The peptide is encoded as a polypeptide precursor, which, after cleavage by a 

specific enzyme, is exported via an ABC transporter system. The mature peptide 

accumulates in the extracellular milieu and is detected by a two-component signal 

transduction system, which in turn activates or represses gene expression (Adapted 

from Dunny and Leonard, 1997).  
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1.2.4.1 Quorum sensing mediated by modified peptides  

 

Lactic acid bacteria produce a wide range of peptides with antimicrobial activity, 

known as bacteriocins which target the cell envelope using non-enzymatic 

mechanisms to either disturb the integrity of the cell membrane and/or inhibit cell wall 

synthesis. Most members of this class of peptide antibiotics are synthesised 

ribosomally as precursor peptides and are then modified post-translationally to 

acquire their biologically active forms. The structure of bacteriocins varies from linear, 

unmodified peptides containing one or more disulphide bridges (Class II bacteriocins) 

to highly post-translationally modified compounds, classified as lantibiotics or Class I 

bacteriocins, characterised by the occurrence in their sequence of the unusual amino 

acids lanthionine and 3-methyllanthionine residues (Jack and Jung, 2000, Jung, 

1991a, Jung, 1991b, Jack et al., 1997, Jack et al., 1995, Jack and Sahl, 1995, Sahl 

et al., 1995). These unusual (not genetically encoded) amino acids are formed 

following the dehydration of either serine or threonine residues to form 

didehydroalanine (Dha) or 2,3-didehydrobutyrine (Dhb), respectively. The 

development of intra-molecular thioether rings between Dha or Dhb and free cysteine 

residues leads to the formation of either lanthionine or β-methyllanthionine. The 

relative positions of the dehydrated amino acid and its specific target cysteine 

determine the size and position of the resulting ring. Lantibiotics show a high degree 

of structural diversity and can be classified in sub-groups, according to a series of 

criteria, including the structure of the mature peptide or the pre-peptide, the 

biosynthetic machinery and the mode of action (Jung, 1991b, de Vos et al., 1995). 

Nisin and lacticin 481 from Lactococcus lactis (Siezen et al., 1996) and lactocin S, 

produced by Lactobacillus sake  (Skaugen and Nes, 1994) are the best characterized 

Class I bacteriocins amongst the numerous lantibiotics described in the literature. 

Nisin biosynthesis and regulation, in particular, provide the best model for the study 

of post-translationally modified polypeptides  (Kuipers et al., 1995a). Being a natural 

antibacterial agent with well established safety and efficacy, nisin is extensively used 

as a food preservative and in a number of other applications (Vandenbergh, 1993). 

The most fascinating characteristic of nisin reside in its dual function, which allows 
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this molecule to act as antimicrobial agent against other organisms and at the same 

time serve as a quorum-sensing signal for regulation of nisin production and control 

of immunity genes in L. lactis (Kuipers et al., 1995b, de Ruyter et al., 1996). 

Nisin auto-regulatory engagement in its own biosynthetic process was established 

with the discovery that addition of small amounts of nisin to L. lactis culture medium 

could restore nisA transcript production in a strain defective in the nisin structural 

gene (Kuipers et al., 1993, Kuipers et al., 1995a, Kleerebezem et al., 1997). The 

product of nisA is a 57-residue peptide, known as pre-nisin, comprising an N-terminal 

leader region of 23-residue, which is subjected to hydrolysis, and a 34-residue C-

terminal region (pro-nisin) that is post-translationally modified to yield mature nisin 

(Jung, 1991b, de Vos et al., 1995). The genes involved in nisin biosynthesis have 

been sequenced and studies have been performed on nisin biosynthetic pathway 

and structure/function relationships of nisin and related compounds. Nisin 

biosynthesis and regulation is illustrated in Figure 1.6. The nisin pre-peptide is 

encoded by nisA, whilst the enzymes required for post-translational modifications, 

proteolytic processing and export of the mature lantibiotic are encoded by nisB-C, 

nisP and nisT, respectively (de Vos et al., 1995). L. lactis immunity towards nisin is 

ensured by the nisI gene product, a lipoprotein attached to the cell membrane, 

together with a putative ABC carrier encoded by the nisFEG gene cluster (Siegers 

and Entian, 1995). Although the exact role of the ABC exporter is still unclear, it has 

been hypothesised that the transporter apparatus might be involved in the 

translocation of any nisin that has penetrated the membrane without being affected 

by NisI, thereby increasing immunity (de Vos et al., 1995). The nisK and nisR genes 

encode a histidine kinase and a response regulator, respectively, comprising the two-

component system which responds to extracellular accumulation of nisin (de Vos et 

al., 1995).  Three functional promoters have been identified in the nisin gene cluster, 

nisA, nisF and nisR. Transcription driven by the first two promoters appeared to be 

triggered by nisin-mediated signal transduction, the level of promoter activity being 

directly related to the concentration of extracellular nisin. The nisR promoter, on the 

other hand, is structurally distinct and exhibits nisin-independent, constitutive 

production of the regulatory proteins (de Ruyter et al., 1996, Kleerebezem et al., 
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1999, Kuipers et al., 1995a). As the concentration of secreted nisin increases, the 

signal is recognised by the histidine kinase NisK, which starts a phosphorylation 

dependent signal transduction cascade, thereby leading to the activation of the nisA 

promoter (controlling transcription of nisin biosynthetic machinery and NisI gene 

clusters) and the nisF promoter (regulating transcription of the genes involved in 

immunity (Figure 1.6) (de Ruyter et al., 1996, Kleerebezem et al., 1999, Kuipers et 

al., 1995a).   

 

 

Figure 1.6: Nisin biosynthesis and regulation in Lactobacillus lactis. Nisin 

biosynthesis involves post-translational modification and export of the ribosomally 

derived peptide precursor by a membrane spanning complex comprising the 

enzymes NisB, NisC and NisT, which are encoded by nisB, nisC and nisT. Proteolytic 

processing of the precursor peptide is carried out by the protease encoded by 

NisP.NisI and NisFEG (encoded by gene nisIFEG) provide immunity to nisin-

producing cells. Mature nisin is sensed by the sensor kinase NisK, which in turn 

activates the receiving domain of response regulator (NisR) thus leading to activation 
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of target genes. These genes include nisA, which codes for nisin precursor (de Vos 

et al., 1995, Kuipers et al., 1995a).  

  

Lantibiotics are not the only modified inducers involved in cell density dependent 

processes in Gram positive bacteria. Another example is the RNA III-activating 

peptide (RAP), a heptapeptide modified to form a thiolactone-containing ring 

structure which is involved in the production of virulence factors in Staphylococcus 

aureus, a source of nosocomial infections through biofilm formation on medical 

devices (Giacometti et al., 2003).   

Currently two quorum sensing mechanisms have been explained in S. aureus (Figure 

1.7). The first quorum sensing system consists of RAP (Balaban and Novick, 1995) 

and its target protein TRAP (Target of RNAIII-Activating Protein). The Agr system is 

composed of two divergently transcribed units, RNAII and RNAIII, whose 

transcription is under control of the P2 and P3 promoters, respectively (Morfeldt et 

al., 1995b, Morfeldt et al., 1995a). The RNAII unit encloses four genes: agrB, agrD, 

agrC, and agrA (Ji et al., 1995). The quorum sensing peptide signal is contained in 

the middle of a 45 amino acid protein encoded by the agrD gene, which is cleaved 

and subsequently post-translationally modified by the agrB gene product (Mayville et 

al., 1999, Otto et al., 1998, Saenz et al., 2000, Zhang et al., 2004). However, the 

exact mechanism for secretion and maturation of the AgrD derived pheromone is still 

unknown. Autoinducers isolated by different staphylococcal strains and species show 

divergent primary amino acid sequences, but conserve the typical ring structure. 

They also show the unique phenomenon of cross inhibition (Otto et al., 1999). The 

agrC gene product is a transmembrane protein which acts as the sensor kinase of 

the bacterial two-component regulatory system (Ji et al., 1995). The staphylococcal 

autoinducer binds to AgrC, thus activating the response regulator, AgrA, which in 

sequence induces the transcription of RNAII and RNAIII (Ji et al., 1995). A DNA-

binding domain which recognizes a pair of direct repeats with a consensus sequence 

(5’-ACAGTTAAG- 3’) separated by a 12-bp spacer region is responsible of AgrA 

interaction with DNA (Koenig et al., 2004).  
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With its dual nature as both a regulatory RNA and the messenger RNA for the hld 

gene (coding for the delta toxin) RNAIII is considered the effector molecule of the Agr 

system (Novick et al., 1995) Although it has been demonstrated that the 5’-end of 

RNAIII positively regulates the translation of the alpha hemolysin (Morfeldt et al., 

1995b, Novick et al., 1995) while the 3’ terminus represses protein A synthesis 

(Huntzinger et al., 2005, Novick et al., 1995), RNAIII involvement in other virulence 

factor genes expression remains still unclear. Production of the signal pheromone 

causes a double effect, as it decreases TRAP phosphorylation, thereby reducing cell-

adhesion, whilst inducing AgrC phosphorylation and RNA III production, with a 

resulting increase in toxin production. The cell density dependent Agr system is vital 

for S. aureus infection as it causes up-regulation of the gene encoding for most of the 

exotoxins and virulence factors except enterotoxin A and K (Novick, 2003). During 

the first stages of infection Agr low activity allows colonization, but as the infection 

progresses, Agr triggers production of various virulence factors and exotoxins 

allowing bacterial proliferation and host-tissue damage (Otto, 2004).  
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Figure 1.7: Schematic representation of the two quorum sensing systems of 

Staphylococcus aureus. The first quorum sensing system, regulated by the 

accessory gene regulator (agr) locus, comprises the autoinducer RNA III-activating 

peptide (RAP) and its target protein TRAP. The Agr system consists of two 

divergently transcribed units, RNAII and RNAIII, whose transcription is under control 

of the P2 and P3 promoters, respectively. Accumulation of RAP leads to TRAP 

activation, resulting in the transcription of    RNA II.  Four genes, agrB, agrD, agrC, 

and agrA, are enclosed in the RNAII unit. AgrB and AgrD are involved in the 

autoinducer production, while agrC and agrA encode the sensor kinase and the 

response regulator of the two-component transduction system, respectively. The 

interaction of the autoinducer with AgrA activates the signal transduction which leads 

to the transcription of both RNAII and RNAIII (Adapted from Raina et al., 2009). 

 

1.2.4.2 Quorum sensing mediated by unmodified peptides  

 

Autoinducing peptides involved in the production of Class II bacteriocins and genetic 

competence are linear unmodified peptides, which are originally synthesised as 
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precursor polypeptides characterised by a typical double-glycine-type leader peptide. 

Cleavage of the leader sequence during export via a dedicated ABC-transporter 

(encoded by an autoregulated gene) yields the mature peptide. The cleavage is 

performed by the ABC exporter itself, which possesses an N-terminal extension 

which contains a characteristic peptidase domain (Havarstein et al., 1995b).  

This typical processing of autoinducing peptides is widely spread and has been 

reported for the competence-inducing peptide ComC in Streptococcus pneumoniae 

(Havarstein et al., 1995a), and the bacteriocin-inducing peptides IP-673 in 

Lactobacillus sake LTH673 (Brurberg et al., 1997), Plantaricin A in L. plantarum C11 

(Diep et al., 1995, Diep et al., 1996),  CbnB2 and CbnS in Carnobacterium piscicola 

LV17B (Quadri et al., 1997, Kleerebezem et al., 2001). 

Quorum sensing systems regulating bacteriocin production in some lactic acid 

bacteria are characterized by a gene encoding a ―bacteriocin-like‖ peptide, which is 

co-transcribed with genes that code for a sensor histidine kinase and a response-

regulator of the two-component signal transduction family (Hoch and Silhavy, 1995). 

An unmodified proteolytic fragment of the ―bacteriocin-like‖ peptide is exported in the 

extracellular milieu, where it acts as an induction factor for activation of bacteriocin 

production upon reaching a threshold concentration. The transcription of genes 

involved in bacteriocin biosynthesis and immunity is activated in response to the 

activation of the signal-mediated transduction pathway. The genetic organization 

described above can be observed in the gene clusters dedicated to Sakacin A and 

Sakacin P production in Lactobacillus sake, both comprising one operon for the 

production of the induction factor and a contiguous operon encoding bacteriocin 

biosynthetic genes (Diep et al., 1996, Eijsink et al., 1996, Huhne et al., 1996). In L. 

plantarum C11 plantaricins production is controlled by plantaricin A, an induction 

factor whose coding gene (plnA) is located on the same operon as a two-component 

regulatory system (plnBCD) (Jimenez-Diaz et al., 1995, Nes et al., 1996b, Nissen-

Meyer et al., 1993). Plantaricin A biosynthesis, schematically represented in Figure 

1.8,  is regulated by a cluster of over 20 linked pln genes, containing at least 5 

separate operons; the biosynthesis of at least 3 bacteriocins, including single peptide 

and two-peptide varieties, is also controlled by this gene cluster (Jimenez-Diaz et al., 
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1995, Nes et al., 1996a, Nissen-Meyer et al., 1993).The product of plnA is a 48-

amino-acid precursor peptide, which is then cleaved to generate two mature peptides 

of 22 and 23 amino-acid in length. Originally plantaricin A was believed to be a 

bacteriocin rather than an inducing factor, though recent evidence showed that 

bacteriocin production abolished in L. plantarum C11 cultures depleted for plantaricin 

A could be restored by addition of either synthetic or purified plantaricin A at a 

concentration of 1 ng mL-1 to non-producing cultures (Nissen-Meyer et al., 1993).  

 

 

Figure 1.8: Quorum sensing-regulated Plantaricin production in Lactobacillus 

plantarum. The plnABCD operon comprises the genes encoding the Inducing factor 

(plnA), the sensor kinase (plnB) and the response regulator protein (plnC and plnD). 

The production and accumulation of IF leads to stimulation of the histidine kinase and 

the response regulator, which in turn leads to activation of the plnABCD operon 

resulting in production of Plantaricin (Adapted from Nes et al., 1996).  
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The extracellular signalling processes involved in the biosynthesis of Class II 

bacteriocins have been described as a three-component regulation, due to the 

widespread occurrence in bacteriocin-producing bacteria of gene operons coding for 

the induction factor, the response regulator, and the histidine kinase (Nes et al., 

1996a). 

An analogous mechanism has been developed for the regulation of the 

pneumococcal competence system. Regulation of competence in Streptococcus 

pneumoniae was shown to be regulated by a heptadecapeptide, namely 

Competence Stimulating Peptide (CSP) (Havarstein et al., 1995a). The precursor of 

CSP is encoded by the pneumococcal gene comC, whose product is a 17 amino acid 

long peptide subjected to cleavage to generate the mature peptide. Two CSP 

variants have been identified in S. pneumoniae, both comprising a conserved 

sequence fingerprint composed of a negatively charged N-terminal residue, an 

arginine in position 3, and a positively charged C-terminal tail. Also, a gene encoding 

an ABC transporter (comA) was identified in S. pneumoniae (Hui et al., 1995), which 

is highly related to a family of proteins that is implicated in the simultaneous 

processing and export of peptide bacteriocins (Havarstein et al., 1995b). The comC 

gene was revealed to be located on an operon together with comD and comE, which 

encode homologues of the histidine kinase and response regulator proteins of the 

two-component transduction system family (Pestova et al., 1996). Extracellular CSP 

at the threshold concentration binds to the ComD receptor domain and triggers 

competence development in the pneumococcal culture, in a similar fashion to the one 

described for plantaricin A induction of bacteriocin production in L. plantarum. Once 

activated, ComD phosphorylates ComE, thus enabling the response regulator to 

activate transcription of the early competence genes. These include comX, which 

encodes an alternative sigma factor that controls the transcription of a large 

number of so-called late competence genes (Claverys and Havarstein, 2002, Ween 

et al., 1999, Luo et al., 2003, Luo and Morrison, 2003). In S. pneumoniae nearly 190 

genes have been highlighted to be responsive to CSP, although only 23 appear to be 

involved in competence development and DNA uptake, thereby implying that CSP-
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ComD signalling mechanism might regulate additional processes (Peterson et al., 

2004). 

1.2.4.3 -butyrolactones as signalling molecules 

 

Secondary metabolite production in many actinomycetes is regulated by diffusible 

molecules originally called autoregulators (Horinouchi and Beppu, 1992), whose 

activity has been later reported to be under quorum sensing control. Streptomyces 

griseus and Streptomyces natalensis quorum sensing molecules are respectively 2-

isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone (A-Factor) (Miyake et al., 1990, 

Recio et al., 2004) and 2, 3-diamino-2, 3-bis (hydroxymethyl)-1, 4-butanediol (PI 

signalling factor) which are associated with production of the antibiotics streptomycin 

and pimaricin (Recio et al., 2004). 

The A-factor is required for production of secondary metabolites such as 

streptomycin and grixazone together with formation of aerial mycelia and, ultimately, 

sporulation (Bibb, 2005). The molecule is characterised by a butyrolactone moiety 

and its structure resembles the homoserine lactone (HSL) signalling molecules 

regulating quorum sensing in Gram-negative bacteria. Although A-factor shares 

structural similarities with AHLs, its mechanism of action does not imply LuxI/LuxR-

like systems. Its cognate intracellular receptor protein ArpA acts as a repressor by 

binding to a specific target DNA sequence in the promoter region of one or more of 

the operons required for antibiotic production and differentiation. When A-factor 

concentration reaches a threshold, it binds to ArpA, which releases the promoter and 

allows the transcriptional activation of these operons. One of ArpA target promoters 

is adpA which regulates the transcription of StrR and GriR, two pathway-specific 

activators responsible for streptomycin and grixazone production, respectively 

(Figure 1.9). AdpA also regulates expression of other genes of the adpA regulon 

responsible for morphological differentiation (Natsume et al., 2004). 

Autoinducers showing a chemical structure analogous to the A-factor have been 

isolated in other members of Streptomyces sp.; Virginiae butanolides or VB regulate 

virginiamycin biosynthesis in S. virginiae (Nihira, 2002 ); IM2 [(2R,3R,1’R)-2- 10-
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hydroxybutyl-3-hydroxymethyl γ-butanolide] elicits the production of antibiotics 

showdomycin and minimycin (Kitani et al., 2001) in S. lavendulae and SCB1, which is 

related to pigmented actinorhodin production in S. coelicolor. Unlike A-factor the VB, 

IM2 or the SCB1 do not regulate the morphological differentiation (Takano et al., 

2001). 

 

 

Figure 1.9: A-Factor-mediated regulation of secondary metabolite production in 

Streptomyces griseus (Adapted from Ohnishi et al., 2005). 

 

A similar mechanism has been described in S. natalensis for the production of the 

antifungal pimaricin, used in food industry for mould prevention.  An autoinducer 

named PI factor appears to be responsible for primaricin production at high cell 

densities. It has been shown that nanomolar addition of either A-factor or PI-factor to 
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cultures of a S. natalensis strain deficient in pimaricin production was able to restore 

pimaricin biosynthesis in the mutant strain (Anton et al., 2004). Since pimaricin 

biosynthesis was induced by both the factors, it has been suggested that quorum 

sensing signals might be exchangeable between members of different Streptomyces 

strains (Recio et al., 2004). 

 

1.3 Quorum sensing in Bacillus subtilis 

 

The Gram-positive soil bacterium, Bacillus subtilis, initiates a range of responses 

which assists its survival in the increasingly adverse conditions characterising the 

onset of stationary phase. Examples of these responses are: sporulation; production 

of degradative enzymes and antibiotics, motility and development of genetic 

competence. Some of these processes, including competence and sporulation, are 

mutually exclusive, whilst others develop either sequentially or simultaneously 

(Dubnau et al., 1994). Although degradative enzyme production, motility and 

competence are distinct processes their regulatory systems are all controlled by post 

exponential regulons activated by overlapping signal transduction pathways which 

end up in a co-ordinated set of transcriptional responses. Moreover, only a limited 

number of gene products involved in the sensing and transduction of environmental 

information are specific for a single form of response (Kunst et al., 1994). A general 

scheme of the quorum sensing-regulated development of competence and 

sporulation in B. subtilis cells is illustrated in Figure 1.10. 
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Figure 1.10: A simplified representation of the multiple peptides signalling in Bacillus 

subtilis for regulation of competence and sporulation. The histidine kinase sensor 

protein (ComP) interacts with ComX pheromone leading to phosphorylation of ComA 

response regulator. This in turn results in a multistep stimulation thereby regulating 

competence. CSF encoded by phrC is re-internalised via the Opp (Oligopeptide 

permease) system after it is processed to form a pentapeptide (EMRGT) whose role 

is to inhibit RapC phosphatase leading to increased accumulation of ComA-P which 

phosphorylates ComK inducing either competence or sporulation depending on CSF 

concentration in the extracellular medium (Adapted from Raina et al., 2009)  
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1.3.1 Quorum sensing-mediated regulation of competence 

 

Numerous regulatory genes are required for the development of competence, which 

represents the natural ability of a microorganism to uptake exogenous DNA 

(Spizizen, 1958). Under specific growth conditions, naturally occurring at the onset of 

the stationary phase of the microbial growth, a sub-population of cells in the culture 

differentiates to become competent, thus leading to the production of specialized 

proteins involved in the uptake of DNA in a way that is independent from its 

nucleotide sequence (Spizizen, 1958). 

Genes controlling competence in Bacilli can be classified into two groups: early and 

late. The early competency genes are involved in the quorum sensing regulation of 

competence development. Such gene products do not form any visible phenotypic 

proteins or enzymes, but they are required for the detection of extracellular 

conditions and transfer of the information to the late genes which are directly 

responsible for the development of proteins which make up the competence 

apparatus. (Hahn et al., 1996, van Sinderen and Venema, 1994). Currently, five 

different loci have been identified which are involved in the formation of the DNA 

uptake apparatus in B. subtilis:  comC, comE, comF, comG and nucA,  The product 

of comG shows similarities with the type-IV pilins from Pseudomonas species 

and other pilin-like complexes. These similarities, confirmed by experimental data, 

suggested that a pilin-like structure, composed of several ComG subunits, is formed 

to transport DNA into B. subtilis cells (Chung et al., 1998, Chung and Dubnau, 1998). 

The correct assembly of this structure is aided by ComC, whilst the product of 

comE,   the polytopic transmembrane protein ComEC, is believed to form a pore that 

allows the DNA into the cell (Figure 1.11). Once the DNA is internalised it associates 

with the DNA-helicase-resembling protein encoded by the comF operon (Londono-

Vallejo and Dubnau, 1994a, Londono-Vallejo and Dubnau, 1994b, Provvedi and 

Dubnau, 1999). The membrane localized nuclease NucA catalyses the 

endonucleolytic cleavage of the target DNA, which results in the formation of 

linear fragments up to 20 kb in size (Provvedi et al., 2001).  
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Figure 1.11: Model for the DNA uptake machinery in Bacillus subtilis. The prepilin 

peptidase ComC is involved in processing the prepilin-like proteins ComGC, GD, GE 

and GG by cleaving the short leader peptides at their N-terminus. The 

mature ComGC is translocated across the membrane and forms a polymeric complex 

which traverses the cell wall and allows the DNA-binding protein ComEA to access 

exogenous DNA. ComGA (a traffic NTPase), ComGB (a polytopic membrane protein) 

and the other pilin-like proteins are necessary for the complex formation. The major 

pilin-like protein (ComGC) is represented in orange and the minor pilin-like proteins in 

red.  

 

Regulation of competence development, or early competence, in B. subtilis involves 

two peptide factors, both accumulating in the extracellular medium as the cells grow 

to high density. One peptide, known as the ComX pheromone, (Magnuson et al., 

1994), is strictly concerned with the control of competence development, whilst the 

second signalling molecule, CSF (Competence and Sporulation Factor) directs both 

competence and sporulation in B. subtilis cultures (Magnuson et al., 1994, Solomon 

et al., 1995b).  

Two convergent pathways regulate the response of the cells to the two signalling 

factors: ComX requires the histidine kinase encoded by comP, a member of the two-

component system family, for its activity (Solomon et al., 1995a), while the 

oligopeptide permease (Opp) encoded by spoOK (Perego et al., 1996a) is engaged 
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in the response to CSF (Solomon et al., 1995b). Both CSF and the ComX 

pheromone act jointly to activate the response regulator/transcription factor ComA 

(Roggiani and Dubnau, 1993). 

 

1.3.1.1 The ComX pheromone 

 

The ComX pheromone, identified in 1994 by Magnuson and co-workers (Magnuson 

et al., 1994), is encoded by comX, a gene located on the comQXPA cluster. The 

translation of comX results in a 55- residue precursor which is subsequently cleaved 

at the C-terminus to give a 9-10 amminoacid peptide, modified by the addition of a 

isoprene group on a tryptophan (Magnuson et al., 1994).  A partial overlapping has 

been observed between the 5’ end of comX and the 3’ end of comQ, which codes for 

a protein involved in the maturation and modification of the pheromone (Magnuson et 

al., 1994). ComX production in B. subtilis 168 has been thoroughly investigated since 

its discovery, leading to the characterisation of several aspects of this process. 

Interestingly, accumulation of the pheromone in culture supernatant was found to be 

directly related to the cell growth, suggesting that the production of this signalling 

molecule is not autoinduced, in contrast with the majority of the AHL signals 

produced by Gram-negative bacteria (Bacon Schneider et al., 2002). In modified 

strains overexpressing comX a 10-fold increase in the production of ComX has been 

detected when compared with the wild-type strain. These findings suggest that in 

wild-type cells comX expression limits ComX production, as the concentration of 

pheromone in the extracellular milieu plays a major role in determining the timing of 

expression of quorum-responsive genes, such as srfA (Bacon Schneider et al., 

2002).  

The comQXPA locus has been identified in other members of the Bacillus genus 

closely related to B. subtilis, where it appears to have a high variability. The 

polymorphism is associated with the specificity of the quorum sensing response and 

therefore it is characteristic of ComQ, the ComX precursor polypeptide and the 

sensor domain of ComP, but not ComA (Tortosa et al., 2001, Tran et al., 2000). 
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Although the comQXP locus appears to be highly polymorphic, genetic and 

biochemical analysis performed on several natural isolates of B. subtilis allowed the 

classification of Bacilli possessing the comQXPA cluster into 4 different pherotypes, 

(each producing a specific variant of the ComX pheromone) according to their 

capability to activate a quorum sensing response in other strains (Ansaldi et al., 

2002). Both the sequence of the mature peptide and its modification residue can vary 

in pheromones produced by different pherotypes (Ansaldi et al., 2002).  

Characterization of the various ComX molecules is based on two main criteria: the N-

terminal cleavage site and the mass of the post-translational modification. Alternative 

cleavage sites have been identified in different ComX precursors, which generate 

diverse mature peptides whose length can range from 5 to 10 amino acids, though 

each of them comprises a conserved tryptophan residue (Ansaldi et al., 2002). The 

post-translational modification of the peptide occurs on this tryptophan residue, as 

highlighted for the ComX pheromone identified in B. subtilis 168 (Magnuson et al., 

1994). All the ComX variants investigated so far have been shown to be modified by 

isoprenylation, although the mass of the isoprene group varies among different 

pherotypes, thus suggesting that the modification may represent a major determinant 

of specificity. The mass of the isoprene group for each pheromone can be obtained 

simply by subtracting the calculated mass of the mature peptide from the actual mass 

measured by mass spectrometry (Ansaldi et al., 2002). Based on this assumption it 

has been possible to determine that the ComX purified by B.subtilis 168 is subjected 

to a farnesylation addition because the mass (206 Da) matches that of a farnesyl 

group, whilst the 136 Da modifications associated with ComX from B. subtilis isolates 

RO-B-2 and RO-E-2 correspond to geranyl groups (Ansaldi et al., 2002). Other 

pheromones have been isolated with a modification mass of 120 Da which does not 

correspond to any simple isoprenoid, thus indicating that the manner of modification 

of the tryptophan residue might not be a simple isoprenylation (Ansaldi et al., 2002). 

As illustrated in Figure 1.12, the structure of ComX RO-E-2 has been investigated 

through mass spectrometry and NMR. The modification has been confirmed to be a 

substitution of a tryptophanyl proton with a geranyl group at position 3 of its indole 
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ring, which leads to the formation of a tricyclic structure (Okada et al., 2005, Okada et 

al., 2007b).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12: Structure of the ComX pheromone (A) Amino acid sequence of the 

ComX pheromone from B. subtilis strain RO-E-2. The Trp* residue, modified by a 

geranyl group is represented in red. (B) The putative structures of the 

modified tryptophan residue are shown in 1a and 1b (Taken from Okada et al., 2005) 

 

The ComX pheromone has been compared to the a-factor produced by the yeast 

Saccharomyces cerevisiae, which acts as inducer of the mating process in -type 

cells, due to the analogies detected in their functions (they are both concerned with 

genetic exchange), and their biosynthesis (Chen et al., 1997). Both peptide signals 

are synthesized as inactive precursors, which are then cleaved and modified by 

isoprenylations prior secretion into the extracellular medium. However, whilst the 

reaction leading to the formation of the active a-factor involves isoprenylation on a 

cystein residue (Chen et al., 1997) the ComX pheromone undergoes a cyclization 

reaction prior to the attachment of the isoprene moiety to the conserved tryptophan 

residue, resulting in the formation of a unique post-translational modification (Okada 

et al., 2005, Okada et al., 2007a). Nonetheless, both the farnesylation of a-factor and 

the geranylation/farnesylation of the ComX pheromone appear to be absolutely 

essential for their biological activity (Gibbs, 2005). 
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The enzyme responsible for the maturation of ComX precursor is ComQ, the product 

of the comQ gene located directly upstream of comX in the chromosome as part of a 

peptide signalling cassette. The first indication that ComQ partakes in the production 

of the ComX pheromone was provided by a comQ knock-out which resulted in a 

reduced srfA (surfactin biosynthetic operon) expression compared to the wild-type 

(Magnuson et al., 1994). Moreover, induction of quorum-sensing-related genes (srfA) 

at low cell density could be observed when comQ and comX alone were 

overexpressed (Shneider et al., 2002).  

An isoprenoid binding site was recently identified in ComQ and the discovery that 

ComX maturation could be prevented by mutations in this region confirmed the role 

of ComQ in the processing of the ComX pheromone (Bacon Schneider et al., 2002). 

Furthermore, homology research highlighted that ComQ shares high similarity with 

IdsA, the short-chain isoprenyl diphosphate synthase (IPPase) of Methanobacterium 

thermoautotrophicum (Bacon Schneider et al., 2002). Isoprenyl diphosphate 

synthases are enzymes involved in the condensation reaction between 

isopentenylpyrophosphate (IPP) and allylic diphophates, which results in isoprenoid 

formation (Epstein et al., 1991). 

 

1.3.1.2 The ComP-ComA two component transduction system  

 

Two-component systems represent the core of prokaryotic signalling concerning 

phosphorylation transduction cascades (Alex and Simon 1994, West and Stock, 

2001). The two-component system comprises several characteristic domains usually 

structured on two conserved proteins: a histidine kinase/sensor and a response 

regulator that are phosphorylated on histidine and aspartate residues, respectively.  

External stimuli detected by the sensor domain of the histidine kinase activate the 

enzyme which in turn catalyzes an ATP-dependent trans-autophosphorylation 

reaction. A specific histidine residue within one subunit of the dimer is 

phosphorylated by the other subunit thereby generating a phosphoimidazole. The 

phosphoryl group is subsequently transferred by the response regulator to an 
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aspartate residue located on its own regulatory domain. Phosphorylation leads to the 

activation of the effector domain of the response regulator which then triggers the 

specific output response (Alex and Simon, 1994, West and Stock, 2001). 

The catalytic domains of bacterial histidine kinases do not resemble those of serine-, 

threonine- or tyrosine kinases previously characterised, though they were shown to 

be related to ATPase domains of the type II topoisomerase gyrase B and the 

chaperone Hsp90 (Bilwes et al., 1999, Tanaka et al., 1998).  

The histidine kinase ComP, involved in the regulation of competence in B. subtilis, is 

the 769 amino acid long polypeptide product of comP, located on the comQXPA 

gene cluster (Weinrauch et al., 1989, Weinrauch et al., 1990). The protein comprises 

a polytopic, membrane-localized sensor domain at the N-terminus of the protein, and 

a relatively conserved C-terminal cytoplasmic transmitter domain (Weinrauch et al., 

1990).  

The sensor domain of ComP consists of eight transmembrane helices with two 

periplasmic linkers in the first four transmembrane regions (Weinrauch et al., 1990). 

Sequence analysis performed on ComP homologues predicts the presence of ten 

transmembrane helices for three of these histidine kinases, suggesting that, although 

transmembrane regions are well conserved they might vary in number. The first and 

the second transmembrane regions of ComP are separated by a large loop which 

contains a PDZ domain with a length of about 70 amino acids (Weinrauch et al., 

1990). PDZ domains represent a common structural domain usually found in 

signalling proteins, where they are involved in binding of (poly)peptides, which 

suggests a putative role in the interaction with ComX. However, the exact function of 

the PDZ domain in peptide sensing in the ComP-like sensors has not been 

investigated yet (Piazza et al., 1999). 

ComA is the only product of the comQXPA cluster showing a relatively conserved 

sequence which reflects its role as a response/transcription regulator not concerned 

in the determination of specificity of the quorum sensing system (Tortosa et al., 

2001).  ComA comprises two domains: the response regulator, located at the N-

terminus of the protein, containing an invariable aspartate residue at position 55 

which is the site of phosphorylation by ComP (Guillen et al., 1989, Weinrauch et al., 

http://en.wikipedia.org/wiki/Structural_domain
http://en.wikipedia.org/wiki/Signal_transduction
http://en.wikipedia.org/wiki/Proteins
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1989) and the C-terminal effector region which exhibits high homology with the DNA-

binding domain of several transcription factors (Roggiani and Dubnau, 1993). 

Sequence alignment and secondary structure prediction performed on the effector 

domain highlighted that ComA is a member of the NarL family of response regulator 

proteins. Proteins belonging to this family are characterised by a C-terminal domain 

which directs DNA interaction and activation on target sequences via a helix-turn-

helix DNA-binding motif (Roggiani and Dubnau, 1993, Weinrauch et al., 1989). 

Recent studies have revealed that ComA C-terminal domain forms a dimeric 

structure in solution which is held together by interactions running along the length of 

one of the -helices located in each monomeric unit (Hobbs et al., 2010). Analysis of 

ComA interaction with the srfA operon led to the identification of two DNA regions of 

dyad symmetry essential for the positive control of srfA transcription (Roggiani and 

Dubnau, 1993). A model has been created that indicates an inverted repeat 

sequence containing two 6 bp recognition elements separated by a 4 bp spacer as 

the binding site for ComA. Amongst the numerous genes regulated by ComA the 

majority is characterised by a single inverted repeat, but many others have been 

identified with multiple inverted repeats (Roggiani and Dubnau, 1993, Mueller et al., 

1992, Ogura et al., 2001, Comella and Grossman, 2005).  

Although the srfA operon is the best characterised binding target of ComA (Nakano 

and Zuber, 1991, Nakano et al., 1991b, Nakano and Zuber, 1993, Roggiani and 

Dubnau, 1993, Hahn and Dubnau, 1991), this regulatory protein has been shown to 

be involved in the direct control of the several other operons. Microarray analysis 

identified at least 89 genes, in 35 operons not concerned with competence 

development, which showed to be affected by ComA (Comella and Grossman, 

2005). Examples are: degQ, encoding a regulator protein involved in degradative 

enzyme production (Msadek et al., 1991); and rapA (Mueller et al., 1992), rapC 

(Solomon et al., 1996b), rapE (Jiang et al., 2000) and rapF (Jarmer et al., 2001) each 

encoding a regulatory protein of the Rap family. Given the number of genes whose 

expression is controlled by ComA it is not surprising that the affinity of this regulator 

protein for its DNA binding site might represent the most important feature for the 

coordination of transcription regulated by population density (Griffith and Grossman, 
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2008). Degeneracy of the recognition elements in the ComA binding site has been 

shown to alter cell-density dependent gene expression as promoters with an 

optimized binding site have high activity at low culture density, whilst degenerate 

binding sites display activity only at higher culture densities (Griffith and Grossman, 

2008). At low cell density, ComA is mainly present in an inactive non-phosphorylated 

state, and only a small amount of ComA is activated by phosphorylation. In this 

condition the active ComA is only able to bind to high affinity sites, such as the 

regulatory region of rapA, thus positively regulating the transcription of target genes 

at low population densities. Conversely, at high cell densities, phosphorylated ComA 

accumulates in the cytoplasm and its concentration allows binding to low affinity 

degenerate sites, such as those present in srfA (Griffith and Grossman, 2008). 

 

1.3.1.3 The competence and sporulation factor CSF  

 

The competence and sporulation factor CSF is the second signalling peptide involved 

in the cell density dependent control of competence development in B. subtilis. It was 

originally identified as a peptide with a molecular weight of 609 Daltons following 

ComX discovery (Solomon et al., 1995b). CSF is a 5-amino acid peptide (ERGMT) 

encoded by the last 5 codons of a 40 codons open reading frame, named phrC, 

initially identified as the downstream  region from a promoter recognized by RNA 

polymerase containing H (Carter et al., 1990). PhrC is a member of a family 

comprising 8 ―Phr peptides‖, which are cleaved from the C-terminus of Phr precursor 

polypeptides (Lazazzera, 2001, Auchtung et al., 2006). All phr genes are clustered 

together with genes encoding a specific Rap aspartyl phosphatase, though three of 

the eleven known rap genes are followed by non functional phr genes, suggesting 

that these are not involved in quorum sensing regulatory pathways (Perego, 1997). 

Although Rap and Phr are co-trascribed, the phosphatase remains in the cytoplasmic 

space, whilst Phr peptides, characterised by an amino-terminal signal, are exported 

as pro-peptides, most likely via the Sec pathway (Tjalsma et al., 2000). Once in the 

extracellular medium the pro-peptide is subjected to further processing resulting in 
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active Phr signals with a weakly conserved XRXXT sequence (Perego, 1997, 

Solomon et al., 1996b). After reimport in the cell via an Opp system, Phr peptides act 

as inhibitors for the activity of their cognate Rap phosphatase (Perego, 1997, Perego, 

1998, Solomon et al., 1996b).  

The product of phrC from B. subtilis has been characterised as a 40-aminoacid 

polypeptide which has a putative cleavage site indicating that an 11-25 aminoacid-

long precursor is exported through Sec-dependent pathway (Lazazzera, 2001). 

Further processing steps that result in the formation of the active pentapeptide are 

yet to be elucidated. Whilst the ComX pheromone requires the histidine-kinase 

ComP for its recognition and signalling, the Opp encoded by spoOK (Perego et al., 

1991, Rudner et al., 1991) was found to be essential for CSF sensing.  SpoOK is a 

member of the ATP-binding cassette (ABC) carrier family that utilize ATP hydrolysis 

for the import and export of several compounds (Higgins, 1992), including 

oligopeptide transport through B. subtilis cell membrane (Rudner et al., 1991, Perego 

et al., 1991).  

CSF was found to be an auxiliary competence pheromone, which acts as a 

modulator of the timing and levels of competence (Solomon et al., 1996b).  In order 

to investigate whether different pherotypes of CSF might be produced by diverse 

Bacillus strains, rapC-phrC operons from six strains previously shown to have 

different comQXP sequences have been analysed (Tortosa et al., 2001, Pottathil et 

al., 2008). A mature CSF peptide with a conserved sequence was identified for all the 

strains analysed and the correspondent PhrC polypeptide variants displayed both a 

functional signal sequence and peptidase cleavage sites (Becker et al., 2004). 

Although differences were detected in RapC and PhrC amino acid sequences from 

different strains most of the amino acid substitutions are conservative and therefore 

cannot alter the function of these proteins (Pottathil et al., 2008). These data suggest 

that Bacillus strains producing different ComX pherotypes are characterised by 

identical CSF peptides, indicative of CSF ability to mediate communication between 

strains that cannot communicate via ComX. This suggests that Bacillus developed a 

strain-level specificity for a secreted signalling molecule, while producing an 

additional peptide able to mediate communication between strains. It has been 
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shown that the competence and sporulation factor is neither strain specific nor 

species specific, as CSF homologues has been isolated from B. mojavensis, a 

species closely related to B. subtilis (Pottathil et al., 2008).  

The regulation of phrC transcription was found to be partially regulated by the RNA 

polymerase containing the alternate sigma factor H. The concentration of H in the 

cells is low in the course of the exponential growth, but its increase upon entry into 

stationary phase induces an enhancement in transcription from the phrC promoter P2 

(Healy et al., 1991, Weir et al., 1991). After entry into stationary phase, when H is 

believed to be most active, the extracellular concentrations of CSF have been 

detected to be as high as 100 nM, corresponding to the concentration of peptide 

signal which stimulates sporulation. A mutation in spoOH (the gene coding for the 

sigma factor) showed to have a more dramatic effect on the levels of CSF than can 

be explained by the effect of H on transcription of phrC, implying that H has an 

additional role in the production of CSF other than the induction of phrC transcription. 

It has been suggested that H might affect the transcription of the gene encoding the 

specific peptidase that recognizes and cleaves pre-CSF (Lazazzera et al., 1999).  

 

At least three roles have been attributed to the pentapeptide CSF: stimulation of 

expression of genes activated by the phosphorylated ComA (at low concentrations), 

inhibition of those same genes after reaching a threshold concentration and 

activation of sporulation under specific conditions (Lazazzera et al., 1997, Solomon 

et al., 1996b). The expression of genes activated by phosphorylated ComA is 

modulated by CSF by inhibiting the activity of the phosphatase RapC. RapC is a 

negative regulator of srfA expression, most likely by inhibiting accumulation of the 

phosphorylated form of the ComA transcription factor, the direct activator of srfA 

expression (Lazazzera et al., 1997, Solomon et al., 1996b). Again, the contribution of 

CSF in the activation of sporulation, requires the inhibition of a phosphatase, in this 

case RapB, a negative regulator of the phosphorelay required for the initiation of 

sporulation (Perego, 1997).  
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Since the two extracellular competence factors identified in B. subtilis are involved in 

divergent processes, with the ComX pheromone stimulating a kinase and CSF 

inhibiting a phosphatase, it is not surprising that CSF is considered an auxiliary 

competence pheromone, whereas the ComX pheromone is known as the major 

competence pheromone (Lazazzera et al., 1999).  

 

1.3.1.4 Development of competence mediated by extracelluar peptide signals 

 

In response to the cell density-dependent accumulation of phosphorylated ComA 

triggered by accumulation of both the ComX pheromone and CSF, the transcription 

of the srfA operon is stimulated (Figure 1.10). The large operon srfA constists of 

three Open Reading Frames (ORFs), whose gene products (Cosmina et al., 1993, 

Fuma et al., 1993, Nakano et al., 1991b, van Sinderen et al., 1993) are engaged in 

the nonribosomal biosynthesis of the lipopeptide antibiotic surfactin and development 

of competence (Nakano et al., 1991b). A small ORF located in the srfA operon has 

been identified, which encodes a 46-amino-acid peptide, named ComS, involved in 

competence development (D'Souza et al., 1994, Hahn and Dubnau, 1991, Hamoen 

et al., 1995, Nakano et al., 1991b, Nakano and Zuber, 1991, Nakano et al., 1991a, 

van Sinderen et al., 1990).  

Interestingly, surfactin biosynthesis and competence development were shown not to 

be directly related, except for the presence of comS within srfA. This genetic 

organisation ensures that B. subtilis uses a single quorum-sensing pathway for two 

different adaptive processes (Hamoen et al., 2003). The production of surfactin (a 

potent biosurfactant with antimicrobial activity) coordinated with competence 

development might be convenient for a dual reason: giving the cells selective 

advantage towards competitors whilst providing them with surfactin lytic activity for 

the integration of genetic material released by lysed micro-organisms (Hamoen et al., 

2003). 

ComS appears to be essential for competence development (D'Souza et al., 1994, 

Hamoen et al., 1995), as it plays an essential role in the activation of the so called 
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―competence transcription factor‖ ComK and the production of proteins of the DNA 

uptake machinery (Hahn et al., 1994, van Sinderen et al., 1995, van Sinderen et al., 

1994, van Sinderen and Venema, 1994).The role of ComK is to block DNA 

replication and cell division when competence development starts (Haijema et al., 

2001), which makes accurate control of comK expression vital to B. subtilis (Hahn et 

al., 1995). As illustrated in Figure 1.12, during the exponential growth the 

competence transcription factor is inhibited by direct interaction with a proteasome-

like complex consisting of MecA; ClpC, and ClpP   (Dubnau and Roggiani, 1990, 

Turgay et al., 1998, Turgay et al., 1997). At low cell densities, the adapter protein 

MecA binds to ComK therefore leading to the degradation of the transcription factor 

by the ClpCP proteases. At high cell densities, when the expression of the srf operon 

is activated, ComS binds to MecA, thus relieving ComK from inhibition (Magnuson et 

al., 1994).  ComK activation triggers comK expression, following an autoregulatory 

loop, and expression of the late competence genes (van Sinderen et al., 1995, van 

Sinderen et al., 1994, van Sinderen and Venema, 1994, Hahn et al., 1994). ComK 

autoregulation has the purpose of committing cells to the competence pathway, 

which explains why high levels of expression of comK and the late com genes can 

only be detected in cells that develop competence (Albano et al., 1987, Hahn et al., 

1994). The transcription factor ComK requires the response regulator DegU in order 

to be fully induced (Albano et al., 1987, Hahn et al., 1994, van Sinderen and 

Venema, 1994, Hahn et al., 1996). DegU and the histidine protein kinase DegS form 

a two-component signal transduction system which is engaged in the biosynthesis of 

degradative enzymes and polyglutamate (Henner et al., 1988, Kunst et al., 1988). It 

has been shown that unphosphorylated DegU is involved in competence 

developments, whereas DegS-mediated phosphorylation of its target response 

regulator triggers the production of degradative enzymes (Dahl et al., 1991, Mukai et 

al., 1990, Tanaka et al., 1991). The DegU-DegS two component system as well as 

two accessory regulatory polypeptides, DegQ and DegR act at the level of 

transcription (Klier et al., 1992, Kunst et al., 1994, Msadek et al., 1991). The 

presence of a helix–turn–helix DNA binding motif in DegU sequence confirmed its 

activity at the transcription level, where it is suggested to aid the interaction of ComK 
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with its promoter. However, as Figure 1.13 illustrates, accumulation of 

phosphorylated ComA triggers phosphorylation of DegQ, thus promoting an increase 

in the levels of phosphorylated DegU, which facilitates the synthesis of extracellular 

enzymes and polyglutamate production (Comella and Grossman, 2005, Msadek et 

al., 1991, Nakano et al., 1991b, Stanley and Lazazzera, 2005, Nakano and Zuber, 

1991) . 

 

 
Figure 1.13: Regulation of competence and production of degradative enzymes and 

polyglutamate in B. subtilis. The ComX pheromone activates the histidine kinase 

ComP, which in turn phosphorylates the response regulator ComA. Accumulation of 

ComA~P triggers srfA (comprising the small comS gene) transcription, thereby 

leading to ComS production. ComS relieves the transcription factor ComK from the 

inhibition operated by the MecA-ClpCP proteolytic complex. Through the action of the 

dephosphorylated response regulator DegU, the DegU/DegS two-component 

system facilitates the interaction of ComK to its cognate promoter. This results in the 

start of an autoregulatory loop, as ComK activates its own transcription. In its 
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phosphorylated state DegU promotes the synthesis of extracellular enzymes and 

polyglutamate for biofilm formation (Adapted from Hoffmann et al., 2010). 

 

Accumulation of phosphorylated ComA also triggers expression of the gene cluster 

containing phrC and co-transcribed rapC (Perego and Hoch, 1996). Both rapC and 

phrC influence their own expression by affecting transcription from the upstream 

operon promoter P1 (Solomon et al., 1996a). Although both the gene products 

appear to regulate their own expression by affecting the level of activated ComA they 

pursue divergent pathways. Whilst RapC negatively regulates its own transcription, 

thus creating a homeostatic loop, CSF acts positively on its own expression 

(Solomon et al., 1996a). At low cell densities the extracellular CSF concentration is 

inadequate to inhibit RapC activity, therefore allowing RapC to affect accumulation of 

phosphorylated ComA by inhibiting the DNA-binding activity of the transcription factor 

(Bongiorni et al., 2005). Since the accumulation of phosphorylated ComA controls 

rapC promoter, RapC inhibiting activity negatively regulates its own transcription 

(Solomon et al., 1996a, Lazazzera et al., 1997). Accumulation of CSF again causes 

an increase in transcription from the rapC promoter: this homeostatic loop guarantees 

the level of RapC to remain relatively constant while cells are at low densities. As 

cells grow, the extracellular concentration of CSF increases, partly due to the 

increasing number of cells producing CSF and partly due to ComX accumulation in 

the culture medium, which activates both ComA phosphorylation and transcription of 

phrC (Solomon et al., 1996a, Lazazzera et al., 1997). CSF reaches its threshold 

concentration (estimated to be between 2 and 5 nM) in mid-exponential growth 

phase. At this stage CSF is capable of trigger inhibition of the RapC phosphatase 

activity, which results in the accumulation of phosphorylated ComA and increase in 

transcription of the rapC-phrC operon (Lazazzera et al., 1997, Solomon et al., 

1996b). As previously described, one of the operons activated by ComA~P, srfA, 

triggers activation of the competence transcription factor ComK and competence 

development (Hahn et al., 1994, van Sinderen and Venema, 1994, van Sinderen et 

al., 1994, van Sinderen et al., 1995). 
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1.3.2 Quorum sensing and sporulation 

 

For many years it has been postulated that sporulation in B. subtilis is related to 

carbon, nitrogen or phosphate starvation and to specific development signals. 

However, the addition of decoynine (an inhibitor of GMP synthetase that stimulates 

sporulation but not competence) to B. subtilis cultures was unable to trigger initiation 

of sporulation at low cell density. This evidence prompted the idea that quorum 

sensing and peptide signalling might contribute to the activation of sporulation in      

B. subtilis together with a wide range of environmental and physiological signals 

(Grossman and Losick, 1988). These signals, including nutrient depletion, cell 

density, the Krebs cycle, DNA synthesis, and DNA damage are directed towards a 

phosphorelay which leads to activation via phosphorylation of the transcriptional 

regulatory protein SpoOA.  

SpoOA belongs to the response regulator family of two-component signal 

transduction systems, though this protein does not directly obtain its phosphate from 

a histidine protein kinase. Rather, phosphorylation of SpoOA concerns a complex 

phosphorelay system, where the phosphoryl group is initially transferred to the 

intermediate phosphoacceptor SpoOF, then to the phosphotransferase SpoOB, and 

finally to SpoOA, in a signal cascade involving three different histidine kinases, 

namely KinA, B and C (Grossman, 1995) (Figure 1.9). Accumulation of 

phosphorylated SpoOA activates the transcription of at least seven genes controlling 

the entry into sporulation by binding to their promoters, aided by RNA polymerases 

containing either the primary sigma factor σA (Baldus et al., 1994, Bird et al., 1996) or 

the alternative sigma factor σH (Bramucci et al., 1995). In addition to its function as a 

transcriptional activator, SpoOA can also act as a transcriptional repressor, as is 

the case for a gene called abrB (Bird et al., 1993, Strauch et al., 1990). 

Activation of the SpoOA transcription factor has been shown to be dependent on cell 

density, as a constitutively active form of SpoOA allowed efficient sporulation of cells 

at low density, thus completely bypassing the need for high cell density (Ireton et al., 

1993). This result implies that the quorum sensing mechanism involved in the 
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activation of sporulation is mediated by the control of production of the 

phosphorylated SpoOA (Lazazzera, 2000). 

In B. subtilis there appear to be multiple extracellular peptide factors that affect 

sporulation, including the competence and sporulation factor CSF. This signal 

peptide generated by the modification of PhrC is involved in the activation of 

sporulation following its accumulation at concentrations estimated to be higher than 

20 nM during the stationary phase (Lazazzera et al., 1997). It has been shown that 

CSF is able to enhance sporulation of nutrient-deprived cells at low cell density, but 

only when supplemented at concentrations in the range of 50 to 100 nM (Lazazzera, 

2000). CSF appears to activate sporulation by inhibiting the activity of histidine 

kinase ComP, thus preventing the formation of phosphorylated ComA and blocking 

the activation of srfA expression (Lazazzera et al., 1997, Solomon et al., 1996b). The 

phrC gene, which encodes CSF, is under the control of two promoters (Lazazzera et 

al., 1999). One promoter, called P1, is involved in an autoregulatory loop involving 

both CSF and ComA (Lazazzera et al., 1999). The second promoter (P2) is regulated 

by H (Lazazzera et al., 1999), whose levels of activity are stimulated by starvation 

and reach the maximum between the end of the exponential phase and the 

beginning of the stationary phase (Healy et al., 1991). When cells enter stationary 

phase, the concentration of H increases, thus activating the expression of phrC and 

inducing cells to sporulate rather than develop competence. The genes necessary for 

CSF to stimulate sporulation have not been identified so far, although it has been 

proposed that CSF might be involved in the inhibition of phosphatases, such as 

RapB (Lazazzera et al., 1997, Perego, 1997, Solomon et al., 1995b).  

At least other two pentapeptides are involved in the regulation of sporulation in        

B. subtilis, namely PhrA and PhrE. The product of phrA, located in the rapA 

phosphatase gene operon (Solomon et al., 1996b) is a 144 amino acid precursor 

polypeptide which is then cleaved resulting in a 19 amino acid peptide. However, the 

active form of the PhrA peptide is the pentapeptide ARNQT which inhibits the RapA 

phosphatase, after being re-internalised via the Opp system in B. subtilis cells 

(Perego et al., 1996b). The pentapeptide derived from the product of phrE is 

generated from within the carboxy-terminal domain of the PhrE pre-pro-protein, thus 
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suggesting a processing event distinct from the one resulting in the production of 

ARNQT (Jiang et al., 2000).The role of PhrE (if any) in the activation of sporulation 

has yet to be elucidated. The aspartyl phospatases co-transcribed with and 

repressed by PhrA and PhrE, (called RapA and RapE respectively) have an active 

role in activation of sporulation (Mueller et al., 1992, Perego et al., 1994). During the 

transition phase between exponential and post-exponential growth, sporulation is 

repressed due to the accumulation of phosphorylated ComA, which stimulates rapA 

and rapE expression. The resulting high cellular levels of RapA and RapE cause 

repression of SpoOF via dephosphorylation. At the onset of stationary phase, the 

accumulation of PhrA and PhrE pentapeptides results in RapA and RapE inhibition, 

therefore leading to accumulation of phosphorylated SpoOF, which in turn activates 

sporulation (Jiang et al., 2000b, Perego et al., 1996a).  

 
1.4 Bacillus licheniformis  

 

Bacillus licheniformis belongs, like Bacillus subtilis, to the genus Bacillus, comprising 

numerous rod-shaped Gram positive bacteria including both free-

living and pathogenic species. Under stressful environmental conditions the cells 

produce endospores able to survive long periods of time in a dormant state, without 

nutrients and in adverse circumstances. Bacillus species are typically motile because 

of their flagella and are aerobic. B. licheniformis is ubiquitous in nature, is 

predominantly found in soil as endospores, and is a facultative anaerobe (Claus and 

Berkeley, 1986). Since 1972, different B. licheniformis strains have been safely used 

in the fermentation industry for production of proteases, amylases and specialty 

chemicals. Yields as high as 25 g L-1 have been obtained in the production of 

exoenzymes from some B. licheniformis strains (Schallmey et al., 2004).  The 

industrial relevance of B. licheniformis is also related to the production of several 

antimicrobial compounds, such as bacitracin (Johnson et al., 1945) and the surfactin-

resembling lichenysin (Yakimov et al., 1995). B. licheniformis is genetically related to 

B. subtilis, whose regulation of competence and sporulation is controlled by a 

quorum sensing mechanism.  

http://en.wikipedia.org/w/index.php?title=Free-living&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Free-living&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Pathogenic_species&action=edit&redlink=1
http://en.wikipedia.org/wiki/Endospore
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1.4.1 Quorum sensing in B. licheniformis 

 

1.4.1.1 Identification of competence-related genes in B. licheniformis  

 

Preliminary characterization of competence and quorum-sensing-related genes in 

Bacillus licheniformis was performed by establishing genetically co-linear regions with 

B. subtilis genome using physical mapping. This technique, named co-linear 

scaffolding, allowed Lapidus and co-workers (Lapidus et al., 2002) to compare co-

linear regions between B. licheniformis ATCC 14580 genome, whose sequence had 

not been published yet at the time, and the entirely sequenced genome of B. subtilis 

168. As these two genomes are 70% identical at the nucleotide level the technique 

led to characterization of more than 60% of the B. licheniformis gene complement, 

comprising relevant genes which share significant homology with competence-

regulating genes of B. subtilis, such as the comQXPA cluster, clpC, comK, comC, 

and the entire comE, comF and comG operons.  

The gene encoding MecA, one of the proteins involved in the inhibition of the 

competence transcription factor ComK, could not be identified in any co-linear region. 

However, Southern hybridization analysis established the existence of this gene in    

B. licheniformis genome, most likely located on a non co-linear region.  Similarly,  no 

gene coding for ComS, the small protein responsible for ComK activation, was 

identified in B. licheniformis. In B. subtilis genome, comS is located inside the srf 

operon, encoding surfactin biosynthetic machinery. This operon consists of three 

long ORFs, which were not detected in any co-linear region. However, a high  degree 

of similarity was established between the previously sequenced region comprising 

lichenysin biosynthetic genes in B. licheniformis ATCC 10716 (Konz et al., 1999) and 

the srf operon of B. subtilis 168. The three genes for lichenysin biosynthesis in B. 

licheniformis ATCC 10716 are located on an operon (lic) which is almost identical to 

the srf operon of B. subtilis. However, as an ORF corresponding to comS could not 

be identified in the lic operon, it was initially suggested that a different protein with the 

same functions of ComS might be produced in B. licheniformis (Lapidus et al., 2002).  
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Recently, comS identification was attempted by comparing  the N-terminal region of 

the surfactin synthetase B of B. subtilis 168 with the corresponding sequence of the 

lichenysin synthetase B of B. licheniformis. However, the identification of a putative 

ComS protein in B. licheniformis was attained by searching for conserved ComS 

peptides in different Bacillus species. The putative ComS of B. licheniformis 

varies from its counterparts of B. subtilis and B. amyloliquefaciens, by an N-terminal 

extension of 16 amino acids, a four amino acids insertion at position 27, and a 

different core sequence for MecA binding (Hoffmann et al., 2010). 

 

1.4.1.2 The comQXPA cluster of B. licheniformis  

 

The comQXPA gene cluster, which plays an essential role in the regulation of 

competence development in B. subtilis, was also identified in B. licheniformis 

genome. This gene cluster is only present in bacilli strictly related to B. subtilis 

(Nakano and Zuber, 1991, Magnuson et al., 1994). At present, B. licheniformis is the 

species most remote from B. subtilis where the comQXPA cluster was detected, 

hence it is not surprising that the ComQ and ComX proteins of B. licheniformis ATCC 

14580 show higher similarity to their counterparts in B. mojavensis, a closer related 

strain, than to those in B. subtilis 168 (Lapidus et al., 2002). The response regulator 

ComA, which regulates the expression of the surfactin biosynthetic operon in            

B. subtilis, was shown to play a similar role in B. licheniformis by inducing 

transcription of the lichenysin synthase genes. This regulatory function was 

confirmed by the identification of a putative ComA Box in the promoter region of the 

lichenysin operon (Yakimov and Golyshin, 1997, Yakimov et al., 1998). 

In B. licheniformis genome a 1288-bp insertion sequence was identified in the gene 

encoding the histidine kinase ComP, dedicated to the recognition of the ComX 

pheromone and the phosphorylation of ComA in B. subtilis. The insertion sequence, 

named as IS3Bli1, encodes a 278 aa-protein belonging to the IS3 family of 

transposases of IS elements. Previously, a not-related IS insertion, IS4Bsu1, was 

identified in the ComP-encoding gene of B. subtilis (natto) NAF5 (Nagai et al., 
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2000a). Apart from competence development the comQXPA system of B. subtilis is 

involved in the regulation of several cell-density-dependent phenomena, such as 

surfactin, poly-glutamic acid and degradative enzymes production and surface 

attachment (Magnuson et al., 1994, Weinrauch et al., 1990, Nakano and Zuber, 

1991). The disruption of the sensor kinase of the system by the insertion of IS 

elements leads to impairment of all the aforementioned processes by interrupting  

communication between cells (Nagai et al., 2000a). The finding that two natural 

isolates, such as B. subtilis (natto) NAF5 and B. licheniformis ATCC 14580, have 

their comP sequences interrupted by a similar transposon insertion, suggests a 

strong competition among bacilli for the benefits arising from communication between 

closely related neighbours. Recently, the genome sequences of B. 

licheniformis strains DSM13 (Veith et al., 2004) and the isogenic ATCC 14580 (Rey 

et al., 2004) have become available, thus allowing further research on cell-cell 

communication in these strains. The two genomes have been compared showing 

that they only differ in the orientation of the IS element accompanied by a breakdown 

in the GC content at the site of insertion in comP, possibly suggesting a flexible 

position within the genome (Hoffmann et al., 2010).  

Although quorum sensing is well established in B. subtilis and in spite of the above 

studies, no concrete report has been published on cell-cell communication in            

B. licheniformis and the production of signalling molecules in this organism has not 

been verified so far.  

 

1.5 Lichenysin  

 

A number of Bacillus species have been shown to produce lipopeptides with  

significant surface-active properties (Fiechter, 1992). The best characterized of these 

lipopeptides is surfactin, an acylated cyclic heptapeptide produced by several 

Bacillus subtilis strains. Surfactin was found capable of reducing water surface 

tension from 72 to 27 mN m-1 at concentrations lower than 0.05%. Also, this 

lipopeptide shows antimicrobial activity against both bacteria and fungi. Other 

lipoheptapeptides structurally related to surfactin, such as iturin (Peypoux et al., 
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1978) and bacillomycin (Mhammedi et al., 1982, Peypoux et al., 1985),  have been 

identified  in some B. subtilis strains.  

Certain strains of B. licheniformis produce a very effective biosurfactant, with 

structural properties similar to surfactin, named lichenysin. In addition to its surface 

activity, lichenysin shows some remarkable biological properties, such as inhibition of 

fibrin clot formation (Arima et al., 1968); cholesterol-lowering effects (Imai et al., 

1971), antiviral and antitumoral activities (Vollenbroich et al., 1997, Kameda et al., 

1972, Hosono and Suzuki, 1983, Nissen et al., 1997). Furthermore, lichenysin has 

been shown capable of interacting with phospholipids and inducing selective cationic 

channels formation in artificial membranes (Sheppard et al., 1991);  it also inhibits 

enzymes such as cyclic adenosine monophosphate phosphodiesterase (Hosono and 

Suzuki, 1983) and phospholipase A2 (Kim et al., 1998). 

The structure of lichenysin is characterised by the heptapeptide sequence L-Glx1-L-

Leu2D-Leu3L-Val4L-Asx5D-Leu6L-Ile7 linked to a -hydroxy fatty acid chain 

ranging from 13 to 15 carbon atoms. The first amino acid is connected to the fatty 

acid by an amide bond, whilst the carboxy-terminal Ile residue forms a lactone ring 

with the -OH group of the lipophilic part of the molecule (Grangemard et al., 1999b, 

Yakimov et al., 1999, Yakimov et al., 1998). Lichenysin heptapeptide differs from 

surfactin only in two constituents amino acids, an amide residue at position 1 (L-Gln) 

or 5 (L-Asn) instead of an acidic one in surfactin, and an Ile residue in position 7 in 

place of Leu.  However, it appears that the former variation is the most relevant, as it 

determines a significant change in the biosurfactant properties of the molecule. Also, 

the composition and length of the hydroxyl fatty acid chain varies between the two 

biosurfactants (Yakimov et al., 1995, Grangemard et al., 1999b). Lichenysin has 

been shown to have much higher surfactant power and antimicrobial activity of 

surfactin, although it is typically produced in much lower amounts (Yakimov et al., 

1996). Five different lichenysins, namely A, B,C, D, and G, have been isolated and 

characterised, revealing various distributions of branched and linear fatty acid moiety 

which depend on the producing strain (Yakimov et al., 1996, Yakimov et al., 1995, 

McInerney et al., 1990, Jenny et al., 1991). So far, research has been focussed 

mostly on lichenysin A, produced by B. licheniformis strains BAS50 and BNP29, a 
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complex comprising a mixture of 14 components with sizes ranging from 992.0 to 

1034.0 Da with heterogeneous lipophilic chains (Yakimov et al., 1996, Yakimov et al., 

1995).  

In analogy with surfactin, lichenysin A biosynthesis is carried out non-ribosomally on 

a large multienzymatic complex, known as peptide synthetase, using a thiotemplate 

mechanism. The operon coding for lichenysin biosynthetic complex has been 

sequenced, thus leading to the identification of four distinct ORFs, lchAA, lchAB, 

lchAC, lchA-TE strictly resembling the organisation of the surfactin biosynthetic locus 

(Konz et al., 1999, Yakimov et al., 1998). Furthermore, a ComA-like box was 

identified upstream from the lchA promoter, therefore confirming that, similarly to 

surfactin, lichenysin biosynthesis is controlled by the response regulator ComA 

(Yakimov and Golyshin, 1997, Yakimov et al., 1998). 

The recent findings on the modular organisation of the peptide synthetases involved 

in surfactin and lichenysin biosynthesis facilitated the creation of new biosurfactants, 

produced by exchanging minimal modules between multi-modular peptide 

synthetases of different origins (Stachelhaus et al., 1995, Schneider et al., 1998).  

 

1.6 -Poly Glutamic Acid (PGA) 

 

Some Bacilli produce a polymer, known as -polyglutamic acid (PGA), as a capsular 

or an extracellular viscous material (Birrer et al., 1994). This polymer, formed by 

glutamic acid residues linked by -glutamyl bonds, was originally isolated as a 

component of B. anthracis (Ivanovics and Erdos, 1937) and B. mesentericus 

(Ivanovics and Bruckner, 1937) capsule, whose function is to provide a protective 

barrier for the bacterium against hostile environments (Makino et al., 1988, Makino et 

al., 1989, Makino et al., 2002). PGA is found as an ingredient in a Japanese 

traditional food, natto, prepared with steamed soybeans fermented by B. subtilis 

(Hara et al., 1982). Due to its polyanionic and nontoxic properties PGA is widely 

used in industrial applications, such as production of food additives, cosmetics and 

natural biocides; and water treatment. Three stereochemically different variants of -

PGA have been identified so far: a homopolymer comprising only D-glutamate, a 
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homopolymer composed solely of L-glutamate, and a copolymer of D- and                

L-glutamate units randomly arranged (Ashiuchi et al., 2003, Tanaka and Ozaki, 

1997). Following its discovery, PGA was identified in the culture medium of several 

Bacilli, such as B. subtilis (Ito et al., 1996, Kubota et al., 1993, Kunioka and Goto, 

1994), B. licheniformis (Tabone and Jacobelli, 1961, Troy, 1973), and B. 

megaterium (Guex-Holzer and Tomcsik, 1956, Torii et al., 1959). 

In both B. anthracis and B. subtilis, the synthesis of the capsule polypeptide is 

catalysed by membrane-associated PGA-synthases, encoded by the capBCA and 

pgsBCA operons, respectively. Even though the organisation of PGA biosynthetic 

genes is shared by a number of Bacillus species, their regulation of -PGA synthesis, 

and the stereochemistry of the biopolymer produced, differs depending on the 

producer organism (Ashiuchi et al., 1999, Makino et al., 1989, Urushibata et al., 

2002). In B. anthracis, for example, L-PGA is produced when the cells are grown in 

conditions mimicking host environments (Makino et al., 1988, Makino et al., 1989, 

Makino et al., 2002), whereas in B. subtilis the production of DL-PGA copolymer is 

initiated specifically in early stationary phase. In particular, -PGA synthesis in          

B. subtilis is a cell-density-dependent process controlled by the comQXPA locus 

(Dubnau, 1999, Lazazzera et al., 1999, Tran et al., 2000). The ComPA two-

component transduction system has been suggested to have a key role in the 

regulation of -PGA production by activating a second two-component system, 

comprising the histidine kinase DegU and the response regulator DegS. The DegUS 

system, in turn, promotes the formation of -PGA capsule formation. Although the 

exact mechanism of this regulation is yet to be elucidated, the relation between 

quorum-sensing and -PGA biosynthesis has been proven by reports that Bacillus 

strains with a non functional ComPA system, such as B. subtilis natto NAF4 (Nagai et 

al., 2000b, Takahashi et al., 2007) and B. licheniformis ATCC 14580 showed an 

impairment in production of the biopolymer (Hoffmann et al., 2010). 
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1.7 Investigation of quorum sensing molecules based on bioassays 

 

The use of reporter strains for the identification of quorum sensing molecules is a 

well established practise, which has been originally developed for the detection of 

AHLs in Gram negative bacteria. Examples are the lux-based biosensors, where 

Escherichia coli cells carrying the luxCDABE operon of Photorhabdus luminescens 

are used to detect AHLs through development of bioluminescence (Winson et al., 

1998a, Winson et al., 1998b), and AHLs bioassays which exploit the production of 

purple pigment in Chromobacterium violaceum (Blosser and Gray, 2000, McClean et 

al., 1997).   

The first B. subtilis PsrfA-lacZ fusion-carrying reporter strain was developed by 

Magnuson and co-workers (1994) for the identification of the ComX pheromone and 

since then a number of different reporter strains have been created and used for the 

isolation of ComX variants in different Bacilli or for detection of the pheromone in the 

course of the purification process (Ansaldi et al., 2002, Okada et al., 2005, Okada et 

al., 2004). All these studies report detection of the ComX pheromone from different 

strains or from natural isolates  of B. subtilis and the use of B. subtilis reporter strains 

has never been extended to the investigation of the competence pheromone  in 

supernatants of Bacilli as genetically distant as B. licheniformis. However, a similar 

approach has been reported for the investigation of AI-2 signal in B. subtilis where 

supernatants from the Gram positive B. subtilis cultures at high cell densities were 

tested on low cell density cultures of V. harveyi , a Gram negative bacterium 

(Lombardia et al., 2006).  

A diagram illustrating the mechanism for induction of -galactosidase activity in B. 

subtilis reporter strains used in this study, namely JRL293 and LS27, is presented in 

Figures 1.14.  
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Figure 1.14: Illustration of the mechanism for induction of -galactosidase activity in 

B. subtilis JRL293 (A) and B. subtilis LS27 (B) reporter strains.   

 

As srfA is required for competence development and is induced by molecules 

accumulating in the extracellular medium, this reporter strain was constructed in 

order to monitor the expression of srfA operon through lacZ expression. In a minimal 

glucose medium, B. subtilis srfA-lacZ cultures at low cell densities show a basal level 

A 

B 
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of srfA expression. The addition of molecules capable to activate srfA to such 

cultures will induce an increase in srfA expression, which can be detected measuring 

the resulting -galactosidase activity. Therefore, the level of -galactosidase activity 

will be related to the increase in srfA expression induced by signalling molecules 

accumulated in the extracellular medium of the cultures to be tested (Magnuson et 

al., 1994).   
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MATERIALS AND METHODS 

 

2.1 Materials 

 

All materials used in this study were obtained from Sigma-Aldrich Company 

Limited, Dorset, United Kingdom unless otherwise stated. All high-pressure liquid 

chromatographic (HPLC) assays were carried out using HPLC grade chemicals 

and HPLC grade water. All other qualitative and quantitative assays were carried 

out using reagents of analytical grade. Media were prepared using general 

purpose reagents. Materials for molecular biology studies were obtained from 

Qiagen (Crawley, UK), Promega (Southampton, UK) and Sigma (Dorset, UK). 

DNeasy Blood and Tissue Kit (Qiagen) was used for genomic DNA isolation. 

QIAquick Gel extraction kit from Qiagen was used for extraction of DNA from 

agarose gels. PCR Master Mix (Promega) was used for conventional polymer 

chain reaction. Primers for conventional PCR were purchased from Invitrogen 

(Renfrew, UK).  

 
2.2 Microorganisms 

 

Bacillus licheniformis NCIMB 8874 and Bacillus subtilis NCIMB 3610 were 

purchased from the National Collection of Industrial and Marine Bacteria, USA. 

Bacillus subtilis strains JRL293 [amy::(srfA-lacZ, cat),trp, phe]; 

TMH281[comQ::spc, amy::(srfA-lacZ, neo), trp, phe)] and LS27 [amyE::(srfA-

lacZ,neo), trp, phe, comX(comX1-45)] were a kind gift from Prof. Alan D. 

Grossman, Massachusetts Institute of Technology, USA.  

 

 2.3 Media 

 

All media used in this study were sterilized at 121 °C for 15 minutes unless 

otherwise stated.  
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2.3.1 Media for maintenance of B. licheniformis NCIMB 8874 and B. subtilis wild 
type 

 

Lysogeny broth (LB) (Table 2.1) and LB + agar were used for routine maintenance 

of both B. licheniformis NCIMB 8874 and B. subtilis wild type strain. Medium (1 L) 

was prepared and autoclaved at   121 °C for 15 minutes. BactoAgar (BD, Oxford, 

UK) at a concentration of 15 g L-1 was added to the broth to make up LB agar.  

 

 

Table 2.1: Lysogeny Broth (LB) composition  

Component 
Concentration   

(g L-1) 

Tryptone 10.0 

Yeast Extract 5.0 

NaCl 10.0 

 

All the strains were routinely stored as glycerol stocks at -80 °C. The stocks were 

prepared by growing cells from a fresh colony in LB up to OD600 ~ 1 and adding 15% 

(v/v) pre-sterilised glycerol before freezing.  Fresh colonies were obtained by 

streaking a loopful of the frozen material onto LB agar. The freshly inoculated 

plates were incubated at 37 °C for 18 hours and then stored at 4 °C for 5 days. 

Maintenance medium for B. subtilis JRL293 was supplemented with 

chloramphenicol (5 μg mL-1), whereas neomycin (50 g mL-1) was added for 

selection of B. subtilis strains LS27 and TMH281. 

 

2.3.2 Medium for growth of B. licheniformis NCIMB 8874 and B. subtilis wild type 

 

Cultivation of B. licheniformis NCIMB 8874 and B. subtilis wild type for the 

development of competence and production of quorum sensing molecules was 

conducted in competence medium comprising S7 minimal salt solution (Table 2.2) 
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supplemented with Glucose 1% (w/v) and Sodium glutamate 0.1% (w/v). The S7 

minimal salt solution was prepared in 1 L distilled water and autoclaved at 121 °C 

for 15 minutes. Glucose 10% (w/v) solution was prepared separately in 1 L 

distilled water and autoclaved at 110 °C for 10 minutes. Sodium glutamate 1% 

(w/v) solution was also made up separately and filter-sterilised through a 0.22 m 

filter (Millipore).  

 

Table 2.2: S7 minimal salt solution composition  

Ingredient Concentration (g L-1) 

3-(N-morpholino) propanesulfonic acid  

(adjusted to pH 7.0 with 10M KOH) 
            10.4600 

(NH4)2SO4 1.3200 

Potassium phosphate (pH 7) 0.6800 

MgCl2 0.2000 

CaCl2 0.0800 

MnCl2 0.0060 

FeCl3 0.0006 

Thiamine 0.0005 

ZnCl2 0.0001 

 

2.3.3 Medium for growth of B. subtilis reporter strains  

Competence medium was also used for growth of B. subtilis reporter strains 

JRL293, LS27 and TMH281. The medium was prepared as described in Section 

2.3.2 and supplemented with filter-sterilised tryptophan (50 μg mL-1) and 

phenylalanine (50 μg mL-1) and appropriate antibiotics (see Section 2.3.1).  
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2.3.4 Medium for production of biosurfactant  

 

B. licheniformis NCIMB 8874 and B. subtilis wild type cultures were grown in 

Yeast Peptone Dextrose (YPD) broth for biosurfactant production and extraction 

(Thaniyavarn et al., 2003). YPD medium composition is listed in Table 2.3. 

 

Table 2.3: YPD medium composition  

 Component Concentration (g L-1) 

BactoPeptone  20 

BactoYeast extract  10 

Dextrose 20 

 

2.3.5 Medium for -PGA production  

 

B. licheniformis NCIMB 8874 cells were cultivated in PGA production medium for 

production of the biopolymer. The composition of the PGA production medium 

(Goto and Kunioka, 1992) is listed in Table 2.4. The medium was prepared in 1L 

distilled water and the pH was adjusted to 7 before it was autoclaved at 121 °C for 

15 minutes. Sodium glutamate was made up separately and filter-sterilised 

through a 0.22 m filter (Millipore).  
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Table 2.4: PGA production medium composition  

Component Concentration   (g L-1) 

Citric acid 20.00 

Sodium glutamate  30.00 

Glycerol 20.00 

(NH4)2SO4 15.00 

K2HPO4 7H2O   1.00 

MgSO4   0.50 

Na2HPO4   1.00 

FeCl3   0.05 

MnSO4   0.02 

CaCl2   0.20 

 

 

2.3.6 Medium for proteolytic activity assay  

 

Extracellular proteolytic activity of B. licheniformis NCIMB 8874 was analysed by 

disc diffusion assay on agar plates containing M9 salts supplemented with 

skimmed milk powder (10% w/v). Compositions of M9 salts (5X) and M9 agar are 

listed in Table 2.5 and 2.6, respectively (Sambrook and Russell, 2001).  

 
Table 2.5: M9 (5X) salts composition  

Component 
Concentration  

(g L-1) 

Na2HPO4.7H2O 64.0 

KH2PO4 15.0 

NH4Cl   5.0 

NaCl   2.5 
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Table 2.6: M9 agar composition for 1L 
 

 

 
2.4 Fermentation conditions 

 

Stock cultures of both B. licheniformis NCIMB 8874 and B. subtilis strains were 

streaked separately on LB agar plates and incubated at 37 °C for 16 hours. The 

competence medium (5 mL) (as specified in Section 2.3.2) was inoculated with a 

single colony and incubated at 37 °C on a rotary shaker at 200 rpm (2 cm-throw) 

for 15 hours. Erlenmeyer flasks (500 mL) were used for the growth of                   

B. licheniformis NCIMB 8874 and B. subtilis wild type for production of quorum 

sensing molecules in Shaken Flask (SF) fermentation.  

For SF fermentations, the 15 hour old inoculum cultures were diluted in 100 mL of 

the competence medium to reach an OD600 value of 0.08-0.1. SF fermentations 

were carried out at 37 °C on a rotary shaker at 200 rpm (2 cm-throw) for 10-12 

hours. SF studies were performed in triplicate.  

 
2.5 Assays procedures  

 

2.5.1 Optical density and pH measurements 

 

The optical density (OD) of the samples collected in the course of fermentation 

was read at 600 nm wavelength, where competence medium was used as a 

Component 
Concentration (g L-1) 

or (volume, mL) 

Skim milk 10.00 

BactoAgar  15.00 

MgSO4   0.24 

CaCl2   0.01 

M9 salts (100) 
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blank. Absorbance readings above 0.5 were diluted using fresh medium. The pH 

was also monitored.  

2.5.2 -galactosidase assay  



-galactosidase activity was estimated by colorimetric assay. The cell density of 

the culture to be assayed was recorded by measuring the absorbance at 600 nm. 

The assay was carried out in plastic test tubes by adding warmed permeabilization 

solution (Table 2.7) to the sample to be assayed. When high levels of -

galactosidase were to be assayed, 0.9 mL of the permeabilisation solution was 

added to 0.1 mL of the culture to be assayed. When low levels of enzymatic 

activity were being determined, 0.5 mL of the permeabilisation solution was added 

to 0.5 mL of the culture. The test tubes were incubated at 28 °C for 5 minutes. The 

reaction was started by adding 0.2 mL of the substrate buffer (Table 2.8) to each 

tube and mixing thoroughly. The reaction was then stopped by addition of 0.5 mL 

of a 1M Na2CO3 solution after yellow colour was developed. Samples were read at 

420 nm wavelength using a BioMate 3 spectrophotometer (Thermo Scientific, UK). 

-Galactosidase specific activity was then calculated according to Miller (A420/min 

mL-1 of culture OD600) x 1000 (Miller unit, MU) (Miller, 1972). 

 

Table 2.7: Composition of permeabilisation buffer for -galactosidase assay 

Component Concentration (M) 

Na2HPO4.7H2O 0.060 

NaH2PO4.H2O 0.040 

KCl 0.010 

MgSO4 0.001 

 -mercaptoethanol 0.050 
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Table 2.8: Substrate buffer composition for -galactosidase assay 

Component Concentration (M) 

Na2HPO4.7H2O  0.06 

NaH2PO4.H2O   0.04 

o-nitrophenyl-β-galactoside 0.01 

 

 

2.5.2.1 Pheromone assay (70 minutes assay) 

 

Pheromone activity was assayed based on its ability to induce expression of srfA-

lacZ in cells at low cell density. In the standard assay, 0.25 mL of B. subtilis cells 

carrying the srfA-lacZ fusion at an OD600 of 0.08-0.1 were added to 0.25 mL of 

spent medium to be assayed. BSA (50 g ml-1) was added to the sample 

potentially containing the ComX pheromone to prevent non-specific loss of activity 

(Magnuson et al., 1994). The mixture was incubated at 37 °C for 70 minutes in a 

rotary shaker at 200 rpm (2 cm-throw) and then assayed for -galactosidase 

specific activity.  The pheromone assay is schematically presented in Figure 2.1. 
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Figure 2.1: Diagram of the pheromone (70 minutes) assay.  

 

 

2.5.2.2 Addition of spent medium for induction of quorum sensing response in       
B. subtilis reporter strains 

 

Spent media for induction of quorum sensing response in B. subtilis reporter 

strains was prepared by growing B. licheniformis NCIMB 8874 and B. subtilis wild 

type (used as control) in competence medium at 37 °C for 8 hours on a rotary 

shaker at 200 rpm (2 cm-throw). Cultures were harvested and centrifuged at 4700 

rpm for 45 minutes. The supernatants were collected and filtered through a 0.22 

m syringe filter (Millipore). The spent media were stored at 4°C for future 

experiments.  

The competence medium (50 mL) was diluted with 50 mL of spent medium and 

inoculated with B. subtilis reporter strain cells to OD600 0.08. SF fermentation was 

performed as described in Section 2.4. Throughout the growth, 1 mL samples 

were collected at specific time intervals. The samples collected were homogenised 
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for 40 seconds at 4.5 m/s (meter/second) using a FastPrep-24 Instrument, (MP 

Biomedicals, Cambridge, UK) and then stored at 4°C and later assayed for -

galactosidase activity.   

2.5.2.3 Addition of spent medium for induction of secondary metabolites 
production     

 

For induction of secondary metabolite production in B. licheniformis NCIMB 8874 

cultures, cell-free supernatants from B. licheniformis NCIMB 8874 and B. subtilis 

wild type cultures at high cell densities were prepared by cultivating                      

B. licheniformis NCIMB 8874 and B. subtilis (used as control) in 1L of the 

competence medium at 37 °C for 8 hours on a rotary shaker at 150 rpm (2 cm-

throw). Cultures were harvested and centrifuged at 4700 rpm for 45 min. The 

supernatants were collected and filtered through a 0.22 m syringe filter 

(Millipore). The spent media were lyophilized and then resuspended in distilled 

water to obtain a 25-fold concentrated solution. The concentrated spent media 

were ultra-filtrated using Ultra-15 centrifugal units (Millipore) with a 3kDa cut-off 

membrane, and centrifuged at 4000 rpm for 30 minutes. The filtrates were 

collected and stored at 4 °C for the later use.  

2.5.2.4 Preparation of spent media for pheromone assay  

 

Samples for the pheromone assay were prepared by growing B. licheniformis 

NCIMB 8874 and B. subtilis wild type cells in the competence medium for 12 

hours. Samples (1 mL) were collected from the growing cultures at specific time 

intervals and centrifuged at 13000 rpm for 10 minutes. The supernatants were 

collected and filter-sterilised through a 0.22 m syringe filter (Millipore). Samples 

were stored at 4 °C overnight prior to the assay.  
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2.6 Molecular biology studies  

 

2.6.1 Genomic DNA isolation  

 

Genomic DNA isolation from B. licheniformis NCIMB 8874 cells was carried using 

DNeasy Blood and Tissue kit (Qiagen). B. licheniformis NCIMB 8874 single 

colonies were inoculated in  5 mL LB and incubated overnight on a rotary shaker 

at 37 °C and 200 rpm for 15 hours. Cultures (1.25 mL) at an OD600 of 2 

(corresponding to 2 x 109 cells) were transferred in a micro-centrifuge tube and 

centrifuged at 7500 rpm for 10 minutes. Genomic DNA extraction was carried out 

following the instructions provided by the manufacturer. After removal of the 

supernatant the bacterial pellets were resuspended in 180 μL enzymatic lysis 

buffer and incubated for 30 minutes at 37 °C. Proteinase K (25 μL) and Lysis 

Buffer (AL) (200 μL) were added and the mixture was incubated at 56 °C for 30 

minutes. Samples were then treated with 200 μL ethanol (96-100%) and 

thoroughly mixed by vortexing. The mixture obtained was then transferred into a 

DNeasy Mini spin column and centrifuged at 8000 rpm for 1 minutes. The DNA 

was first washed with 500 μL Washing Buffer 1 (AW1), then with 500 μL Washing 

Buffer 2 (AW2), both containing ethanol. After the ethanol was removed from the 

DNeasy membrane by centrifugation at 8000 rpm for 3 minutes, the DNA was 

eluted in a clean micro-centrifuge tube by adding 200 μL Elution Buffer (AE) and 

spinning at 8000 rpm for 1 minute. Genomic DNA concentration was evaluated 

using Nanodrop 3300 (Thermo Scientific, UK) Full-Spectrum 

fluorospectrometer. DNA samples were stored at 4 °C for future use.  
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2.6.2 Primer design 

 

2.6.2.1 Primers for Bacillus licheniformis NCIMB 8874 

 

Primers for Polymerase Chain Reaction (PCR) for analysis of B. licheniformis 

NCIMB 8874 genes were designed using Primer 3 software. Primers were 

designed for the genes encoding the histidine kinase ComP and for the ComX 

pheromone, using the genome sequence from B. licheniformis strain ATCC 14580 

(PubMed). Primers for the bacitracin biosynthetic gene bacA (Murphy, 2008) were 

used as a positive control for the PCR reaction.  Sequences of the primers used in 

this project are listed in Table 2.9. Primers were custom prepared by Invitrogen 

(UK). 

 
Table 2.9: Primer sequences for the amplification of the quorum sensing-related 
genes comP (including the insertion element IS3Bli) and comX and the control 
gene bacA (bacitracin biosynthetic gene). 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Primer Sequence 
Tm 
(°C) 

Product Size 
(bp) 

comPN fw 5’ GCCTTTGCTCTTATCATTTATGG 3’ 59.2 
389 

comPN rev 5’ GGACAGGCAGCATAGGTGTT 3’ 60.1 

IS fw 5’ TTGAACTGACCCGTTAAAATGA 3’ 59.5 
329 

IS rev 5’ CATAGCGACCAGGGATCTG 3’ 60.1 

IS2 fw 5’ TTGGCCAAATTCTGATATGC 3’ 58.6 
395 

IS2 rev 5’ GGGATAAATGTAAACCGCAAAA 3’ 60.1 

IS3 fw 5’ TTCTTCTTAACTTGACACTGAATCTC 3’ 57.5 
400 

IS3 rev 5’ TCGGAGGAAATGAGTGAGCTA 3’ 60.0 

comPC fw 5’ GCCAATTGAGCCTCTAGCTG 3’ 60.1 
325 

comPC rev 5’ AAAAACACCCCCTGAATCGT 3’ 60.6 

comX fw 5’ TTAAATCCAAAATCCTCCTCCA 3’ 59.8 
150 

comX rev 5’ AACTTTTTGGTCGAAAATCCTG 3’ 59.5 

bacA fw 5’ AAGTGGCAAGGCTTTTGAGA 3’ 60.0 
140 

bacA rev 5’CTCAGGATCAATCGGCAAAT 3’ 60.0 
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.6.3 Conventional PCR 

 

Conventional PCR was performed using genomic DNA isolated from Bacillus 

licheniformis cells and primers designed for amplification of comP and comX 

genes. This procedure was used to confirm that the size of the product obtained 

corresponded to the target sequence. Primers for B. licheniformis NCIMB 8874 

were amplified using PCR master mix (Promega). The composition of the reaction 

mix and the PCR amplification cycle is shown in Table 2.10 and 2.11. 

  

Table 2.10: Reaction composition for PCR 

Component Volume (L) Final Concentration 

PCR Master Mix (2X) 12.5 1X 

Forward primer (10μM) 2.5 1.0 M 

Reverse primer (10μM) 2.5 1.0 M 

DNA template 1-5 <250 ng 

Nuclease-Free Water 1-5 NA 

 

Table 2.11: Amplification program for conventional PCR 
 

 

 

 

 

 

 

 

 

 

 

Stage Temperature (°C) 
Time 

(min) 

Initial denaturation 94 2 

Denaturation 94 1 

Annealing 55 1 

Extension 72 2 

Extension 72 5 

30 cycles  
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PCR products between 100-500 bp were run on a 3% agarose gel using 

Hyperladder V (Bioline, London, UK) as a DNA size marker. Products with sizes 

>500 bp were visualised on a 1% agarose gel and 100 bp DNA ladder (New 

England Biolabs, Hitchin, UK) was used as the DNA marker. When the size of the 

expected PCR product exceeded 1 Kb a 0.8% agarose gel was prepared for 

electrophoresis and 1Kb ladder was selected as a size marker (New England 

Biolabs).  

2.6.3.1 Agarose gel electrophoresis 

Agarose gel electrophoresis was used for analysis of PCR products obtained after 

amplification. The same method was also used to purify DNA fragments generated 

via PCR. Different agarose concentrations were used for gel preparation 

depending upon the expected product size of the target DNA. During the course of 

this project 1 and 3 % agarose gels were prepared in 1X Tris Acetate EDTA (TAE) 

buffer (pH 8.5). The composition of 50X TAE buffer is given in Table 2.12.  

PCR products to be analysed through electrophoresis (10 μL) were mixed with 2 

μL of 6X Blue/Orange Loading Dye (Promega) before loading onto the gel wells. 

The gel was run at 100 V for 60 minutes to allow the DNA fragments to separate. 

After electrophoresis the gels were stained with ethidium bromide (10 mg mL-1) 

and placed on a UV transilluminator to visualise the DNA fragments.  

 

Table 2.12: Composition of 50X TAE buffer (1 L) 

Components  
Weight or 

(volume) 

Tris Base  252 g 

Glacial acetic acid  (57.1 mL) 

EDTA (0.5 M, pH 8) (100 mL) 
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2.6.3.2 DNA isolation for genome sequencing  

 

Genomic DNA was isolated from the overnight culture of B. licheniformis NCIMB 

8874 prepared by inoculating a single colony in 3 mL Brain Heart Infusion (BHI) 

broth. An aliquot of the culture (1.25 mL) was collected in a centrifuge tube and 

centrifuged at 13.000 rpm for 10 minutes. The supernatant was discarded and a 

Qiagen DNAeasy Blood and Tissue kit was used to extract the genomic DNA from 

the cell pellet as per manufacturers’ instructions (Section 2.6.1).  The samples 

were vortexed vigorously throughout the purification in order to shear the DNA for 

high quality sequencing data. Genomic DNA was eluted in 2 X 200 L of Tris-

EDTA (TE) buffer at pH 8 and treated with 40 L of a 3M Sodium Acetate solution 

(pH 5.2) and 400 L isopropanol. The sample was vortexed to mix and 

cenrtrifuged at 13.000 rpm for 5 minutes. The supernatant was discarded and 

pellet was washed with 0.5 mL of 70% Ethanol. The DNA pellet was air-dried 

before adding 0.25 mL of EB buffer from the Qiagen PCR gel extraction kit 

(Qiagen) and then stored at 4 °C for 3-5 days to allow for DNA complete re-

suspension. 

 

2.6.3.3 DNA Sequencing and analysis 

 

PCR products obtained by amplification of genomic DNA from B. licheniformis 

NCIMB 8874 were sequenced by UCL (London, UK). The nucleotide sequences 

obtained were analysed using BLAST (NCBI). Genomic DNA isolated from B. 

licheniformis NCIMB 8874 (20 g) was sent to the University of TURKU (Finland) 

for complete genome sequencing. The sequencing was carried out using two 

sequencers, 454 GS Junior and Illumina GAII. The outcomes of the sequencing 

were assembled using Velvet software. The assembly resulted in a single 

nucleotide sequence consisting of 304 contigs. 
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The phylogenetic analysis was carried out by aligning sequences obtained from 

NCBI nucleotide database with protein sequences derived by the genome of         

B. licheniformis NCIMB 8874 using ClustalW and Jalview.  

 
2.7 Lichenysin extraction  

 

Biosurfactant production and extraction was carried out by growing Bacillus 

licheniformis and Bacillus subtilis in 1 L YPD broth (Table 2.13) for 26 hours at       

37 °C and 150 rpm on a rotary shaker (2 cm-throw). For confirmation of 

biosurfactant production in the competence medium, B. licheniformis NCIMB 8874 

NCIMB 8874 and B. subtilis wild type cells were also cultivated in 1 L competence 

medium for 13 hours at 37 °C and 150 rpm. Cells were harvested and centrifuged 

at 4.600 rpm for 45 minutes and the supernatants were collected. The pH of the 

spent medium was lowered to 2 by adding concentrated HCl. The acidified 

supernatant was then stored at 4 °C overnight to allow complete precipitation of 

the biosurfactant. The precipitate was centrifuged at 4.600 rpm for 20 minutes to 

obtain the crude biosurfactant as a pellet. This pellet was then resuspended in 

water and the pH was raised to 7.5 by adding 4M NaOH. The biosurfactant was 

stored at -80 °C for 14 hous and then placed in freeze-drier until complete 

lyophilisation. The lyophilised biosurfactant was solvent-extracted with methanol. 

The methanol-soluble fraction was allowed to dry at 60 °C.  Following methanol 

evaporation the biosurfactant was dissolved in 5 mL of distilled water, which was 

again lyophilized and stored at -20 °C for further studies (Das et al., 2008). Figure 

2.2 schematically illustrates the protocol used for biosurfactant extraction.  
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Figure 2.2: Schematic representation of lichenysin and surfactin extraction.  

 

2.7.1 Lichenysin detection  

 

Lichenysin and surfactin extracted from B. lichenifomis and B. subilis cultures, 

respectively, were detected through Reverse Phase High Performance Liquid 

Chromatography (RP-HPLC) using a C18 column (Dionex, Acclaim ® 120 (C18, 

5μm x 4.6mm x 150 mm), on a Dionex Ultimate-3000 HPLC instrument (Dionex, 

Dorset, UK). The lyophilized biosurfactant was re-dissolved in methanol to make a 

biosurfactant solution of 1 mg mL-1 which was passed through 0.22-m filter 

(Millipore, Watford, UK). A surfactin standard (Sigma) was used for lichenysin 

quantification and also to confirm the retention time. The mobile phase, consisting 
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of 80% (v/v) Acetonitrile (CH3CN, HPLC–far UV grade, Acros Organic, UK)  and 

20% (v/v) of a 38 mM Trifluoracetic acid (TFA, Fisher Scientific, UK) solution in 

water,  was added isocratically at a flow rate of 1.4 mL min-1 for 40 minutes. 

Lichenysin was  detected at 210 nm (Hsieh et al., 2004).  

 

2.7.2 Determination of lichenysin antimicrobial activity  

 

Agar disc diffusion test was carried out to investigate the antimicrobial activity of 

lichenysin against different test organisms. Diagnostic Sensitivity Test (DST) agar 

(Oxoid) plates were prepared by dissolving 40 g of the powder in 1 L distilled 

water and autoclaving at 121 °C for 15 minutes. Each plate was inoculated with a 

different test organism. Different biosurfactant dilutions (0 mg mL-1, 1mg mL-1, 2 

mg mL-1 and 4 mg mL-1) were prepared by dissolving lyophilised lichenysin in 

distilled water. The solutions were filter-sterilised using a 0.22 m syringe filter 

(Millipore). An aliquot (10 L) of each dilution was applied to Sterile Whatman 

(No.1) filter paper discs. The plates were incubated overnight at 37°C. The test 

was run in triplicate. 

 
 
2.8 Pheromone extraction  

 

For the isolation of the ComX pheromone, B. licheniformis NCIMB 8874 and B. 

subtilis cells were grown for 8 hours in 5 L shaken flasks containing 1 L 

competence medium. Figure 2.3 provides a schematic representation of 

pheromone extraction.  
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Figure 2.3: Diagram of the ComX pheromone extraction.  

 

The supernatant was collected by centrifugation for 10 minutes at 13000 rpm at     

4 °C and filtered through a 0.22 μm vacuum filtration unit (Millipore). The filtrate 

was then treated with 10% CH3CN and 0.1% TFA. A 0.4 g pre-packed C18 Sep-

Pak column (Waters, UK) was washed with 25 mL of 80% CH3CN and 0.1% TFA 

in water and equilibrated with 25 mL of an aqueous solution containing 20% 

CH3CN and 0.1% TFA. The filtrate (30 mL) was poured over the Sep-Pak column 

and allowed to flow by gravity at room temperature. The column was then washed 

with a step gradient of CH3CN (30, 60, 90% + 0.1% TFA in water). The eluant of 

the 60% ACN wash was promptly neutralised with aqueous ammonium (30%) and 

stored at -80 °C overnight prior to lyophilisation (Okada et al., 2005). The 
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lyophilised fraction was resuspended in 1-2 mL distilled water and store at -80 °C 

for future use. Pheromone activity was tested using the ―70 minutes assay‖ 

described in section 2.5.2.1.  

 

2.9 -PGA production 

  

Bacillus licheniformis single colonies were inoculated into 100 mL of LB medium 

and cultured on a rotary shaker at 200 rpm at 37°C for 16 hours. The seed culture 

was inoculated into the production medium with a starting OD value of 0.1-0.2. 

Samples (1 mL) were taken from the cultures at regular intervals and tested for     

-PGA production. For this, the cells were spun down at 13000 rpm for 5 minutes 

and  the polymer was extracted as indicated in Section 2.9.1 (Goto and Kunioka, 

1992).  

2.9.1 Extraction of -PGA 

 

Cells were harvested by centrifugation at 46000 rpm for 25 minutes at 4 °C. The 

supernatant containing the polymer was separated from the cell pellet and 

subjected to a second round of centrifugation at 4600 rpm for 25 minutes at 4 °C 

to remove any cell debris. The polymer was precipitated by adding methanol in a 

ratio of 1:4 to the culture supernatant. The precipitation mixture was incubated at  

4 °C for 24 hours and the polymer was collected by centrifugation at 4700 rpm for 

45 minutes and was subsequently lyophilized (Goto and Kunioka, 1992). 

2.9.2 -PGA analysis by Nuclear Magnetic Resonance (NMR) 

 

Crude -PGA extracted from culture supernatants was dissolved in d6-DMSO 

(Fisher Scientific, UK) for NMR analysis. An aliquot of the extracted polymer (20 

mg) was dissolved in 1 mL d6-DMSO and vortexed to resuspend. The solution was 

then passed through a membrane with a 3kDa cut-off to eliminate any impurity. 

Samples were analysed NMR spectroscopy at UCL (London).   
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2.10 Proteolytic activity  

 

Proteolytic activity in B. licheniformis NCIMB 8874 and B. subtilis LS27 culture 

supernatants was qualitatively evaluated by performing disc diffusion assay on 

agar plates containing M9 salts supplemented with skimmed milk (10%).  Sterile 

N°1 paper discs (Whatman) were positioned on the milk agar and inoculated with 

10 µL aliquots of corresponding bacterial supernatants. The digested substrate 

formed clear proteolytic zones surrounding the discs. These areas were measured 

after 25 hours incubation at 37° C (Miedzobrodzki et al., 2002). 
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Introduction to the Results Chapter  

 

This chapter presents the results of the investigation into the potential quorum 

sensing in Bacillus licheniformis NCIMB 8874. This organism was chosen for its 

industrial relevance for biosynthesis of products, such as proteases and 

antimicrobial compounds, and for its genetic similarity to Bacillus subtilis, where 

quorum sensing-related regulation of competence and sporulation has been well 

established.   

At the beginning, due to the lack of molecular and genetic information on quorum 

sensing process in Bacillus licheniformis NCIMB 8874, the work was designed 

initially on the use of B. subtilis reporter strains for determination of the production 

of potential signalling molecules. However, as, later on, the preliminary genome 

sequence of B. licheniformis NCIMB 8874 became available, the study was 

extended to the analysis of genes involved in cell-cell communication.  

The results obtained for this project can be summarized as follows:  

 Shaken flasks studies  

Studies on Bacillus licheniformis were mainly performed in 500 mL shaken flasks. 

Cultures of Bacillus subtilis wild type strain were used for comparative analysis. 

During the course of each fermentation, samples were collected for the 

measurement of biomass (OD at 600 nm) and pH. Cell-free supernatants collected 

from B. licheniformis cultures were assessed for the presence of putative 

signalling molecules by using genetically modified Bacillus subtilis strains as 

reporters. These results are presented in Section 3.1. A diagram of shaken flask 

studies carried out for investigation of signalling molecule production in                  

B. licheniformis is presented in Figure 3.0. 

Shaken flasks (500 mL) studies were also carried out for the investigation of         

-polyglutamic acid production in B. licheniformis NCIMB 8874. These results are 

presented under Section 3.3. Investigation on the production of extracellular 
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proteases was carried out qualitatively on agar plates and the results are 

presented in Section 3.4.  

  

Studies in 5 L shaken flasks were carried out for investigation of production of the 

antimicrobial biosurfactant lichenysin and for isolation of potential signalling 

molecules. Results are presented under Section 3.2.  

 

 Molecular studies 

Original studies on quorum sensing in B. licheniformis NCIMB 8874 at the 

molecular level were carried out by amplification of competence-regulating genes, 

namely comX and comP, of this organism using the annotated genome sequence 

of strain ATCC 14580 as a reference.  

Subsequently, and after the genome sequence of B. licheniformis NCIMB 8874 

became available (very recently through collaboration with the Centre of 

Biotechnology, University of Turku, Finland), bioinformatics studies were carried 

out to confirm the presence of cell-cell communication-related genes/proteins in 

this bacterium. Moreover, essential genes/proteins were analysed in comparison 

with other Bacilli to determine their conservation. Results obtained from these 

studies are presented under Section 3.3 and 3.4.  
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Figure 3.0: Overview of the experiments performed for the investigation of 

signalling molecules production in B. licheniformis. Studies on B. licheniformis 

production of potential quorum sensing molecules were performed at shaken 

flasks (500 mL) level in competence medium (on the left side of the diagram) 

Supernatants were collected from B. licheniformis cultures at high cell densities 

(late exponential phase) and their cell-free supernatants were collected and added 

to cultures of B. subtilis reporter strains JRL293 and LS27 at low cell densities.  

Effect of exogenous addition of spent medium on the growth and pH profiles of 

test cultures was investigated by collecting samples at specific time points for 

OD600 and pH determination. The results are presented under Section 3.1.1 of this 

thesis. On the right side of the diagram are represented the studies performed for 

determination of the production pattern of the potential signalling molecules in       

B. licheniformis in comparison with B. subtilis wild type strain. Cells were grown in 

competence medium until late exponential phase was reached. Samples were 

collected from these cultures at selected intervals and supernatants were 

harvested to assess their ability to induce -galactosidase activity in B. subtilis 

JRL293 and LS27.  
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 RESULTS 

 

3.1 Production of potential signalling molecules  

 

Studies on Bacillus licheniformis production of potential quorum sensing 

molecules were performed at shaken flask (500 mL) level in synthetic medium 

designed for induction of competence. Supernatants were collected from               

B. licheniformis cultures at high cell densities (late exponential phase) and their 

ability was investigated for the induction of -galactosidase activity in B. subtilis 

reporter strains carrying a srfA-lacZ fusion on their genome. B. subtilis reporter 

strains JRL293 and LS27 were grown in synthetic medium in presence (test 

cultures) and absence (control cultures) of spent medium collected from                

B licheniformis cultures. Effect of exogenous addition of spent medium on the 

growth and pH profiles of test cultures was investigated by collecting samples at 

specific time points for OD600 and pH determination. The results are presented 

under Section 3.1.1 of this thesis.  

For determination of the production pattern of the potential signalling molecules in             

B. licheniformis and comparison with B. subtilis wild type strain, cells were grown 

in synthetic medium until late exponential phase was reached. Samples were 

collected from these cultures at selected intervals and supernatants were 

harvested to assess their ability to induce -galactosidase activity in B. subtilis 

JRL293 and LS27. These results are presented under section 3.1.2 of this thesis.  

3.1.1 B. licheniformis and B. subtilis cultures in synthetic medium  

 

Shaken flask fermentations were performed by growing B. licheniformis and            

B. subtilis cells in synthetic medium containing glucose as the only carbon source. 

Both B. licheniformis and B. subtilis cells were grown for 10 hours and samples 

were taken at 1 hour intervals throughout the course of fermentation for 

determination of OD600 and pH.  
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3.1.1.1 Growth curve  

 

Growth curves for B. licheniformis and B. subtilis cultures in synthetic medium are 

displayed in Figure 3.1. No statistically significant difference was detected in the 

growth of the two organisms (p>0.05) whose specific growth rates were calculated 

to be 0.51 h -1 and 0.58 h -1 for B. licheniformis and B. subtilis, respectively. This 

implies that the average doubling time (td) for B. licheniformis cells grown in 

synthetic medium is 80 minutes, whereas B. subtilis cells duplicate every 71 

minutes. 

  

Figure 3.1: B. licheniformis (Blue) and B. subtilis (Red) growth curve during the 

course of shaken flask fermentation in competence medium. Cell density (OD600) 

was measured at 1hour intervals throughout the fermentation. Specific growth 

rates for both the organisms are displayed. The experiments were carried out in 

triplicates and the error bars indicate the standard deviation. 

  

0.51 h
-1

 

0.58 h
-1
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3.1.1.2 pH profile  

 

B. licheniformis and B. subtilis pH profiles obtained during the course of shaken 

flask fermentation in synthetic medium show no significant differences (p>0.05) 

between the two organisms. 

 

 

Figure 3.2: pH profiles for B. licheniformis and B. subtilis cultures in the course of 

shaken flask fermentation in competence medium. pH was measured at 1 hour 

intervals throughout the cell growth. The experiments were carried out in triplicates 

and the error bars indicate the standard deviation. 
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3.1.2 Effect of B. licheniformis cell-free supernatant on B. subtilis srfA-lacZ 
reporter strains 

 

Production of potential signalling molecules in B. licheniformis was investigated by 

studying the effect of the spent medium collected from B. licheniformis cultures in 

late exponential phase on B. subtilis reporter strains JRL293 and LS27, both 

carrying an srfA-lacZ fusion. The genotype of B. subtilis reporter strains used in 

this study is illustrated in Figure 3.3.  

Shaken flask fermentations of B. subtilis reporter strains were carried out by 

growing the cells in competence medium (Control) and competence medium 

diluted with equal volume of B. licheniformis spent medium (Test). Results 

obtained from studies on B. subtilis JRL293 and B. subtilis LS27 are presented in 

Section 3.1.2.1 and 3.1.2.2, respectively.  

 

 

 

Figure 3.3: Schematic representation of the genotype of B. subtilis reporter strains 

used in this study. A) B. subtilis JRL293; B) B. subtilis TMH281: C) B. subtilis 

LS27. All the strains carry a srfA-lacZ fusion inserted into the amyE gene 
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(encoding -amylase), which comprises the srfA promoter (-434 +10 region) and 

lacZ gene. 

 

3.1.2.1 Effect of B. licheniformis cell-free supernatant on B. subtilis JRL293 

 

Filter-sterilised spent medium collected from B. licheniformis cultures at high cell 

densities (~ 3.5 OD600) was diluted into an equal amount of fresh medium and 

used to cultivate B. subtilis JRL293 cultures at low cell densities (0.08-0.1 OD600). 

B. subtilis JRL293 cultures grown in competence medium without addition were 

used as a control. At 1 hour intervals samples from both control and test cultures 

were collected for OD600 and pH measurements and for determination of -

galactosidase activity.  

3.1.2.1.1 Growth curve and pH profile 

 

As indicated in Figure 3.4A, exogenous addition of spent medium to B. subtilis 

JRL293 cultures had a statistically significant effect on the cell growth (p<0.05) 

when compared to control cultures. More specifically, B. licheniformis spent 

medium appears to have an inhibitory effect on B. subtilis JRL293 culture viability. 

Addition of spent medium from B. subtilis wild type cultures at high cell densities 

did not produce any significant effect on B. subtilis JRL293 growth profile (data not 

shown).This implies that the growth inhibition was not caused by accumulation of 

toxic by-products in the culture broth, rather, the impairment in B. subtilis JRL293 

cell growth might be due to compounds (e.g. antimicrobials) present in                   

B. licheniformis spent medium. 

The pH profiles for B. subtilis JRL293 test and control cultures are shown in Figure 

3.4B. No significant difference (p>0.05) could be detected between the pH profiles 

of cultures grown in the absence (Control) and in the presence (Test) of spent 

medium  from B. licheniformis cultures in late exponential phase. 
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Figure 3.4: (A) Growth curves and (B) pH profiles for B. subtilis JRL293 cultures 

grown in both competence medium (Control) and competence medium 

supplemented with spent medium (50% v/v) collected from B. licheniformis 

cultures at high cell density (Test) for 7 hours. Samples were collected at 1 hour 

intervals for OD600 and pH measurement. The experiment was performed in 

triplicates and error bars show the standard deviation.  

 

3.1.2.1.2 Induction of -galactosidase activity  

 

The growth-inhibiting effect caused by the exogenous addition of B. licheniformis 

spent medium to B. subtilis JRL293 cultures (Figure 3.4A) was accompanied by a 

statistically significant increase (p<0.05) in -galactosidase activity in the test 

cultures with respect to control cultures. As Figure 3.5 shows, for the first 2 hours 

after induction of the cells with spent medium no significant difference could be 

detected between -galactosidase activities produced by the test and the control 

cultures. The control cultures showed a constant enhancement in enzyme activity 

A A B 
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throughout the fermentation in a cell density-dependant fashion. In the test 

cultures, however, -galactosidase production increased steeply up to 5 hours 

after induction, with the highest 7.9-fold increase compared to the control cultures 

A decline in activity was detected after 5 hours (Figure 3.5).  

 

Figure 3.5: -galactosidase activity in B. subtilis JRL293 cells grown in absence 

(Control) and in presence of 50% (v/v) spent medium from B. licheniformis 

cultures at high cell density (Test). Time of exogenous spent medium addition is 

indicated with a black arrow. Standard deviation of triplicates is represented by 

error bars.  

 

3.1.2.2 Effect of B. licheniformis lyophilised cell-free supernatant on B. subtilis 
JRL293 

 

Spent medium collected from B. licheniformis cultures at high cell densities was 

lyophilised and concentrated 25-fold prior addition to B. subtilis JRL293 cultures. 

Reporter strain cultures at 0.1 OD600 were supplemented with 1.25% (w/v)                    

B. licheniformis spent medium. The amount of lyophilised spent medium added to 

the test cultures was calculated to have the same composition of 50% non-

      Addition of 
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concentrated spent medium. Samples collected at 1 hour intervals from both 

control and test cultures were assessed for changes in OD600, pH and -

galactosidase activity.   

3.1.2.2.1 Growth curve and pH profile  

 

Figure 3.6A illustrates the growth curve for B. subtilis JRL293 control and test 

cultures. A decrease, albeit not significant (p>0.05), was detected in the growth 

rate of B. subtilis JRL293 test cultures, as compared to control cultures, upon 

addition of exogenous spent medium. The pH profile of B. subtilis JRL293 control 

and the test cultures is shown in Figure 3.6B. Addition of B. licheniformis 

lyophilised spent medium had no significant effect on the pH profile as no 

significant differences (p > 0.05) were observed between the control and the test 

cultures.  

 

Figure 3.6: (A) Growth curve and (B) pH profile for B. subtilis JRL293 cultures 

grown in competence medium (Control) and in competence medium 

A B 
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supplemented with lyophilised spent medium (1.25% w/v) from B. licheniformis 

cultures at high cell density (Test). Samples were collected at 1 hour intervals for 

OD600 and pH determination. Experiments were performed in triplicates and the 

error bars represent the standard deviation.  

 

3.1.2.2.2 Induction of -galactosidase activity  

 

-galactosidase activity detected from samples collected throughout growth of          

B. subtilis JRL293 control and test cultures is illustrated in Figure 3.7. Addition of          

B. licheniformis lyophilised supernatant caused a drastic increase (p<0.05) in                

-galactosidase activity in test cultures when compared to the control cultures. 

Enzyme activity in control cultures followed the same trend showed previously 

(Figure 3.5), reaching a peak of 400 MU L-1 after 6 hours of growth. Cultures 

supplemented with exogenous spent medium showed highest -galactosidase 

activity at 1 hour after induction, corresponding to the highest 2.25-fold increase 

with respect to the control cultures.  
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Figure 3.7: -galactosidase activity in B. subtilis JRL293 cells grown in absence 

(Control) and in presence of 1.25% (w/v) spent medium from B. licheniformis 

cultures at high cell density (Test). Time of exogenous spent medium addition is 

indicated with a black arrow. Error bars indicate the standard deviation of the 

triplicate. 

 

3.1.2.3 Effect of B. licheniformis cell-free supernatant on B. subtilis LS27 

 

B. subtilis LS27 cells at a starting cell density of 0.16 OD600 were grown in 

competence medium supplemented with filter-sterilised spent medium collected 

from B. licheniformis cultures at high cell densities at 50% v/v (test cultures). 

Control cultures were prepared by growing B. subtilis LS27 cells in competence 

medium with no addition. Samples from both control and test cultures were 
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collected at 1 hour intervals during the course of fermentation for OD600 and pH 

measurements and for evaluation of -galactosidase activity.  

 

3.1.2.3.1 Growth curve and pH profile  

 

Figure 3.8A depicts the growth curve for B. subtilis LS27 control and test cultures. 

Exogenous addition of B. licheniformis supernatant caused a statistically 

significant reduction (p<0.05) in the growth of B. subtilis LS27 test cultures as 

compared to  control cultures in the first 3 hours of fermentation. However, at 4 

hours after induction, cell growth resumed at a growth rate comparable to control 

cultures. The initial delay in the growth of B. subtilis LS27 test cultures by the 

addition of B. licheniformis spent medium resembles the effect previously 

described for B. subtilis JRL293 (Figure 3.4). The pH profile for B. subtilis LS27 

test and control cultures is illustrated in Figure 3.8B. Test cultures, supplemented 

with B. licheniformis supernatant, showed no significant difference (p>0.05) in their 

pH pattern as compared with the control culture (no supernatant added).  
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Figure 3.8: (A) Growth curve and (B) pH pattern for B. subtilis LS27 cultures 

cultivated in competence medium in the presence (Test) and absence of spent 

medium (50% v/v) collected from B. licheniformis cells at high cell density 

(Control) for 8 hours. Samples were collected at 1 hour intervals for OD600 and pH 

measurements. Experiments were performed in triplicates and the error bars 

represent the standard deviation. 

3.1.2.3.2 Induction of -galactosidase activity  

 

Figure 3.9 shows the -galactosidase activity measured in samples collected 

throughout growth of B. subtilis LS27 control and test cultures. When test cultures 

supplemented with 50% (v/v) B. licheniformis spent medium were compared to the 

control cultures, a statistically significant (p<0.05) increase in -galactosidase 

activity was determined. Enhancement in -galactosidase in test cultures started 

at 1 hour after induction, reaching highest -galactosidase activity at 6 hours after 

A 
B A B 
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induction. The highest, 5.1-fold, increase in the enzyme activity with respect to 

control cultures was also registered after 5 hours of induction (Figure 3.9).  

  

Figure 3.9: -galactosidase activity in B. subtilis LS27 cells grown in absence 

(Control) and in presence of 50% (v/v) spent medium from B. licheniformis 

cultures at high cell density (Test). Time of exogenous spent medium addition is 

indicated with a black arrow. Error bars represent the standard deviation of the 

triplicate.  

 

3.1.2.4 Effect of B. licheniformis lyophilised cell-free supernatant on B. subtilis 
LS27 

 

Cell-free supernatant collected from B. licheniformis cells at high cell density was 

lyophilised and concentrated 25-fold prior to addition to B. subtilis LS27 cultures 

for investigation on the effects on growth, pH pattern and -galactosidase activity.         

B. subtilis LS27 at a starting cell density of 0.15 OD600 were cultivated in 

competence medium in absence (Control) and presence of 1.25% (w/v) B. 

licheniformis lyophilised spent medium (Test). OD600, pH and -galactosidase 
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activity were measured by taking samples from both control and test cultures at 1 

hour intervals during the course of 8 hours growth.  

3.1.2.4.1 Growth curve and pH profile 

 

The growth curves for B. subtilis LS27 control and test cultures is illustrated in 

Figure 3.1A. Exogenous addition of 1.25% (w/v) B. licheniformis lyophilised spent 

medium to the test cultures appears to have a negligible effect on B. subtilis LS27 

growth (p>0.05), as compared to the control. Figure 3.10B shows the pH profile for 

B. subtilis LS27 test and control cultures. The difference in the pH pattern of test 

cultures, grown in presence of B. licheniformis lyophilised cell-free supernatant, 

and control culture (no supernatant added) was not significant  (p>0.05).   

 

Figure 3.10: (A) Growth curve and (B) pH profile for B. subtilis LS27 cultures 

cultivated in competence medium in the presence (Test) and absence of spent 

medium (1.25% w/v) collected from B. licheniformis cells at high cell density 

(Control) for 8 hours. Samples were collected at 1 hour intervals for determination 

A B 
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of OD600 and pH. Experiments were performed in triplicates and the error bars 

represent the standard deviation. 

 

3.1.2.4.2 Induction of -galactosidase activity  

 

The effect generated by the addition of B. licheniformis lyophilised spent medium 

on the -galactosidase activity of B. subtilis LS27 test cultures in comparison with 

control cultures is illustrated in Figure 3.11.  A statistically substantial (p<0.05) 

difference in -galactosidase activity could be observed between test and control 

cultures. In cultures supplemented with B. licheniformis lyophilised supernatant the 

enzyme activity could be seen increasing from 1 hour after induction and peaking 

at 5 hours, when it registered the highest, 5.9-fold, increase as compared to 

control cultures (Figure 3.14). After 5 hours induction, -galactosidase activity in 

test cultures started declining to reach values comparable to the control at the end 

of the growth (8 hours).  
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Figure 3.11: -galactosidase activity in B. subtilis LS27 cells grown in the absence 

(Control) and in the presence of 1.25% (w/v) conditioned medium from   B. 

licheniformis cultures at high cell density (Test). Time of exogenous spent medium 

addition is indicated with a black arrow. Error bars represent the standard 

deviation of triplicates.  

 

3.1.3 Determination of production pattern for potential signalling molecules in               
B. licheniformis   

 

To determine the production/secretion pattern of potential signalling molecules in          

B. licheniformis cultures, shaken flask fermentations (500 mL) in competence 

medium for competence development were set up. Single colonies of B. 

licheniformis and B. subtilis wild type strain were used to separately inoculate 100 

mL competence medium, which was then incubated on a rotary shaker for 16 

hours at 37 °C and 200 rpm. These pre-cultures,  whose OD600 was determined to 

be ranging from 3-4, were diluted in 100 mL fresh medium to attain cultures with 

starting OD600 of 0.08-0.1. The cultures were then grown at 37 °C for 8-10 hours 

on a rotary shaker with a speed of 200 rpm. Samples were collected at 1 hour 
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intervals for OD600 measurement and centrifuged for collection of the cell-free 

supernatants. All the spent media collected were assayed for pheromone activity, 

by measuring the -galactosidase activity induced in B. subtilis reporter strains 

JRL293 and LS27. In a 24-well plate, 0.25 mL of sample supernatant was mixed 

with 0.25 mL of reporter strain cells at low cell densities and incubated on a rotary 

shaker at 200 rpm for 70 minutes at 37 °C. The effect of added spent medium on 

srfA expression in B. subtilis reporter strain cells in one doubling time was then 

determined by -galactosidase assay. Results are presented in Section 3.1.3.1 

and 3.1.3.2.  

 

3.1.3.1 Signalling molecule production pattern investigated with B. subtilis JRL293 

 

Determination of pheromone production in B. licheniformis cultures was carried 

out using B. subtilis wild type strain as a positive control. For this study 

supernatants collected from B. licheniformis and B. subtilis cultures at different cell 

densities were used to induce -galactosidase activity in B. subtilis strain JRL293. 

B. subtilis JLR293 cultures used for this assay were at 0.05-0.1 OD600. Figure 3.12 

shows the pattern of production of potential signalling molecules in B. licheniformis 

cultures compared to the pheromone activity profile of B. subtilis. In both cases 

production of signalling molecules follows the growth profile, thus confirming a cell 

density-dependent regulation. Moreover, the -galactosidase activity detected 

when inducing B. subtilis JRL293 cells at low cell densities with cell-free 

supernatants from B. licheniformis and B. subtilis wild type cultures was in the 

same range.   
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Figure 3.12:  B. licheniformis (A) and B. subtilis wild type strain (B) growth curve 

(Red) and -galactosidase activity (Blue). B. licheniformis and B. subtilis 

supernatants were collected at specific intervals throughout the growth and 

assayed for their ability to induce -galactosidase activity in B. subtilis JRL293 

cultures at low cell density. The experiments were performed in triplicates and the 

error bars represent the standard deviation.  

 

3.1.3.2 Signalling molecule production pattern investigated with B. subtilis LS27 

 

To confirm previous results and to rule out any possible interference due to ComX 

endogenous production from B. subtilis JRL293 cells, the experiment was 

performed using B. subtilis LS27, carrying a comX knock out, as a reporter.          

B. subtilis LS27 cultures used for this assay were at 0.1-0.2 OD600. The pattern of 

production of potential signalling molecules in B. licheniformis cultures, as 

compared to B. subtilis wild type, is shown in Figure 3.13. The profile for -

galactosidase activity induced in B. subtilis LS27 cultures is consistent with the 

A B 
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one generated by B. subtilis JRL293, although the enzyme specific activity is ~10 

times lower.  

 

Figure 3.13: B. licheniformis (A) and B. subtilis wild type strain (B) growth curves 

(Green) and -galactosidase activities (Purple). B. licheniformis and B. subtilis 

supernatants were collected at specific intervals throughout the growth and 

assayed for their ability to induce -galactosidase activity in B. subtilis JRL293 

cultures at low cell density. The experiments were carried out in triplicates and the 

error bars represent the standard deviation.  

 

3.1.4 Isolation of putative signalling molecules from B. licheniformis cultures  

 

Shaken flask fermentation (5 L) were carried out for isolation of potential signalling 

molecules from B. licheniformis cultures at high cell densities, using the ComX-

producing B. subtilis wild type strain cultures as a control. In 5 L Erlenmeyer 

flasks, 900 mL of chemically defined medium were inoculated with 100 mL 

A B 
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cultures at 1 OD600 obtained by inoculating B. licheniformis and B. subtilis single 

colonies in chemically defined medium and incubating them at 37°C for 12 hours 

on a rotary shaker at 200 rpm. The resulting cultures were cultivated for 8 hours at 

37°C on a rotary shaker with a speed of 150 rpm until they reached an OD600 of 

3.5 and 4.5 for B. licheniformis and B. subtilis wild type strain, respectively. 

Supernatants harvested from these cultures were treated with 10% CH3CN and 

0.1% TFA prior to pheromone isolation by reverse-phase chromatography. The 

putative pheromone was eluted with a CH3CN step gradient of 30, 60 and 90%.  

All the collected fractions were concentrated X1000 and assayed for pheromone 

activity by incubating them with B. subtilis LS27 cells at low cell densities. 

Amongst the fraction tested, only the 30% CH3CN eluents from both                     

B. licheniformis and B. subtilis wild type strain (Figure 3.14,) showed pheromone 

activity (ability to induce -galactosidase activity in the reporter strain), whereas 

the fraction eluted with 60% CH3CN, corresponding to the elution of the ComX 

pheromone, failed to induce -galactosidase activity in the reporter strain.  
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Figure 3.14: -galactosidase activity in B. subtilis LS27 cultures at low cell 

densities induced by addition of chromatography fractions collected from                   

B. licheniformis (Red) and B. subtilis (Blue).  

 

 

3.2 Biosurfactants production in B. licheniformis  

 

Studies on lichenysin production in B. licheniformis NCIMB 8874 were carried out 

in shaken flask fermentations (5 L) for biosurfactant extraction and determination 

of its microbial activity. Shaken flask fermentations (500 mL) were also set up to 

investigate the effect of B. licheniformis NCIMB 8874 and B. subtilis wild type 

strain supernatants on lichenysin production. The results are presented in Section 

3.2.1. 

3.2.1 Quantitative analysis of biosurfactants 

 

Biosurfactants (lichenysin from B. licheniformis NCIMB 8874 and surfactin from     

B. subtilis wild type) production was investigated under two different growth 

conditions by cultivating the producing organisms in either complex or synthetic 

media (Sections 3.2.1.1 and 3.2.2.2). After biosurfactant extraction from culture 

supernatants, quantitative analysis was performed by Reverse Phase-High 

Performance Liquid Chromatography (RP-HPLC) using commercially available 

surfactin as a standard. Surfactin chromatogram is characterised by six peaks, 

corresponding to different biosurfactant isoforms (Wei and Chu, 2002), as 

illustrated in Figure 3.15. 
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Figure 3.15:  HPLC chromatogram of a 0.1 mg mL-1 surfactin standard sample. Red arrows indicate the 

chromatographic peaks representing the six isoforms of surfactin (A, B, C, D, E, F). The specific retention time for 

each peak is reported on the x-axis.  
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3.2.1 Complex medium  

 

Single colonies of B. licheniformis NCIMB 8874 and the wild type B. subtilis were 

used to inoculate 100 mL YPD medium. The flasks were incubated at 37°C in an 

orbital shaker at a speed of 200 rpm with 2 cm throw for 16 hours. These cultures 

were used to inoculate 900 mL of YPD medium in 5 L flasks. The medium was 

then incubated at 37 °C at 150 rpm for 26 hours. At the end of the growth, 

supernatants were harvested by centrifugation and processed for biosurfactant 

extraction. HPLC analysis of both lichenysin and surfactin resulted in the 

identification of the isoforms: A; B; C; D and E (Figure 3.16). Isoform F could not 

be detected under the conditions analysed. Table 3.1 reports the concentrations 

calculated for each of the five isoforms detected for lichenysin and surfactin.  

In B. licheniformis cultures cultivated in complex medium isoform A is the most 

abundant species, whereas B. subtilis produces surfactin mainly in the isoform D. 

Surfactin production showed to be significantly (p<0.05) higher than lichenysin, 

regardless of the isoform taken into consideration. In complex medium total 

surfactin concentration was 11.55-fold higher than lichenysin concentration.  

Table 3.1: Lichenysin and surfactin production in B. licheniformis NCIMB 8874 
and B. subtilis wild type strain in YPD medium.  

 

B. licheniformis B. subtilis 

 

Lichenysin 

concentration 

(mg L-1) 

Surfactin 

concentration 

(mg L-1) 

Isoform A    63.32   177.81 

Isoform B    29.28   469.63 

Isoform C      7.77   169.06 

Isoform D    37.52   672.71 

Isoform E    16.59   296.23 

Total  154.50 1785.45 
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Figure 3.16:  HPLC chromatogram of a 1 mg mL-1 surfactin (A) and lichenysin (B) 

samples exctracted from B. subtilis and B. licheniformis cultures, respectively, 

grown in YPD medium for 26 hours. Red arrows indicate the chromatographic 

A 

B 

Isoform A  Isoform B  Isoform C  

Isoform D 

Isoform E  

Isoform A  
Isoform B  

Isoform C  

Isoform D 
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peaks representing the six isoforms of surfactin (A, B, C, D, E). The specific 

retention time for each peak is reported on the x-axis. 

3.2.2 Synthetic medium  

 

Single colonies of B. licheniformis and B. subtilis were used to inoculate 100 mL 

competence medium. The inoculated flasks were incubated at 37 °C in an orbital 

shaker at 200 rpm with 2 cm throw for 16 hours. These pre-cultures were used to 

inoculate 5 L shaken flasks containing 900 mL competence medium, subsequently 

incubated at 37 °C at 150 rpm for 13 hours. Biosurfactant extraction was carried 

out on cell-free supernatants collected after fermentation. Only three isoforms (A; 

B and C) were detected by HPLC analysis of the extracted biosurfactants (Figure 

3,.17). The concentrations estimated for each of the three isoforms detected for 

lichenysin and surfactin are listed in Table 3.2.  

Lichenysin was produced predominantly in the isoform A by B. licheniformis 

cultures grown in competence medium, whilst the isoform B was found to be the 

main component of surfactin in cultures of B. subtilis. Total surfactin concentration 

produced by B. subtilis wild type strain cultures in competence medium is 10-fold 

higher than the lichenysin detected in B. licheniformis supernatants.  

Table 3.2: Lichenysin and surfactin production in B. licheniformis NCIMB 8874 
and B. subtilis wild type in competence medium.  

 

B. licheniformis B. subtilis 

 

Lichenysin 

concentration  

(mg L-1) 

Surfactin 

concentration 

(mg L-1) 

Isoform A 33.12  193.09 

Isoform B   2.78  325.11 

Isoform C 18.63    17.34 

Total 54.53  535.54 
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Figure 3.17:  HPLC chromatogram of a 1 mg mL-1 surfactin (A) and lichenysin (B) 

samples exctracted from B. subtilis and B. licheniformis cultures, respectively, 

grown in competence medium for 13 hours. Red arrows indicate the 

chromatographic peaks representing the six isoforms of surfactin (A, B, C). The 

specific retention time for each peak is reported on the x-axis.  

 
Table 3.3: Comparison between lichenysin and surfactin yields (based on Cell Dry 
Weight, CDW) in both synthetic and complex media.  

 
Lichenysin Yield Surfactin Yield 

Synthetic medium 0.05 0.38 

Complex medium 0.13 1.19 

 

When comparing lichenysin and surfactin yields (based on CDW) in both synthetic 

and complex media, the production of surfactin in B. subtilis wild type cultures at 

high cell densities was 7- and 9-fold higher than lichenysin produced by                

B. licheniformis in synthetic and complex medium, respectively.  

 

3.2.3 Susceptibility assay  

 

Lichenysin extracted from B. licheniformis cultures in complex and synthetic media 

was tested for antimicrobial activity against other bacterial species. Bacillus 

subtilis and Bacillus smithii were chosen as Gram positive targets, whereas 

antimicrobial activity against Gram negative bacteria was assayed using 

Escherichia coli, Pseudomonas aeruginosa and Chromobacterium violaceum.  

Lyophilised lichenysin was dissolved in distilled water to prepare solutions at 

different concentrations. Bacterial species to be tested were evenly streaked on 

DST agar plates to prepare a bacterial lawn and 10 L of lichenysin solution was 

administered to disc diffusion discs (3 mm) placed on the inoculated agar. The 

inhibition zones were observed after overnight incubation at 37 °C. Results 
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obtained with lichenysin extracted from B. licheniformis cultures grown in complex 

and synthetic media are listed in Table 3.4 and 3.5, respectively.  

 
Table 3.4: Antimicrobial activity of lichenysin extracted from B. licheniformis 
cultures in complex medium assayed by disc diffusion test a. 

Organism Lichenysin concentration 

 
0 mg mL

-1
 1 mg mL

-1
 2 mg mL

-1
 4 mg mL

-1
 

B. subtilis  - + ++ ++ 

E. coli  - - + ++ 

P. aeruginosa  - - - - 

C. violaceum  - - - - 

B. smithii - + ++ ++ 

    a 
 Maximum diameter of halos: -, < 5 mm; + > 6 to 7 mm; ++, > 8 to 9 mm. 

 

Table 3.5: Antimicrobial activity of lichenysin extracted from B. licheniformis 
cultures in chemically defined medium assayed by disc diffusion test b. 

Organism Lichenysin concentration 

 
0 mg mL

-1
 1 mg mL

-1
 2 mg mL

-1
 4 mg mL

-1
 

B. subtilis - - - - 

E. coli - - + + 

P. aeruginosa - + ++ +++ 

C. violaceum - - - - 

B. smithii - - - - 

b
 Maximum diameter of halos: -, < 5 mm; + > 6 to 7 mm; ++, > 8 to 9 mm; +++,> 10 to 11 

mm. 
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3.2.4 Effect of endogenous and exogenous spent medium on lichenysin 
production 

 

The regulation of surfactin production in B. subtilis is a well established quorum 

sensing-dependent phenomenon and exogenous addition of signalling-molecule-

containing spent medium has been proven to increase expression of the srfA 

operon (Magnuson et al., 1994). To determine whether lichenysin production 

might be similarly regulated in B. licheniformis NCIMB 8874 cells, a set of shaken 

fermentations was carried out by cultivating B. licheniformis NCIMB 8874 cultures 

in both complex and synthetic medium in the absence (control cultures) and 

presence of either B. subtilis wild type (Test 1) or B. licheniformis NCIMB 8874 

(Test 2) cell-free supernatant. For preparation of the supernatants to be added B. 

subtilis wild type and B. licheniformis NCIMB 8874 cultures were grown in 

synthetic medium for induction of competence development until they reached the 

late exponential phase. Cells were pelleted by centrifugation and discarded and 

the filter-sterilised supernatants were lyophilised and subsequently added to          

B. licheniformis NCIMB 8874 cultures at low cell densities (0.1-0.2 OD600) at 

1.25% (w/v).  At the end of B. licheniformis NCIMB 8874 fermentations using 

complex and synthetic medium (Section 2.7), lichenysin was extracted from both 

test and control cultures and quantified by RP-HPLC. No statistically significant 

differences (p>0.05) could be detected in lichenysin production between control 

and either test culture supplemented with B. licheniformis NCIMB 8874 or the wild 

type B. subtilis lyophilised supernatant (Figure 3.18).  
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Figure 3.18: Lichenysin concentration detected in 1L cultures of  B. licheniformis 

NCIMB 8874 grown in complex (Blue) and synthetic (Red) medium in the absence 

(control) and presence of 1.25% lyophilised spent medium obtained from either      

B subtilis wild type (Test 1) or B. licheniformis NCIMB 8874 (Test 2) at high cell 

densities. Experiments were carried out in triplicates and the error bars represent 

the standard error of the mean.  
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3.3 -PGA production  

 

Studies on -polyglutamic acid production in B. licheniformis NCIMB 8874 were 

carried out in shaken flask fermentations (500 mL) for- PGA extraction. Shaken 

flask fermentations (500 mL) were also set up to investigate the effect of the 

addition of B. licheniformis NCIMB 8874 and the wild type B. subtilis strain 

supernatants on -PGA production in B. licheniformis NCIMB 8874. The results 

are presented in Section 3.3.1. 

3.3.1 -PGA production in B. licheniformis NCIMB 8874  

 

For determination of -PGA production in B. licheniformis, single colonies were 

inoculated into 100 mL of LB medium and incubated overnight at 200 rpm and 

37°C.  These cultures were then diluted in 100 mL PGA production medium to 0.1-

0.2 OD600 and cultivated at 37°C for 45 hours on a rotary shaker at 200 rpm. The 

cultures were checked at regular intervals for biomass and -PGA production. 

 In order to determine the effect of potential signalling molecules on the 

biopolymer production, the cultures were treated at 0 hours, separately, with 

1.25% (w/v) lyophilised supernatants collected from the wild type B. subtilis (Test 

1) and B. licheniformis NCIMB 8874 (Test 2) cultures at high cell density. Cultures 

with no addition were used as controls. Prior to the additions, the supernatants 

were ultrafiltered through a membrane with a 3kDa cut-off and the filtrate was 

collected and lyophilised.   

 

3.3.1.1 Growth curve  

 

B. licheniformis NCIMB 8874 cultures grown in PGA production medium in the 

absence (Control) and presence of 1.25% (w/v) lyophilised wild type B. subtilis 

(Test 1)  and B. licheniformis NCIMB 8874 (Test 2) spent medium, were sampled 
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at regular intervals (0; 5; 20; 25;30 and 45 hours) for determination of OD600 and 

PGA production.  

The growth curves of B. licheniformis NCIMB 8874 control and test cultures are 

illustrated in Figure 3.19. Exogenous addition of 1.25% (w/v) lyophilised spent 

medium from either B. licheniformis NCIMB 8874 or B. subtilis wild type to              

B. licheniformis NCIMB 8874 test cultures has a negligible effect on cell growth 

(p>0.05), as compared to the control.  

 

Figure 3.19: B. licheniformis NCIMB 8874 growth curve in PGA production 

medium in presence of B. subtilis (Test 1) and B. licheniformis NCIMB 8874 (Test 

2) lyophilised spent media at 1.25% (w/v). The spent media were passed through 

a 3 kDa membrane prior to lyophilisation. Cultures grown without any addition 

were used as control. Samples were collected at specific times for OD600 

determination. The experiments were performed in triplicates and the error bars 

represent the standard deviation.  
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3.3.1.2 Effect of cell-free supernatant on -PGA production  

 

To evaluate PGA production in the course of fermentation of B. licheniformis 

NCIMB 8874 control and test cultures supplemented with 1.25% (w/v) lyophilised 

spent media from B. subtilis wild type (Test 1) and B. licheniformis NCIMB 8874 

(Test 2), crude -PGA was extracted from 1 mL supernatants collected at regular 

intervals (0; 5; 20; 25; 30 and 45 hours) throughout the growth. -PGA was also 

extracted from control cultures grown without any addition.  

PGA production pattern for B. licheniformis NCIMB 8874 control and test 

cultures is shown in Figure 3.20. PGA production in the control cultures 

increases during the initial 20 hours of growth, reaching highest concentration of 

19 g L-1 at 25 hours. This is followed by a steady decrease until the end of 

fermentation at 45 hours. No significant differences (p>0.05) could be detected in 

-PGA production from the cultures supplemented with 1.25% (w/v) lyophilised 

spent medium from B. licheniformis NCIMB 8874 cultures at high cell density (Test 

2). However, an enhancement in PGA production was detected as a peak after 

20 hours growth, with -PGA concentration reaching 18.6 g L-1, 1.5-fold higher 

than the control (13 g L-1).  Similarly, cultures grown in presence of 1.25% (w/v) 

lyophilised spent medium from B. subtilis wild type (Test 2) show an 2.3-fold 

increase corresponding to 27.5 g L-1 
PGA,  in the production of biopolymer at 20 

hours after induction, as compared to control cultures. However, the effect of 

exogenous addition of spent medium appears to be transient in both Test 1 and 

Test 2 cultures, as PGA production after 25 hours does not show significant 

change (p>0.05) when compared to the control.  
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Figure 3.20: PGA production in B. licheniformis NCIMB 8874 cultures grown in 

absence (Control) and presence of the wild type B. subtilis (Test 1) and                      

B. licheniformis NCIMB 8874 (Test 2) lyophilised spent media at 1.25% (w/v). 

Crude PGA was extracted from 1 mL supernatants collected at regular intervals 

throughout the growth. The experiments were performed in triplicates and the 

error bars represent the standard deviation.  

 

3.3.1.3 NMR analysis of PGA extracted from B. licheniformis NCIMB 8874 and 
B. subtilis LS27 

 

In order to confirm the chemical composition of the crude polymer extracted from 

B. licheniformis NCIMB 8874 supernatants, NMR spectroscopy was performed on 

methanol-precipitated -PGA obtained from 100 mL supernatants collected after 

45 hour fermentation. The extract obtained from supernatants of B. licheniformis 

test cultures at 45 hours growth in PGA production medium is illustrated in Figure 

3.21.  

Addition of spent  

medium  



 

Page | 126  

 

 

Figure 3.21: -PGA extracted from B. licheniformis NCIMB 8874 cultures after 45 

hours cultivation in PGA production medium.  

 

Figure 3.22 shows the 13C spectrum of PGA extracted from B. licheniformis 

NCIMB 8874 supernatants. The spectrum shown corresponds to biopolymer 

extracted from the control cultures, as no difference in the number or composition 

of the peaks could be detected between the control and test cultures. As pure 

PGA was not available to use as a standard for NMR analysis, assignation of 

the chemical shifts for each carbon atom was attempted by comparing with the 

NMR spectrum presented by Birrer and co-workers (1994).  
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Figures 3.22: 13C spectrum of A) HCl-precipitated -PGA from B. licheniformis 

9945A (Birrer at al., 1994) and B) MetOH-precipitated -PGA from B. licheniformis 

NCIMB 8874 analysed with NMR spectroscopy. Samples (20 mg) were dissolved 

in d6-DMSO. The chemical shift of the peaks is indicated in parts per million (ppm). 
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3.3.1.4 Effect of supernatant addition on culture morphology  

 

Figure 3.23 shows the effect of supernatant additions (as mentioned earlier) on B. 

licheniformis NCIMB 8874 culture morphology after 20 hours in the cultures grown 

in PGA production medium.  

Both test cultures (1 and 2) showed an increase in the red pigmentation following 

the addition of the supernatants as compared to the control cultures. The increase 

in the production of the red pigment caused by exogenous addition of lyophilised 

supernatant from the wild type B. subtilis cultures appears to be greater than the 

one observed for cultures supplemented with B. licheniformis NCIMB 8874 

supernatant. The increase in pigmentation was observed until the end of the 

growth at 45 hours.  

 
Figure 3.23: Effect of the addition of 1.25% (w/v) lyophilised supernatants 

collected from B. licheniformis NCIMB 8874 (Test 2) and B. subtilis wild type    

(Test 1) on the morphology of B. licheniformis NCIMB 8874 cultures in PGA 

production medium after 20 hours growth. Cultures without any addition were used 

as a control.  
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3.4 Effect of exogenous addition of spent medium on exoprotease 
production 

 

Proteolytic activity in B. licheniformis NCIMB 8874 culture supernatants was 

qualitatively and sub-quantitatively evaluated by performing disc diffusion assay 

on agar plates containing skimmed milk (10%). The effect of exogenous addition 

of 1.25% (w/v) lyophilised supernatants collected from B. licheniformis NCIMB 

8874 (Test 2) and B. subtilis wild type (Test 1) cultures on protease production in 

cultures of B. licheniformis NCIMB 8874 was also evaluated. Single colonies of    

B. licheniformis NCIMB 8874 were inoculated into 100 ml of LB medium and 

incubated overnight at 200 rpm and 37°C. These pre-cultures were then used to 

inoculate 100 mL LB and cultivated at 37°C for 12 hours on a rotary shaker at 200 

rpm. Cultures at low cell densities (0.1 OD600) at 0 hours were supplemented with 

1.25% (w/v) lyophilised supernatants collected from B. licheniformis NCIMB 8874 

(Test 2) and B. subtilis wild type (Test 1) cultures at high cell densities at 0 hours. 

Non treated cultures were used as a control. Samples (1 mL) were collected at 

regular intervals (2 hours) throughout the growth for supernatants collection.  An 

aliquot (10 L) of pre-filter-sterilised cell-free supernatants from each sample was 

dropped on paper discs positioned on M9 agar plates containing skimmed milk. 

After 25 hours incubation at 37 °C the halos generated by the supernatant 

proteolytic activities were measured and compared. The exogenous addition of 

1.25% (w/v) lyophilised supernatants collected from B. licheniformis NCIMB 8874 

(Test 2) and B. subtilis wild type (Test 1) cultures at high cell densities to lag 

phase cultures of B. licheniformis NCIMB 8874 did not result in any significant 

change in exoproteolytic activity as compared to the controls (data not shown).  

 
3.5 Genetic analysis  

 

Molecular studies for the investigation of potential quorum sensing processes in    

B. licheniformis NCIMB 8874 were mainly focused on two genes of the 
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competence regulating comQXPA locus: i) comP, encoding the histidine kinase 

responsible for recognition of the ComX pheromone and downstream transmission 

of the signal, and ii) comX, coding for a polypeptide that undergoes maturation to 

become the ComX pheromone. Primers for PCR amplification were designed for 

both the genes by using B. licheniformis ATCC 14580 genome sequence as a 

template. Results are presented in section 3.5.1 and 3.5.2    

 

3.5.1 PCR amplification of overlapping comP regions   

 

Sequence alignment performed between the comQXPA cluster of B. licheniformis 

ATCC 14580 and B. subtilis 168 have highlighted that comP gene sequence is 

interrupted by a 1288-bp insertion sequence, named as IS3Bli (Lapidus et al., 

2002). As the genome sequence of B. licheniformis NCIMB 8874 was not 

available earlier, PCR analysis was carried out in order to determine whether the 

gene comP of this organism is disrupted by the same transposon insertion. To this 

aim, five sets of primers were designed and used in alternate combinations to 

amplify the gene sequence. The primers were designed to span the IS3Bli 

transposon insertion sequence in order to give products of different sizes in 

accordance with the presence or absence of the insertion into the gene. The 

localisation of the different sets of primers on comP gene sequence and the 

expected product sizes are illustrated in Figure 3.24.   



 

Page | 131  

 

 

Figure 3.24: comP gene sequence from B. licheniformis strain ATCC 14580. The 

five sets of primers used for PCR amplification are highlighted (Pair 1: Yellow; Pair 

2: Blue; Pair 3: Purple; Pair 4: Red; Pair 5: Green). Expected product sizes for 

comP amplification are also illustrated. The primers were designed to span the 

IS3Bli transposon insertion sequence in order to give different products depending 

on the presence (Black) or absence (Red) of the insertion into the gene.  

 

The primer combination comPN fw/ comPC rev resulted in a band of 

approximately 700 bp, consistent with the expected product size (data not shown). 

This PCR product was purified and re-amplified using the purified PCR product as 

the DNA template. The product obtained from re-amplification was extracted from 

the gel, purified and sequenced. Sequence alignment with B. licheniformis ATCC 



 

Page | 132  

 

14580 genome revealed that the band was derived from an unspecific PCR 

product. No products were obtained with other sets of primers, although the primer 

pair bacA fw/bacA rev, used as a positive control, generated a band of the 

expected size (150 bp). 

 

3.5.2 PCR amplification of comX  

 

Primers were designed for PCR amplification of comX in order to confirm its 

sequence in B. licheniformis NCIMB 8874 genome. Given the rather small size of 

comX gene (only 165 bp), one pair of primers was designed from the extreme 5’ 

and 3’ ends of the gene. Figure 3.25 depicts the localisation of the primers for 

comX PCR amplification and the expected product size.   

 

Figure 3.25: Schematic representation of primer design for comX amplification 

and expected product sizes.   

 

No band was obtained from PCR amplification of comX with the designed primers 

(data not shown), whereas the primer pair bacA fw/bacA rev, used as in internal 

control, generated a band of the expected size (150 bp).  

3.6 Bioinformatics analysis of quorum sensing-related genes on                      
B. licheniformis NCIMB 8874 genome  

 

To confirm the presence and the organisation of genes involved in cell-cell 

communication in B. licheniformis NCIMB 8874, the genomic DNA of this 

bacterium was isolated and sequenced for bioinformatics studies. Quorum sensing 
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related genes previously identified and annotated in other Bacilli were used to 

search for homologues on B. licheniformis NCIMB 8874 genome and to perform 

comparative analysis.  

The genome sequence of B. licheniformis strain NCIMB 8874 used for this study 

was obtained from the alignment of output sequences from two different 

sequencers, 454 GS Junior and Illumina GAII. The assembly resulted in a single 

nucleotide sequence consisting of 304 contigs. This sequence is to be considered 

preliminary as it may contain erroneously assembled contigs and further analysis 

is necessary to reduce the gaps between the contigs.  

Bioinformatics studies on B. licheniformis NCIMB 8874 genome sequence were 

carried out to investigate the comQXPA cluster of this organism and to confirm the 

presence of quorum sensing- regulated genes. Results are presented under 

Sections 3.5.1, 3.5.2 and 3.5.3. 

3.6.1 The comQXPA gene cluster  

 

Initial studies were performed for the identification of the competence regulating 

locus, comQXPA in B. licheniformis NCIMB 8874 genome. The comQXPA gene 

cluster comprises the genes coding for the isoprenyl transferase ComQ, dedicated 

to the maturation of the competence pheromone; the precursor protein of the 

ComX pheromone; and the two-component signal transduction system ComPA. 

The Basic Local Alignment Search Tool (BLAST) was used to carry out pairwise 

alignment between the comQXPA cluster of B. licheniformis ATCC 14580 and the 

whole genome sequence of B. licheniformis NCIMB 8874. The alignment allowed 

the identification of all the genes of the cluster with 95% identity for comQ; 94% for 

comX; 89% for comP; and 98% for comA.  

The localisation of the comQXPA cluster on B. licheniformis NCIMB 8874 genome 

was investigated by searching for the genes flanking the comQXPA locus on          

B. licheniformis ATCC 14580 genome and carrying out alignment  with strain 

NCIMB 8874 whole genome sequence. The locus was found to be located 
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between degQ, the gene immediately upstream of comQ and yuxO, the coding 

sequence immediately downstream of comA. To determine the conservation of 

comQXPA genetic organisation, the position of the cluster was investigated in 

other Bacilli. The organisation and localisation of the comQXPA locus on              

B. licheniformis NCIMB 8874 and other Bacillus species are presented in Figure 

3.26. However, the current nucleotide sequence for B. licheniformis NCIMB 8874 

does not allow the determination of the exact position of the locus on the genome 

as this sequence has yet to be annotated.  

 

Figure 3.26: Genetic organisation and localisation of the comQXPA cluster in 

different Bacillus species.  

 

The comQXPA gene cluster of B. licheniformis NCIMB 8874 appears to share the 

same organisation found in B. subtilis subsp. subtilis 168, B. subtilis subsp. 

spizizenii W23 and B. amyloliquefaciens FZB42 , thus indicating that the locus is  

conserved amongst Bacilli. B. licheniformis ATCC 14580 is an exception within the 
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group, having three unidentified genes, namely Bli03355, Bli03356 and Bli03357, 

located between comX and comP. 

The whole comQXPA cluster of B. licheniformis NCIMB 8874 was aligned with the 

recently annotated counterparts of strains 9945A and F11 (Hoffmann et al., 2010), 

resulting in 100 and 97% identity, respectively. Nucleotide sequence alignment of 

the comQXPA cluster of B. licheniformis NCIMB 8874 could not be carried out with 

more genetically distant Bacilli as the BLAST search tool was not able to identify 

any significant similarity between the gene sequences submitted for the analysis. 

Therefore, further investigation of the comQXPA locus of B. licheniformis NCIMB 

8874 was performed at the protein level.  

3.6.2.1 Conservation of proteins encoded by the comQXPA locus 

 

Following the discovery of quorum sensing in B. subtilis subsp. subtilis 168 

(Magnuson et al., 1994), each protein encoded by the comQXPA locus has been 

thoroughly investigated and compared with homologues from related species. 

These studies highlighted a certain polymorphism in the proteins directly engaged 

in the cell-cell signalling production (ComQ and the ComX precursor) and 

reception (the N-terminal portion of ComP). Contrastingly, the C-terminus of ComP  

and the response regulator ComA appear to be the only conserved regions in all 

the Bacilli studied.  

For investigation of the proteins encoded by the quorum sensing cluster of               

B. licheniformis NCIMB 8874 and determination of their evolution in relation with 

other Bacilli, the nucleotide sequence of each gene located on comQXPA cluster 

was translated into amino acids with the aid of Expasy DNA translation tool. 

Alignment of the amino acid sequences was then carried out with homologues 

from other Bacilli, listed in Table 3.6, using ClustalW.  The colour code used to 

indicate amino acids with similar characteristics in the protein alignments is 

as follows: Red (small and hydrophobic); Blue (acidic); Magenta (basic); 

Green (hydroxyl and amine) and Gray (others). 
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Table 3.6: Bacillus species used for comparative analysis of quorum sensing-related genes of B. licheniformis 
NCIMB 8874. 

NCBI Accession number Organism Competence Genome annotation 

NC_000964 Bacillus subtilis subsp. 168 competent 
Annotated 

(Kobayashi et al., 2003) 

NC_006270 
Bacillus licheniformis ATCC 
14580 

non competent 
Annotated 

(Rey et al., 2004) 

GQ505081.1 Bacillus  licheniformis 9945A competent 

comQXPA, comS and mecA 
annotated 

(Hoffmann et al., 2010) 
 

GQ505080.1 Bacillus licheniformis F11 non competent 
comQXPA, comS and mecA 

annotated 
(Hoffmann et al., 2010) 

NC_009725 
Bacillus amyloliquefaciens 
FZB42 

competent 
Annotated 

(Chen et al., 2007) 

AF456135.1 Bacillus mojavensis R-O-B2 not identified 
comQXP annotated 
(Ansaldi et al., 2002) 

NZ_ACWC00000000 Bacillus sp. BT1B_CT2 not identified 
Annotated 

(unpublished) 

NC_014479 
Bacillus subtilis subsp. 
spizizenii W23 

not identified 
Annotated 

(unpublished) 

 

  

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=27
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=497
http://www.ncbi.nlm.nih.gov/genome?Db=genome&Cmd=ShowDetailView&TermToSearch=21282
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=7199
http://www.ncbi.nlm.nih.gov/genome?Db=genome&Cmd=ShowDetailView&TermToSearch=26450
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The choice of the Bacillus species to use for alignment studies was mainly based 

on the presence of annotated comQXPA clusters on their genomes.  As the ComX 

pheromone of Bacillus mojavensis R-O-B2 has been isolated (Ansaldi et al., 2002) 

this bacterium was selected despite the partial annotation of its competence 

cluster.   

3.6.2.1.1 The isoprene synthases ComQ 

 

ComQ of B. licheniformis NCIMB 8874 was identified as a 303 amino acid protein, 

whose comparison with homologues from genetically related Bacilli selected from 

the Uniprot database confirmed as a member of the FPP/GGPP synthetase family 

engaged in isoprene biosynthesis. The % identities between ComQ of                  

B. licheniformis NCIMB 8874 and other Bacillus species are listed in Table 3.7. 

The alignment of the different ComQ amino acid sequences is illustrated in Figure 

3.27. Figure 3.28 provides a phylogenetic tree for determination of protein 

conservation amongst selected Bacillus species.  

Table 3.7: Percentage identities obtained from the alignment of ComQ protein 
sequence of B. licheniformis NCIMB 8874 with homologues from other Bacilli.  

Accession Organism Length % Identity 

D9YRK9 Bacillus licheniformis 9945A 303 100 

Q65FH4 Bacillus licheniformis  ATCC 14580 289 97 

GQ499198 Bacillus licheniformis F11 289 97 

E5W7I2 Bacillus sp. BT1B_CT2 293 95 

E0TZW4 
Bacillus subtilis subsp. spizizenii  
W23 

286 52 

AF456135 Bacillus mojavensis R-O-B2 286 51 

NC_000964 Bacillus subtilis subsp. subtilis 168 239 46 

NC_009725 Bacillus amyloliquefaciens FZB42 286 40 
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Figure 3.27: ClustalW alignments of ComQ coloured with JalView. Conserved amino acids are indicated with the 

same colours in all rows. The black box denotes B. licheniformis NCIMB 8874. 
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Figure 3.28: ComQ phylogenetic tree based on protein sequences aligned using 

Clustal W. The evolutionary tree was generated using Jalview software. The red 

box denotes B. licheniformis NCIMB 8874. 

 

The results from B. licheniformis NCIMB 8874 ComQ alignment with other 

homologues revealed that the highest degree of identity was obtained with 

homologues from other B. licheniformis strains. In particular, the ComQ 

sequences from strain NCIMB 8874 and 9945A are 100% identical, whist  97% 

identity was detected with counterparts from strain F11 and ATCC 14580. ComQ 

from B. amyloliquefaciens FZB42 appeared to be the most divergent, with only 

40% identity.  

Although the alignment of ComQ sequences (Figure 3.27) highlights the 

polymorphism of the protein at the amino acid level, the phylogenetic tree derived 

by the alignment (Figure 3.28) shows that the Bacillus species analysed can be 

clustered in four distinct groups based on ComQ relative conservation.  
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3.6.3.1.2 The ComX pheromone precursor  

 

The translated comX nucleotide sequence of B. licheniformis NCIMB 8874 

resulted in a 56 amino acid protein, identified as the precursor of the ComX 

pheromone after alignment with homologues from other Bacillus species. Table 

3.8 presents the results of the alignment between the pre-ComX of B. licheniformis 

NCIMB 8874 with selected homologues. The ClustalW alignment of the amino 

acid sequences of ComX precursor is depicted in Figure 3.29. Figure 3.30 

provides a phylogenetic tree for determination of conservation of the protein 

amongst different Bacillus species.  

Table 3.8: Percentage identities obtained from the alignment of ComX precursor 
amino acid sequence of B. licheniformis NCIMB 8874 with homologues from other 
Bacilli.  

Accession Organism Length % Identity 

D9YRL0 Bacillus licheniformis 9945A 56 100 

E5W7I1 Bacillus sp. BT1B_CT2 57 65 

E0TZW3 Bacillus subtilis subsp. spizizenii W23 54 53 

AY003901 Bacillus mojavensis RO-H-1 53 53 

AF456135 Bacillus mojavensis R-O-B2 54 52 

AF456130 Bacillus subtilis RO-FF-1 57 49 

Q65FH5 Bacillus licheniformis ATCC 14580 54 41 

A7Z883 Bacillus amyloliquefaciens FZB42 57 39 

GQ499198 Bacillus licheniformis F11 47 34 

AF456134 Bacillus mojavensis RO-C-2 56 34 

AF456138 Bacillus mojavensis RO-E-2 58 34 

AF456137 Bacillus subtilis RO-F-3 73 29 

NC_000964 Bacillus subtilis subsp. subtilis 168 55 27 
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Figure 3.29: ClustalW alignments of B. licheniformis NCIMB 8874 pre-ComX with other homologues. The 

aminoacids were coloured using JalView software. Conserved amino acids are indicated with the same colours in all 

rows. The black box denotes B. licheniformis NCIMB 8874. The sequences of pre-ComX from B. mojavenis isolates 

RO-H-1, RO-B-2, RO-E-2 and RO-C-2 and B. subtilis isolates RO-FF-1 and RO-F-3 were taken from Ansaldi and 

Dubnau, 2004.  
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Figure 3.30: Pre-ComX phylogenetic tree generated using Jalview software. The 

tree was based on protein alignments with Clustal W.  B. licheniformis NCIMB 

8874 is indicated with a red box. 

 

As Table 3.8 and Figure 3.29 show, the precursor of the ComX pheromone is 

highly polymorphic and, with the exception of B. licheniformis strains NCIMB 8874 

and 9945A which share 100% identity, the alignment of the amino acid sequences 

resulted in percentage identities ranging from 65 to 27. However, similarly to what 

has been shown for ComQ, the pre-ComX sequences of the Bacillus species 

analysed can be classified into four main phylogenetic groups (Figure 3.30).   

 

3.6.3.1.3 The sensor kinase ComP 

 

Translation of comP nucleotide sequence from B. licheniformis NCIMB 8874 

resulted in a 771 amino acid protein, confirmed as the sensor histidine kinase of 

the ComPA two component system. B. licheniformis NCIMB 8874 ComP was 

aligned with its counterpart of selected Bacilli. As the gene coding for ComP of B. 

licheniformis ATCC 14580 is interrupted by a transposon insertion, the amino acid 
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sequence used for this study was translated from the first 1130 bp of comP gene 

until the start of the IS3Bli insertion sequence, resulting in a 376 aa truncated 

protein. The amino acid sequence found in the NCBI database corresponds to the 

C-terminus of the protein, which cannot be encoded due to the presence of the 

transposon insertion. Results of this alignment are listed in Table 3.9 and 

illustrated in Figure 3.31. Figure 3.32 shows the phylogenetic tree derived from 

amino acid sequence alignments.  

 
Table 3.9: Percentage identities obtained from the alignment of ComP protein 
sequence of B. licheniformis NCIMB 8874 with homologues from other Bacilli. 

 

 

 

 

 

 

Accession 
Organism Length % Identity 

D9YRL1 Bacillus licheniformis 9945A 771 100 

E5W7I0 Bacillus sp. BT1B_CT2 766 71 

GQ499198 Bacillus licheniformis F11 773 68 

A7Z882 Bacillus amyloliquefaciens FZB42 766 55 

NC_000964 Bacillus subtilis subsp. subtilis 168 769 53 

E0TZW2 Bacillus subtilis subsp. spizizenii W23 774 51 

Q65FH9 Bacillus licheniformis  ATCC 14580 376 45 

AF456135 Bacillus mojavensis R-O-B2 577 48 
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Figure 3.31: ClustalW alignments of B. licheniformis NCIMB 8874 ComP with selected homologues. The amino 

acids were coloured using JalView software. Conserved amino acids are indicated with the same colours in all rows. 

The black boxes denote B. licheniformis NCIMB 8874.  The sequence continues on the next page. 
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Figure 3.32: ComP phylogenetic tree generated using Jalview software. The tree 

was based on protein alignments with Clustal W. B. licheniformis NCIMB 8874 is 

indicated with a red box.  

 

The sequence alignment between ComP of B. licheniformis NCMB 8874 and 

selected homologues from other species resulted in a reasonably variable 

distribution of identities, which ranged from 100% (strain 9945A) to 48% (Bacillus 

mojavensis R-O-B2). This variability is a result of ComP polymorphism, which, as 

Figure 3.31 shows, was found to characterise only the N-terminal portion of the 

protein, whereas the C-terminus appears to be conserved in all the species 

analysed. Figure 3.32 shows the phylogenetic congruence of ComP in selected 

Bacilli. On the tree, derived from the alignment of amino acid sequences, ComP 

homologues are grouped in four distinct clusters.  

3.6.1.4.4 The response regulator ComA 

 

The 212 amino acid-long sequence of B. licheniformis NCIMB 8874 ComA was 

aligned with counterparts to study its conservation in relation with other Bacilli. 

Results from the alignment are shown in Table 3.10. Comparison between 
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selected ComA amino acid sequences is illustrated in Figure 3.33, whist the 

phylogenetic distribution of the response regulator in different Bacillus species in 

shown in Figure 3.34.  

 Table 3.10: Percentage identities obtained from the alignment of ComA amino 
acid sequence of B. licheniformis NCIMB 8874 with homologues from other Bacilli.  

Accession Organism Length % Identity 

Q65FI0 Bacillus licheniformis ATCC 14580 212 100 

E5W7H9 Bacillus sp. BT1B_CT2 212 100 

GQ499198 Bacillus licheniformis F11 212 100 

D9YRL2 Bacillus licheniformis 9945A 212 100 

NC_000964 Bacillus subtilis subsp. subtilis 168 214 77 

E0TZW1 
Bacillus subtilis subsp. spizizenii  
W23 

214 77 

A7Z881 Bacillus amyloliquefaciens FZB42 214 75 
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Figure 3.33: Sequence alignment of B. licheniformis NCIMB 8874 ComA with homologues from other Bacillus 

species. The alignment was performed with ClustalW and the aminoacids were coloured using JalView software. 

Conserved amino acids are indicated with the same colours in all rows. 
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Figure 3.34: ComA phylogenetic tree generated using Jalview software. The tree 

was based on protein alignments with Clustal W. The red box denotes                  

B. licheniformis NCIMB 8874.  

 

The alignment results shown in Figure 3.33 confirmed that ComA is the most 

conserved protein encoded by the quorum sensing-regulating cluster. The amino 

acid sequence of ComA of B. licheniformis NCIMB 8874 showed 100% identity 

with homologues from all the other B. licheniformis strains and from Bacillus sp. 

BT1B_CT2. Alignment with homologues from more distant Bacilli revealed the 

lowest identity of 75% with ComA of B. amyloliquefaciens A7Z881 (Table 3.10).  

The conservation of ComA can be observed in the phylogenetic tree drawn from 

the alignment (Figure 3.33), where the Bacilli analysed in relation to the 

conservation of the competence response regulator are distributed in only two 

groups.  
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3.6.3.2 Identification of essential proteins for quorum sensing in B. licheniformis 
NCIMB 8874  

 

To determine whether the quorum sensing system of B. licheniformis NCIMB 8874 

might be functional the presence of essential genes/proteins involved in the 

development of competence and other quorum sensing related processes, such 

as exoproteases, lichenysin and -polyglutamate production, needed to be 

established in this bacterium. 

Quorum sensing in Bacilli is mainly regulated by the competence transcription 

factor ComK, whose expression in strictly regulated by the small protein ComS 

which releases ComK from the inhibition operated by the MecA-ClpCP 

proteasome-like complex. For this reason the presence of comK, comS and mecA 

genes was investigated in B. licheniformis NCIMB 8874 genome and their 

translated amino acid sequences were compared with homologues from selected 

Bacilli.  

 

3.6.3.2.1 The competence transcription factor ComK 

 

The gene encoding the ComK transcription factor was identified on                       

B. licheniformis NCIMB 8874 genome by performing whole genome alignment with 

comK from B. licheniformis ATCC 14580 using BLAST.  The alignment resulted in 

the identification of comK in B. licheniformis NCIMB 8874 with 97% identity with its 

counterpart in strain ATCC 14580.  

The position of the gene coding for the transcription factor was established by  

performing alignment of the nucleotide sequence comprising yhzC, the gene 

located upstream of comK, comK and yhjD, the gene downstream of comK, of       

B. licheniformis ATCC 14580 with the whole genome sequence of strain NCIMB 

8874. Search of the NCBI database determined that comK position is conserved, 

as the same genetic organization was found in more distant Bacilli, such as          
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B. subtilis subsp. subtilis 168 and B. subtilis subsp spizizenii  W23. However, in     

B. amyloliquefaciens FZB42 yhjD is replaced by an unidentified gene. The gene 

encoding ComK in B. licheniformis strains 9945A and F11 has not been annotated 

in the NCBI database. The comK nucleotide sequence of B. licheniformis NCIMB 

8874 was translated in its correspondent 192 amino acid protein using Expasy 

DNA translation tool and aligned with homologues from other Bacilli. Results of the 

alignment are listed in Table 3.11 and illustrated in Figure 3.35. Figure 3.36 

depicts ComK phylogenetic tree based on the alignment.  

 Table 3.11: Percentage identities obtained from the alignment of ComK amino 
acid sequence of B. licheniformis NCIMB 8874 with homologues from other Bacilli.  

Accession Organism Length % Identity 

Q65LN7 Bacillus licheniformis ATCC 14580 192 98 

E5W578 Bacillus sp. BT1B_CT2 192 98 

CAA74548 Bacillus subtilis subsp. subtilis 168 192 97 

E0TYQ8  Bacillus subtilis subsp. spizizenii W23 192 68 

A7Z348 Bacillus amyloliquefaciens FZB42 192 66 

 

 

http://www.uniprot.org/uniprot/Q65LN7
http://www.uniprot.org/uniprot/E5W578
http://www.uniprot.org/uniprot/E0TYQ8
http://www.uniprot.org/uniprot/A7Z348
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Figure 3.35: Sequence alignment of B. licheniformis NCIMB 8874 ComK with homologues from other Bacillus 

species. The alignment was performed with ClustalW and the aminoacids were coloured using JalView software. 

Conserved amino acids are indicated with the same colours in all rows. 
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Figure 3.36: ComK phylogenetic tree generated using Jalview software. The tree 

was based on protein alignments with Clustal W. B. licheniformis NCIMB 8874 is 

denoted with a red box.  

 

ComK of B. licheniformis NCIMB 8874 was found to share the highest identity 

(98%) with its counterpart in B. licheniformis ATCC 14580 and Bacillus sp. 

BT1B_CT2, whist only 68% identity was detected with ComK sequences from      

B. subtilis subsp. spizizenii and B. amyloliquefaciens (Table 3.11). These results 

suggest that the transcription factor ComK is characterised by a certain degree of 

conservation within two distinct groups of homologues, as confirmed by  ComK 

phylogenetic tree (Figure 3.36).   

 

3.6.3.2.2 ComS 

 

The gene coding for ComS in B. licheniformis strain ATCC 14580 is located on the  

lichenysin biosynthetic cluster. However, the comS coding sequence of B. 

licheniformis ATCC 14580 has not been annotated in the NBCI database.  

Therefore search for comS of B. licheniformis NCIMB 8874 was carried out by 
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aligning the whole genome sequence of this organism with comS nucleotide 

sequence of strain 9945A, where comS was originally identified. The alignment 

resulted in a 99% identity between the nucleotide sequences of the two strain. 

Alignment with comS of B. licheniformis F11 revealed 94% identity. The genetic 

organisation of comS in B. licheniformis NCIMB 8874 was confirmed by alignment 

of its genome sequence with the lichenysin biosynthetic operon of strains 9945A 

and F11. The putative comS was translated into its amino acid sequence (61 

amino acids) and compared with selected Bacillus species for investigation of 

protein conservation. For comparative analysis with B. licheniformis ATCC 14580 

the nucleotide sequence of the lichenysin biosynthetic operon of this strain was 

aligned with comS sequence from B. licheniformis NCIMB 8874. The alignment 

led to identification of a 201 bp sequence, located on the lichenysin synthase B, 

with 94% identity with comS of B. licheniformis NCIMB 8874.   

Table 3.12 shows the list of identity percentages obtained from the alignment of B. 

licheniformis NCIMB 8874 ComS with homologues from different Bacilli. ClustalW 

alignment is illustrated in Figure 3.37 and Figure 3.38 depicts the ComS 

phylogenetic tree.  

Table 3.12: Percentage identities obtained from the alignment of ComS amino 
acid sequence of B. licheniformis NCIMB 8874 with homologues from other Bacilli.  

Accession Organism Length % Identity 

ADK89160 Bacillus licheniformis 9945A 66 100 

E0U2C1 Bacillus subtilis subsp. spizizenii W23 46 97 

GQ505079 Bacillus licheniformis F11 78 89 

N/A Bacillus licheniformis ATCC 14580 67 88 

A7Z190 Bacillus amyloliquefaciens FZB42 54 61 

AAA61567 Bacillus subtilis subsp. subtilis 168 46 39 

 

http://www.uniprot.org/uniprot/E0U2C1
http://www.uniprot.org/uniprot/A7Z190
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Figure 3.37: Sequence alignment of B. licheniformis NCIMB 8874 ComS with homologues from other Bacillus 

species. The alignment was performed with ClustalW and the aminoacids were coloured using JalView software. 

Conserved amino acids are indicated with the same colours in all rows. 
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Figure 3.38: ComS phylogenetic tree generated using Jalview software. The tree 

was based on protein alignments with Clustal W. B. licheniformis NCIMB 8874 is 

denoted with a red box.  

 

B. licheniformis NCIMB 8874 ComS showed 100% identity with its counterpart 

from strain 9945A, whilst 89% and 88% identity was revealed in the alignment with 

homologues from strains F11 and ATCC 14580 (Table 3.12). Intriguingly, identity 

of 97% emerged from the alignment between ComS sequences of B. licheniformis 

NCIMB 8874 and B. subtilis subsp. spizizenii.   

Figure 3.38 shows that ComS phylogenetic tree can be divided in two main 

groups, with one of the clusters comprising all the B. licheniformis strains, thus 

implying that ComS is conserved in this species. Bacillus subtilis subsp. subtilis 

168 ComS was found to be the most divergent, with only 39% identity with its 

counterparts from B. licheniformis strains NCIMB 8874 and 9945A and was 

therefore clustered in a different phylogenetic group (Figure 3.38).  
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3.6.3.2.3 The negative regulator of competence MecA 

 

The adaptor protein MecA, engaged in the negative regulation of ComK during the 

development of competence in B. subtilis, was recently discovered and annotated 

in B. licheniformis strains 9945A and F11. To determine whether this protein might 

be produced B. licheniformis NCIMB 8874, the gene encoding MecA (mecA) was 

identified in the genome of the bacterium by performing nucleotide alignment with 

the coding sequence of strain 9945A. A nucleotide sequence sharing 100% 

identity with mecA of B. licheniformis 9945A was identified. The position of mecA 

on the genome is not strictly conserved among Bacilli as determined by research 

into NCBI database. MecA nucleotide sequence was translated in the 

corresponding 212 amino acid-long protein and aligned with annotated 

homologues for phylogenetic analysis. Table 3.13 includes the results of the 

alignment between MecA of B. licheniformis NCIMB 8874 and its counterparts 

from other Bacillus species. The amino acid sequence alignment is shown in 

Figure 3.39, whereas Figure 3.40 depicts the phylogenetic tree derived from the 

alignment.  

Table 3.13: Percentage identities obtained from the alignment of MecA amino acid 
sequence of B. licheniformis NCIMB 8874 with homologues from other Bacilli.  

Accession Organism Length % Identity 

GQ505082.1 Bacillus licheniformis 9945A 212 100 

GQ505080 Bacillus licheniformis F11 212 98 

Q65LB7 Bacillus licheniformis ATCC 14580 212 98 

E5W4U9 Bacillus sp. BT1B_CT2 212 98 

E0U152 Bacillus subtilis subsp spizizenii W23 218 88 

A7Z3E0 Bacillus amyloliquefaciens 249 82 

NC_00094 Bacillus subtilis subsp subtilis 168 218 82 
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Figure 3.39: Sequence alignment of B. licheniformis NCIMB 8874 MecA with homologues from other Bacillus 

species. The alignment was performed with ClustalW and the aminoacids were coloured using JalView software. 

Conserved amino acids are indicated with the same colours in all rows. MecA sequence of B. licheniformis NCIMB 

8874 is indicated by a black box.  
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Figure 3.40: MecA phylogenetic tree generated using Jalview software. The tree 

was based on protein alignments with Clustal W. B. licheniformis NCIMB 8874 is 

denoted with a red box.  

 

MecA sequences of B. licheniformis strains NCIMB 8874 and 9945A were found to 

be 100% identical at the amino acid level, whilst 98% identity was detected with 

homologues from strains F11 and ATCC 14580 (Table 3.13), thus suggesting that 

this protein is conserved within the species. The conservation was found  to be 

extended to Bacillus sp. BT1B_CT2, as shown in Figure 3.40.   

MecA phylogenetic tree (Figure 3.40) revealed that homologues of this protein can 

be classified in two groups, although results from alignment analysis listed in 

Table 3.13 suggest that members of the two clusters are not highly divergent.   

 

3.6.3.3 The Rap-Phr system 

 

Lapidus and co-workers (2002) reported that the genes coding for the 

Competence and Sporulation factor (CSF), phrC, and the co-transcribed RapC 

phosphatase were not identified on the genome of B. licheniformis ATCC 14580. 
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RapC belongs to the family of Rap phosphatases, comprising 11 members which  

have been identified in B. subtilis. Rap phosphatases are regulated by 

pentapeptides, whose precursors are coded by phr genes.  

In order to determine whether B. licheniformis NCIMB 8874 possesses rapC and 

phrC and which members of this superfamily might be produced by this bacterium, 

its whole genome sequence was analysed by alignment with phr and rap genes 

from other Bacilli annotated in the NCBI database.  

Confirming results obtained with B. licheniformis ATCC 14580, neither phrC nor 

rapC could be identified in the genome of strain NCIMB 8874. However, the 

analysis led to the identification of rapA and rapB genes, coding for RapA and 

RapB phosphatases. However, no phr gene could be detected downstream of 

these genes, or in any other region of  B. licheniformis NCIMB 8874 genome.  

 

3.6.3.3.1 RapG and PhrG  

 

Further research resulted in the identification of rapG and phrG on the genome 

sequence of B. licheniformis NCIMB 8874. The nucleotide sequences of both 

genes were translated into amino acids and aligned with homologues found in the 

NCBI database. Results from RapG alignment are presented in Table 3.14 and 

Figure 3.41.  
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Table 3.14: Percentage identities obtained from the alignment of RapG amino 
acid sequence of B. licheniformis NCIMB 8874 with homologues from other Bacilli.  

Accession Organism Length % Identity 

Q65LL9 Bacillus licheniformis ATCC 14580 366 90 

E5W560 Bacillus sp. BT1B_CT2 366 90 

E0TZA4 
Bacillus subtilis subsp. spizizenii 
W23 

365 52 

NP_391910 Bacillus subtilis subsp. subtilis 168 365 52 
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Figure 3.41: Sequence alignment of B. licheniformis NCIMB 8874 RapG with homologues from other Bacillus 

species. The alignment was performed with ClustalW and the aminoacids were coloured using JalView software. 

Conserved amino acids are indicated with the same colours in all rows. RapG of B. licheniformis NCIMB 8874 is 

indicated with a black box.  
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RapG appears to be conserved in B. licheniformis, as homologues from strains 

NCIMB 8874 and ATCC 14580 share 90% identity. However, this conservation 

does not extend to B. subtilis, as only 52% identity was detected between RapG 

sequence of B. licheniformis NCIMB 8874 and both the B. subtilis strains analysed 

(Table 3.14).  

PhrG was identified in the same Bacillus species where rapG was previously 

detected, with the exception of Bacillus sp. BT1B_CT2. The PhrG amino acid 

sequences were aligned to their B. licheniformis NCIMB 8874 counterpart. Results 

of the alignment are shown in Table 3.15 and Figure 3.42. 

Table 3.15: Percentage identities obtained from the alignment of PhrG amino acid 
sequence of B. licheniformis NCIMB 8874 with homologues from other Bacilli.  

Accession  Organism Length % Identity 

Q65MM8 Bacillus licheniformis  ATCC 14580 38 92 

E0TZA4 
Bacillus subtilis subsp. spizizenii 

W23 
38 53 

NP_389772.1 Bacillus subtilis subsp. subtilis 168 38 50 

 

 

 

 

Figure 3.42: ClustaW alignment of PhrG homologues from different Bacilli. Amino 

acids were coloured using JalView software. Conserved amino acids are indicated 

with the same colours in all rows. PhrG amino acid sequence of B. licheniformis 

NCIMB 8874 is indicated by a black box. The red box denotes the putative 

pentapeptides generated after maturation.   
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PhrG congruence appears to follow similar pattern of RapG, with 92% identity 

between homologues from B. licheniformis strains. The conservation does not 

extend to members of B. subtilis species, as highest 53% identity was detected 

between PhrG of strain 168 and its B. licheniformis NCIMB 8874 homologue.  

The C-terminus of the protein, which putatively gives rise to signalling 

pentapeptides is almost identical in both the Bacillus species (Figure 3.42). 

Interestingly, the pentapeptides of both B. licheniformis strains are characterised 

by a valine residue in position 4, whereas in their counterparts from both B. subtilis 

strains this amino acid is substituted with an isoleucine residue.  

 

3.6.3.3.2 RapK and PhrK  

 

The presence of another member of the Rap family, rapK, was  established on the 

genome sequence of B. licheniformis NCIMB 8874.  A gene coding for a putative 

signalling peptide precursor, phrK, was found immediately downstream of rapG. 

The nucleotide sequences of both genes were translated into amino acids and 

aligned with homologues found in the NCBI database. Results from RapK 

alignment are presented in Table 3.15 and Figure 3.43. Figure 3.44 illustrates the 

outcome of comparative analysis performed on PhrK homologues.  
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Table 3.16: Percentage identities obtained from the alignment of RapK amino acid 
sequence of B. licheniformis NCIMB 8874 with homologues from other Bacilli.  

Accession Organism Length % Identity 

Q65MM8 
Bacillus licheniformis  ATCC 
14580 

370 96 

E5W5Z1 Bacillus sp. BT1B_CT2 370 96 

NP_389772.1 Bacillus subtilis subsp. subtilis 168 371 46 
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Figure 3.43: ClustaW alignment of RapK homologues from different Bacilli. Amino acids were coloured using 

JalView software to indicate conserved residues. RapK amino acid sequence of B. licheniformis NCIMB 8874 is 

indicated by a black box. The red box denotes the putative pentapeptides generated after maturation.  
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RapK sequences of B. licheniformis strains NCIMB 8874 and ATCC 14580, and 

Bacillus sp. BT1B_CT2 were found to be 96% identical at the amino acid level, whilst 

only 46% identity was detected with their B. subtilis homologue. 

 

Figure 3.44: ClustaW alignment of PhrK homologues from different Bacilli. Amino 

acids were coloured using JalView software to indicate conserved residues. PhrK 

amino acid sequence of B. licheniformis NCIMB 8874 is indicated by a black box. 

The red box denotes the putative pentapeptides generated after maturation.  

 

Rap phosphatases and their associated Phr proteins appear to evolve together. PhrK 

sequences of B. licheniformis strains NCIMB 8874 and ATCC 14580 were found to 

be 100% identical at the amino acid level, whilst only 50% identity was detected with 

their B. subtilis homologue, similar to the results shown for RapG alignment. The 

polymorphism of PhrK reaches the putative signals generated by the two species, as 

the leucine residue at position 1 of the B. licheniformis pentapeptide is substituted 

with an asparagine in B. subtilis (Figure 3.44).  
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DISCUSSION 

 

4.1 Quorum sensing in B. licheniformis 

 

Competence development in B. licheniformis cells has been extensively studied in 

the past and the transformation system of B. licheniformis has been shown to be 

similar to that of B. subtilis in numerous molecular aspects. In another line of 

research, the quorum sensing mediated development of competence has been 

widely investigated in B. subtilis. Although a comQXPA cluster and other genes 

involved in competence development, such as comS, comK and mecA, have been 

identified in the genome sequence of B. subtilis and different B. licheniformis strains, 

the production of peptide signalling molecules in B. licheniformis has not been 

investigated so far.  

Taking into account the above background and given the importance of                     

B. licheniformis as an industrial workhorse, this work was aimed to establish 

production of putative signalling molecule/s in B. licheniformis. To this end                 

B. licheniformis strain NCIMB 8874 was chosen as a natural isolate, bacitracin 

producer, with potential industrial applications. Investigation was carried out on the 

production of signalling molecules able to generate a quorum sensing response in    

B. subtilis reporter strains. Production of secondary metabolites with industrial 

potential, such as the biosurfactant lichenysin, the biopolymer -PGA and 

extracellular proteases, whose regulation was proven to be controlled in a cell 

density-dependent fashion, was also established. Finally, following the acquisition of 

B. licheniformis NCIMB 8874 genome sequence the quorum sensing regulating 

comQXPA gene cluster and other genes involved in cell-cell communication were 

identified and analysed in comparison with other Bacilli.  
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4.1.1 Effect of B. licheniformis supernatant on B. subtilis reporter strains 

 

Initially, due to the unavailability of B. licheniformis NCIMB 8874 genome sequence 

and the absence of previous reports on quorum sensing in this organism, this study 

was based on the use of B. subtilis reporter strains carrying a PsrfA-lacZ fusion in 

their amylase coding gene. Shaken flask fermentations for investigation of the 

production of potential peptide signalling molecules in B. licheniformis were 

performed by growing the cells in competence medium containing glucose as the 

only carbon source. This medium was originally developed by Vasantha and Freese 

(1980) to study the turnover in enzyme production at the onset of sporulation in B. 

subtilis and since then it has also been used to investigate the development of 

competence in the same organism, as its composition has been proven to induce the 

natural process of DNA uptake (Dubnau et al., 1994).  Moreover, the use of glucose 

in the medium as the only carbon source represents an additional advantage for the 

study, as this medium does not comprise other substrates that could induce -

galactosidase production.  

B. subtilis reporter strain JRL293 was grown in the presence of cell-free supernatants 

taken from B. licheniformis cultures at late exponential phase, when the production of 

potential signalling molecules should reach its threshold. A significant increase in -

galactosidase activity, 8-fold (Figures 3.5), was measured in the test cultures of B. 

subtilis JRL293 supplemented with 50% (v/v) as compared to control cultures. 

Furthermore, the addition of B. licheniformis supernatant resulted in the growth 

impairment of B. subtilis JRL293 (Figures 3.4), thus suggesting the presence of 

compound/s (i.e. antimicrobials) accumulating in the extracellular milieu of B. 

licheniformis cultures, toxic to B. subtilis. This toxic effect might have been 

exacerbated by the dilution of the nutrient content of the medium (50% was replaced 

with spent medium) and the low cell density of the reporter strain at the beginning of 

the experiment.  

Despite the impaired cell growth, B. subtilis JRL293 cultures supplemented with        

B. licheniformis supernatant showed significant increase in -galactosidase activity. 
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This may be attributed to a quorum sensing response of the cells to the addition of     

B. licheniformis spent medium. Moreover, enhancement of -galactosidase activity 

(2.25-fold) was detected again when B. subtilis JRL293 cultures were supplemented 

with the lyophilised supernatants of B. licheniformis. The amount of lyophilised 

supernatant to be added was calculated so that its composition would correspond to 

50% (v/v) fresh spent medium. However, the details of the effect of the lyophilisation 

on the composition of the spent medium are not known.  

However, since B. subtilis JRL293 cultures showed a decrease in their growth rate, it 

may be speculated that either the higher nutrient content counteracted the toxic 

effect of the added supernatant or the lyophilisation process diminished the effect of 

the factor that inhibited the growth of B. subtilis.  

Further studies on the production of potential signalling molecules by B. licheniformis 

were carried out using B. subtilis LS27, a comX knock-out, as a reporter strain. Two, 

and potentially more, signalling molecule are engaged in the regulation of cell-

density-dependent phenomena in B. subtilis: the ComX pheromone and the 

competence and sporulation factor (CSF). This implies that the inducing effect of      

B. licheniformis spent medium on B. subtilis JRL293 might be due to one or more 

molecules. However, the gene coding for CSF, phrC, could not be identified in the 

genome sequence of B. licheniformis ATCC 14580, suggesting that the                     

B. licheniformis strain is not a CSF-producer. Therefore, the ComX pheromone was 

suggested as the cause of induction of srfA expression in B. subtilis JRL293. An 

essential criterium for the identification of a quorum sensing molecule is its ability to 

restore a quorum sensing response in a null mutant (Bainton et al., 1992c, Winzer et 

al., 2002b). So, to establish whether ComX was the molecule responsible for the 

quorum sensing response in B. subtilis cells, B. licheniformis supernatant was tested 

against the comX null mutant strain, B. subtilis LS27.  

B. subtilis LS27 test cultures grown in the presence of either fresh or lyophilised 

spent medium collected from B. licheniformis cultures at high cell density showed a 

significant increase,  5.1- and 5.9- fold (Figures 3.9 and 3.11), respectively, in their -

galactosidase activity.  These results are comparable with the previously shown 
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effect for B. subtilis JRL293, although the activity of the enzyme in strain LS27 was 

significantly lower. This difference in the activity depends on the fusion harboured by 

the reporter strain, as the exact position of the junction between the end of PsrfA and 

lacZ, and the nature of the ribosome binding site greatly affect the absolute activity of 

the strain (Prof. Grossman, personal communication). Although the B. subtilis LS27 

does not produce ComX a basal level of -galactosidase activity which might be 

attributed by the presence of CSF in the extracellular milieu, could still be detected 

throughout the growth of control cultures (Figures 3.9 and 3.11).  Addition of B. 

licheniformis supernatant also effected a delay in the growth of B. subtilis LS27, 

although the culture was able to return to a normal growth rate after 4 hours post-

addition of the exogenous spent medium. It can be suggested that this growth delay 

might have been due to the same factor causing growth inhibition of B. subtilis 

JRL293 culture. In this case, however, the higher initial cell density allowed a 

subpopulation of cells to sense and respond to the exogenous ComX addition, 

restoring cell-cell communication, thus reinstating a normal growth rate. Results 

obtained from both B. subtilis reporter strains confirmed that a signalling molecule, 

presumably the ComX pheromone, is produced by B. licheniformis cultures in 

competence-inducing medium.  

 

4.1.2 ComX production pattern in B. licheniformis  

 

The ―pheromone assay‖ originally developed by Magnuson and co-workers (1994) for 

identification of the ComX during the purification process, was adapted to the present 

studies to monitor the pattern of production of putative ComX pheromone in              

B. licheniformis cultures using both B. subtilis JRL293 and LS27.   

The profiles of -galactosidase activity generated by B. licheniformis supernatants 

collected throughout the cell growth using either of the reporter strains are very 

similar and both reproduce B. licheniformis growth curve, thus indicating that the 

signalling molecule is produced in a cell-density dependent fashion (Figures 3.12 and 
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3.13). Moreover, comparison with -galactosidase activity generated by supernatants 

from the ComX-producer wild type B. subtilis revealed that the two bacteria share the 

same pattern of pheromone production and are able to induce srfA expression at the 

same level (Figures 3.12 and 3.13) in both the reporter strains. This agrees with the 

reports on ComX discovery in B. subtilis, where investigation on srfA expression 

using a srfA-lacZ fusion determined that -galactosidase activity increased as cells 

grew to high density, before the onset of stationary phase (Magnuson et al., 1994).  

Quorum sensing mediated communication in B. subtilis is species-specific and 

induction of the signalling cascade that leads to the activation of srfA expression by 

signalling molecules other than ComX and CSF has not been reported so far. In the 

case of the ComX pheromone this process involves signal recognition by the 

histidine kinase ComP, whose extracellular sensor domain specifically interacts with 

its cognate ComX (Ansaldi et al., 2002). ComX activity depends on the isoprenylation 

of the conserved tryptophan residue, as synthetic analogues lacking the modification 

have been shown no pheromone activity (Magnuson et al., 1994). So far, ComX 

pheromones isolated from different Bacilli have been classified in four pherotype 

groups which diverge in the sequence of the mature peptides and their modifications 

(Okada et al., 2005, Okada et al., 2004).  

 
4.2 ComX pheromone purification  

 

Attempts at isolation of ComX from cultures of B. licheniformis and B. subtilis wild 

type at high cell densities yielded 60% CH3CN elution fractions which were unable to 

induce a quorum sensing response in B. subtilis reporter strain LS27, despite 

previous evidence indicating that supernatants from these cultures have pheromone 

activity. As the same results were obtained with both B. licheniformis, whose ComX 

production is yet to be demonstrated, and the established pheromone-producer B. 

subtilis, it can be suggested that the concentration of ComX present in cultures of 

Bacilli which are not genetically manipulated is not sufficient for the isolation process 

in the 1L fermentation used in this study. The first ComX pheromone was isolated 
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from high cell density cultures of B. subtilis ROM183, a sporulation deficient strain 

harbouring a double mutation in the sporulation-regulating gene spoOA and in abrB¸ 

encoding a DNA-binding protein required for the expression of late competence 

genes (Albano et al., 1987, Perego et al., 1988). This double mutation results in a 

~1.7-fold increase in ComX production with respect to the wild type (Solomon et al., 

1995b).  Since the discovery of ComX, the competence pheromone has been 

isolated from many Bacillus species by cloning comQ and comX genes of selected 

strains into E. coli cells, under the control of IPTG- inducible promoters (Tortosa et 

al., 2001, Ansaldi et al., 2002, Bacon Schneider et al., 2002). This procedure could 

not be used in the present study as until the very late stage of the project the genome 

sequence of B. licheniformis NCIMB 8874 was unavailable. Higher amount of the 

starting material (i.e. cell free supernatant from the strains under examination) would 

have probably led to successful isolation of the pheromone. However, this would 

have involved the use of large pilot-scale fermentations and several steps of 

downstream processing.   

 
4.3 Production of comQXPA regulated secondary metabolites in                         
B. licheniformis  

 

In B. subtilis the comQXPA gene cluster has been involved in the regulation of a 

number of secondary metabolites at the onset of stationary phase, concomitantly with 

the control of competence development. Examples of these metabolites are the 

antimicrobial biosurfactant surfactin, the capsule constituent biopolymer -poly 

glutamic acid and extracellular degradative enzymes. Biosynthesis of surfactin is 

directly under the control of the ComPA two-component signal transduction system 

with ComA activating transcription of the srfA operon. In B. licheniformis, the 

biosurfactant lichenysin has been suggested to be regulated in a similar fashion.       

-PGA and exoproteases production, on the other hand, are indirectly regulated by 

ComPA through a second two-component system composed of DegS and DegU 

(Msadek et al., 1991). In B. subtilis natto NAF5, the insertion of an IS element in the 

comP coding sequence was established to be detrimental for the production of both 
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-PGA and extracellular proteases (Nagai et al., 2000b). A similar sequence 

interrupts the comP gene sequence of B. licheniformis ATCC 14580, the only B. 

licheniformis strain whose genome has been entirely annotated so far.  

In this study, due to the lack of genetic information on B. licheniformis NCIMB 8874 

until the later stage, lichenysin and -PGA production as well as exoproteolytic 

activity were investigated in order to determine the functionality of the comQXPA 

locus.  

4.3.1 Lichenysin  

 

The lichenysin biosynthetic operon, comprising three large ORFs encoding peptide 

synthetases and designated licA, licB and licC, followed by a gene, licTE, coding for 

a thioesterase-like protein, has been identified in B. licheniformis NCIMB 8874 

(ATCC 10716). The lichenysin biosynthetic genes are characterised by a genetic 

organisation resembling the srfA surfactin operon of B. subtilis and are predicted to 

generate a lichenysin variant with the primary amino acid sequence: L-Gln–L-Leu–D-

Leu–L-Val–L-Asp–D-Leu–L-Ile (Konz et al., 1999). However, isolation of this 

lipopeptide from B. licheniformis NCIMB 8874 has not been reported. Therefore, 1 L 

shaken flask fermentations of B. licheniformis NCIMB 8874 and B. subtilis wild type 

(used as a control) were set up in both complex and synthetic media for production of 

biosurfactants. As shown in Tables 3.1 and 3.2 lichenysin and surfactin were 

successfully isolated and quantified, using a surfactin standard as a reference. 

Regardless of the medium used for the production, total surfactin concentration 

(calculated as the sum of different isoforms) was always found to be approximately 

10 times higher than lichenysin. These results are in accord with previous reports 

showing that lichenysin is produced in much lower amounts (at least one order of 

magnitude) than surfactin (Yakimov et al., 1996). However, this difference appeared 

to be slightly reduced when comparing lichenysin and surfactin yield (based on 

CDW) in the two organisms, thus revealing that the yields of B. subtilis biosurfactant 

were 9- and 7-fold higher with respect to its counterpart of B. licheniformis in complex 
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and competence medium, respectively. Results presented in Figures 3.16 and 3.17 

also highlighted that the quantity and the isoform composition of the biosurfactant 

produced are significantly affected by the nutrients present in the media.  Nutrient 

rich medium resulted in increased biosurfactant production, as well as a higher 

number of isoforms, compared to the synthetic medium. Both B. licheniformis and B. 

subtilis cultures produced five isoforms of biosurfactant in complex medium, whereas 

only three were detected in supernatants from cultures grown in synthetic medium. 

The effect of media composition on biosurfactant production has been established to 

be influenced by a number of factors, including the nature and concentration of the 

carbon and nitrogen sources, the amount of phosphorus, magnesium, iron, and 

manganese ions in the medium as well as other culture conditions, such as pH, 

temperature and agitation (Karanth et al., 2000). A direct correlation has been 

established between biosurfactant yields and sugar concentrations, whereas the 

number of biosurfactant isoforms produced appears to be related to the nature of the 

nitrogen source used (Grangemard et al., 2001, Rodrigues et al., 2006). The nitrogen 

sources used in the complex medium were yeast extract and bactopeptone whilst 

glutamic acid was added to the synthetic medium to provide nitrogen; therefore a 

change in number of isoforms produced is not surprising.  

Although in this study the number of isoforms produced was determined to be the 

same for the two biosurfactants, the isoforms were identified by using commercially 

available surfactin as a standard, thus resulting only in the identification of isoforms 

which are common between the two species. Other peaks were in fact identified on 

lichenysin chromatogram (data not shown) which might be specific for this 

biosurfactant.   

4.3.1.1 Lichenysin antimicrobial activity  

 

Antimicrobial activity of biosurfactants, including lichenysin, has been correlated to 

their amphipathic nature which resembles the phospholipids forming the cell 

membrane (Grangemard et al., 1999a).  Insertion of biosurfactant lipid moiety into the 

cell membrane causes significant structural changes together with alteration of 
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membrane permeability, thus leading to the disruption of the cell membrane and 

consequent loss of the internal cytoplasmic contents (Carrillo et al., 2003).  

Lichenysin extract from both complex and competence medium was tested against 

different bacteria in order to determine the antimicrobial activity of the biosurfactant 

against both Gram negative and Gram positive bacteria, and especially against        

B. subtilis, whose growth was found to be impaired when exposed to supernatants 

from B. licheniformis. Of all the strain tested, only Chromobacterium violaceum was 

not inhibited by any of the used concentrations of lichenysin extract from either 

complex or synthetic medium. In the case of C. violaceum, it is possible to infer that 

either the Minimum Inhibitory Concentration (MIC) for this bacterium is higher than 4 

mg mL-1 or the microorganism is not affected by lichenysin. On the other hand, 

inhibition by lichenysin was observed in Escherichia coli culture under all the 

conditions tested confirming previous reports (Yakimov et al., 1995). The results for 

Pseudomonas aeruginosa are ambiguous as the growth of this bacterium appears to 

be inhibited by lichenysin extract obtained from synthetic medium but not by the one 

extracted from complex medium. It may be speculated that the inhibition observed 

with the ichenysin extracted from cells grown in the competence medium is due to 

the unidentified lichenysin isoforms (data not shown). Opposite results were obtained 

against Gram positive Bacillus species, where a 1 mg mL-1 of lichenysin extract from 

culture grown in complex medium was lethal for the tested organism, whereas no 

effect was detected using biosurfactant extracted from the synthetic medium. These 

differences in antimicrobial activities between lichenysin extracts obtained from 

cultures grown in two different media might be attributed to the different amount of 

active compound present in the extract.  

Due to the strain specificity of biosurfactant production and the variability of their 

composition depending upon environmental conditions, the studies on lichenysin 

antimicrobial activity were inconclusive. However, the majority of studies show that 

lichenysin has a higher antimicrobial potential against Gram positive rather than 

Gram negative bacteria (Fernandes et al., 2007, Quadros et al., 2011, Yakimov et al., 

1995). Lichenysin antimicrobial activity also appears to be especially directed 
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towards other Bacillus species (Yakimov et al., 1995, Quadros et al., 2011). These 

findings could not be confirmed in the present study, as the number of bacteria tested 

was not sufficient to draw definite conclusions. However, this study succeeded in 

establishing B. licheniformis NCIMB 8874 as a lichenysin producer and the 

antimicrobial activity of this biosurfactant was confirmed against other Bacilli. As 

biosurfactant production in Bacilli is under the control of quorum sensing and as 

some species have evolved to recognise each other’s signals (same pherotype) it 

could be speculated that biosurfactant biosynthesis in these bacteria has developed 

as a defence mechanism against evolutionary closely related microorganisms. 

However, this study concluded that lichenysin is not the agent responsible for the 

growth inhibition in liquid cultures of B. subtilis reporter strains, as lichenysin 

extracted from cultures grown in the competence medium was ineffective against      

B. subtilis. 

 

4.3.2 -PGA production and exoproteolytic activity 

 

B. licheniformis ATCC 14580 genome shows a transposon insertion, named as 

IS3Bli, into the gene sequence coding for the histidine sensor kinase ComP. In B. 

subtilis natto NAF4, a similar element frequently integrates into comP (Nagai et al., 

2000b, Tran et al., 2000), thus causing a decrease in natural competence and 

extracellular protease secretion as well as the complete loss in -PGA formation 

(Nagai et al., 2000b) (Takahashi et al., 2007, Weinrauch et al., 1990). Recent studies 

have shown that B. licheniformis ATCC 14580 is characterised by a similar 

phenotype (Hoffmann et al., 2010). 

In order to determine whether B. licheniformis NCIMB 8874 possesses a functional 

competence sensor kinase, the production of -PGA in this organism was 

investigated. The results (Figure 3.20) confirmed production of -PGA in                    

B. licheniformis NCIMB 8874 cultures in PGA production medium for 45 hours. The 

production of -PGA in B. licheniformis NCIMB 8874 continued over the initial 20 



 

Page | 179  

 

hours of growth, reaching highest concentration (19 g L-1) at 25 hours and then 

steadily decreased until the end of fermentation. These results are in accordance 

with previous studies on -PGA production in B. subtilis using the same medium 

composition (Goto and Kunioka, 1992).  However, NMR spectroscopy could not 

identify -PGA unambiguously (Figure 3.22) as the purity of the biopolymer was not 

at the standard required for the analysis. Moreover, the different positions of the 

peaks corresponding to each carbon residue on the spectrum from Birrer and co-

workers (1994) and the one presented in this study might be due to the different 

methods used for the isolation of the biopolymer, resulting in a shift of the peaks. 

Even though the NMR spectrum did not confirm B. licheniformis NCIMB 8874 as a -

PGA producer, collective evidence exist that this bacterium does produce the 

biopolymer, as confirmed by the extract shown in Figure 3.21. Also, B. licheniformis 

NCIMB 8874 colonies are characterised by a mucoid nature, which recent studies 

correlated it with biofilm formation and exopolymers production (Stanley and 

Lazzazzera. 2005). Moreover, -PGA production in B. licheniformis NCIMB 8874 was 

previously established by Fourier transform infrared spectroscopy (FTIR) (Dr 

Vydyanath, personal communication).  

Exoproteolytic activity present in the supernatants of B. licheniformis NCIMB 8874 

was investigated to attain a complete picture of quorum sensing dependent 

secondary metabolism in this organism. Exoproteases production in B. licheniformis 

NCIMB 8874 was found to be analogous to the results obtained with other               

B. licheniformis strains carrying a functional comP gene on their genome sequence 

(Hoffmann et al., 2010). B. licheniformis NCIMB 8874 was proven to produce -PGA 

and showed extracellular proteolytic activity expected from a strain possessing a 

functional comQXPA quorum sensing system.  

 
4.4 Effect of exogenous addition of spent medium on secondary metabolites 
production 
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Secondary metabolites production in microbes includes antibiotics, pigments, toxins, 

pheromones, biosurfactants, receptor antagonists and agonists, and antitumor 

agents. Their regulation is influenced by specific low molecular mass compounds, 

whose biosynthetic  genes are often clustered on the chromosomal DNA, produced 

in the late exponential stage of cell growth at the onset of stationary phase (Demain, 

1998). The products of secondary metabolism often carry industrial importance; 

therefore it is not surprising that extensive research has been dedicated to the 

investigation of factors, such as nutrients, growth rate, and enzyme inhibition or 

induction, which might increase the product yields. Expression of many genes 

controlling secondary metabolites production is regulated by quorum sensing 

mechanism. This process has been studied in a number of bacteria and more 

recently in fungi, thus providing potential industrial applications for signalling 

molecules. Examples of these processes are the acyl homoserine lactones-induced 

productions of the antibiotic carbapenem in Erwinia carotovora (Bainton et al., 1992c, 

Welch et al., 2005) and the violet colour pigment in Chromobacterium violaceum 

(McClean et al., 1997), the self-induced production of bacteriocins in Lactobacillus 

acidophilus (Barefoot et al., 1994) and Lactobacillus plantarum (Diep et al., 1995). 

More recently, oxylipins have been reported to act as signaling molecule in the 

filamentous fungus Aspergillus terreus for the regulation of lovastatin production. 

Moreover, exogenous addition of linoleic acid (oxylipins precursors) to A. terreus 

cultures was found to enhance lovastatin production as well as the level of 

transcription of lovastatin biosynthetic genes (Sorrentino et al., 2010).  

In this study the effect of signalling molecule-containing spent medium from B. 

licheniformis and B. subtilis wild type cultures on secondary metabolites, i.e. 

lichenysin, -PGA and exoproteases production in B. licheniformis NCIMB 8874 was 

investigated to determine whether any enhancement could be detected.  Figure 3.18 

shows that addition of 1.25% lyophilised supernatant from either B. licheniformis or 

B. subtilis cultures to B. licheniformis test cultures had no significant effect on 

lichenysin production as compared to test cultures. The addition of signalling 

molecule-containing supernatants should result in induction of lichenysin production 
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in early stages of growth in a way that resembles the effect observed on the 

expression of sfrA-lacZ fusion. However, detection of lichenysin in cultures at such 

low cell densities will necessitate a sensitive assay, such as the construction of a 

fusion comprising the promoter of the lichenysin operon connected to a reporter 

gene. In this study a similar construct could not be designed due to the lack of 

genetic information and lichenysin production had to be analysed from the extracts 

obtained from the stationary phase cultures of B. licheniformis.   

Similar results were obtained when investigating the effect of lyophilised spent 

medium addition on the production of extracellular proteases (data not shown). 

However, this evidence cannot exclude possible ComX-driven induction of 

extracellular proteases production, as recent reports have revealed that the decrease 

in exoproteolytic activity generated by disruption of ComP coding gene could be 

reinstated to its standard levels when the defective ComP of B. licheniformis ATCC 

14580 was replaced with its functional counterpart from strain F11 (Hoffmann et al., 

2010), thus suggesting that a direct correlation exists between ComX signalling and 

production of exoproteases. A more detailed investigation into the pattern of 

extracellular proteases production in B. licheniformis NCIMB 8874 will be necessary 

in order to prove this correlation.  

Interestingly, addition of 1.25% lyophilised spent media from B. licheniformis and B. 

subtilis cultures to test cultures of B. licheniformis at low cell densities resulted in a 

transient increase in -PGA production after 25 hours growth (Figure 3.20). 

Surprisingly, this effect was accompanied by an increase in red pigmentation in both 

the test cultures (Figure 3.23). It is interesting to note that the addition of B. subtilis 

spent medium had a greater effect on both -PGA and red pigment production than 

B. licheniformis, thus not only confirming that the two species are capable to cross-

induction, but that this phenomenon can be stronger than autoinduction.  The spent 

media added to the test cultures were filtered through a 3kDa membrane, thus 

excluding all molecules of higher sizes, including potential -PGA produced by 

growing B. licheniformis and B. subtilis wild type cells in competence medium. The 

increase of -PGA production in test cultures of B. licheniformis does not appear to 
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be related to any unutilised nutrient remained in the spent medium, as the effect 

caused by B. subtilis and B. licheniformis  was different, albeit not significantly, 

whereas the two bacteria were grown in the same medium.  Also, the concomitant 

increase in red pigmentation appears to be a further indication of a quorum sensing 

response. This red pigment was detected previously in cultures of a different                 

B. licheniformis strain, known as EI-34-6. Although the study could not identify the 

red pigment, it has been found that the production of this compound, which requires 

FeCl3 and glycerol, is related to biofilm formation and is induced by small molecules 

accumulating in the extracellular milieu in a cell density dependent fashion (Yan et 

al., 2003). Also, production of a similar red pigment, named as pulcherrimin, has 

been reported in B. subtilis  (Uffen and Canale-Parola, 1972).  

 

4.5 Genetic and bioinformatics analysis 

 

4.5.1 The competence locus  

 

Cell-cell communication in Bacillus subtilis is under the control of the comQXPA 

locus, whose products, the ComX pheromone and the two-component transduction 

system ComP and ComA, regulate the occurrence of natural competence in this 

organism (Weinrauch et al., 1990, Dubnau et al., 1994).  The activation of the 

regulatory cascade that ultimately leads to the development of competence, and 

related secondary metabolites production, is driven by accumulation of the 

pheromone in the extracellular milieu (Magnuson et al., 1994). In this picture, where 

each component plays an essential role for ensuring a correct communication, the 

key factors are undoubtedly ComX and ComP, the signal and the sensor of the 

system, respectively. Therefore, preliminary genetic analysis carried out in the 

present study focussed on the genes coding for the ComX pheromone precursor 

protein and the histidine kinase, and primers were designed for amplification of the 

corresponding coding sequences annotated in the genome of B. licheniformis ATCC 
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14580. However, none of the amplifications gave rise to the desired products, thus 

suggesting that genetic organisation of the comQXPA clusters of B. licheniformis 

strains ATCC 14580 and NCIMB 8874 might be different. Previous studies 

investigating Bacillus  natural isolates have shown that the competence regulating 

locus is highly polymorphic, with the polymorphism stretching 

through comQ, comX and the region of comP encoding the N-terminal part of 

the protein, whilst the C-terminus of comP and comA were proved to be highly 

conserved (Tran et al., 2000, Tortosa et al., 2001). Bioinformatics analysis performed 

on the recently acquired genome sequence of B. licheniformis NCIMB 8874 

confirmed this hypothesis, as the ComP coding regions of strains ATCC 14580 and 

NCIMB 8874 were found to share only 89% identity at the nucleotide level, whereas 

the identity for comX was 94%.  

Bioinformatics analysis was extended to the localisation of the comQXPA cluster on 

B. licheniformis NCIMB 8874 genome (Figure 3.26), revealing a high degree of 

conservation within the group of Bacilli analysed, with the exception of                       

B. licheniformis ATCC 14580, whose competence regulating gene cluster is 

interrupted by three unidentified coding sequences.  

When the comQXPA gene cluster of B. licheniformis NCIMB 8874 was aligned with 

the recently annotated locus from strain 9945A, which has been shown generate a 

functional quorum sensing system (Hoffmann et al., 2010), the two loci were found to 

be identical at the nucleotide level. The alignment also revealed that the comP gene 

sequence of B. licheniformis NCIMB 8874 is not interrupted by a transposon 

insertion, thus confirming thus confirming experimental evidence of a functional cell-

cell communication mechanism.  

Previous research has shown that the Bacillus pheromones can be classified in four 

pherotypes groups depending on their amino acid sequences and the nature of the 

modification (operated by ComQ) on their conserved tryptophan residues; only 

pheromones belonging to the same group are able to generate a cross-induction 

phenomenon (Ansaldi et al., 2002). According to these findings, the polymorphism 

characterising the comQXP locus suggests that a given pheromone specifically 
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interacts with its receptor protein ComP and its processing protein ComQ, thus 

determining a specific pattern of activation of the cell density- dependent response 

(Tortosa et al., 2001, Tran et al., 2000).  

As the present study showed that the ComX pheromone produced by                        

B. licheniformis NCIMB 8874 was able to activated a quorum sensing response in B. 

subtilis reporters strains, comparative analysis was performed between the 

comQXPA loci of these bacteria, as well as other selected Bacilli, in order to 

investigate the relationship between the polymorphism of the competence regulating 

gene cluster and the specificity of activation of the quorum-sensing system.  

To this end, each product of the comQXP locus was aligned with homologues from 

selected Bacilli and a phylogenetic tree was drawn for each protein, as illustrated in 

Figure 3.28 for ComQ, Figure 3.30 for ComX, and Figure 3.32 for ComP. Taken 

together, the phylogenetic relationships between these proteins appeared to confirm 

previous results, as each protein could be classified in four different groups.              

B. licheniformis strains were usually found in the same cluster, as well as a not 

identified species, namely Bacillus sp. BT1B_CT2. Interestingly, the  ComX precursor 

proteins of B. licheniformis strains ATCC 14580, which has been proven to possess a 

non functional quorum sensing system, and F11, which has been shown to be unable 

to develop natural competence, were classified under a distinct group. ComA 

congruence, shown in Figure 3.34,  indicated that, whilst this protein is conserved in 

bacteria belonging to the same species, the conservation does not extend to the 

genus, as two different clusters could be identified in the phylogenetic tree, 

corresponding to as many analysed species. B. subtilis subsp. subtilis and                 

B. licheniformis NCIMB 8874 were found to be classified under different phylogenetic 

groups for all the products of the comQXPA cluster. B. licheniformis NCIMB 8874 and 

B. subtilis subsp. subtilis positions on pre-ComX evolutionary tree are not too distant, 

thus confirming the possibility of cross induction between the two species.  The 

sequence alignment between the two precursor proteins, however, highlighted that 

their conservation is only restricted to the N-terminal regions, whereas high variability 

characterises the pheromone-forming C-terminus, where the conserved tryptophan 
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residue is located.  Classification of a given pheromone under a particular pherotype 

is not possible merely on the basis of its amino acid sequence and, since little is 

known about the mechanism of the modification/maturation catalysed by ComQ, a 

prediction on the specific isoprenoid added by ComQ cannot be made. As 

experimental evidence suggests that the ComX pheromone of B. licheniformis 

NCIMB 8874 is able to induce a quorum sensing response in B. subtilis reporter 

strains derived from B. subtilis subsp. subtilis, it may be inferred that the two 

molecules are characterised by a similar modification.  

 

4.5.2 The competence transcription factor ComK and its regulatory proteins ComS 
and MecA 

 

Investigation of quorum sensing-related proteins was extended to ComK, the 

competence transcription factor, MecA, a modulator protein involved in ComK 

inhibition prior to quorum sensing induction, and ComS, a small protein responsible 

for ComK relief from inhibition when the quorum sensing response is initiated. The 

role of these proteins is essential in the regulatory cascade generated by ComX 

signalling; therefore the corroboration of their presence on B. licheniformis NCIMB 

8874 genome was necessary to confirm that this organism possesses a functional 

cell-cell communication mechanism. Alignment of the coding sequences of these 

proteins with their counterparts from B. licheniformis 9945A resulted in 100% identity 

and their position in the genome was found to be conserved with respect to other 

Bacilli. In particular, the localisation of ComS coding sequence on the lichenysin 

biosynthetic operon, previously reported in B. licheniformis strains 9945A and F11, 

reproduces the same genetic organisation found in B. subtilis, with comS located on 

srfA operon, thus confirming previous reports (Hoffmann et al., 2010). Moreover, 

ComK, MecA and ComS phylogenetic relationships revealed that, whilst these 

proteins are highly conserved within a particular species, they show variability 

throughout the genus. This indicates that each quorum sensing system, albeit 

generated from a common progenitor, has evolved in each species to ensure 
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specificity in the communication. As quorum sensing signalling is usually initiated at 

the onset of the stationary phase, when the environmental conditions become limiting 

for a cell population, it is not surprising that these systems have evolved 

independently to generate specific messages that cannot be decoded by their close 

neighbours and possible competitors.  

4.5.3 The Rap and Phr families  

 

Previous studies on B. licheniformis ATCC 14580 reported no coding sequence could 

be identified for PhrC, the precursor protein of the Competence and Sporulation 

factor (CSF), and the co-transcribed gene encoding RapC phosphatase (Lapidus et 

al., 2002). PhrC belongs to a family of eight Phr peptides (PhrA, PhrC, PhrE, PhrF, 

PhrG, PhrH, PhrI, and PhrK), whereas RapC is one of the 11 members of the Rap 

phosphatases family (RapA to RapK) of B. subtilis. 

Neither phrC nor rapC could be detected on B. licheniformis NCIMB 8874, thus 

confirming that this species does not produce the signalling molecule CSF. However, 

two other members of the Rap family were identified on B. licheniformis NCIMB 8874 

genome, namely RapA and RapB. Whereas the gene coding for RapB is not reported 

to be co-transcribed with any phr, rapA is co-transcribed with phrA in other Bacillus 

species. However, bioinformatic search failed to identify a phrA gene downstream of 

rapA B. licheniformis NCIMB 8874 genome.  

Indeed, no phr gene could be detected downstream of either rapA or rapB genes. 

The presence of RapB coding gene on the genome of an organism that does not 

produce CSF is quite surprising, as the PhrC  peptide was proven to be responsible 

of the inhibition of the unpaired phosphatase RapB  (Perego, 1997).  

Further analysis led to the discovery of the rapG-phrG and rapK-phrK loci in B. 

licheniformis NCIMB 8874. PhrK was recently shown to regulate ComA activity via 

inhibition of its cognate phosphatase RapK in B. subtilis cells (Bongiorni et al., 2005, 

Auchtung et al., 2006). According to one of these studies (Auchtung et al., 2006) 

PhrC, PhrF, and PhrK act jointly, although to a different extent,  to stimulate the 
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response regulator ComA, whose regulation of target gene expression requires all 

three peptides. As regarding  RapG and PhrG, their mechanism of action has not 

been fully understood, though RapG regulatory activity has been shown to be 

directed towards DegU (Ogura et al., 2003).  

These findings are in accordance with experimental results obtained in the course of 

ComX purification. Although the pheromone could not be isolated, induction of srfA in 

B. subtilis LS27 cultures was observed with the fraction collected at 30% CH3CN 

elution (Figure 3.14), which corresponds to the elution of CSF. As it has been 

confirmed that B. licheniformis NCIMB 8874 does not produce the competence and 

sporulation factor, srfA induction might have been caused by another Phr peptide, 

possibly PhrK, which regulates ComA activity.  
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CONCLUSION  

 

The aim of this study was to investigate cell-cell communication in B. licheniformis 

NCIMB 8874 and establish the role of comQXPA gene cluster of this bacterium in 

secondary metabolite production. The study provided evidence for the presence of 

signalling molecule/s in B. licheniformis NCIMB 8874 supernatant, able to induce 

quorum sensing response in two B. subtilis reporter strains, one of which harboured 

a comX null mutation.  

Bioinformatics analysis of B. licheniformis NCIMB 8874 genome sequence confirmed 

the existence of an intact comQXPA gene cluster identical to its counterpart from B. 

licheniformis strain 9945A, a naturally competent bacterium. Studies on the 

production of quorum sensing-regulated secondary metabolite, such as lichenysin, -

-PGA and extracellular proteases confirmed that the comQXPA cluster gives rise to 

a functional communication system.  

However, exogenous addition of spent medium from high cell density cultures of 

either B. licheniformis NCIMB 8874 or the wild type B. subtilis showed no significant 

effect on lichenysin production and exoproteolytic activity in B. licheniformis NCIMB 

8874.  

A potential quorum sensing effect was observed in B. licheniformis NCIMB 8874 

cultures supplemented with supernatants of B. licheniformis NCIMB 8874 and the 

wild type B. subtilis, resulting in a transient increase in -PGA production and red 

pigmentation.  

This study has established, for the first time, the production of industrially valuable 

secondary metabolites, such as the antimicrobial biosurfactant lichenysin and the 

capsular biopolymer -PGA, in B. licheniformis NCIMB 8874 under the control of the 

quorum sensing cluster comQXPA, with potential industrial exploitation.  

The ComX pheromone was established as the signalling molecule in B. licheniformis 

NCIMB 8874 and a second potential inducer was also identified as the product of the 

phrK gene.  
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It can be concluded from these findings that the ubiquitous quorum sensing process 

covers B. licheniformis NCIMB 8874 as well. This initial characterization of cell-cell 

communication mechanism in B. licheniformis NCIMB 8874 opens up further 

possibilities for improved production of industrially desirable products through the 

adoption of strategies based on microbial signalling processes.    
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Chapter VI.Future Work 

FUTURE WORK   

 

Taking into account the results of this study and the derived conclusions, the 

following suggestions for future work may be addressed.  

 
6.1 Annotation of B. licheniformis NCIMB 8874 genome  

 

The present work highlighted the importance of genetic information for the 

investigation of biological processes in microbes. Bioinformatics analysis was carried 

out using a preliminary sequence of B. licheniformis NCIMB 8874 genome which was 

obtained at a later stage of the project. Although the annotation of the selected genes 

of B. licheniformis NCIMB 8874 was carried out in this study, the present genome 

sequence only comprised partially assembled contigs. Hence further work is 

necessary to reduce the gaps between all the contigs and to annotate individual 

coding sequence(s).   

6.2 Cloning and overexpression of comQX for pheromone purification  

 

In order to further investigate cell-cell communication processes in B. licheniformis 

NCIMB 8874, the isolation and purification of the ComX pheromone is of utmost 

importance. To this end, the best strategy would be the cloning of the comQX locus 

into a shuttle vector under the control of an inducible promoter. The genes comQ and 

comX are sufficient for the process leading to the production and the maturation of 

the peptide in host cells. This technique will result in pheromone production at high 

concentrations for subsequent harvesting and purification using reverse phase 

chromatography and HPLC.  

Following the purification of ComX pheromone of B. licheniformis NCIMB 8874, 

Edman degradation might be used to determine the exact amino acid sequence of 

the peptide, whereas techniques such as MALDI-TOF and LC-MS, and NMR will aid 

the identification of the modification on the tryptophan residue. The isolation of the 
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ComX pheromone will allow further insight into the regulation of the secondary 

metabolite production controlled by quorum sensing.  

 

6.3 Microarray analysis  

 

Whereas cell-cell communication in B. subtilis has been extensively investigated, 

very little is known about this process in B. licheniformis. However, it has been 

established that quorum sensing in the two bacteria are different, as demonstrated by 

the absence, in B. licheniformis NCIMB 8874, of the competence and sporulation 

factor, the second signalling molecule of B. subtilis,. Therefore, further investigation 

will be needed to elucidate the regulation of cell density dependent phenomena in 

this bacterium.  

The recently acquired genomic sequence could be used to design probes for gene 

expression profiling analysis by using microarray technology. This would allow 

comparison of the transcription levels in B. licheniformis cultures grown in the 

absence and presence of the ComX pheromone. This would generate a 

comprehensive profile of genome wide changes in gene expression in response to 

the addition of the signalling molecule.  

 

6.4 Construction of B. licheniformis reporter strains 

 

The use of bioassays is a well established practise in the investigation of cell-cell 

communication in microbial cells. Bioassays have been developed to detect various 

aspects of autoinducer-mediated quorum sensing by exploiting bacteria 

characterised by an easily observed phenotype, such as pigmentation or 

bioluminescence. In bacteria which do not possess an easy-to-detect phenotype, this 

is created by introducing a reporter gene.  

http://en.wikipedia.org/wiki/Gene_expression_profiling
http://en.wikipedia.org/wiki/Gene_expression_profiling
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Reporter genes, such as the -galactosidase encoding gene lacZ, could be used to 

investigate the expression of the lichenysin biosynthetic operon, or other genes 

regulated by quorum sensing, in B. licheniformis NCIMB 8874, by constructing a 

reporter strain carrying a fusion of the promoter of this operon and the lacZ gene 

(licA-lacZ fusion). This type of construct would allow the investigation of cell density 

dependent production of lichenysin, or other secondary metabolites regulated by 

quorum sensing, through -galactosidase assay.  

Moreover, these reporter strains could be used to investigate the effect of exogenous 

addition of ComX on the production of secondary metabolites. Different 

concentrations of pheromone could be added at different times to the cultures of        

B. licheniformis reporter strains to establish the best conditions for optimisation of the 

production of quorum sensing-regulated secondary metabolites. 

 

6.5 Production of secondary metabolites in continuous culture systems 

 

Quorum sensing is generally considered as a cell-density-dependent cell-to-cell 

signalling process. There is, however, increasing evidence that cell-to-cell signalling 

mediated by quorum sensing can be affected strongly by environmental factors other 

than the cell density; hence a novel approach is needed to investigate quorum 

sensing processes under defined, stable and controllable set of physico-chemical 

conditions. For this purpose, an ideal experimental system for quorum sensing 

studies would be the chemostat.  

In order to establish whether the environmental parameters might affect the ComX-

regulated cell-cell communication in B. licheniformis NCIMB 8874, cell population 

density could be studied under the steady state in a continuous culture system, 

where the production of secondary metabolites could be investigated in the course of 

parallel fermentations with and without the addition of the signalling molecule(s).  
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6.6 Investigation of other potential quorum sensing molecules in                        
B. licheniformis NCIMB 8874  

 

Quorum sensing processes in B. subtilis are under the control of two convergent 

signalling pathways, each regulated by a specific quorum sensing molecule. One of 

these molecules, the ComX pheromone, has been identified in B. licheniformis 

NCIMB 8874, whereas the coding sequence of the second molecule, phrC, could not 

be located in the genome of this organism. However, a second potential signalling 

molecule has been identified in B. licheniformis NCIMB 8874, possibly the product of 

phrK gene.  

The isolation and identification of this potential signalling molecule would necessitate 

further studies. Reverse phase chromatography and HPLC would be the favourable 

techniques for the isolation of this peptide, whilst Edman degradation would provide 

information on its amino acid sequence.  
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