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PROBLEM DIMENSIONALITY REDUCTION IN DESIGN OF OPTIMAL IIR FILTERS

Andrzej Tarczynski

University of Westminster, 115 New Cavendish St., London, W1W 6UW, UK
tarczya@wmin.ac.uk

ABSTRACT

A typical design of a digital IIR filter that is optimal in the
sense of the weighted least squares criterion is performed
by using a numerical optimisation procedure capable of
searching for local minima of highly non-linear functions
of vector arguments. Normally such a search is carried out
inside a multidimensional space of filter parameters or, if
constraints are imposed, inside a subset of the space. The
dimensionality of the space is therefore equal to the
number of tuneable parameters of the filter. In this article
we show that this approach to designing WLS optimal
filters can be effectively changed in such a way that the
number of dimensions of the search space is significantly
smaller than the number of tuneable coefficients. The
proposed modification not only reduces the
dimensionality of the filter design problem. It can also
improve robustness of the design procedure and reduce
errors by delivering more accurate approximations of the
local minima.

1. INTRODUCTION

The problem of designing a filter that is optimal in the
sense of the Weighted Least Squares criterion can be
formulated as follows. Let H(v) be a complex-valued,

hermitian-symmetric  function  representing  target
frequency response of the filter and
by +byz™ +-tb, 27"
Gz =28 - 0T : W

Ry

A2 l+az?+4 a,z
be the prototype transfer function of the filter. Determine
the vector x= [bo, e, b,,b
coefficients such that the following WLS cost is
minimised

, Gy v, a,,a] of filter

0.5
. 2
J= J'|G(exp( j2rv))~ HO) W (v)av o)
-0.5
where W(v) is a real-valued, even and non-negative

weight function. For obvious reason a restriction is
imposed that the designed filter must be stable.
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The above formulation suggests that designing an IIR
filter is equivalent to solving an optimisation problem
with constraints in n,tn,+1 dimensional space. We will
show that in fact we can significantly reduce the
dimensionality of the search space and confine it to only
n, dimensions.

Before revealing details of the proposed approach we
briefly review the methods of stabilising the designed
filter. An obvious way is to represent the denominator of
(1) as a product of second-order polynomials [1]. The
filter is stable if the coefficients of each factor satisfy a set
of linear inequalities describing the famous "triangle of
stability". Another method, proposed in [2], applies linear
constraints directly to the coefficients of 4(z). The method
is over-restrictive since it excludes some stable filters
from the set of feasible solutions. Two other approaches
use non-linear transformation of the filter parameters [3],
and expansion of cost (2) [4]. Both-modifications facilitate
search of the stable optimal filter by solving an
optimisation problem without constraints. Finally, it has
been shown in [5] that stability of the filter can be
enforced by demanding that a matrix, related to CCF
state-space representation of the filter is positive definite.
Numerical methods that minimise (2) can often benefit
from the access to the gradient and Hessian of the
minimised cost. Some methods use them to establish
directions of the search of optimal solution. Other
methods need the derivatives of the cost to build local
approximations of (2) as second order polynomials.

The method of reducing the dimensionality of the search
space proposed here is suitable for practically all
approaches reported in the research literature. It can cope
with all listed above methods of enforcing stability. It also
allows to effectively calculate the gradient and the
Hessian of the cost. :

2. FIXED-DENOMINATOR OPTIMAL FILTERS

Design of WLS optimal filters is pretty straightforward if
the designed filter has an FIR structure. The coefficients
of the optimal filter are the solution to a set of linear
equations. The designers do not have to be concerned
about multiple local minima, filter stability etc. Numerical
tools needed to design filters are much simpler than in IIR
case. The whole simplicity of the FIR design can be
extended almost immediately to IIR case if the design is
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performed in two stages. First we select arbitrarily the
denominator of (1) then we use optimisation methods to
calculate the coefficients of the numerator that minimise
(2). Of course, unless the initially chosen denominator is
optimal, IIR filters designed using this approach do not
minimise cost (2) as much as it is possible when full
optimisation is performed. However, experienced
designers are capable of placing the poles of the filter in
much more useful positions than, as suggested by FIR
approach, at the origin and achieve IIR filters of
significantly lower order than similar quality FIR ones. To
illustrate the above concept we introduce two vectors:

s(v) = A_(ejz—’w) [1 , e ™, e~/ rmmY ]T ?3)

and
b=[by, b, -

Now we can rewrite (2) as

, b, 17 )

J= 0J"S(st(v)—H(v)XloTs(v)-H(v))'W(v)dv )

-0.5
The above expression is a quadratic function of vector b
J=b"Mb-2b"n+r (6)
where M is a symmetric, real-valued matrix
0.5
M= _[ s(vV)s? MW (V)dv %)
-0.5
n is a real-valued vector
0.5
n= js(v)H‘ VW (V)dv, ®)
-0.5
and r is a scalar
0.5
2
= [l W ©)
-05

Minimisation of (6) with respect to b is simple. The
optimal vector of coefficients is

b, =M™"'n (10)
In formulas (3)-(8) superscript "T" denotes transposition,
"*" complex conjugation and "H" Hermitian transposition
(superposition of "T" and "*"). If needed, the integrals (7)
and (8) can be quickly and accurately approximated by

inverse FFT similarly to what was done in {4]. Note that
the value of b, changes every time we change A(z).

3. WLS OPTIMAL IIR FILTERS

The results derived in Section 2 will be now used to
reduce dimensionality of the original filter design
problem. Let us substitute b, defined by (10) for b in (6).
We get

J=r-n"M™'n. @11

It is clear now that the cost (11) does not depend on b.
The only parameters of the filter that directly affect the
cost are the coefficients of the denominator. Therefore the
filter design problem is now reduced to minimisation of

(11) with respect to vector a= [a,, ST a,,a]r . By solving

this problem we get the coefficients of the denominator of
the transfer function G(z). Once the optimal value of a is
found then b can be obtained from (10).

4. GRADIENT AND HESSIAN OF THE COST

As we mentioned earlier most of the numerical
optimisation procedures that are used in filter design
problem require access to the gradient and Hessian of the
cost. Here we show how these derivatives of (11) can be
calculated. We try to keep our analysis as generic as
possible. Therefore at this stage we do not assume that the
parameterisation of polynomial A(z) is such as shown in
(1). For the purpose of ensuring filter stability other
representations are often used. Examples of various
parameterisations include [1]
n,/2
A(z) = H(1+a',,.z" +adyz %) (12)
i=l
and [2]
n, /2
Az)= H(1+ 1+sin(@,;) sin(@y) ™! +sin(@,, )z 2) (13)
i=1

If n, is odd then (12) and (13) have to be slightly modified
to include first order factors. To reflect our flexibility in
representing A(z) we assume that the vector of tuneable

, oc,,a]r. The
relations between o; and A(z) depend on chosen

parameterisation.
Now we can calculate the derivatives of the cost (11).

coefficients of A(z) is just ﬁ:[oz,,

i]—=nTM‘1—E-3—l\1M_n (8n ] Mn (14
oo, do; ;
Moreover
J' as(v) ”(V)W(v)dv+
0.5 H
J' s(v) asa My (vyav (15)
-0.5 o
0.5 o
o _ [ IOy vy (16)
oo, oo,
-0.5
and
as(v) _ aA(ejzm)/aai ~j2my —j2mngv
do,  AX(™) [1 e ¢ ]’(17a)
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asfv) o4 (e”’“)/aa[ 2

72w | (17b
doL; (e 127W) ¢ ] ( )

1

Normally, the derivatives 0A4(e’*™ )/ da; that are required

in (17) can be easily calculated once the parameterization
of the denominator of the filter's transfer function is
known. The gradient of the cost is thus a vector of length
n, having the form

V= [N aJ] (18)

oo, da,,

The components of the vector can be calculated using
(14)-(17). Once again it is recommended to use efficient
numerical methods based on inverse FFT described in [4]
to approximate the values of integrals (15) and (16).

In order to construct the Hessian of cost J we need to
derive second derivatives of (11). Note first that if we
substitute (10) in (14) we get

T
aJ oM on
L bo,,,—z[g] by (19
Therefore
2 b’ 2
9°J —p Do oM ey ‘M »
do; Aot doy, da; ¥ % da 00y
2 Y | ob
Y A b2 on ) Do (20)
ooL,00, da; | doy
It is not difficult to check that:
abopt -1 BM —~1 E)n
—=-M" —b_ ,+M 21
_ daL, oo, ¥ oot . @1
M F i) o
= W(v)dv
aoc-aock ) Do W)
as(v) os’ 9™ (v) 95~ M oy
Jo; odoy
-0.5
3 H
os(v) ds (V)W(v)dv
oo, 0o,
0.5 i
0.5 2 H( )
J' s Vyon @)
-0.5
2 05 2
on_ _ [ 950 g ymnay 23)
do; 00, _Osaociaak
and '
0s(v) _ 2aA(eﬂ"V)aA(ef'z"V)_a2A(ef'2"V)><
do,; 00, 00, oo, 00,001,

AZ(ejZTEV)IL e—j21w, e—jZMer/A“(ejZ?W) (24)
The Hessian of the cost is given by

0%J 9%J
do00;,  dot,00,
ViJ= : : (25)
9%J 9%J
o, do, oo, dor,

The formulas (7)-(25) show how, for a given denominator
of the transfer function, we can calculate the cost, its
gradient and Hessian.

5. NUMERICAL TEST

Now we are going to use the proposed approach to design
a band-pass IIR filter. The target frequency response of
the filter is chosen as

o= 0 if |v|<0.20rv|>03
W)= if 02<p<03

and the structure of the filter is described by n,=4, n,=30.
The weight function used in the design is

0.1 if |v|<0.2130r|v|>0.187
W(v)=40.1 if |v|<0.3130rlv|>0.287  (27)
1 all other values of v

exp(—j36mv) (26)

In order to control the position of the poles we use WISE
method described in [4]. The stability of the filter is
achieved by linearly combining WLS cost (11) with

Partial Energy of Impulse Response of filter
F(z)=1/A(z) .
M+3
Jwsg =(A=Nr-n"M ) +1 Y f7(n)  (28)
n=M

In (28) f(n) denotes impulse response of F(z). It has

been shown in [4] that if M and A are properly selected
then local minima of (11) placed inside the subspace of
stable filters are practically identical with local minima of
(28). On the other hand (28) has no local minima in the
subspace of unstable filters. Therefore any optimisation
method that searches for the minimum of cost (28) will
end up with a stable filter that represents a local minimum
of (11). In this example we selected M =400 and

A=107. 1t was, however, found out that the results we
obtained are very insensitive to a wide range of changes of
those two parameters. Since we deploy WISE approach
we do not have to perform any special parameterisation of
A(z). We simply use

A@Z)=1+az" +--+a, 27" (29)
and the following expressions can be substituted in (17)
and (24):

dA(exp(j2nv))

= exp(—ji2nv) (30)
da

and
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9 A(exp(j2mv)) _ o
“da;0a, ’
Figure 1 shows the magnitude response of the filter, while
Figure 2 presents the weighted frequency response error.
It would take more than 75 taps to construct an FIR filter
whose quality measured by cost (11) would be not worse
than that of our IIR filter.

|G(exp(;2nv)|

€2)

0.8F - - - - R e e
] S e

04F - - - - I - - - '

0.2 - - - - J ----- \~
: L : ' v

Figure 1. Magnitude response of the designed filter

ZOIS%IO(IG(exp(jZNV)-H(V)[W(V))

-80 : : : : v
0 0.1 0.2 0.3 0.4 0.5

Figure 2. Magnitude of weighted frequency response error
of the designed filter

5. CONCLUSIONS

The problem of designing IIR filters that are optimal in
the sense of WLS criterion has been reformulated in such
a way that the dimensionality of the space of optimised
parameters of the filter has been substantially reduced.
Local minima of the modified cost function represent
exactly the same filters as the local minima of the cost that
is traditionally used in filter design. The main reason that
the proposed modification is recommended for use is to

diminish computational effort ~ needed to solve
optimisation problem related to designing the filter.

The numerical test that is presented in the previous section
of this paper shows a case where the dimensionality of the
optimisation problem was reduced from 35 to only 4. This
reduction was translated into 48% saving of computational
time needed to design the filter. The reason that almost
nine-fold reduction of problem dimensionality is only
partially reflected in shortening the computational time
lies partially in the fact that the cost (11) and its first and
second derivatives are described by more complex
mathematical formulas than those of (6).

Another advantage of the proposed approach is that the
numerator of the designed filter is always tuned optimally.
The numerical optimisation procedures rarely reach
accurately the local minimum. Usually they stop the
search in some neighbourhood of the actual solution. With
the classical approach both numerator and denominator of
the transfer function contain some errors. The
methodology proposed here leaves us with the errors in
the denominator, while the numerator of the transfer
function is tuned very precisely and minimises the cost
accordingly to the final choice of the denominator.

There is also an educational benefit in reformulating the
filter design problem. If the designed filter has small
number of non-zero poles (say n, <3) then it is possible

to calculate the cost over a dense grid of n,-dimensional
space of filter parameters and represent it in a graphical
form. This may give a good information about the shape
of the cost function and possible numerical problems that
can be faced if one attempts minimising it. Such
visualisations are without doubts very important for
students. They can be also beneficial for many researchers
as well.

6. REFERNCES

[1] A. Tarczynski and G.D. Cain, "A New Algorithm For
Designing Near-Optimal Chebyshev IIR and FIR Filters", Proc.
38th Midwest Symp. on Cicuits Syst. MWSCAS'95, Rio de
Janeiro, pp 584 -587, 13-16 Aug. 1995.

[2] W.S. Ly, S.C. Pei and C.C. Tseng, "A weighted least-squares
method for the design of stable 1-D and 2-D IIR digital filters",
IEEE Trans. on Signal Processing, vol. 46, no. 1, pp. 1-10, 1998.

[3] T-B Deng, "Design of Recursive 1-D Variable Filters with
Guaranteed Stability", IEEE Transactions on Circuits and
Systems- II: Analog and Digital Signal Processing, vol 44, no. 9,
pp. 689-695, 1997.

[4] A. Tarczynski, G.D. Cain, E. Hermanowicz and M.Rojewski,
"A WISE Method for Designing IIR Filters", IEEE Trans. Signal
Proceedings, Vol. 49, No.7, pp. 1421-1432, 2001.

[5] W.S. Lu and A. Antoniou "A new method for the design of
stable IIR 2-D digital filters using sequential semidefinite
programming” Proc. of International Sympousium on Circuits
and Systems ISCAS 2001. Sydney, Vol. 2, pp.553-556, 2001.

V-720



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


