In vitro assessment of the synergy between Polymyxin B (PMB) and Polymyxin B Nonapeptide (PMBN) and Antibiotics on Biofilms from Diabetic Foot Infections

George Gyamfi-Brobby
Pamela Greenwell
Patrick Kimmitt

Faculty of Science and Technology, University of Westminster

This is a copy of the poster presented at the 115th General Meeting of the American Society of Microbiology, New Orleans, Louisiana, USA, 30 May – 2 June 2015.

Copyright © 2015 The Authors.

The WestminsterResearch online digital archive at the University of Westminster aims to make the research output of the University available to a wider audience. Copyright and Moral Rights remain with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely distribute the URL of WestminsterResearch: (http://westminsterresearch.wmin.ac.uk/).
In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk
Background
Increasing resistance of Gram-negative bacteria isolated from nosocomial infections and chronic wounds, such as diabetic foot ulcers has renewed research interests in the use of polymyxins in the treatment of multidrug resistant infections. The added resistance conferred by biofilm formation in such infections and the absence of novel antibiotics make polymyxins the drugs of choice, in spite of their nephrotoxicity and neurotoxicity. Polymyxins are natural non-ribosomal cationic cyclic lipopeptides isolated from the bacterium Pseudomonas polylymyxa. They exert their antibacterial action by selectively binding to lipid A component of the lipopolysaccharide (LPS) and subsequently disrupt the outer membrane of Gram-negative pathogens.

The effects of PMB and PMBN have been previously assessed on planktonic bacteria isolated from various infections.

Results
From the tables of results (Tables 1 and 2), it can be deduced that both ceftazidime and levofloxacin are very effective in inhibiting biofilm development (as shown by percentage inhibition (PI%) and percentage reduction (PR%)) when augmented with PMB and PMBN (Figures 1 and 2). This is about 100-fold increase in efficacy when compared to the antibiotics used on their own. The percentage reduction (PR%) in biofilm was also increased considerably when PMB and PMBN concentrations were increased to 500 µg/mL. PMB was more effective than its less antibacterial derivative PMBN. Levofloxacin was also found to be more effective than ceftazidime when combined with both PMB and PMBN due to its enhanced cell-membrane permeability and as an anti-DNA replication uncoupling agent.

Discussion
Though the polymyxins have proven to be the last resort in the treatment of multidrug resistant Gram-negative pathogens, their nephrotoxicity and neurotoxicity have complicated their use. Previous studies have suggested the development of optimal dosage regimen with enhanced efficacy and reduced toxicity. However, this has not been possible as there is scanty knowledge on their pharmacology. Some Gram-negative pathogens have also developed resistance against polymyxins. It has also been predicted that the combination of polymyxins with other antibiotics may reduce their side effects and resistance development.

In this study, the synergy between ceftazidime and levofloxacin and PMB and PMBN have suggested that effective combinations may provide alternate strategies towards biofilm eradication. Though the effective combinations used in this study yielded about 90% inhibition and 70% reduction in biofilms, they were above their therapy range. It has been suggested that modulation of the amino acid groups and the hydrophobic regions of PMB and PMBN may increase their efficacy with reduced toxicity.

References

This work was financially supported by the University of Westminster and The Society for General Microbiology.

Background
Increasing resistance of Gram-negative bacteria isolated from nosocomial infections and chronic wounds, such as diabetic foot ulcers has renewed research interests in the use of polymyxins in the treatment of multidrug resistant infections. The added resistance conferred by biofilm formation in such infections and the absence of novel antibiotics make polymyxins the drugs of choice, in spite of their nephrotoxicity and neurotoxicity. Polymyxins are natural non-ribosomal cationic cyclic lipopeptides isolated from the bacterium Pseudomonas polylymyxa. They exert their antibacterial action by selectively binding to lipid A component of the lipopolysaccharide (LPS) and subsequently disrupt the outer membrane of Gram-negative pathogens.

The effects of PMB and PMBN have been previously assessed on planktonic bacteria isolated from various infections.

Results
From the tables of results (Tables 1 and 2), it can be deduced that both ceftazidime and levofloxacin are very effective in inhibiting biofilm development (as shown by percentage inhibition (PI%) and percentage reduction (PR%)) when augmented with PMB and PMBN (Figures 1 and 2). This is about 100-fold increase in efficacy when compared to the antibiotics used on their own. The percentage reduction (PR%) in biofilm was also increased considerably when PMB and PMBN concentrations were increased to 500 µg/mL. PMB was more effective than its less antibacterial derivative PMBN. Levofloxacin was also found to be more effective than ceftazidime when combined with both PMB and PMBN due to its enhanced cell-membrane permeability and as an anti-DNA replication uncoupling agent.

Discussion
Though the polymyxins have proven to be the last resort in the treatment of multidrug resistant Gram-negative pathogens, their nephrotoxicity and neurotoxicity have complicated their use. Previous studies have suggested the development of optimal dosage regimen with enhanced efficacy and reduced toxicity. However, this has not been possible as there is scanty knowledge on their pharmacology. Some Gram-negative pathogens have also developed resistance against polymyxins. It has also been predicted that the combination of polymyxins with other antibiotics may reduce their side effects and resistance development.

In this study, the synergy between ceftazidime and levofloxacin and PMB and PMBN have suggested that effective combinations may provide alternate strategies towards biofilm eradication. Though the effective combinations used in this study yielded about 90% inhibition and 70% reduction in biofilms, they were above their therapy range. It has been suggested that modulation of the amino acid groups and the hydrophobic regions of PMB and PMBN may increase their efficacy with reduced toxicity.

References

This work was financially supported by the University of Westminster and The Society for General Microbiology.