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Abstract 

 

Background: Even a well-designed randomized control trial (RCT) study can produce 

ambiguous results.  This paper highlights a case in which full-sample results from a large-

scale RCT in the United Kingdom (UK) differ from results for a sub-sample of survey 

respondents.  Objectives: Our objective is to ascertain the source of the discrepancy in 

inferences across data sources and, in doing so, to highlight important threats to the reliability 

of the causal conclusions derived from even the strongest research designs.  Research 

design: The study analyzes administrative data to shed light on the source of the differences 

between the estimates.  We explore the extent to which heterogeneous treatment impacts and 

survey non-response might explain these differences.  We suggest checks which assess the 

external validity of survey measured impacts, which in turn provides an opportunity to test 

the effectiveness of different weighting schemes to remove bias. The Subjects included 6,787 

individuals who participated in a large-scale social policy experiment.  Results: Our results 

were not definitive but suggest non-response bias is the main source of the inconsistent 

findings. Conclusions. The results caution against overconfidence in drawing conclusions 

from RCTs and highlight the need for great care to be taken in data collection and analysis. 

Particularly, given the modest size of impacts expected in most RCTs, small discrepancies in 

data sources can alter the results.  Survey data remain important as a source of information on 

outcomes not recorded in administrative data.  However, linking survey and administrative 

data is strongly recommended whenever possible.  
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Using Administrative Data to Explore the Effect of Survey Nonresponse in the UK 

Employment Retention and Advancement Demonstration 

1. Introduction 

The primary virtue of random assignment as a method of evaluating public policy 

interventions is that it allows for causal inferences owing to the strong internal validity of the 

design.  Because the treatment and control groups are defined at random, statistical 

equivalence in average characteristics—both measured and unmeasured—is ensured by the 

design.  As several commentators have pointed out, however, issues in data collection can 

undermine the ability of a randomized control trial (RCT) to estimate the true impact of an 

intervention (see Barnow & Greenberg, 2014).  Data collection problems are exacerbated by 

the fact that the impacts an RCT is designed to detect are sometimes small, and relatively 

small levels of bias introduced by data collection practices can alter the overall conclusions. 

There are two reasons why impact estimates based on survey data not be the same as 

those based on administrative data.  The first is that the two data sources may differ in what 

they measure, either because they capture qualitatively distinct concepts or because they 

differ in the imperfections with which they measure the same concept.  For example, when 

considering earnings impacts, survey and administrative data may differ in the range of 

employment types for which earnings are recorded.  The second reason is that survey 

respondents may differ in some way from the full sample.  The paper focuses on this second 

reason.  Non-comparability in characteristics across samples is a more fundamental issue 

than non-comparability of outcomes recorded by administrative data and survey data in the 

sense that it raises potential concerns over the causal basis of the RCT.  If the RCT can be 

viewed as supporting causal inference among the survey respondent sub-group for 

administrative outcomes, it gives more confidence when estimating impacts on outcomes that 
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differ in their definition from those in the administrative data or, more generally, do not exist 

in the administrative data.   

When considering difference between estimates based on the respondent sample and 

those based on the full sample we explore two potential explanations.  The first is that there 

are no treatment-control differences in survey response but that respondents are more likely 

than the full sample to have those characteristics associated with a higher impact.  In this 

case, estimates based on survey respondents can sometimes still be viewed as causal, just for 

a particular subgroup, so the difference from the full sample estimates is explained by 

treatment effect heterogeneity.    The second explanation is that there may be treatment-

control differences in survey response due to unobserved characteristics. If these unobserved 

characteristics are correlated with outcomes, they will influence the estimated impact, which 

can no longer be regarded as causal.  This is the case of differential selection into the sample 

of survey respondents. 

The main contribution of this paper is to investigate the potential of administrative 

data for testing the validity of estimates based on survey data.  Where administrative data 

contain a primary outcome and can be linked to survey data, the estimated impact on the 

primary outcome for survey respondents can be compared to the full sample estimate of the 

primary outcome.  If these estimates agree, or perhaps can be reconciled through appropriate 

weighting, we can be more confident that non-response does not undermine the ability of 

survey data to provide causal impact estimates for other outcomes.  

The analysis in this paper is based on the United Kingdom (UK) Employment 

Retention and Advancement Demonstration (hereafter, ERA).  ERA was the largest social 

trial of its kind in Britain.  The last wave of survey data, which was intended to be a main 

source of data for the final evaluation, produced impact estimates that were substantially 

larger than those obtained using administrative data for the full sample.  The paper provides a 
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detailed account of the administrative and survey data used in the ERA evaluation and shows 

how the estimated impacts on earnings for survey respondents are much higher than those for 

the full sample when earnings measures taken from the administrative data are used to derive 

the estimated impacts for both samples.  We consider the question of whether these higher 

impacts are due to treatment effect heterogeneity or to differential selection bias and, while 

not conclusive, suggest that the latter is the more likely explanation.  As a broader point, our 

analysis shows that, had the survey been relied upon as the main source of data, our 

understanding of the effectiveness of UK ERA would have been substantially overstated, 

assuming the administrative data fully cover the entire experimental sample and have 

accurate data.  It is hoped that by exposing vulnerabilities in data collection the paper will 

highlight a number of issues to guard against in collecting data for future RCTs.  

2. The ERA Evaluation Design 

ERA tested the effectiveness of a new method of improving the labor market 

prospects of low-income people relying on various government cash transfers.  Hendra et al. 

(2011) provide a full account of ERA and the context within which the evaluation took place.  

Here, we outline the main features of ERA. 

ERA operated in six regions of Britain from 2003 through 2007.  For this paper, we 

focus on one of the three target groups of ERA, namely out of work single parents on 

welfare
1
 who volunteered for the New Deal for Lone Parents (NDLP) welfare-to-work 

program.
2
   

Under ERA, individuals received pre-employment welfare-to-work assistance from 

                                                 
1
 At the time of the evaluation, single parents could claim (means-tested) "Income Support" indefinitely without 

any requirement to look for work. 

2
 The other two target groups were single parents working part-time and receiving the Working Tax Credit 

(WTC, the UK equivalent of the US Earned Income Tax Credit) and long-term unemployed people aged 25 or 

older.  The first of these groups is not considered in this paper since linking administrative data to WTC 

recipients has only recently become possible.
 
 The second group is excluded since long-term survey data were 

not collected for this group.  Hendra et al. (2011) presents impact results for all groups. 
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Jobcentre Plus, the public employment service in the UK.  The design of ERA allowed for a 

9-month pre-employment period.  Those who found work became eligible for post-

employment services.  These included a combination of (caseworker-provided) advice and 

financial incentives to remain employed and advance in work.  Participants who entered and 

remained in full-time work received substantial cash bonuses (covering up to 24 months of 

employment), help paying for training courses, and cash rewards for completing training 

while employed.  Under ERA, caseworkers had access to a fund to help avert minor 

financial emergencies that threatened to prevent a participant from continuing to work.  All 

support under ERA lasted a maximum of 33 months after randomization.   

Since there was a limited number of available slots, ERA was implemented as an 

RCT demonstration, meaning that individuals who volunteered for the program were 

assigned at random — regardless of their background characteristics — to a treatment group 

that was enrolled in ERA, or to a control group that was not enrolled in ERA.  The control 

group continued to receive the standard NDLP services as well as any other services normally 

available to them.  Individuals were recruited when they came into Jobcentre Plus offices.  

Caseworkers recorded basic demographic information and informed individuals of the 

possible advantages of participating in the ERA program.  The caseworkers then invited them 

to enter the demonstration “lottery”, told them they had a 50 per cent chance of being 

selected for the program and asked them to sign an informed consent form. 

Enrollment of families into the experiment lasted a little over a year.  Using the 

background information collected just prior to randomization,
3
 the characteristics of the 

treatment and control groups can be compared in order to assess how well randomization 

worked.  The first two columns of Table 1 relate to the full experimental sample (subsequent 

columns will be discussed later).  From these columns it is clear that randomization 

                                                 
3
 This baseline information was collected as part of the randomization process.  Since randomization could not 

take place until this background information was provided, there are no missing observations. 
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succeeded in creating two groups that, within sampling variability, are observationally 

equivalent.  The assumption then is that they are also likely to be similar with regard to 

unobserved characteristics, allowing differences between the ERA group and the control 

group to be viewed as unbiased estimates of the causal impact of ERA eligibility 

<Table 1> 

As described in Hendra et al. (2011), the evaluation used outcomes taken from both 

administrative data and survey data.  In that report, however, the survey results were 

deemphasized based on the finding that the impacts for the survey sample were significantly 

stronger than the results for the same outcomes in the full sample. These divergent findings, 

reported in Hendra et al. (2011) are what motivate this paper.  Because of these divergent 

findings, it is appropriate to consider how the details of the survey in order to understand 

selection into the respondent sample.   

The Office for National Statistics (ONS) carried out the survey, using administrative 

records of benefit receipt to help update survey contact information (Ashton & Portanti, 

2011).  One concern might be that the treatment itself influenced the probability of response 

to the survey for instance, if greater contact with bonus recipients resulted in their records 

being more up-to-date.  However, it is not clear how often bonus payment information was 

used in practice to update contact records.
4
 Another possibility is that the financial incentives 

had a “priming effect” in which an increased likelihood to receive payments for meeting one 

condition (e.g. working stably) makes one more likely to seek an incentive for another 

behavior (e.g. filling out a survey)
5
.  Though speculative, this pattern of higher than expected 

survey responses among recipients of program related financial incentives has been seen in 

                                                 
4
Record-keeping of bonus receipt was relatively ad hoc and it is unclear how often benefit records were updated 

through the bonus payment process. 

5
 Survey respondents were given a £20 gift voucher. 
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other studies.
6
 A related possibility is that recipients of bonuses felt a sense of obligation to 

the program which increased their propensity to respond to the survey. 

3. Methods 

The paper uses simple estimation approaches to explore its key questions.  These are 

briefly summarized in this section.  In addition, the data are described and their strengths and 

weaknesses are critically assessed. 

 

3.1 Estimation Approach 

We ran a series of regression analyses using the administrative data to estimate the 

extent to which differences in impacts on the primary earnings outcomes for the wave three 

(60-month) survey respondent sample and a random sample drawn from administrative 

records (the "fielded" sample, defined below) can be attributed to several possible sources.  

Impact models were run for both groups.  These models had the following specification: 

(1) Yi = α + βPi + δXi + εi 

where: Yj is the administrative data outcome measure for sample member i, Pi = 1 for 

treatment group members and 0 for control group members, Xi  is a set of background 

characteristics for sample member i, εi is a random error term for sample member i, β is the 

estimate of the impact of the program on the average value of the outcome, α is the intercept 

of the regression, and δ is the set of regression coefficients for the background 

characteristics.
7
  Several logistic regressions were also run which tried to predict treatment 

status or survey response status.  These regressions had the following specifications: 

                                                 
6
 For example, in the New York City Work Rewards study, survey respondents in the treatment group were 

twice as likely to receive a work reward compared to the full treatment group sample (Nunez et al., 2015 

forthcoming). 

7
 The regression model consisted of a set of exogenous characteristics selected because of their expected 

correlation with the key employment and earnings outcomes.  The covariates were all measured at baseline and 
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(2) Pi = α + δXi + υi   

(3) Ri = α + βPi + δXi + ei   

In (3), Ri is a dummy variable which indicates survey response status, Ri = 1 for respondents 

and 0 for non-respondents.  We also used these regressions to create inverse probability 

weights discussed later in the paper.  

3.2 Data sources 

The ERA evaluation reported in Hendra et al. (2011) used both administrative records 

and survey data.  Administrative data originated from the UK Department for Work and 

Pensions’ (DWP’s) Work and Pensions Longitudinal Study (WPLS) database.  This database 

has grown in importance as a resource for program evaluations (see Dorsett et al., 2013, for 

an example of another application to the case of a labor market experiment).  It provides 

information on welfare spells (durations and amounts), employment spells and tax year 

earnings.
8
  A key advantage of these data relative to survey data is that they are available for 

the full experimental sample.   

Within the WPLS, administrative data on welfare receipt and amounts are taken from 

DWP’s payment records and are generally regarded as accurate and reliable.  Administrative 

records on employment and earnings in the WPLS originate from the UK tax department 

(HMRC – Her Majesty’s Revenue and Customs) and are derived from three forms: 

 P14 – employers submit this form at the end of each tax year, showing earnings and 

taxes for each employee.  The form covers both employees still with the employer and 

those who left during the tax year.   

                                                                                                                                                        
(because of random assignment) are orthogonal to treatment group status.  The covariates included prior work 

and barriers to working, race, region, education, and a range of demographic variables.  Including covariates 

increases the precision of the estimated treatment effects. 

8
 The UK tax year begins on 6 April and ends on 5 April of the following year.   
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 P45 – This form has multiple parts.  Employers are required to submit one part to 

HMRC when an employee leaves.  The form gives details of the leaving date, 

earnings in the tax year and the amount of income tax deducted from earnings.  The 

departing employee keeps other parts of the form and must give it to his/her next 

employer.   

 P46 – Employees without a P45 (perhaps because they have not had a previous job or 

because they are starting a second job) are required to submit a P46 to HMRC.  The 

P46 also provides HMRC with the date of starting employment. 

The employment and earnings data require quite substantial cleaning before they are 

suitable for analysis.  For instance, precise start or end dates of employment spells are not 

always available.  Where it is known that a job started (or ended) in a given tax year, but not 

the precise date, this is recorded on the system as 6 (or 5) April, the first (or last) day of the 

UK tax year.  To improve upon this, part of the data processing for the official evaluation 

(Hendra et al., 2011) was to randomly imputed such dates within the relevant tax year.  In 

fact, the range for the imputed dates was further narrowed by other available data, such as the 

file date and the dates of benefit spells.  Imputation was used extensively since about one-

fifth of all employment spells were missing start dates. 

In addition, there may be inconsistencies arising from forms not being submitted or 

being incorrectly completed.  When individuals change employer or hold multiple jobs 

simultaneously, there is scope for disagreement in recorded dates or earnings.  Furthermore, 

submission of forms is only required for employees earnings above the tax threshold.  

Despite this, some employers will submit forms for all workers, regardless of their pay, 

perhaps because batch processing of forms for their higher-earning workers means that it is 

more efficient to treat lower-earning workers the same way.  In addition, these forms do not 
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capture self-employment and self-employed earnings.  The same applies of course to 

informal work. 

In addition to the administrative data, ONS carried out a survey approximately 12 

months after the individual’s date of random assignment, again at their 24-month anniversary, 

and finally at their 60-month anniversary.  The survey was administered by phone or in 

person to slightly less than half of the sample of those treatment and control group members 

randomized between December 2003 and November 2004.
9
  The key advantage of the survey 

data over administrative data is that they provide information that was tailored to the case of 

ERA.  They provide much richer data than the administrative records and allow individuals’ 

experiences with ERA to be assessed as well as key outcome information not otherwise 

observed; wages, hours of work, type of job and so on. 

 

3.3 Administrative Records and Surveys, Advantages and Disadvantages 

Large, randomized control trials of public policy interventions often rely heavily on 

administrative records to quantify the difference that a policy or program makes on key 

outcomes such as earnings, test scores, or public assistance receipt (see Riccio et al., 2013 for 

a typical example).  The strengths of administrative data are well-known and include wide 

coverage, no recall bias, and low marginal costs of data collection. 

A disadvantage of administrative records is that they typically do not cover all jobs or 

public assistance.  For example, in the US context, state records will not have information on 

what happens outside the state, and employment records will not have information on jobs in 

the informal sector (Kornfeld & Bloom, 1999).  While the conventional wisdom suggests that 

under-coverage in administrative records should be equivalent across study groups in an 

                                                 
9
 Approximately 44 percent of the full administrative records sample was selected for fielding for both research 

groups. The same fielded sample was used for all three waves of the survey survey (that is, the 12, 24 and 60 

month waves). 
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RCT, it is easy to imagine cases where under-coverage can interact with intervention 

strategies to produce bias (Barnow and Greenberg, 2014; Yang & Hendra, 2016).  

Surveys are also an important data source for many RCTs because they provide 

information that administrative records and other data fail to capture.  Without survey data, it 

would be difficult to quantify program dosage, or the extent to which a person actually 

engaged with a program.
10

  These data also provide valuable insight on certain behaviors, 

beliefs, program experiences, participant or household characteristics, and other issues that 

may influence outcomes observed in administrative records.  In addition, summarized 

earnings data from administrative records can be better understood with survey data, which 

provide information about work schedules, rates of pay, and job changes.  Finally, in many 

domains, administrative records are not available and some evaluations have to depend 

almost completely on surveys (see Lundquist, 2014 or Banerjee et al., 2009 as examples of 

studies in which only survey data were available for key outcomes). 

Unlike administrative records — where data are obtained for the full study sample — 

it is relatively expensive to collect survey data.  Typically, surveys attempt to collect 

information from a subset of the full sample, often with the expectation that they will 

represent the full sample.  When a survey fails to be representative — through non-response, 

for example —  it is considered biased.  Traditionally, the main safeguard against survey bias 

has been to obtain a high survey response rate.  Recent work has shown, however, that 

obtaining a high response rate is no guarantee of survey data quality and it is not hard to find 

examples of surveys with high response rates afflicted with survey non-response bias (e.g. 

Nunez et al., 2015).  Several studies have shown non-response bias does not vary 

substantially with response rates (Groves, 2006, Groves & Peytcheva 2008).  Internal 

research conducted as part of the US Employment Retention and Advancement study of 16 

                                                 
10

 While most programs collect program participation data in management information systems, these data are 

typically not available for the control group. 
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surveys found no correspondence between survey response rates and survey response bias.  

The implication of these findings is that high survey response rates do not guarantee that 

survey-based results will generalize to the full sample. 

A non-representative survey sample presents an issue of external validity.  With an 

RCT, if non-response affects the treatment and control groups equally, the resulting estimates 

can still be regarded as causal.  The issue in that case is that the results apply to the selected 

sample of respondents and may not hold for the full population.  A more serious issue arises 

when there is a difference in the response behavior of the treatment and control groups.  This 

differential response behavior results in respondents having different characteristics from the 

control group respondents so that treatment-control differences in outcomes can no longer 

confidently be attributed to the program.  In other words, differential non-response has the 

potential to undermine the internal validity of a randomized trial. 

   

4. Results 

4.1 Estimated impacts using administrative data 

As described earlier, the main focus of this paper is on the extent to which estimated 

impacts on outcomes from the same data source differ between the subsample of survey 

respondents and the full experimental sample.  To examine the effects of using different 

samples, we must consider outcomes from the administrative data because this is the only 

source available for both survey respondents and non-respondents.   

Table 2 shows impacts on earnings as recorded in the administrative data for the 

2007/8 tax year and the 2008/9 tax year.  The “fielded sample” – that is, those individuals for 

whom a survey was attempted – shows an impact of £343 which is not statistically 

significant.  The fielded sample was drawn from those randomized between December 2003 

and November 2004, while the intake period for the experiment ran from October 2003 to 
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December 2004.  Also, the sampling fraction varied by region, resulting in the fielded sample 

having a different geographic distribution from the full sample.  For these reasons, we would 

not expect the fielded sample results to necessarily agree with the full sample results (also 

reported in Table 2). 

The impact for the respondent sample is much larger (£623 for wave 3 respondents) 

and is statistically significant.  To address the question of whether the estimate for the 

respondent sample differs significantly from that of non-respondents, we augmented the 

regression for the fielded sample to include one dummy variable indicating response at wave 

3 and another dummy constructed as the interaction of the response dummy with the ERA 

dummy.  The interaction term had a p-value of 0.097, indicating that the estimated impact for 

respondents differs from the impact for non-respondents at the 10 percent significance level.  

For 2008/9 earnings, the impact (£320) is again higher than the impact estimated for the 

fielded sample (£40) but is not statistically significant.   Furthermore, estimating the 

augmented regression again indicates that the difference in impacts between the respondent 

and non-respondent sample is not statistically significant at the 10 per cent level (p-value of 

0.134) 

<Table 2> 

 

 

4.2 The nature of non-response in the survey data collected for the evaluation 

The main potential problems with survey data are that non-response can harm external 

validity and treatment-control differences in non-response can harm internal validity.  Table 3 

shows that there were 6,787 individuals in the full sample.  Of those, 2,995 were selected to 

be in the fielded sample.  Interviews were achieved for 87, 77, and 62 per cent of the fielded 

sample in waves 1, 2 and 3 respectively (that is, 1, 2 and 5 years post-randomization).  We 
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note that response rates are higher among the ERA group than the control group and return to 

this point below. 

<Table 3> 

As already noted, overall sample non-response can harm external validity.  In other 

words, the achieved survey sample may not be representative of the population from which it 

is drawn.  Unless we make the assumption that impacts do not vary across individuals, survey 

non-response means that ERA may affect respondents differently from the full sample.  Table 

1 provides an indication of the extent to which the background characteristics (observed at 

the time of randomization) of the fielded sample differ from those of the full sample.  For the 

reasons already given above, we see that there are differences in the geographic distribution 

of individuals and also in the distribution of randomization timings.  In other regards, the 

fielded sample looks rather similar to the full sample.  Table 1 also shows the background 

characteristics of those individuals who responded to the wave 3 survey (including both 

treatment and control group members).  In the absence of systematic differences in response, 

wave 3 respondents should resemble the fielded sample.   

Table 4 highlights the differences between survey-respondents and non-respondents.  

Since some of the characteristics seemingly influencing response may be correlated — for 

example, education and weekly earnings — logistic regression is used to determine which 

differ across respondents and non-respondents while taking other characteristics into account.  

Table 4 shows the results of regressing an indicator of response status on the characteristics 

shown in Table 1, as well as an indicator of research group, in order to better understand the 

process affecting response.  The ‘Odds Ratio’ column captures the effect of each 

characteristic on the probability of responding to the survey; asterisks denote the significance 

level of these relationships. 
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Survey respondents differ from non-respondents in several characteristics.  Those 

who, at baseline, were from Wales, those who were unmarried and living alone, and those 

with no qualifications were less likely to respond.  These differences suggest that the survey 

sample may not be representative of the fielded sample.  Selective response due to a 

nonrepresentative survey sample can result in different impacts if the sample that is more 

likely to respond has a different pattern of impacts compared to the full sample.  Impacts 

from the selected sample may still be internally valid and therefore provide valid causal 

estimates but, with treatment effect heterogeneity, these impacts will not generalize to the full 

fielded sample.   

More worrisome is the possibility that attrition results in estimated impacts that are no 

longer internally valid.  Attrition bias arises when treatment group respondents differ from 

control group respondents with regard to unobserved characteristics correlated with 

outcomes.  This includes the possibility that the program itself may influence survey response 

(for reasons described earlier in the paper).  Table 4 indeed shows that those in the treatment 

group are more likely to respond than those in the control group.
11

  While not a sufficient 

condition for internal validity to be undermined — it is straightforward to see that a randomly 

lower response rate among the control group will not bias impact estimates — it raises a note 

of caution.  Thus, if nothing else, differential non-response serves to reduce the credibility, or 

face validity, of the experimental design. 

<Table 4> 

A common practice when assessing whether survey non-response may have introduced bias 

is to compare baseline characteristics of respondents in the treatment and control groups.  Just as 

differential non-response is not a sufficient condition for bias, neither is balanced response a 

sufficient condition for unbiasedness (Barnow and Greenberg, 2015).  In other words, having 

                                                 
11

 This result can be inferred from Table 4 in a number of ways, including the observation that ERA group 

members constitute a larger fraction of the respondent sample compared to the non-respondent sample.  



17 

 

equivalent response rates by research group does not preclude the possibility of compositional 

differences under the surface.  Again, Table 1 is informative and suggests, at first glance, that 

treatment and control group respondents are similar.  To explore treatment-control comparability, 

we estimated a logistic regression to determine the extent to which baseline characteristics could 

predict whether a respondent was a member of the treatment group (among wave 3 respondents 

only).  Table 5 shows that none of the baseline characteristics is statistically significant as a 

predictor.  In other words, among the survey-respondent sample, there are no differences between 

treatment and control group respondents in these background characteristics.  

<Table 5> 

4.3 Attempts to reconcile earnings impacts estimated on the respondent sample with 

those estimated on the fielded sample 

Tests of response bias often focus on baseline data.  However, when suitable 

administrative data are available, it is also informative to investigate differences in outcomes 

subsequent to baseline.  One pattern of note in ERA was that treatment group members who 

worked stably were disproportionately likely to respond to the survey compared to stably 

employed control group members.  This differential survey response is consistent with the 

fact that respondents tended to have higher earnings than non-respondents.  The extent of this 

differential survey response varied across treatment status; in the control group, mean income 

among non-respondents was 84 per cent of the mean income for respondents while, in the 

treatment group, this fell to 72 per cent (these percentages were stable across both 2007/8 and 

2008/9 earnings).  Furthermore, even when administrative data are not available for both 

research groups, it may be possible to explore how response to the survey is correlated with 

program take-up among the control group.  With ERA, treatment group respondents were 

over 7 percentage points more likely to receive the work retention bonus compared to 

treatment group non-respondents.   
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Reflecting these findings about differences in employment stability and bonus receipt 

outcomes across samples, we explored several reweighting strategies intended to bring the 

survey respondent sample earnings impact estimate into alignment with the fielded sample 

impact estimate.  The results of these efforts are summarized in Table 6.  The first two rows 

show again, for convenience, the estimated impacts for the fielded and respondent survey 

samples.  The next row gives the results of a conventional weighting strategy using weights 

based on the inverse of the probability of responding conditional on a set of background 

characteristics.  This conventional weighting strategy had little effect on aligning earnings 

impacts across the samples (the estimated impact is £546).  It is not surprising that this 

approach was ineffective given the finding (discussed earlier) that there was no observable 

bias based on background characteristics.  Nonetheless, it is still noteworthy that the common 

approach of using weights defined on the basis of background characteristics does little to 

bring the respondent sample impact estimates closer to the fielded sample impact estimates. 

We also attempted non-experimental weighting strategies that control for post-

randomization outcomes.  Analyses of RCTs are usually careful to condition only on pre-

randomization treatment-control differences since randomization itself ensures that 

unobserved characteristics balance post-randomization.  Controlling for post-randomization 

outcomes runs counter to pre-randomization control and represents a significant departure 

from standard practice.  However, as illustrated in this paper, non-response can undermine 

the statistical properties of an RCT to the extent that the basis for causal interpretation of 

estimated impacts is eroded.  In such a scenario, it may be appropriate to consider weighting 

individuals according to their outcomes.  In the case of ERA, such an approach is successful 

in reconciling the impacts estimated for respondents with those for the fielded sample. 

As discussed above, survey respondents were disproportionately more likely to 

receive the employment retention bonus.  Weighting based on a combination of baseline 
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characteristics and bonus receipt rates brought the survey respondent sample impact estimate 

into approximate alignment with the fielded sample impact estimate (£394 compared to 

£343).  It was also noted above that treatment group members who worked stably were more 

likely to respond to the survey compared to control group members who worked stably.  

Weighting based on employment stability also brought the impact estimate for the survey 

respondent sample much closer to the impact for the fielded sample estimate (£334 compared 

to £343).
12

  

<Table 6> 

5. Conclusion 

To summarize the evidence presented in this paper, UK ERA was a well-executed social 

experiment and there is every indication that two statistically equivalent groups were obtained 

from the random assignment procedure.  A survey carried out five years post-randomization 

achieved a response rate of 62 per cent; 64 per cent for the treatment group and 60 per cent for the 

control group.  As documented in Hendra et al. (2011), the estimated earnings impact using survey 

data for the survey-respondent sample was greater than the estimated earnings impact for the full 

sample using administrative data, raising the question of how to interpret this difference.  Access 

to administrative data allows an assessment of the degree and nature of non-response bias that 

would not otherwise be possible and we have explored this in this paper.  Had the survey been the 

only source of earnings data, the estimated impacts would have overstated the effectiveness of the 

program, assuming the administrative data represent the truth about the sample.
13

 

Also important is that the non-response appears to bias the estimated earnings impact 

despite the treatment and control groups in the respondent sample being similar with regard 

                                                 
12

 Another approach to weighting these results would be to adjust earnings impacts by the ratio of non-

respondent to respondent earnings separately for the treatment and control groups. Such an approach was used 

in the National Job Corps study (Schochet, McConnell, & Burghardt, 2003) 
13

 Some authors question whether administrative data, even if covering the entire experimental sample, represent 

the truth.  See for example, Kapteyn and Ypma (2007) and Abowd and Stinson (2013). 
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to observed characteristics.  Demonstrating such similarity is often used as part of the 

evidence to argue that impacts estimated on respondent subsamples retain their causal 

interpretation.  However, the results in this paper demonstrate that this is not a sufficient 

condition, and raises the possibility that post-random assignment factors including 

differential access to the research groups or even aspects of the intervention can cause bias 

that would not be evident by examining characteristics at baseline.   

It might still be the case that the impacts estimated for the respondent sample are 

causal but that impacts are heterogeneous in the population and are different for respondents 

compared to non-respondents.  In line with this, the results confirm that respondents and non-

respondents have different characteristics.  If impact heterogeneity were the sole reason for 

the difference in estimated impacts, one would expect that re-weighting the respondent 

sample to resemble the full sample using background characteristics would bring estimated 

impacts closer.  Attempts to do this were unsuccessful, so we conclude that respondents differ 

from non-respondents in some unobserved way.
14

  It is still conceivable that the impacts 

estimated for the respondent sample are causal.  This would rely on there being an 

unobserved characteristic that was positively correlated with both survey response and 

impacts.  However, an alternative possibility is that the estimated impact for the respondent 

sample is no longer causal due to unobserved treatment-control differences.  We have no 

obvious way of distinguishing between these two scenarios.  However, the fact that we have 

no strong theory to suggest the former is the case leads us to regard the latter as being the 

more likely explanation. 

Our findings highlight the usefulness of administrative data for exploring the 

reliability of impacts estimated using survey data.  Of course, for outcomes available in 

administrative data, there may be no need to rely on the survey-respondent subgroup.  

                                                 
14

 Although weights based on outcomes brought the samples into alignment on earnings impacts, these weights 

were not used in the impact report because they result in non-experimental estimates.  
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However, the real value of such an exploration derives from its implications for the analysis 

of outcomes not present in administrative data.  An important reason for carrying out surveys 

is to collect information that is not available elsewhere.  If respondent sample results can be 

satisfactorily reconciled with full sample results of an outcome available in the administrative 

data, we can be more confident that impacts on outcomes only available in the survey data 

can be credibly estimated.
15

 As an aside, we note that the issues discussed here are not unique 

to experiments.  It is however true that experiments make the potential problems more 

visible. 

Recent methodological developments provide some hope of dealing with possibly 

biasing non-response.  A simulation study by Puma et al. (2009) shows that implementing 

multiple imputation to fill in missing survey data using information from administrative 

records can substantially address missing survey data problems.  In addition, development of 

estimators suited to the case of non-random subsamples remains a live issue in econometric 

theory (d’Haultfoeuille, 2010; Ramalho and Smith, 2013).  Furthermore, improvements in 

survey data weighting, notably through the use of so-called survey “paradata”, have shown 

some progress in improving alignment across the data sources.
16

  

While these approaches might help, they inevitably complicate the estimation of 

impacts and reduce the transparency that is an attractive feature of RCTs.  Indeed, some 

approaches rely on assumptions that imply it is no longer appropriate to regard the resulting 

estimates as truly experimental.  While such approaches hold promise, a pragmatic approach 

is to employ an ensemble strategy, using multiple data sources to estimate impacts and 

                                                 
15

 This holds if there is no significant item nonresponse bias in the survey. 
16

 Paradata are survey administrative data which capture the effort required to reach a respondent (Krueter et al, 

2010; Heffetz & Rabin, 2013).  The essential idea, consistent with the Lin and Schaeffer (1995) model of a 

“continuum of resistance” in survey response, is that late survey responders, who take more effort to reach 

(measured, typically, by the number of attempts to reach them) are more similar to nonrespondents compared to 

those who respond earlier.  Therefore, up-weighting late respondents can be an effective means of addressing 

nonresponse bias.  
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attempt to achieve a clear understanding of the uncertainties inherent in the ability of any 

particular data source to capture the true impact. 
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Table 1 Descriptive statistics for full sample and wave 3 fielded and respondent samples 

    Full sample Fielded sample,  Respondents sample 

  
Control ERA Control ERA Control ERA 

District 

      
 

East Midlands 0.24 0.24 0.17 0.17 0.18 0.17 

 

London 0.23 0.22 0.18 0.17 0.17 0.16 

 

North East England 0.19 0.19 0.17 0.18 0.21 0.20 

 

North West England 0.15 0.15 0.17 0.17 0.17 0.18 

 

Scotland 0.09 0.09 0.16 0.16 0.16 0.16 

 

Wales 0.10 0.10 0.16 0.15 0.12 0.13 

Date of random assignment (RA) 

      
 

October 2003 - December 2003 0.10 0.10 0.04 0.04 0.03 0.03 

 

January 2004 - March 2004 0.29 0.30 0.35 0.34 0.34 0.33 

 

April 2004 - June 2004 0.21 0.21 0.24 0.25 0.25 0.25 

 

July 2004 - September 2004 0.24 0.24 0.26 0.26 0.25 0.27 

 

October 2004 - December 2004 0.14 0.14 0.12 0.12 0.13 0.12 

 

January 2005 - April 2005 0.02 0.02 0.00 0.00 0.00 0.00 

Female 

 

0.95 0.95 0.95 0.94 0.96 0.94 

Single 

 

0.71 0.72 0.72 0.73 0.71 0.71 

Number of children 

      
 

None 0.01 0.01 0.01 0.01 0.01 0.02 

 

One 0.51 0.50 0.53 0.52 0.53 0.50 

 

More than one 0.43 0.45 0.42 0.44 0.43 0.45 

Education 

      
 

O-level 0.48 0.48 0.47 0.48 0.47 0.51 

 

A-level or above 0.21 0.22 0.22 0.22 0.23 0.22 

 

Other 0.08 0.07 0.08 0.07 0.08 0.06 

 

None 0.23 0.23 0.24 0.23 0.21 0.21 

Months worked in three years prior to RA 

      
 

12 or fewer 0.73 0.72 0.72 0.72 0.72 0.72 

 

13-24 0.13 0.13 0.13 0.13 0.13 0.12 

 

More than 24 0.14 0.15 0.15 0.16 0.15 0.16 

Worked in the past year 0.28 0.30 0.28 0.30 0.28 0.31 

Weekly earnings in the past year for  

      current/most recent job (£) 26.12 28.49 26.34 28.67 26.00 27.88 

Average number of months on benefits in  

      the two years prior to RA 17.44 17.16 17.32 17.02 17.38 17.11 

N 3,422 3.365 1,511 1,481 903 951 
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Table 2: The estimated impact of ERA for different samples, using administrative 

records on earnings  

  Earnings 2007/8   Earnings 2008/9 

Full sample 124 

 

-25 

 

(0.77) 

 

(0.14) 

N 6787 

 

6787 

    Fielded sample 343 

 

40 

 

(1.46) 

 

(0.16) 

N 2992 

 

2992 

    Respondents to survey, wave 3 623** 

 

320 

 

(2.00) 

 

(0.92) 

N 1854 

 

1854 

Note: t-statistics in parentheses.  Asterisks indicate statistical significance of the estimates: * 

significant at the 90% level, ** significant at the 95% level, ** * significant at the 99% level.  

Estimates control for region, cohort, sex, age, qualifications, number of months employed in 

the three years before randomization, number of months on welfare in the two years before 

randomization and whether their youngest child is under the age of five at randomization. 
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Table 3 Survey response rates 

  

ERA Control 

  Total group group 

    Full sample size 6,787 3,365 3,422 

    Wave 1 (12-month survey) 

   Fielded sample size 2,995 1,482 1,513 

Respondent sample size 2,604 1,317 1,287 

Non-respondent sample size 391 165 226 

Response rate (%) 86.9 88.9 85.1 

    Wave 2 (24-month survey) 

   Fielded sample size 2,995 1,482 1,513 

Respondent sample size 2,297 1,188 1,109 

Non-respondent sample size 698 294 404 

Response rate (%) 76.7 80.2 73.3 

    Wave 3 (60-month survey) 

   Fielded sample size 2,992 1,481 1,511 

Respondent sample size 1,854 951 903 

Non-respondent sample size 1,138 530 608 

Response rate (%) 62.0 64.2 59.8 
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Table 4 Descriptive statistics for wave 3 (60-month) respondent and non-respondent 

samples, and odds ratios from a logistic regression of survey response 

    Respondents  Non-respondents  Odds Ratio S.E.  

ERA 

 

51.3 46.6 1.206 0.077 ** 

District (%) 

    

  

 

East Midlands 17.7 15.3 1.387 0.131 ** 

 

London 16.3 19.2 

 

  

 

North East England 20.1 12.8 1.935 0.134 *** 

 

North West England 17.3 15.9 1.380 0.132 ** 

 

Scotland 16.1 16.3 1.227 0.132  

 

Wales 12.5 20.5 0.756 0.132 ** 

Date of random assignment (RA) (%) 

   

  

 

Oct 03 – Dec 03 3.2 4.6 

 

  

 

Jan 04 – Mar 04 33.5 35.8 1.388 0.206  

 

Apr 04 – Jun 04 24.8 23.9 1.514 0.210 ** 

 

Jul 04 – Sep 04 26.3 24.9 1.529 0.209 ** 

 

Oct 04 – Dec 04 12.1 10.9 1.450 0.227  

 

Jan 05 – Mar 05 0.0 0.0 n/a n/a  

Female (%) 

 

95.0 93.7 1.278 0.169  

Single (%) 

 

71.4 75.4 0.792 0.091 ** 

Number of children (%) 

   

  

 

None 1.4 0.7 

 

  

 

One 53.1 55.9 0.666 0.328  

 

More than one 45.5 43.4 0.722 0.330  

Education (%) 

    

  

 

O-level 49.1 44.2 1.514 0.098 *** 

 

A-level or above 22.6 21.3 1.481 0.116 *** 

 

Other 7.3 6.9 1.538 0.164 *** 

 

None 21.0 27.6 

 

  

Number of months worked in three years prior to RA (%) 

  

  

 

12 or fewer 72.2 71.5 0.954 0.131  

 

13-24 12.2 14.2 0.795 0.147  

 

More than 24 15.6 14.3 

 

  

Worked in the past year (%) 29.5 28.7 1.246 0.137  

Weekly earnings most recent job pre-RA (£) 27.0 28.4 0.998 0.001  

Avg months on benefits in the 2 years pre-RA 17.2 17.0 1.005 0.005  

N   1,854 1,138  2,992   

Note: Asterisks indicate statistical significance of the estimates: * significant at the 90% 

level, ** significant at the 95% level, ** * significant at the 99% level.   
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Table 5 Baseline characteristics as a predictor of treatment status, among wave 3 survey 

respondents 

    

Odds 

ratio 

(Standard 

error)   

     District (%) 

   

 

East Midlands 0.997 0.161 

 

 

North East England 0.997 0.157 

 

 

North West England 1.169 0.164 

 

 

Scotland 1.034 0.165 

 

 

Wales 1.158 0.178 

 

     Date of random assignment (RA) (%) 

   

 

January 2004 - March 2004 0.872 0.275 

 

 

April 2004 - June 2004 0.937 0.278 

 

 

July 2004 - September 2004 1.019 0.277 

 

 

October 2004 - December 2004 0.841 0.295 

 

 

January 2005 - April 2005 n/a n/a 

 

     Female (%) 0.736 0.221 

 

     Single (%) 1.033 0.108 

 

     Number of children (%) 

   

 

One 0.713 0.371 

 

 

More than one  0.829 0.372 

 

     Education (%) 

   

 

O-level 1.124 0.125 

 

 

A-level or above 0.977 0.146 

 

 

Other 0.755 0.202 

 

     Number of months worked in three years prior  

   to RA (%) 

   

 

12 or fewer 1.089 0.155 

 

 

13-24 0.941 0.182 

 

     Worked in the past year (%) 1.262 0.164 

 

     Weekly earnings in the past year for  

   current/most recent job (£) 0.999 0.001 

 

     Number of months on benefits in the two years 

   prior to RA 0.995 0.007 

 

     Sample size 1,854     

Note: Asterisks indicate statistical significance of the estimates: * significant at the 90% 

level, ** significant at the 95% level, ** * significant at the 99% level.   
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Table 6 Exploring weighting approaches to reconcile 2007/8 earnings impacts across 

fielded and respondentWave 3 (60-month)  samples  

  ERA Control Impact P-value  

     Fielded sample (unweighted)        5,504        5,161 343 0.143 

     Respondent sample (unweighted)        5,987        5,364  623** 0.045 

     
Respondent sample, weighted according 

to: 

     - baseline characteristics only        6,589        6,043 546* 0.080 

 - baseline characteristics and bonus 

Receipt indicators        6,352        5,957 394 0.204 

- baseline characteristics and 

employment stability        6,078        5,743 334 0.277 

Note: Asterisks indicate statistical significance of the estimates: * significant at the 90% 

level, ** significant at the 95% level, ** * significant at the 99% level.  Estimates control for 

region, cohort, sex, age, qualifications, number of months employed in the three years before 

randomization, number of months on welfare in the two years before randomization and 

whether their youngest child is under the age of five at randomization. 


