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Preserved cognitive functions with age are
determined by domain-dependent shifts in
network responsivity
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Healthy ageing has disparate effects on different cognitive domains. The neural basis of these

differences, however, is largely unknown. We investigated this question by using Independent

Components Analysis to obtain functional brain components from 98 healthy participants

aged 23–87 years from the population-based Cam-CAN cohort. Participants performed two

cognitive tasks that show age-related decrease (fluid intelligence and object naming) and a

syntactic comprehension task that shows age-related preservation. We report that activation

of task-positive neural components predicts inter-individual differences in performance in

each task across the adult lifespan. Furthermore, only the two tasks that show performance

declines with age show age-related decreases in task-positive activation of neural compo-

nents and decreasing default mode (DM) suppression. Our results suggest that distributed,

multi-component brain responsivity supports cognition across the adult lifespan, and the

maintenance of this, along with maintained DM deactivation, characterizes successful ageing

and may explain differential ageing trajectories across cognitive domains.
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A
striking feature of normal ageing is its widespread but

disparate effects on cognition, with several cognitive
domains exhibiting decline (for example, memory and

fluid cognition), while others are preserved (for example,
language comprehension) or even improved (for example,
crystallized intelligence, vocabulary) well into old age1,2.
Concurrently, ageing is also accompanied by widespread
changes in the brain, from diffuse grey matter atrophy3 and
loss of white matter (WM) integrity4 to widespread changes in
neurovascular coupling5 and decreased segregation of large-scale
functional networks6. Understanding the neurophysiological
changes underpinning age-related cognitive impairment and
preservation is crucial for devising neurobiologically informed
interventions7. While the importance of this issue for our ageing
societies is being increasingly recognized8, our knowledge
regarding normal age-related cognitive decline is still limited7,9.

Much previous research on cognitive ageing has focused on
a single task per study, which, in line with the concern of issue
isolationism10, has led to a number of neurocognitive theories of
ageing7. Two dominant theories, functional compensation and
maintenance, predict that radically different neural mechanisms
are responsible for successful cognitive ageing. According to the
brain maintenance hypothesis, successful ageing is underpinned
by retaining youth-like neural structure and function11,12. The
theory of functional compensation, on the other hand, posits the
presence of functional reorganization in response to gradual loss
in neural structure during the course of normal ageing13,14. While
these earlier studies and the resulting pluralism of theories are
important and continue to guide the field, here we advocate a
multiple-task, multiple-domain approach in order to test whether
such generic neural mechanisms underlie the pattern of
similarities and differences in cognitive ageing seen across
various domains1,2. Studies looking at preserved or improved
cognition, and directly comparing domains with different ageing
trajectories, would be particularly informative given the almost
exclusive focus of previous research on declining cognitive
abilities, such as fluid processing or working memory15.

The activity of the human brain is globally organized in a set of
large-scale networks16–18, many of which have been successfully
associated to specific sensory, motor, higher-order cognitive and
control functions19–21. Despite the importance of these networks
in brain function and cognition, however, our knowledge is still
limited on their role in normal and successful cognitive ageing,
especially across different cognitive domains. Previous studies
have detected widespread age-related reorganization in these
brain networks and their connectivity16,22, and related such
changes to cognition23,24. These studies, however, are either
limited in the number and diversity of cognitive tasks they
examined or lack the direct comparison between behaviour and
online, task-based neuroimaging recordings. Again, we propose
that multiple-domain studies on these brain networks, allowing
for the comparison of their function across diverse tasks on the
same set of individuals, are required to better characterize and
refine the number of competing theories of neurocognitive
ageing7,12,13.

In the current study, according to the above proposal, we first
test whether age differences in the activity of functional brain
components could serve as the neural underpinnings of
age-related cognitive differences, and then examine whether
domain-specific variations in these age-related neural differences
may explain the disparate effect of ageing on cognition across
domains. To this end, we calculate task-evoked activity of
functional brain components using a population-based ageing
cohort covering the adult lifespan (n¼ 98, age: 23–87) from the
Cam-CAN project25, in each of three tasks: fluid intelligence and
visual object naming (both typically exhibiting age-related

cognitive decline) and syntactic comprehension (which tends to
be preserved). We use spatial Independent Components Analysis
(ICA)26 to find the brain networks activated by task execution
(task-positive networks27), either shared across or uniquely
associated with each task (domain-general or domain-specific),
as well as the prominent task-negative network, the default mode
network (DM)28–30.

In general, we hypothesized that age-related cognitive decline
may result from functional disturbances in the task-positive
components. In considering the complementary case, cognitive
preservation, we test specific hypotheses of successful neurocog-
nitive ageing, namely, whether high performance in older age
relates to (1) some compensatory functional mechanism with
ageing (functional compensation)14, and/or (2) the ability to
withstand normal age-related neural decline and maintain
some (hypothetical) youth-like levels of neural function
(brain maintenance)12.

A related important question is whether the pattern of
preserved versus declining cognition across tasks depends on
the differential involvement of domain-specific components
(for example, the frontotemporal language network31)
versus domain-general components (for example, the multiple
demand network32). Beyond the task-positive domain-general
components, another pivotal domain-general network, the
DM network29,30,33, has been implicated in age-related declines
across a variety of tasks34–36, and may therefore play a central
role in cognitive ageing in general. Specifically, we hypothesize
that the extent and direction (activation or suppression) of
DM responsivity demanded by the tasks may distinguish
declining from preserved domains.

In general, by comparing age-related functional differences
in task-positive and DM components across tasks, we hope to
identify neural indicators differentiating declining and
preserved cognitive domains, as well as the neurocognitive
mechanisms underlying normal and successful cognitive ageing
at the inter-individual level. To preface the main results, we find
that (1) performance on Fluid Intelligence and Picture Naming
shows an age-related decrease, while Sentence Comprehension
performance is preserved; (2) in each task, inter-individual
performance differences are best predicted by the task’s task-
positive components; (3) differences in the activity of these
components also predict age-related cognitive differences both
within and across tasks; (4) our results support the theory of
functional maintenance, rather than compensation; and finally,
(5) the declining tasks, but not the preserved task, are
characterized by the suppression of the DM network, which
suppression weakens in older participants. Altogether, our results
suggest that successful cognitive ageing across multiple cognitive
domains is supported by the maintenance of high neural
responsiveness, and point to the age-related loss in the ability
to modulate task-positive and task-negative DM activity as one of
the primary domain-specific neural causes of age-related
cognitive decline.

Results
Behavioural results. In accordance with earlier studies, behavioural
performance (task scores) exhibited strong age-related decrease
for Fluid Intelligence37,38 (Pearson’s r [95% confidence interval (CI)]:
r(96)¼ � 0.68 [� 0.55, � 0.77], P¼ 10� 12) and Picture
Naming39,40 (r(96)¼ � 0.59 [� 0.43, � 0.70], P¼ 10� 9), but no
significant age-related difference for Sentence Comprehension22

(r(97)¼ � 0.03 [� 0.17, 0.24], P¼ 0.74) (Fig. 1, see also
Supplementary Table 1 for detailed report on behavioural results).
This difference in age effects across tasks forms the basis of our
following analysis to find candidate domain-specific and domain-
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general neural mechanisms that support declining versus preserved
cognition with age.

Brain components and their functional responsivity. We found
the optimal joint ICA decomposition of the tasks at n¼ 50
components (see Methods). Excluding noise-related, vascular and
primary motor components (see Methods) resulted in 30 neural
components (see Supplementary Table 2). After fitting the task
events to the task-specific time-course of each component, we
calculated a functional responsivity index for each component in
each task (see Methods). Given the conditions of interest used for
the calculation (more demanding and less demanding
conditions), these responsivity values represent the components’
excess activation/suppression evoked by the central cognitive
components of interest in each task (rather than being the neural
correspondences of the tasks’ sensory-motor elements peripheral
to our interest here).

Across-subject mean loading values of each component are
shown in Supplementary Figs 3–7. In general, most components
showed significant, either positive or negative, mean responsivity
to task demand in each task, confirming our experimental
manipulations. Responsivity to Fluid Intelligence was significantly
higher than to the other two tasks (mean absolute responsivity

values across all subjects and components [95% CI]:
Fluid Intelligence: 0.226 [0.171, 0.281], Picture Naming: 0.058
[0.039, 0.076], Sentence Comprehension: 0.037 [0.027, 0.046]),
likely due to the more powerful block design used for the Fluid
Intelligence task (see Methods), as opposed to the event-related
design used for Picture Naming and Sentence Comprehension41.

We also found strong age-related differences in the responsiv-
ity values of many components (Fig. 2a–c), especially in the
declining tasks. In particular, the two declining tasks, in contrast
to the preserved task, showed both stronger age-effects on
individual component responsivity (Fig. 2a–c, y axis), as well as a
significantly stronger tendency for more responsive (activated or
suppressed) components to show greater age-related decrease
than less responsive ones (compare trend lines on Fig. 2a,b with
Fig. 2c, difference between correlations [and 95% CI in r-value
difference]: Fluid Intelligence–Picture Naming: z(95)¼ 0.68
[� 0.02, � 0.03], P¼ 0.50; Fluid Intelligence–Sentence Compre-
hension: z(95)¼ 3.67 [0.21, 0.22], P¼ 2� 10� 4; Picture
Naming–Sentence Comprehension: z(96)¼ 4.36 [0.24, 0.25],
P¼ 7� 10� 6). Notably, these results are in accordance with
the age-related behavioural differences in the tasks (see Fig. 1).

Brain responsivity predicts performance across the lifespan.
We first identified, for each task, the set of components that
contributed the most to its execution, the task-positive compo-
nents27. To do this we used the heuristic that more responsive
components are more related to task performance (see Methods).
In this section, we first test the validity of this heuristic in our
data, and then use it to identify a set of task-positive components
which contribute the most to performance in each task. These
components will then be used to produce a summary measure of
task-specific neural function, mean task-positive responsivity
(MTR, see Methods).

We first tested the heuristic that mean responsivity is a proxy
for the component’s contribution to task execution, that is,
that more responsive components are more related to task
performance than less responsive ones (see Methods). For each
task, we observed a close relationship between the components’
responsiveness and relation to performance (Fig. 2d–f). Further-
more, we found this generic relationship to hold also within each
age-group of younger, middle-aged and older participants, and
also in the entire cohort when controlling for age (Fig. 2g–i),
suggesting that mean component responsivity is a good proxy for
the component’s involvement in task execution and performance,
across cognitive domains and the entire adult lifespan.

Having seen its validity in the current data set, we next used the
heuristic in order to find each task’s task-positive components,
that is, the set of components that collectively contribute the most
to the execution of the task. When iteratively calculating the mean
responsivity of a growing set of the most responsive components
(multiple component responsivity, see Methods), we found that
the average responsivity of n¼ 4 of the most responsive
components is the most predictive of task performance in each
task. This indicates that the four most responsive components in
each task have the highest collective contribution to successful
task execution, rendering them a good candidate set of
task-positive components. Moreover, including age as a covariate
into this analysis did not change the set of components implicated
in each task, suggesting that the identified set of task-positive
components are fairly robust across the adult lifetime (Fig. 3).
Relatedly, when focusing on the mean responsivity of the four
task-positive components (MTR) of each task, we found that the
relation between MTR and task score was not moderated by age
in any of the tasks (partial R-squared of MTR� score interaction
term in a multiple linear regression model predicting task
score: Fluid Intelligence: R2(96)¼ 0.5%, P¼ 0.50; Picture
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Figure 1 | Behavioural scores. Fluid Intelligence (a) and Picture Naming

(b) show decline (negative age-related difference) in performance, while

Sentence Comprehension score (c) is preserved across the lifespan.
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Naming: R2(96)¼ 0.0%, P¼ 0.90; Sentence Comparison:
R2(97)¼ 2.8%, P¼ 0.11), suggesting a stable association between
task-positive responsivity and performance across the adult
lifespan.

The obtained sets of task-positive components are in line with
established findings (Figs 4, 5a–c). Task-positive components of
Fluid Intelligence comprise two higher-order visual components,
lateral occipital and left temporo-occipital cortices (LOC and
lTOC) and key regions of the multiple demand network, left and
right lateral prefrontal cortices (lLPFC and rLPFC), responsible
for flexible executive control and fluid processing32. The
four vision-related components of Picture Naming, LOC and
lTOC, shared with Fluid Intelligence, and the lateral occipital pole
and the right temporo-occipital cortex (LOP and rTOC),
altogether cover much of the ventral visual stream involved
in object representation and recognition42. Finally, Sentence
Comprehension shares lLPFC and rLPFC with Fluid Intelligence,
along with a dorsal anterior cingulate and anterior insula

component (ACC/AI), known as the salience network43, and
a fourth component covering the left inferior frontal gyrus
(BA44 and 45) and anterior regions of the left superior and
middle temporal gyri, known as the frontotemporal (FT) network
of language comprehension31,44.

Having identified the task-positive components of each task
and established their relation to cognition across the lifespan, we
further characterized the association among age, task-positive
responsivity and cognition across tasks.

Brain responsivity differentiates domains by age-effect.
As discussed in the section Brain components and their func-
tional responsivity, we found that more responsive components
not only contribute more to task performance (Fig. 2d–i), but, in
the declining tasks, also demonstrate a stronger age-related
decrease in responsivity (Fig. 2a,b). In particular, for the crucial
task-positive components, MTR of the cognitively declining tasks
also declines strongly with age (Pearson’s r [95% CI]: Fluid
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Figure 2 | Relation of component responsivity to age and performance. Cohort-mean component responsivities (x axis) are correlated against three effects

on subject-specific responsivity values (y axis, see labels on the right side): relation (correlation) to age (a–c), task score (d–f) and task score when controlling

for age (g–i). (a–c) More responsive components (to the right along x axis) show more age-related decrease in responsivity (more negative values along y axis)

especially in the declining tasks. (d–i) More responsive components are more related to task score in all tasks (second row), largely independently of

age-related difference in both responsivity and behaviour (third row). Component labels are given in each panel (see Supplementary Table 2).
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Intelligence: r(96)¼ � 0.72 [� 0.61, � 0.81], P¼ 10� 16; Picture
Naming: r(96)¼ � 0.42 [� 0.24, � 0.57], P¼ 2� 10� 5;
Fig. 5d,e), suggesting that MTR may act as a neural mediator
mechanism of age-related cognitive decline. Our mediation
analysis (see Methods) provided further evidence for
this possibility: the MTRs of the declining tasks were found to
account for a large portion of the shared variance between
age and cognition (proportion of shared variance explained by
MTR [95% CI]: Fluid Intelligence: 48% [25%, 76%], Po0.01,
n¼ 96; Picture Naming: 21% [7%, 43%], n¼ 96, P¼ 0.01).
While keeping the limitations of mediation models of cross-
sectional cohorts in mind (see Methods and also ref. 45),
these results collectively point to brain responsivity as
a potential neural mediator of some of the effect of age on
cognition.

In contrast, MTR did not show age-related differences in the
cognitively preserved Sentence Comprehension task (Pearson’s
r [95% CI]: r(97)¼ � 0.11 [� 0.30, 0.10], P¼ 0.30, Fig. 5f). We
note here that the association between MTR and task score, when
assessed across the lifespan without controlling for age, is
stronger in the declining tasks than in the preserved task
(Fig. 5g–i). This difference across tasks, however, is attributable to
the simultaneous age-related decrease in MTR and task score in
the declining tasks (Fig. 5d–f), reinforcing our finding about
the age-independent relation between neural responsivity
and performance present in all tasks to a similar same degree
(see Fig. 5j–l).

Together, these findings suggest that the cognitively preserved
nature of language comprehension is supported by the domain-
specific maintenance of functional responsivity, while the strong
age-related decrease (lack of maintenance) in responsivity in the
other two tasks may be responsible for their cognitively declining
nature.

Having established the general relationship between age, neural
responsivity and cognition, we next tested specific hypotheses of
successful cognitive ageing, namely functional compensation and
maintenance.

Functional compensation. The notion of (age-related) functional
compensation is typically described as a positive association

between increased neural activity and cognitive performance in
older adults13,14. We tested the presence of potential functional
compensation mechanisms by assessing two indicators of this
complex effect.

First, we tested the presence of any age-related increase in
positive component responsivity. Such an effect would indicate
excess neural recruitment in older adults, the relevance of which
to cognition would need to be tested subsequently (see next
paragraph). In this test, correlating component responsivity with
age in each task, we found no evidence for this potential
positive recruitment effect in any of the positively activated
components in any of the tasks (P40.01 for all tests, without
multiple comparisons correction, older-age group with n¼ 34, for
detailed results see Supplementary Table 3, Test 1).

Then, we tested for potential compensatory mechanisms in the
form of an increasing association between component responsiv-
ity and cognition with age. We note that, although such effect is
conceivable even in the absence of an age-related increase in
component responsivity (see previous paragraph), typically the
presence of both effects are required in the standard notion of
compensation13. Formally, we tested, for each component and
task, whether the relation between component responsivity and
performance is moderated positively by age (see Methods). We
found no significant moderation effect in any of the components
and tasks (P40.01 for all tests, without multiple comparisons
correction for 3� 30 tests, older-age group with n¼ 34, for
detailed results see Supplementary Table 3, Test 2). In sum, we
found no evidence for either any increased functional recruitment
or performance-related functional compensation mechanism in
the current set of tasks and components.

Functional maintenance. Next, we tested an alternative
hypothesis of successful cognitive ageing, functional maintenance,
which claims that older adults possessing more youth-like neural
characteristics are better able to withstand cognitive decline11,12.
To this end, we assessed whether MTR, which shows strong
age-related decrease in the declining tasks (see Fig. 5d,e), can also
explain inter-individual cognitive differences in older age.
Similarly to the results on the entire cohort (see section
Brain responsivity predicts performance across the lifespan),
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MTR correlated significantly to task score when tested in the
older-age group only (Pearson’s r [95% CI]: Fluid Intelligence:
r(34)¼ 0.37 [0.01, 0.65], P¼ 0.043; Picture Naming: r(34)¼ 0.39
[0.03, 0.66], P¼ 0.032). Altogether, these results indicate that
high performing older adults also tend to possess more youth-like
functional characteristics (higher task-positive responsivity) in
the declining tasks, providing evidence for the functional
maintenance hypothesis.

To find more specific functional characteristics differentia-
ting declining versus preserved tasks, we next investigated
potential functional differences among shared task-positive

components, the putative domain-general components, across
tasks.

Domain-specific resilience of domain-general components.
A possible distinguishing factor between the preserved and
declining tasks could be the domain-specific functional preser-
vation of shared task-positive components, the domain-general
components. Two frontal lobe components, left and right LPFCs,
were shared task-positive components of the Fluid Intelligence
and Sentence Comprehension tasks (see Figs 4 and 5a,c). Left
LPFC also showed moderate correlation to Picture Naming
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performance (Pearson’s r [95% CI]: r(96)¼ 0.24 [0.04, 0.42],
P¼ 0.021), though neither of these components was
included to the task-positive components for Picture Naming
(see Figs 3 and 5b).

To look for domain-specific functional resilience effects, we
tested whether the age-effect on the responsivity of these shared
LPFC components differs across task. We found strong
age-related decrease in the responsivities of both LPFCs in
Fluid Intelligence (Pearson’s r [95% CI]: lLPFC: r(96)¼ � 0.65
[� 0.52, � 0.75], P¼ 10� 12; rLPFC: r(96)¼ � 0.61 [� 0.46,
� 0.72], P¼ 10� 10), and even in the only partially activated
left LPFC in Picture Naming (r(96)¼ � 0.40 [� 0.21, � 0.56],
P¼ 6� 10� 5), while LPFC responsivities were largely preserved
in Sentence Comprehension (lLPFC: r(97)¼ � 0.14 [� 0.33,
0.07], P¼ 0.18; rLPFC: r(97)¼ � 0.17 [� 0.36, 0.03], P¼ 0.10).
These differences in correlations were significant both
between Fluid Intelligence and Sentence Comprehension

(lLPFC: t(95)¼ � 5.21, P¼ 5� 10� 7; rLPFC: t(95)¼ � 4.11,
P¼ 4� 10� 5) and between Picture Naming and Sentence
Comprehension (lLPFC: t(95)¼ � 1.98, P¼ 0.026), indicating
that the difference in the declining or preserved nature of
the tasks may be associated with the context-specific functional
maintenance, or lack thereof, of the same, domain-general
LPFC components.

Finally, to further explore these concurrent domain-specific
functional and cognitive resilience effects, we next asked
whether they are related to the activity of another prominent
context-sensitive brain network, the DM network.

DM suppression decreases with age in declining tasks. To
examine task-specific differences in DM activity, we first identi-
fied six components (Figs 6 and 7a) with high spatial overlap with
canonical DM regions (Supplementary Table 2): left and right
intra-parietal lobe (lIPL and rIPL), ventral and dorsal medial
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prefrontal cortex (vMPFC and dMPFC), posterior cingulate
cortex (PCC) and the precuneus (PrCun). When calculating the
mean responsivity scores of these DM components, we observed
qualitative differences across tasks: while DM components were,
on average, significantly suppressed in Fluid Intelligence (mean
responsivity [95% CI]: � 0.095 [� 0.123, � 0.067], one-sample
two-sided t-test: P¼ 10� 9, n¼ 96) and Picture Naming (� 0.057
[� 0.071, � 0.043], P¼ 10� 12, n¼ 96), they exhibited weak
activation in Sentence Comprehension (0.012 [0.002, 0.022],
P¼ 0.023, n¼ 97).

Next, we tested whether these differences in DM activity
(strong suppression or weak activation) were complemented by
differences in the functional connectivity (correlation between
each component-pair’s activity, see Methods) between task-
positive and DM components. When calculating the
mean functional connectivity between the two groups of
components (FC, average over all subjects and every connections
inter-connecting task-positive and DM component-pairs), we
found significant functional segregation (negative FC) between
task-positive and DM components in the declining tasks (FC
[95% CI], Fluid Intelligence: � 0.062 [� 0.080, � 0.043], one-
sample two-sided t-test: P¼ 10� 8; Picture Naming: � 0.048
[� 0.062, � 0.033], P¼ 10� 9, both n¼ 96), but the opposite,
significant functional integration (positive FC) in the preserved
Sentence Comprehension task (0.042 [0.026, 0.058], P¼ 10� 6,

n¼ 97) (Fig. 7e–g). These results indicate an opposing functional
role of the task-positive and DM components in the declining
tasks, and the lack of such functional antagonism in the preserved
Sentence Comprehension task.

When testing for age-related differences in DM activity,
we found a significant age-related decrease in the extent of
DM suppression (that is, less negative responsivity with age) in
Fluid Intelligence (Pearson’s r [95% CI]: r(96)¼ 0.53 [0.36, 0.66],
P¼ 10� 8) and Picture Naming (r(96)¼ 0.40 [0.22, 0.56], P¼ 6
� 10� 5), but no effect of age on DM responsivity in Sentence
Comprehension (r(97)¼ � 0.12 [� 0.31, 0.09], P¼ 0.26)
(Fig. 7b–d). Additionally, DM suppression correlated to
task-positive activation (MTR) both in Fluid Intelligence
(Pearson’s r [95% CI]: r(96)¼ � 0.45 [� 0.60, � 0.27], P¼ 5
� 10� 6), and Picture Naming (r(96)¼ � 0.33 [� 0.50, � 0.14],
P¼ 0.001), but not in Sentence Comprehension (r(97)¼ 0.08
[� 0.12, 0.28], P¼ 0.42). As a consequence, similarly to MTR,
DM suppression also correlated to task performance in the
declining tasks (Pearson’s r [95% CI]: Fluid Intelligence:
r(96)¼ � 0.35 [� 0.52, � 0.16], P¼ 6� 10� 4; Picture Naming:
r(96)¼ � 0.33 [� 0.50, � 0.13], P¼ 0.001), but not in the
preserved task (Sentence Comprehension: r(97)¼ � 0.09
[� 0.29, 0.11], P¼ 0.37). Unlike MTR, however, DM suppre-
ssion did not correlate significantly to performance over and
above age for any of the three tasks, and therefore was not
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appropriate to be tested as a potential mediator between age and
cognition.

This difference between the declining and the preserved tasks
(lack of any significant DM suppression and functional segrega-
tion from task-positive components in Sentence Comprehension)
may be explained by the partial involvement of some DM
components in Sentence Comprehension. Specifically, while only
vMPFC showed significant suppression in Sentence Comprehen-
sion, dMPFC and PCC were not modulated significantly by the
task, and three other DM components, lIPL, rIPL and PrCun,
exhibited moderate, but significant activation (or decrease in
suppression) during the task (Fig. 6). In contrast, only one DM
component showed (a small but significant) activation in each of
the declining tasks, with four DM components exhibiting strong
suppression. To control for the potential involvement of some of
the six original DM components in Sentence Comprehension, we
repeated all DM analysis using only the four medial DM
components, but excluding the two lateral components (left and
right IPLs), which had the highest responsivity during Sentence
Comprehension. This set of analyses resulted in qualitatively the
same results as those using all six DM components (see previous
paragraph), supporting the robustness of our findings against the
choice of DM components.

Altogether, these findings point to domain-specific differences
in DM activity and functional connectivity, which, via the
observed age-related decrease in DM suppression, may contribute
to the observed discrepancies in the age-related cognitive
differences across domains.

Discussion
Successful execution of complex cognitive tasks requires the
temporally orchestrated co-activation of a specific set of

functionally segregated brain regions46. Previous studies
indicated age-related differences in the activation of these
functional components in a number of tasks35,36,47, leading to
the hypothesis that age-related cognitive changes may depend on
functional disruptions in brain regions critical to the task. In this
study, we investigated this general hypothesis across three tasks,
two of which typically shows age-related cognitive decline and the
third typically being preserved, in a large, population-based
cohort covering the entire adult lifespan.

After obtaining functional brain components across the three
tasks, we found that, in each task, a specific set of task-positive
components support cognitive performance across the adult
lifespan. Importantly, age-related cognitive decrease in both
declining tasks was significantly accounted for by age-related
decrease in the responsiveness of these key components.
Moreover, the declining tasks were associated with strong
suppression of the DM components, and this suppression also
showed an age-related decrease. In contrast, in our third task,
Sentence Comprehension, both performance and task-positive
functional responsiveness were preserved with age, and, similarly,
DM components showed neither a baseline suppression effect nor
any age-related difference in responsivity. Collectively, these
results point to a potentially general neural mechanism—the
ability to recruit task-specific networks and suppress task-
irrelevant DM regions in certain contexts—that does not only
facilitate successful cognition across the adult lifespan, but may
also explain differences in age-related cognitive decline or
preservation across domains.

Functional compensation or reorganization has been suggested
as a counterbalancing neural mechanism against the gradual loss
of brain mass and integrity during the course of normal
ageing13,14. In this study, we found no evidence for such
compensation in the investigated tasks. On the other hand, our
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results supported the alternative functional maintenance
hypothesis11,12 by pointing to the importance for older adults
to retain the highly dynamic responsivity of both task-positive
and DM components generally found in younger adults.

The multiple-task approach we advocate further allowed us to
compare the responsivity of the same set of components across
different domains, thereby identifying the left and right LPFCs as
putative domain-general components shared across the tasks.
These domain-general components exhibited domain-specific
functional preservation, with their responsivity showing
age-related decrease in the declining tasks but no age-related
difference in the preserved task. Altogether, these findings
indicate that domain-specific preservation of cognition may be
underlain by some context-sensitive neural processes involving
functionally central, domain-general brain components.

A key component of such a process could be another pivotal
domain-general network, the DM network, the role of which is
increasingly being recognized in both cognition and ageing28–30.
Indeed, we found qualitative differences between the declining
and preserved tasks in both the associated DM activity
(strong suppression or weak activation) and the age-related
differences it exhibited (age-related weakening of suppression or
no age-related change). While some of these results may be
explained by the partial involvement of some canonical
DM components in the preserved language comprehension
task22,31,44, altogether, these findings suggest that older adults
may find it particularly challenging to selectively suspend
DM activity, while recruiting task-positive components,
potentially leading to a (domain-specific) decline in cognition.

Because DM suppression is associated with tasks that have high
externally focused attention requirements28–30, our results suggest
that these tasks are especially susceptible to age-related cognitive
decline as the age-related reduction in DM suppression may
interfere with the tasks’ high external attention requirements.
Similar age-related reduction in DM suppression has been reported
previously for a wide range of declining tasks, including semantic
word classification36, visual and semantic memory task35, and
perceptual matching and attentional cueing34. Similar, but
generally stronger effects were observed in Alzheimer’s disease48,
pointing to the potentially widespread and pervasive negative
consequences of ineffective DM suppression on cognition with
ageing. Therefore, we propose that DM may play a fundamental
role not only in healthy brain function and cognition, but also in
determining which cognitive domains, and to what extent, are
affected by age-related cognitive decline. As a potential cognitive
consequence of the age-related reduction in the ability to suppress
DM activity, older people might be disproportionately more
distracted by task-irrelevant demands49.

In this study, we focused primarily on task-evoked responsivity
(activation or suppression) of functional brain components to
cognitive ageing. In contrast, a number of recent studies have
investigated changes in FC, showing that connectivity within and
between brain networks, such as task-positive and DM networks,
relate to behavioural effects of ageing24,50,51. Age-related
differences in component responsivity and network coupling
are likely inter-related, potentially with one process causing the
other or both driven by some underlying cause. We thus suggest
that the investigation of the interaction of these processes will be
essential in furthering our understanding of the neural mediators
of cognitive ageing.

In summary, our results provide evidence across domains for
successful cognition carried out by the orchestrated activation of
multiple, spatially distributed task-specific (task-positive) com-
ponents, the identity of which is remarkably stable across the
adult lifespan. Importantly, the cognitively declining tasks were
associated with an age-related decrease in task-positive

responsivity, whereas in the cognitively preserved task task-
positive responsivity also did not show any age-related difference.
Furthermore, while the preserved task was not associated with
significant deactivation of the DM network, we found such
deactivation in both declining tasks, along with an age-related
decrease in DM suppression. Altogether, our results highlight
the importance of maintaining high neural responsiveness for
successful cognitive ageing, and suggest that age-related loss
in the ability to modulate task-positive and task-negative
DM activity may be one of the primary domain-specific neural
causes of age-related cognitive decline.

We hope our approach and results will contribute to the
strengthening of a more realistic and nuanced view of
neurocognitive ageing, with potentially similar underlying neural
mechanisms undergoing differential, domain-specific modulation
and change over time, resulting in disparate cognitive ageing
trajectories, including both decline and preservation, across
cognitive domains.

Methods
Participants. Participants (n¼ 98, age: 23–87, mean: 55.0, s.d.: 16.4) were
recruited from the population-based sample of the Cambridge Centre for Ageing
and Neuroscience (Cam-CAN) project25 (www.cam-can.com). Participants
underwent extensive cognitive, MRI and MEG testing for which they were screened
by a diverse set of screening measures. Exclusion criteria included a list of
significant psychiatric and health conditions (for example, history of stroke,
chemo/radiotherapy, self-reported major psychiatric disorders), non-native
English, poor hearing (failing to hear 35 dB at 1,000 Hz in both ears), poor vision
(below 20/50 on the Snellen test), and 24 or lower MMSE score52. Demographic
information of the current sample is provided in Table 1. Informed consent was
obtained from all participants and ethical approval for the study was obtained from
the Cambridgeshire 2 (now East of England—Cambridge Central) Research Ethics
Committee. Only participants with complete fMRI recording from all three tasks
were included in this study.

Cognitive tasks. Here we introduce the three tasks used in the study, including their
task scores and conditions of interest. A complete description of all task condition
regressors is given in Supplementary Methods. Given the strong age-related
differences in some of the behavioural scores, we detected participants with outlier
performance using a sliding window approach (window width around each subject:
±15 years, outlier threshold: 2.5 s.d. within window). This resulted in the exclusion
from the statistical tests (but not from the group ICA) of two participants from Fluid
Intelligence (age 25 and 42), two participants from Picture Naming (age 23 and 40)
and one participant from Sentence Comprehension (age 51).

The Fluid Intelligence task taps into the central cognitive process of fluid
reasoning, which is believed to underlie any complex mental control program32,
and tends to show an age-related decrease37,38. This experiment was a simplified
version of the standard Cattell Culture Fair fluid intelligence test53, modified to be
used in the scanner54. The task used the classification subtest of the original Cattell
test, in which four patterns are presented on the screen and participants use
a button press to select the odd one out. The task employed a block design, with
30 s blocks of trials alternating between two difficulty levels, easy and hard. There
was a total of four blocks per condition. As the task was self-paced with no fixed set
of trials attempted by every participant, we evaluated task performance using
a hits-minus-misses type of measure (hard correct� hard incorrectþ easy
correct� easy incorrect) that effectively balances between problem solving speed
and accuracy, both being important aspects of Fluid Intelligence37. The suitability

Table 1 | Participant demographics and MMSE score.

Age group Young Middle Older Total

n 29 35 34 98
Age range (years) 23–45 46–64 65–87 23–87
Sex (male/female) 13/16 17/18 17/17 47/51

Highest education
University 25 24 17 66
A’ levels 3 7 10 20
GCSE grade 1 4 5 10
None over 16 0 0 2 2

MMSE 29.3 (1.2) 29.1 (1.0) 27.9 (1.4) 28.8 (1.3)
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of this performance score was confirmed by its strong correlation (Pearson’s r
[95% CI]: r(96)¼ 0.77 [0.64, 0.83], P¼ 10� 17) with scores obtained from the full
version of the Cattell test (Scale 2 Form A), administered outside the scanner25. For
the fMRI analyses, we contrasted component activity in hard (more demanding)
versus easy (less demanding) blocks (see Supplementary Methods).

The Picture Naming task measures word retrieval during picture naming, which
tends to show an age-related decrease39. At the start of each trial, a fixation point
was presented for 500 ms, followed by an object for 750 ms (1,000 ms interstimulus
interval). Participants were asked to name the objects out loud, as quickly as
possible, and their responses were recorded (picture naming condition). All the
presented objects were common with short names (one or two syllable). A total of
200 pictures were presented in a different random order for each participant. In
addition to the experimental trials, participants also saw 30 trials of phase-
scrambled images to which they responded with the word ‘noise’, to serve as a low
level visuomotor baseline condition (scrambled image condition). Task
performance was measured as the percentage of correctly named trials, with
common synonyms accepted as correct answers. For the fMRI analysis, we
contrasted component activity to correctly named objects (more demanding
condition) with that to scrambled images (less demanding condition, see
Supplementary Methods).

The Sentence Comprehension experiment investigates syntactic processing
during online comprehension of spoken language, which tends to be preserved
with age22,23. Syntactically ambiguous phrases with multiple grammatically valid
interpretations (for example, ‘... landing planes...’) occur frequently and naturally in
spoken language, and are disambiguated by the surrounding context. Furthermore,
these ambiguous phrases may be biased towards the more frequent one of their two
interpretations (dominant versus subordinate), which typically requires additional
syntactic processing to be overcome in the subordinate context (reinterpretion)44.
This task aims to test the ability to reinterpret such syntactically ambiguous
structures commonly occurring in spoken language. The experiment involved
sentences with three levels of syntactic processing required: unambiguous sentences
had only one meaning, dominant sentences contained ambiguous phrases in their
more frequent meaning (‘... landing planes are...’), while subordinate sentences
contained ambiguous phrases with their less frequent meaning (‘... landing planes
is...’), requiring the most syntactic processing. During each trial, participants were
presented with the first part of the sentence spoken in a woman’s voice up to the
end of the central phrase (for example, ‘... landing planes’), and after a 200-ms
delay they heard the disambiguating continuation word (‘is’ or ‘are’) spoken in a
man’s voice. Participants were asked to decide, using a button press, whether the
final word was an acceptable continuation of the sentence or not. The stimulus set
consisted of 42 sentences from each sentence category (unambiguous, dominant,
subordinate), and 21 auditory baseline stimuli (‘musical rain’ matching spectral
characteristics of stimuli, not used in this study)44. In this task, we used reaction
time (RT), rather than accuracy score, as the dependent variable, because the
former are more sensitive to the graded nature of syntactical preferences than
binary accuracy judgements44. Mean RT difference between the conditions
requiring the most and the least syntactic processing, subordinate and
unambiguous sentences, was used as a behavioural measure indicating processing
of, and sensitivity to, syntactic structure in normal (non-pathological)
subjects22,23,55. Anticipatory responses (o200 ms; o1% of trials) were removed
from the analysis and the RTs were inverse transformed (that is, 1,000/RT) before
calculating condition means per subject56. This method reduced the influence of
outlying RTs. without the loss of individual data points, which represent difficulty
with overturning the dominant interpretation of the syntactic structure into a
highly unexpected (but still grammatically correct) one44. The condition means
were subsequently reverse-transformed (that is, 1,000/mean), so that higher RTs
reflect slower responding. For the fMRI analysis, we contrasted component activity
to subordinate sentences (more demanding condition) with that to unambiguous
sentences (less demanding condition, see Supplementary Methods).

MRI acquisition and preprocessing. Imaging was performed on a 3T Siemens
TIM Trio System at the MRC Cognition Brain and Sciences Unit, Cambridge, UK.
A 3D structural MRI was acquired for each subject using T1-weighted sequence
(Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA); Repetition
Time (TR)¼ 2,250 ms; Echo Time (TE)¼ 2.99 ms; Inversion Time (TI)¼ 900 ms;
flip angle a¼ 9�; matrix size 256 mm� 240 mm� 19 mm; field of view
(FOV)¼ 256 mm� 240 mm� 192 mm; resolution¼ 1 mm isotropic; accelerated
factor¼ 2) with acquisition time of 4 min and 32 s. For the functional runs,
T2*-weighted fMRI data were acquired using a Gradient-Echo Echo-Planar Imaging
(EPI) sequence (TR¼ 1,970 ms; TE¼ 30 ms; flip angle¼ 78�; 32 axial slices of
thickness of 3.7 mm with an interslice gap of 20%; FOV¼ 192 mm� 192 mm;
voxel-size¼ 3 mm� 3 mm� 4.44 mm). The lengths of the recording sessions for the
different tasks were as follows: Fluid Intelligence: 5 min (150 volumes), Picture
Naming: 10 min (314 volumes), Sentence Comprehension: 16 min (496 volumes).

MRI image preprocessing was carried out by the standardized pipeline of the
Cam-CAN project57. In brief, preprocessing was performed using SPM12
(Wellcome Department of Imaging Neuroscience, University College London,
London, UK), implemented in the automatic analysis batching system58

(http://imaging.mrc-cbu.cam.ac.uk/imaging/AA). The functional images were
motion-corrected (realigned) and slice-time corrected. The T1-weighted images

were coregistered to an MNI template image, bias-corrected, and segmented into
various tissue classes using unified segmentation59. The segmented grey matter
images were then used to create a study-specific anatomical template, using the
DARTEL procedure to optimize inter-participant alignment60, and was
subsequently transformed to MNI space. The EPI images were then coregistered to
the T1 image, normalized to MNI space using the DARTEL flowfields, and
smoothed using an 8 mm FWHM Gaussian kernel.

Data cleaning. A schematic diagram of the data processing steps are shown in
Supplementary Fig. 1. After standard preprocessing (see previous section), we
applied additional data cleaning steps to remove artefacts originating from
in-scanner head motion61, using the Automatic Removal of Motion Artifacts
software package62 (ICA-AROMA, see Data Availability). Following the pipeline
used by the authors of ICA-AROMA, we subsequently regressed out the mean WM
and cerebrospinal fluid (CSF) signal from the time-course of each voxel, and
linearly detrended the residual signal. No temporal filtering was applied on the
data, because ICA can benefit from information from the full range of the
frequency spectrum in separating the signal sources, and the spectral properties of
the obtained components can be subsequently used to identify and exclude those
with a high proportion of signal power at non-neural (for example, vascular)
frequency bands (see next section, Independent Components Analysis).

Independent components analysis. Spatial ICA identifies functional brain
components by decomposing the 4D fMRI image into a spatially maximally
independent set of signal sources (components), each associated with a spatial map
(location) and a time-course (activity)26,63. The preprocessed and cleaned fMRI
data (see previous sections) from all three tasks were submitted to the same ICA,
using the Group ICA of fMRI Toolbox63 (GIFT, see section Code availability), in
order to derive a common set of components across the different tasks.

There are a number of points to consider when running an ICA on multiple
tasks (rather than on a single task). On the one hand, as the ICA is forced to find
a single consensus partitioning across all tasks, tasks with different signal sources
may undesirably alter each other’s task-specific components. On the other hand,
however, at an ideal resolution of decomposition one would expect to find a shared,
but differentially engaged, set of components (functional areas) across all tasks.
With these points in mind, we determined the optimal number of components for
our data as the resolution yielding the highest convergence between single-task and
multiple-task ICAs, more specifically, the resolution at which the spatial overlap
between the single-task and multiple-task ICA components, on average across all
tasks, is the largest. We found this optimal convergence to occur at n¼ 50
components (see Supplementary Methods and Supplementary Fig. 2). Accordingly,
an n¼ 50 component ICA was run across all three tasks temporally concatenated
(as multiple sessions in GIFT) and across all subjects. The ICASSO module with
100 repetitions was used to estimate robust group level components, which were
then back-reconstructed to yield task- and subject-specific time-courses (using the
GICA3 method, see Supplementary Fig. 1).

We used a mixture model method16 to threshold each component’s spatial map.
Potential WM- and CSF-related components were tested by calculating the
loading-value-weighted overlap of the components’ thresholded spatial maps with
segmented tissue masks (see section MRI Acquisition and Preprocessing). Owing
to the extensive data cleaning (see section Data cleaning), we found no obvious
motion-, WM- or CSF-related components.

Subsequently, components related to vascular and noise-related activity were
identified based on a combination of spatial and spectral criteria. Specifically,
components were marked as non-neural if either their time-course exhibited below
threshold low-to-high frequency spectral power ratio (o0.65) or dynamic range
(o0.0175), both calculated by GIFT16, or less than 75% spatial overlap with the
cohort-specific grey matter mask. This procedure identified 17 components
exhibiting strongly non-neural signal characteristics, all of inferio- or subcortical
origin spatially, many of them well-matching major pathways of the venous and
artery systems of the brain. These components were excluded from further analysis,
resulting in 33 components of cortical origin (see Supplementary Figs 3–7). Finally,
the remaining components of neural origin were labelled using their weighted
spatial overlap with the Harvard–Oxford anatomical atlas64 and a resting-state
functional network atlas16.

Component responsivity. Functional modulation (activation or suppression) of
each component for each subject and task was estimated using standard multiple
regression analysis, with task conditions as predictors and subject-specific
component time-course as dependent variable, yielding standardized b loading
values (see Supplementary Methods). Then, functional responsivity of each
component in each task was calculated as the difference between the b values of the
task’s two conditions of interest (see section Cognitive Tasks). Considering the
nature of the selected conditions, the responsivity values represent the amount of
excess activation/suppression of the component from the task’s less demanding
condition to the more demanding one for each subject.

Finally, we excluded from the analysis three further components corresponding
to the primary motor areas: left and right dorsal motor cortex, activated for button
press responses in Fluid Intelligence and Sentence Comprehension, and bilateral
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ventral motor cortex, activated for speech responses in Picture Naming (see
Supplementary Fig. 3a–c). Although these components are very strongly activated
and related to performance score in certain tasks (where higher task scores
correlate with more responses given, yielding higher responsivity in the relevant
motor cortex region), they are not likely to be related to core cognitive processes
under investigation, and thus could be a source of confound. This final exclusion
step decreased the number of brain components of interest to n¼ 30.

Component responsivity and task performance. We tested the hypothesis that
(cohort-mean) component responsivity is a proxy for the component’s contribu-
tion to task execution, that is, that more responsive components are more related to
task performance than less responsive ones. To this end, for each component and
task, we first calculated the correlation between task performance and component
responsivity across all participants, as an index of the component’s contribution to
performing the task. Then, for each task, we tested whether more responsive
components are also contributing more to task performance by correlating, across
components, the cohort-mean responsivity of the components and their relation to
performance.

Multi-component and task-positive responsivity. We measured the collective
responsivity of a given set of components (multiple component responsivity, MCR)
by taking the mean over the components’ responsivities, for a specific participant
and task. Then, for each task, we defined the task-positive components as the sets
of components whose MCR is the most predictive of task performance across
participants. In order to narrow down the search for these task-positive compo-
nents among all the possible sets of components (n¼ 230E1.1 billion sets for 30
components), we applied the heuristic that the most responsive components are
likely to contribute most to task performance (see Fig. 2), and tested only the sets of
components comprised of the first k most responsive components (1rkr30,
n¼ 30 tests per task). More specifically, we correlated each task’s MCR to task
performance iteratively, starting by correlating performance to the single most
responsive component, and incorporating the next most responsive
component with each iteration. Finally, we defined MTR as the MCR calculated on
the task-positive components, which provided a participant-specific metric of
neural responsiveness to each task.

Functional connectivity. We estimated condition-specific FC between each pair of
components for each task and subject. First, realignment parameters, their deriva-
tives, squared terms and squared derivatives were regressed out of the component
time-courses, in order to further decrease artefactual coupling between component
time-courses induced by in-scanner head-motion65. Second, the canonical
haemodynamic response function convolved time-courses of all the conditions of
non-interest were also regressed out of the residual component time-courses in order
to minimize their impact on the connectivity. Third, condition-specific FC was
calculated as the Pearson correlation coefficient of each component-pair’s activity
restricted to the time-points (volumes) when at least one of the two conditions of
interest was present (their haemodynamic response function convolved time-course
was greater than 0.05). The obtained correlation values were subsequently Fisher
z-transformed (z¼ atanh(r)) to normalize the distribution of correlation values. We
note that using standard FCs from the entire recording, rather than rendering them
condition specific (with steps two and three above), provided qualitatively the same
results that we report using the condition specific FCs.

Statistical analysis. Covariates and correlation tests: To minimize potential
cohort or generation effects in our cross-sectional sample12, we controlled for level
of education, along with handedness score and gender in all statistical tests, by
regressing them out from the variables of interest and performing the statistical
tests on the regression residuals. Most statistical tests were run across the entire
cohort, using age as a continuous variable, except for some confirmatory tests. In
these latter tests, we split the cohort into three, approximately equal-size age groups
(younger, middle-aged and older, see Table 1) to test for effects in the different
age-groups separately.

For each correlation test, we report Pearson’s correlation coefficient r (and p)
values, and 95% confidence intervals (CI). To test for significant difference between
correlations coefficients, we calculated the z-value of the difference between the
Fisher z-transformed correlation coefficients (using the paired.r function of the
psych software package66), while correcting for potential sample size differences
and inter-dependence between the correlations.

Moderation and mediation tests: We used multiple linear regression with
interaction to test the potential moderation effect of a variable on the relation
between two other variables67. More specifically, if X and Y are the variables
forming the original relationship, and Z is the putative moderator variable to be
tested, we ran a multiple linear regression with Y as the dependent variable, and X,
Z and the interaction term X�Z as predictor variables (along with our standard
covariates, see first paragraph of section). A significantly non-zero coefficient of
predictor X�Z would in turn indicate a moderator effect of Z on the relation
between X and Y.

We performed mediation analyses67 using the R statistical package
‘mediation’68. We note that mediation models, like any other current statistical

models, are unable to delineate time-dependent relations and causal structure in
cross-sectional data sets45. However, when interpreted with caution, they are
capable of representing age-related differences and variance partitioning69, making
them an informative complementary method to standard correlation and
regression tests.

Data availability. The data set analysed in this study is part of the
Cambridge Centre for Ageing and Neuroscience (Cam-CAN) research project
(www.cam-can.com). The entire Cam-CAN dataset is soon to be publicly released,
and will be available after registration via the Cam-CAN dataset inventory at
https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/.

Data cleaning was performed using the ICA-AROMA package, freely
downloadable from https://github.com/rhr-pruim/ICA-AROMA. To run group
ICA, we used the Matlab package GIFT, version 4.0, which is freely available at:
http://mialab.mrn.org/software/gift/index.html. Mediation analyses were run using
the R package ‘mediation’, version 4.4.5, available freely at: https://cran.r-
project.org/web/packages/mediation/index.html. All surface rendered images were
generated by the Matlab package BrainNetViewer, version 1.53, freely available at:
https://www.nitrc.org/projects/bnv/. The corresponding author (D.S.) can provide
custom-written analysis code on request.
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