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Abstract—This paper proposes a method for system 

realisation, where the realised system is described by a 

continuous-time, finite-duration impulse response. The 

proposed discrete-time implementation deploys Digital Alias-

free Signal Processing. It means that despite the use of digital 

signal processing, the produced results do not suffer from 

aliasing. However, owing to the use of random sampling, the 

approach relies on constructing a suitable estimator of the 

system output. This paper shows that the proposed estimator is 

unbiased. It is also consistent, i.e. its variance goes to zero when 

the density of signal samples increasing. It is proven that under 

moderately restrictive assumptions, the estimator goes to zero 

proportionally to the fifth power of the average distance 

between the samples. 

Keywords—system realisation, alias free sampling, digital 

alias free signal processing, random sampling, finite impulse 

response 

I. INTRODUCTION 

It is a well-known fact that the approaches relying on the 
use of deterministic sampling in digital processing of 
continuous-time signals suffer from aliasing. In general, this 
phenomenon can be explained in a trivial manner. For any 
deterministic sampling pattern, uniform or not, there exist an 
infinite number of continuous-time signals that take identical 
values at the sampling instants. If we consider signal sampling 
as a mathematical process of mapping the space of 
continuous-time signals to a space of discrete-time ones, 
aliasing is equivalent to stating that this mapping is not one-
to-one. A classical approach to eliminating aliasing is to 
suitably restrict the class of the processed continuous-time 
signals and select a matching sampling scheme so that the 
mapping of the restricted class to the space of discrete-time 
signals is one-to-one. A textbook solution is to use uniform 
sampling, where the sampling frequency exceeds the Nyquist 
rate, which is twice the highest frequency present in the signal. 
While this approach is guaranteed to work, it may have 
significant disadvantages affecting its usefulness. First, unless 
the processed signal is baseband, this approach is likely to 
result in the use of an excessive sampling rate. Second, all 
signals are observed in practice only inside a finite-duration 
window and therefore are not bandlimited. We can say that the 
above-mentioned, precious one-to-one mapping truly exists 
only if an infinite number of signal samples is collected. A 
popular way of eliminating aliasing while sampling the non-
baseband signals at rates below the Nyquist, is to use the 
Landau rate [1]. The Landau rate is the sampling rate equal to 
twofold total bandwidth of the signal. Unlike the classical 
approach, sampling at the Landau rate may involve the use of 
suitable selected nonuniform sampling. Historically, the first 
attempt to go this way was to deal with bandpass signals [2]. 
The support of such signals in the frequency domain is 
1[𝑓0,𝑓0+𝐵](𝑓), where 1𝑋(∙) is the indicator function defined by 

1𝑋(𝑧) = {
1 if 𝑧 ∈ 𝑋
0 if 𝑧 ∉ 𝑋

. If 𝑓0 = 𝑝𝐵, where 𝑝 is an integer, then 

such a signal can be sampled uniformly at the Landau rate. 
Otherwise, aliasing can be avoided by faster sampling rates or 
using a suitable nonuniform sampling scheme. A more 
complex task of avoiding aliasing when processing multiband 
signals was effectively solved with the use periodic 
nonuniform sampling (PNS), often implemented as multi 
coset sampling [3]-[4]. The problem with processing signals 
whose spectral support has such a complex structure is that the 
positions and widths of individual bands should be known. If 
this knowledge is not in place, a simple approach is to 
overestimate spectral support so that it covers the actual one. 
However, if the bandwidth of the estimated spectral support, 
is much bigger than the actual signal bandwidth then the 
resulting sampling rate scheme will be excessive. The solution 
to this problem comes in a few flavours. Each imposes a 
significant computational burden when processing the 
collected data.  

Instead of requiring the accurate knowledge of the signal 
spectral support, these approaches generally rely on two 
assumptions / pieces of knowledge. The first one is an interval 
in frequency domain that contains all the spectral components 
of the processed signal. The second one is the total bandwidth 
of the signal. The positions and widths of individual spectral 
components are not needed, although individual methods may 
impose some restrictions in this aspect. After the signal is 
sampled, some optimisation algorithm is used to first identify 
the actual spectral support of the signal and then process the 
signal.  Examples of such approaches involve spectrum- blind 
/ universal PNS [5]-[7] and multi-rate sampling [8]-[9], which 
are extensions of techniques originally developed for 
processing multi-bound signals with known spectral support. 
More generally, all these techniques are referred to as 
compressive sampling. They involve a variety of approaches 
widely described in the research literature e.g. [10]-[12]. 
Digital Alias-free Signal Processing (DASP) approaches the 
problem of alleviating aliasing from a different angle [13]-
[14]. First of all, it uses alias-free sampling. As we already 
mentioned, deterministic sampling inherently is susceptible to 
aliasing. Hence, alias free sampling utilises entirely or 
partially random sampling. To clarify how this change helps 
eliminating aliasing, we note that when a continuous-time 
signal is sampled at random time instants then its discrete-time 
counterpart is random. If the stochastic properties of such a 
discrete-time signal are different, whenever the continuous-
time originals are different, then the sampling process is alias-
free. To illustrate this concept consider taking only one sample 
of some signal 𝑣(∙) . Let the probability density function 

(PDF) of the random time instant be 𝑓𝜏(𝜏) =
1

√2𝜋
exp (−

𝜏2

2
). 

The random discrete time signal is described by 𝑣𝑑(𝑡; �̂�) =



𝑣(𝑡)

𝑓𝜏(𝑡)
𝛿(𝑡 − �̂�), where �̂� is the random sampling instant. Let’s 

calculate the expected value of  𝑣𝑑(𝑡; �̂�) : E{𝑣𝑑(𝑡; �̂�)} =

∫ 𝑓𝜏(𝜏)
∞

−∞
 𝑣𝑑(𝑡; 𝜏)𝑑𝜏 = 𝑓𝜏(𝑡)

𝑣(𝑡)

𝑓𝜏(𝑡)
= 𝑥(𝑡). Since the expected 

values of discrete-time signals differ from each other as long 
as the continuous-time originals are different, the above 
sampling scheme is alias free. We can use the signal sample 
to construct unbiased estimators of the Fourier transform of 

𝑣(∙): 𝑉𝑑(𝜔; �̂�) =
𝑣(�̂�)

𝑓𝜏(�̂�)
𝑒−𝑗𝜔�̂�, or the output of the system with 

impulse response 𝑔(∙) and input 𝑣(∙): 𝑦𝑑(𝑡; �̂�) =
𝑣(�̂�)

𝑓𝜏(�̂�)
𝑔(𝑡 −

�̂�). In fact,  

E{𝑉𝑑(𝜔; �̂�)} = ∫ 𝑓𝜏(𝜏)
𝑣(𝜏)

𝑓𝜏(𝜏)
𝑒−𝑗𝜔𝜏𝑑𝜏

∞

−∞

= ∫ 𝑣(𝜏)𝑒−𝑗𝜔𝜏𝑑𝜏

∞

−∞
= 𝑉(ω), 

and 

E{𝑦𝑑(𝑡; �̂�)} = ∫ 𝑓𝜏(𝜏)
𝑣(𝜏)

𝑓𝜏(𝜏)
𝑔(𝑡 − 𝜏)𝑑𝜏

∞

−∞

= ∫ 𝑣(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏

∞

−∞

= 𝑦(𝑡) 

Of course, eliminating of aliasing does not solve all the 
problems of digital signal processing. The problem that we 
face now, is that the discrete-time signals to be processed are 
not fully known. Normally, we access only a single realisation 
of the random process. Therefore, the focus of DASP, is to 
select a sampling scheme and construct accurate estimators of 
the objects (such as Fourier or some other transform or output 
of a system) that are the aim of signal processing. A popular 
way of measuring the accuracy is to use the mean squared 
error, which in the case of unbiased estimators is identical with 
their variance. For example, in the case of the above-
mentioned estimators of the Fourier transform and output of 
the system, the variances are  

𝜎𝑉𝑑(𝜔;�̂�)
2 = E{|𝑉𝑑(𝜔; �̂�)|2} − |𝑉(ω)|2

= ∫
𝑣2(𝜏)

𝑓𝜏(𝜏)
𝑑𝜏

∞

−∞

− |𝑉(ω)|2 

and  

𝜎𝑦𝑑(𝑡;�̂�)
2 = E{𝑦𝑑

2(𝑡; �̂�)} − 𝑦2(𝑡)

= ∫
𝑣2(𝜏)𝑔2(𝑡 − 𝜏)

𝑓𝜏(𝜏)
𝑑𝜏

∞

−∞

− 𝑦2(𝑡) 

In this particular case, both variances could be large and 
even infinite if the integrals do not have finite values. 
Therefore, the above example should only be considered as an 
illustration of how alias-free sampling can be constructed 
rather than a practical solution to signal processing problems.  

Alias free sampling can be traced back to early 1960s 
when Shapiro and Silverman published their paper [15] on 
alias-free sampling of random noise. In this paper, they 
proposed an approach were the power spectrum of a random 
signal could be determined in an arbitrary range of frequencies 
while using random sampling at a preselected rate. Their 
approach was further refined in [16]-[18]. The concept of 
DASP was systematically explored by Bilinskis and his 

colleagues. A good summary of their work can be found in 
two monographs [13]-[14].  

The DASP approach was used to solve a variety of 
problems. Fourier transform estimation of signals observed in 
a finite window was considered in [19]-[23]. This series of 
papers shows a gradual improvement in the accuracy of 
estimators. In this case the accuracy is measured as a function 
of the number of collected signal samples 𝑁 . The method 
proposed in [19] used a total random sampling. It was shown 
that the variance of the estimator goes to zero at the rate 
𝑂(𝑁−1) . This rate was applicable to both pointwise and 
uniform (i.e. frequency-independent) convergence. In [20] 
and [21], by changing the sampling scheme and signal 
processing algorithms, the pointwise convergence rate as 
increased to 𝑂(𝑁−3) and 𝑂(𝑁−5) respectively, whereas the 
uniform convergence rate stayed at 𝑂(𝑁−1) . Then the 
approach proposed in [22] increased the rate of uniform 
convergence to 𝑂(𝑁−5) , and [23] proposed a framework, 
where with the use of 𝐾th-order hybrid stratified sampling, 
both the pointwise and uniform convergence rates are  

𝑂(𝑁−(2𝐾+3)) . The applications of DASP include signal 

processing for NMR applications [24], spectrum sensing for 
cognitive radio applications [25]-[27] and digital control [28]. 
So far, there is limited amount of research devoted to system 
realisation using DASP. Some preliminary results are shown 
in [14] and [29]. This paper is one of the initial attempts in this 
direction. Specifically, we address the issue on using DASP 
for realisation of linear time-invariant continuous-time 
systems with finite impulse response. This problem is on itself 
unique, since traditional realisations of continuous time 
systems have infinite impulse response, whereas digital 
realisations can be FIR but suffer from aliasing. The paper is 
organised as follows. In section II we introduce the problem 
tackled in this paper, propose a sampling scheme and signal 
processing algorithm. The properties of the approach are 
explored in section III. Specifically, we show and prove the 
necessary and sufficient condition under which our solution is 
causal – an important factor if the proposed realisation is to 
operate in real time. We demonstrate that the proposed 
estimator of the system output is unbiased and show that under 
very weak assumptions its variance converges to zero at the 
rate inverse-proportional to the density of samples. However, 
if the input signal has continuous second derivative, and the 
impulse response of the system is continuous then this 
convergence rate increases to the fifth power of the inverse 
density of samples. In section IV we rewrite the formulas 
describing the system implementation to make them more 
suited to practical implementation. To give the reader a feel 
about the computational workload of the proposed approach 
at various stages, we split the calculations into two parts: those 
that have to be performed at the design stage, and then those 
to be carried our in the real time. Some numerical illustrations 
of the proposed approach are included in section V. The final 
discussion is in section VI. 

II. PROBLEM FORMULATION 

This paper is devoted to a DASP realisation of continuous-
time, LTIV systems described by 

𝑦(𝑡) = ∫ 𝑣(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏

𝑡−𝑇𝐷

𝑡−𝑇𝐻

, (1) 



where 𝑣(∙) and 𝑦(∙) denote the system input and output signal 
respectively, and the system impulse response 𝑔(∙) supported 
by the interval [𝑇𝐷 , 𝑇𝐻) is square-integrable, i.e.  

𝐺 = ∫ 𝑔2(𝜏)𝑑𝜏

𝑇𝐻

𝑇𝐷

≤ ∞. (2) 

Below, we describe the proposed sampling scheme and the 
signal processing algorithm for estimating 𝑦(𝑡). 

A. Hybrid Sampling Scheme 

The signal 𝑣(∙)  is sampled using hybrid stratified 
sampling. To this end, the time axis is divided into strata of 
length 𝑇. The strata borders are 𝜏𝑘 = 𝑘𝑇 and the 𝑘th stratum 
is defined by Γ𝑘 = [𝜏𝑘 , 𝜏𝑘+1). We denote its centre by  

𝑐𝑘 =
𝜏𝑘 + 𝜏𝑘+1

2
= 𝑘𝑇 + 0.5𝑇. (3) 

Within each stratum, we select a random time instant �̂�𝑘 =
𝑐𝑘 + �̂�𝑘 , where {�̂�𝑘}𝑘=−∞

∞  is a sequence of IID random 

variables whose PDF is 
1

𝑇
1[−0.5𝑇,0.5𝑇)(∙). The signal 𝑣(∙) is 

sampled at each 𝜏𝑘 and �̂�𝑘. We denote 𝑣𝑘 = 𝑣(𝜏𝑘) and �̂�𝑘 =
𝑣(�̂�𝑘). The PDF of �̂�𝑘 is  

𝑓𝑘(𝜏) =
1

𝑇
1Γ𝑘

(𝜏). (4) 

B. DASP estimator of the system output 

These samples are used to estimate the values of the output 
𝑦(∙) at arbitrarily selected time instants. Before formulating 
the algorithm for estimating 𝑦(𝑡), we put (1) in a form more 
suited to our needs here. First, we note that since 𝑔(∙) has 

finite support, we can write (1) as 𝑦(𝑡) = ∫ 𝑣(𝜏)𝑔(𝑡 −
𝛽(𝑡)

𝛼(𝑡)

𝜏)𝑑𝜏, where 𝛼(∙) and 𝛽(∙) are arbitrary as long as 𝛼(𝑡) ≤ 𝑡 −
𝑇𝐻  and 𝛽(𝑡) ≥ 𝑡 − 𝑇𝐷. Here, we choose these to be as close 
as possible to each other but aligned with strata borders 𝑡𝑘. 
This means that 𝛼(𝑡) = 𝑘𝑏(𝑡)𝑇, 𝛽(𝑡) = 𝑘𝑓(𝑡)𝑇, 𝑘𝑏(𝑡) is the 

largest integer satisfying 𝑘𝑏(𝑡)𝑇 ≤  𝑡 − 𝑇𝐻  and 𝑘𝑓(𝑡) is the 

smallest integer satisfying 𝑘𝑓(𝑡)𝑇 ≥ 𝑡 − 𝑇𝐷. Hence   

𝑘𝑏(𝑡) = ⌊
𝑡 − 𝑇𝐻

𝑇
⌋ ,  (5) 

𝑘𝑓(𝑡) = ⌈
𝑡 − 𝑇𝐷

𝑇 

⌉ ,  (6) 

where ⌊∙⌋  and ⌈∙⌉  are the floor and ceiling function 

respectively. This allows rewriting (1) as 𝑦(𝑡) =

∑ ∫ 𝑣(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
Γ𝑘

𝑘𝑓(𝑡)−1

𝑘=𝑘𝑏(𝑡)
. Let’s denote  

𝐼𝑘(𝑡) = ∫ 𝑣(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏

Γ𝑘

. (7) 

Hence 

𝑦(𝑡) = ∑ 𝐼𝑘(𝑡)

𝑘𝑓(𝑡)−1

𝑘=𝑘𝑏(𝑡)

. (8) 

The estimator �̂�(∙) is constructed as 

�̂�(𝑡) = ∑ 𝐼𝑘(𝑡)

𝑘𝑓(𝑡)−1

𝑘=𝑘𝑏(𝑡)

, (9) 

where 𝐼𝑘(∙)  are the estimators of 𝐼𝑘(∙) . Let 𝑣𝐿𝐼𝑁(∙)  be a 

piecewise linear signal defined by 

if 𝑡 ∈ Γ𝑘  then 𝑣𝐿𝐼𝑁(𝜏) = 𝑎𝑘 × (𝜏 − 𝑐𝑘) + 𝑏𝑘 , (10) 

where 𝑎𝑘 =
𝑣𝑘+1−𝑣𝑘

𝑇
 and 𝑏𝑘 =

𝑣𝑘+1+𝑣𝑘

2
. Clearly, as soon as the 

samples 𝑣𝑘  and 𝑣𝑘+1  are known, the signal 𝑣𝐿𝐼𝑁(∙) can be 

calculated for any 𝜏 ∈ Γ𝑘. We also define 𝑣𝑁𝐿(∙): 

𝑣𝑁𝐿(𝜏) = 𝑣(𝜏) − 𝑣𝐿𝐼𝑁(𝜏) (11) 

Unlike 𝑣𝐿𝐼𝑁(∙) , 𝑣𝑁𝐿(∙)  is only available at the sampling 

instants where the values of 𝑣(∙) are known. Lemma 1 below 

lists selected properties of 𝑣𝐿𝐼𝑁(∙) and 𝑣𝑁𝐿(∙). 

Lemma 1 
The signals 𝑣𝐿𝐼𝑁(∙)  and 𝑣𝑁𝐿(∙)  have the following 

properties  

𝑣𝐿𝐼𝑁(𝜏𝑘) = 𝑣𝑘 (12) 

 𝑣𝐿𝐼𝑁(𝜏𝑘+1) = 𝑣𝑘+1 (13) 

𝑣𝑁𝐿(𝜏𝑘) = 𝑣𝑁𝐿(𝜏𝑘+1) = 0 (14) 

𝑣𝑁𝐿(�̂�𝑘) = �̂�𝑘 − 𝑣𝐿𝐼𝑁(�̂�𝑘) (15) 

If 𝑡 ∈ Γ𝑘 then 

 min(𝑣𝑘 , 𝑣𝑘+1) ≤ 𝑣𝐿𝐼𝑁(𝑡) ≤ max(𝑣𝑘 , 𝑣𝑘+1) (16) 

If 𝑣(∙) is bounded, i.e. there exists 𝐵 > 0 such that for any 𝜏  
|𝑣(𝜏)| ≤ 𝐵 (17) 

then for any 𝜏 

|𝑣𝐿𝐼𝑁(𝜏)| ≤ 𝐵 (18) 

and  
|𝑣𝑁𝐿(𝜏)| ≤ 2𝐵 (19) 

Proof 
Within stratum Γ𝑘, 𝑣𝐿𝐼𝑁(∙) is a linear interpolation of 𝑣(∙) 

between (𝑡𝑘, 𝑣𝑘) and (𝑡𝑘+1, 𝑣𝑘+1). This implies (12) - (14), 
(16) and, with the use of (17), it also proves (18). Then (15) is 
a direct consequence of (11). Finally, (19) is a simple 
conclusion from (11), (17) and (18). 

□ 

 It follows from (7), (11) and (10) that 

𝐼𝑘(𝑡) = ∫(𝑎𝑘 × (𝜏 − 𝑐𝑘) + 𝑏𝑘 + 𝑣𝑁𝐿(𝜏))𝑔(𝑡 − 𝜏)𝑑𝜏

Γ𝑘

= 𝑎𝑘 ∫(𝜏 − 𝑐𝑘)𝑔(𝑡 − 𝜏)𝑑𝜏

Γ𝑘

+ 𝑏𝑘 ∫ 𝑔(𝑡 − 𝜏)𝑑𝜏

Γ𝑘

+ ∫ 𝑣𝑁𝐿(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏

Γ𝑘

. 

 Let  

Φ𝑘(𝑡) = ∫ (𝜏 − 𝑐𝑘)𝑔(𝑡 − 𝜏)𝑑𝜏

Γ𝑘

= ∫ 𝜏𝑔(𝑡 − 𝑐𝑘 − 𝜏)𝑑𝜏

0.5𝑇

−0.5𝑇

 

(20) 

and  

Ψ𝑘(𝑡) = ∫ 𝑔(𝑡 − 𝜏)𝑑𝜏

Γ𝑘

= ∫ 𝑔(𝑡 − 𝑐𝑘 − 𝜏)𝑑𝜏

0.5𝑇

−0.5𝑇

, (21) 

both of which can be calculated before any signal samples are 

collected. Then  

𝐼𝑘(𝑡) = 𝑎𝑘Φ𝑘(𝑡) + 𝑏𝑘Ψ𝑘(𝑡) + ∫ 𝑣𝑁𝐿(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏

Γ𝑘

. (22) 



The integral in (22) is estimated by ∫ 𝑣𝑁𝐿(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
Γ𝑘

≈

𝑇𝑣𝑁𝐿(�̂�𝑘)𝑔(𝑡 − �̂�𝑘). Hence 

𝐼𝑘(𝑡) = 𝑎𝑘Φ𝑘(𝑡) + 𝑏𝑘Ψ𝑘(𝑡) + 𝑇𝑣𝑁𝐿(�̂�𝑘)𝑔(𝑡 − �̂�𝑘) (23) 

and by (9) 

�̂�(𝑡) = ∑ 𝑎𝑘Φ𝑘(𝑡) + 𝑏𝑘Ψ𝑘(𝑡)

𝑘𝑓(𝑡)−1

𝑘=𝑘𝑏(𝑡)

+ 𝑇𝑣𝑁𝐿(�̂�𝑘)𝑔(𝑡 − �̂�𝑘). 

(24) 

In (24) we add up 𝑁(𝑡) = 𝑘𝑓(𝑡) − 𝑘𝑏(𝑡) components. By (5) 

and (6), 𝑁(𝑡) = ⌈
𝑡−𝑇𝐷

𝑇 
⌉

 
− ⌊

𝑡−𝑇𝐻

𝑇
⌋ . Let 𝛿𝐷 = ⌈

𝑡−𝑇𝐷

𝑇 
⌉ −

𝑡−𝑇𝐷

𝑇 
 

and 𝛿𝐻 =
𝑡−𝑇𝐻

𝑇
− ⌊

𝑡−𝑇𝐻

𝑇
⌋ . Clearly 𝛿𝐷, 𝛿𝐻 ∈ [0, 1) . We note 

that 𝑁(𝑡) = 𝛿𝐷 +
𝑡−𝑇𝐷

𝑇 
+ 𝛿𝐻 −

𝑡−𝑇𝐻

𝑇
, hence  

𝑁(𝑡) =
𝑇𝐻 − 𝑇𝐷

𝑇 

+ 𝛿𝑁 (25) 

where 𝛿𝑁 = 𝛿𝐷 + 𝛿𝐻 ∈ [0, 2) . Even if the length of the 

stratum 𝑇 is fixed the number of components in (24) may 

differ for different time instants 𝑡. But 𝑁(𝑡) is related to the 

ratio between the length of the impulse response 𝑇𝐻 − 𝑇𝐷 and 

𝑇. In particular, when 𝑇 → 0, the inverse of 𝑁(𝑡) converges 

to zero at the rate 𝑇: 

𝑁−1(𝑡) = 𝑂(𝑇). (26) 
In this paper we explore the properties of the estimators 

(23) and (24). We demonstrate that they are unbiased and 
consistent when 𝑇 → 0. Also, we explore the rate at which 
they converge to the target values. Specifically, we show that 
if  𝑔(∙) and the second derivative of 𝑣(∙) are continuous then 

the variance of �̂�(𝑡) is 𝑂(𝑇5). 

III. PROPERTIES OF THE DASP ESTIMATOR OF THE SYSTEMS 

OUTPUT 

A. Causalty 

A system is causal iff the value of its output never depends 
on the future values of the input. For example, for the system 
described by (1) the output 𝑦(𝑡) depends on 𝑣(𝜏), where 𝜏 ∈
[𝑡 − 𝑇𝐻 , 𝑡 − 𝑇𝐷] . Hence, as long as 𝑇𝐷 ≥ 0  this system is 
causal. Theorem 1 below states when the DASP 
implementation (24) describes a causal system. 

 

Theorem 1 
The system (24) is causal if 𝑇 ≤ 𝑇𝐷 

Proof 
The samples of the input signal needed for calculating 

�̂�(𝑡)  are taken at {𝜏𝑘}
𝑘=𝑘𝑏(𝑡)

𝑘𝑓(𝑡)
 and {�̂�𝑘}

𝑘=𝑘𝑏(𝑡)

𝑘𝑓(𝑡)−1
. The latest 

sample used in this calculation is taken at 𝜏𝑘𝑓(𝑡) = 𝑘𝑓(𝑡)𝑇. 

The system (24) is causal iff for any 𝑡: 𝑘𝑓(𝑡)𝑇 ≤ 𝑡. By (6), 

this is equivalent to  

⌈
𝑡 − 𝑇𝐷

𝑇 

⌉
 

≤
𝑡

𝑇
. (27) 

Let 𝑡 − 𝑇𝐷 = (𝑛𝑡 + 𝛾𝑡)𝑇  where 𝑛𝑡  is an integer and 𝛾𝑡 ∈
[0, 1). We substitute this in (27) to get 

⌈𝑛𝑡 + 𝛾𝑡⌉ ≤ 𝑛𝑡 + 𝛾𝑡 +
𝑇𝐷

𝑇
 (28) 

 We note that for any 𝑇𝐷 , 𝑇 and 𝛾 ∈ [0, 1) we can select a 

time instant 𝑡 = (𝑛 + 𝛾)𝑇 + 𝑇𝐷 , where 𝑛  is an arbitrary 

integer, resulting in 𝛾𝑡 = 𝛾. Therefore, (28) must be satisfied 

for any 𝛾𝑡 ∈ [0, 1) . When 𝛾𝑡 = 0 , (28) implies 0 ≤ 𝑇𝐷 . 

Hence nonnegative 𝑇𝐷  is a necessary condition for system 

causality. If 0 < 𝛾𝑡 < 1 then (28) yields 1 ≤ 𝛾𝑡 +
𝑇𝐷

𝑇
, which 

is satisfied for any 𝛾𝑡 ∈ (0,1) iff 
𝑇𝐷

𝑇
≥ 1, which proves the 

theorem. 

□ 
In the reminder of this section, we focus our attention on 

the acuracy of the proposed estimator. To this end, we explore 
the size of its bias and variance. Let the errror of estimating 
𝐼𝑘(𝑡) be denoted by  

Δ̂𝑘(𝑡) = 𝐼𝑘(𝑡) − 𝐼𝑘(𝑡). (29) 

By (22) and (23): Δ̂𝑘(𝑡) = 𝑇𝑣𝑁𝐿(�̂�𝑘)𝑔(𝑡 − �̂�𝑘) −

∫ 𝑣𝑁𝐿(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏
Γ𝑘

. To simplify notation, for a given 

output time instant 𝑡 we define 𝑔𝑡(𝜏) = 𝑔(𝑡 − 𝜏). Therefore 

Δ̂𝑘(𝑡) = 𝑇𝑣𝑁𝐿(�̂�𝑘)𝑔𝑡(�̂�𝑘) − ∫ 𝑣𝑁𝐿(𝜏)𝑔𝑡(𝜏)𝑑𝜏

Γ𝑘

 (30) 

B. Lack of bias 

Theorem 2 

For any 𝑡, 𝐼𝑘(𝑡) is an unbiased estimator of 𝐼𝑘(𝑡)  

 

Proof 

We have to prove that E{𝐼𝑘(𝑡)} = 𝐼𝑘(𝑡) , which is 

equivalent to E{Δ̂𝑘(𝑡)} = 0. According to (30)  

E{Δ̂𝑘(𝑡)} = 𝑇E{𝑣𝑁𝐿(�̂�𝑘)𝑔𝑡(�̂�𝑘)} − ∫ 𝑣𝑁𝐿(𝜏)𝑔𝑡(𝜏)𝑑𝜏

Γ𝑘

 (31) 

Since �̂�𝑘 is a random number whose PDF is given by (4), we 

get E{𝑣𝑁𝐿(�̂�𝑘)𝑔𝑡(�̂�𝑘)} = ∫ 𝑓𝑘(𝜏)𝑣𝑁𝐿(𝜏)𝑔𝑡(𝜏)𝑑𝜏
∞

−∞
=

1

𝑇
∫ 𝑣𝑁𝐿(𝜏)𝑔𝑡(𝜏)𝑑𝜏

Γ𝑘
. By substituting this result back into (31) 

we conclude E{Δ̂𝑘(𝑡)} = 0. 

□ 

Theorem 3 
For any 𝑡, �̂�(𝑡) is an unbiased estimator of 𝑦(𝑡) 

 

Proof 
The proof of this Theorem is a simple consequence of (8), 

(9) and Theorem 2. 

□ 

C. Variance of the estimator 

Lack of bias of the proposed estimator is evidence that the 
proposed sampling scheme and signal processing algorithm 
are alias-free. This result is valid regardless of how densely 
the sampling instants are distributed, what the frequency-
domain characteristics of the processed signal are or what the 
shape of the impulse response is. However, as mentioned 
before, lack of bias does not necessarily mean that that the 
signal processing results are accurate. In the subsequent 
analyses we explore the accuracy of the proposed estimator as 
measured by its variance. Specifically, we relate the size of the 
variance to the length of the stratum 𝑇. 



We calculate 𝜎𝐼𝑘(𝑡)
2  and 𝜎�̂�(𝑡)

2 . By (29)-(30) and Theorem 2: 

𝜎𝐼𝑘(𝑡)
2 = E{𝑇2𝑣𝑁𝐿

2 (�̂�𝑘)𝑔𝑡
2(�̂�𝑘)} − [∫ 𝑣𝑁𝐿(𝜏)𝑔𝑡(𝜏)𝑑𝜏

Γ𝑘
]

2

. 

Since E{𝑣𝑁𝐿
2 (�̂�𝑘)𝑔𝑡

2(�̂�𝑘)} =
1

𝑇
∫ 𝑣𝑁𝐿

2 (𝜏)𝑔𝑡
2(𝜏)𝑑𝜏

Γ𝑘
, we get 

𝜎𝐼𝑘(𝑡)
2 = 𝑇 ∫ 𝑣𝑁𝐿

2 (𝜏)𝑔𝑡
2(𝜏)𝑑𝜏

Γ𝑘

− [ ∫ 𝑣𝑁𝐿(𝜏)𝑔𝑡(𝜏)𝑑𝜏

Γ𝑘

]

2

 (32) 

For any 𝑡 , 𝐼𝑘(𝑡)  is a sequence of independent random 

variables. Therefore, by (9)   

𝜎�̂�(𝑡)
2 = ∑ 𝜎𝐼𝑘(𝑡)

2

𝑘𝑓(𝑡)−1

𝑘=𝑘𝑏(𝑡)

. (33) 

Consequently  

𝜎�̂�(𝑡)
2 = 𝑇 ∑ ∫ 𝑣𝑁𝐿

2 (𝜏)𝑔𝑡
2(𝜏)𝑑𝜏

Γ𝑘

𝑘𝑓(𝑡)−1

𝑘=𝑘𝑏(𝑡)

− ∑ [ ∫ 𝑣𝑁𝐿(𝜏)𝑔𝑡(𝜏)𝑑𝜏

Γ𝑘

]

2𝑘𝑓(𝑡)−1

𝑘=𝑘𝑏(𝑡)

 

(34) 

 

Theorem 4 
If the input signal 𝑣(∙) is bounded as specified by (17) then 

𝜎�̂�(𝑡)
2 ≤ 4𝑇𝐵2𝐺 

Proof 

It follows from (34) and (19) that 𝜎�̂�(𝑡)
2 ≤

𝑇 ∑ ∫ 𝑣𝑁𝐿
2 (𝜏)𝑔𝑡

2(𝜏)𝑑𝜏
Γ𝑘

𝑘𝑓(𝑡)−1

𝑘=𝑘𝑏(𝑡) ≤

4𝑇𝐵2 ∑ ∫ 𝑔𝑡
2(𝜏)𝑑𝜏

Γ𝑘

𝑘𝑓(𝑡)−1

𝑘=𝑘𝑏(𝑡) = 4𝑇𝐵2 ∫ 𝑔𝑡
2(𝜏)𝑑𝜏

𝑘𝑓(𝑡)𝑇

𝑘𝑏(𝑡)𝑇
=

4𝑇𝐵2 ∫ 𝑔2(𝜏)𝑑𝜏
𝑡−𝑘𝑏(𝑡)𝑇

𝑡−𝑘𝑓(𝑡)𝑇
.  Then (5) and (6) yield 𝑡 −

𝑘𝑏(𝑡)𝑇 = 𝑡 − ⌊
𝑡−𝑇𝐻

𝑇
⌋ 𝑇 ≥ 𝑡 −

𝑡−𝑇𝐻

𝑇
𝑇 = 𝑇𝐻 , 

and 𝑡 − 𝑘𝑓(𝑡)𝑇 = 𝑡 − ⌈
𝑡−𝑇𝐷

𝑇 
⌉ 𝑇 ≤ 𝑡 −

𝑡−𝑇𝐷

𝑇 
𝑇 = 𝑇𝐷 .  The 

support of 𝑔2(∙) is the same as that of 𝑔(∙), i.e. [𝑇𝐷 , 𝑇𝐻) . 

Therefore, by (2) we get 𝜎�̂�(𝑡)
2 ≤ 4𝑇𝐵2 ∫ 𝑔2(𝜏)𝑑𝜏

𝑇𝐻

𝑇𝐷
≤

4𝑇𝐵2𝐺. 
□ 

Theorem 4 implies that when 𝑇 → 0 then 𝜎�̂�(𝑡)
2  converges 

to zero, and the convergence rate is at least 𝑂(𝑇). In fact, this 
rate could be much faster. Here, we demonstrate that if the 
second derivative of 𝑣(∙),  �̈�(∙), and the impulse response 𝑔(∙) 

are continuous then the rate of convergence of 𝜎�̂�(𝑡)
2  is 𝑂(𝑇5). 

When 𝜏 ∈ Γ𝑘  we represent 𝑔𝑡(∙)  and 𝑣(∙)  in the 
neighbourhood of 𝑐𝑘  by 𝑔𝑡(𝜏) = 𝑔𝑡(𝑐𝑘) + 𝑜(|𝜏 − 𝑐𝑘|0)  and 

𝑣(𝜏) = 𝑣(𝑐𝑘) + �̇�(𝑐𝑘)(𝜏 − 𝑐𝑘) + �̈�(𝑐𝑘)
(𝜏−𝑐𝑘)2

2
+ 𝑜((𝜏 −

𝑐𝑘)2). Since |𝜏 − 𝑐𝑘| ≤
𝑇

2
 we can put these relations as 

𝑔𝑡(𝜏) = 𝑔𝑡(𝑐𝑘) + 𝑜(𝑇0)  (35) 

 𝑣(𝜏) = 𝑣(𝑐𝑘) + �̇�(𝑐𝑘)(𝜏 − 𝑐𝑘) + �̈�(𝑐𝑘)
(𝜏−𝑐𝑘)2

2
+

𝑜(𝑇2) 
(36) 

By substituting in turn 𝑡𝑘 and 𝑡𝑘+1 for 𝑡 in (36) we get  

𝑣𝑘 = 𝑣(𝑐𝑘) − �̇�(𝑐𝑘)
𝑇

2
+ �̈�(𝑐𝑘)

𝑇2

8
+ 𝑜(𝑇2) (37) 

𝑣𝑘+1 = 𝑣(𝑐𝑘) + �̇�(𝑐𝑘)
𝑇

2
+ �̈�(𝑐𝑘)

𝑇2

8
+ 𝑜(𝑇2) (38) 

Therefore, 𝑣𝐿𝐼𝑁(∙) defined by (10) becomes  

𝑣𝐿𝐼𝑁(𝜏) = 𝑣(𝑐𝑘) + �̇�(𝑐𝑘)(𝜏 − 𝑐𝑘) + �̈�(𝑐𝑘)
𝑇2

8
+ 𝑜(𝑇2). 

(39) 

By (11), (36) and (39) we get 𝑣𝑁𝐿(𝜏) = �̈�(𝑐𝑘) [
(𝜏−𝑐𝑘)2

2
−

𝑇2

8
] + 𝑜(𝑇2) =

�̈�(𝑐𝑘)

2
(𝜏 − 𝑐𝑘 −

𝑇

2
) (𝜏 − 𝑐𝑘 +

𝑇

2
) + 𝑜(𝑇2) . 

Hence 

𝑣𝑁𝐿(𝜏) =
1

2
�̈�(𝑐𝑘)(𝜏 − 𝜏𝑘+1)(𝜏 − 𝜏𝑘) + 𝑜(𝑇2) (40) 

We note that the dominant part of (40) is 𝑂(𝑇2). Therefore, 

by squaring both sides of (40) we get 

 𝑣𝑁𝐿
2 (𝜏) =

1

4
�̈�2(𝑐𝑘)(𝜏 − 𝑡𝑘+1)2(𝜏 − 𝑡𝑘)2 + 𝑜(𝑇4) (41) 

where the dominant part is 𝑜(𝑇4) . Similarly, by squaring 

both sides of (35) we have  

 𝑔𝑡
2(𝜏) = 𝑔𝑡

2(𝑐𝑘) + 𝑜(𝑇0) (42) 

Now we are ready to calculate 𝜎𝐼𝑘(𝑡)
2  as expressed by (32). 

Let’s start with the first component of (32). We use (41) and 

(42) to get 𝐶1 = 𝑇 ∫ 𝑣𝑁𝐿
2 (𝜏)𝑔𝑡

2(𝜏)𝑑𝜏
Γ𝑘

= 𝑇 ∫ [
1

4
�̈�2(𝑐𝑘)(𝜏 −

Γ𝑘

𝑡𝑘+1)2(𝜏 − 𝑡𝑘)2 + 𝑜(𝑇4)] [𝑔𝑡
2(𝑐𝑘) + 𝑜(𝑇0)]𝑑𝜏 =

1

4
𝑇�̈�2(𝑐𝑘)𝑔𝑡

2(𝑐𝑘) ∫ (𝜏 − 𝑡𝑘+1)2(𝜏 − 𝑡𝑘)2𝑑𝜏
Γ𝑘

+ 𝑜(𝑇6).  Since 

∫ (𝜏 − 𝑡𝑘+1)2(𝜏 − 𝑡𝑘)2𝑑𝜏
Γ𝑘

=
𝑇5

30
, we have  

𝐶1 =
1

120
𝑇6�̈�2(𝑐𝑘)𝑔𝑡

2(𝑐𝑘) + 𝑜(𝑇6). 

Similarly, the second term of (32) is −𝐶2
2  where 𝐶2 =

∫ 𝑣𝑁𝐿(𝜏)𝑔𝑡(𝜏)𝑑𝜏
Γ𝑘

= ∫ [
1

2
�̈�(𝑐𝑘)(𝜏 − 𝜏𝑘+1)(𝜏 − 𝜏𝑘) +

Γ𝑘

𝑜(𝑇2)] [𝑔𝑡(𝑐𝑘) + 𝑜(𝑇0)]𝑑𝜏 =
1

2
�̈�(𝑐𝑘)𝑔𝑡(𝑐𝑘) ∫ (𝜏 −

Γ𝑘

𝜏𝑘+1)(𝜏 − 𝜏𝑘)𝑑𝜏 + 𝑜(𝑇3).  Since ∫ (𝜏 − 𝜏𝑘+1)(𝜏 −
Γ𝑘

𝜏𝑘)𝑑𝜏 = −
𝑇3

6
 we get 𝐶2 = −

1

12
𝑇3�̈�(𝑐𝑘)𝑔𝑡(𝑐𝑘) + 𝑜(𝑇3) . 

The dominant part of 𝐶2  is 𝑂(𝑇3) . Therefore 𝐶2
2 =

1

144
𝑇6𝑣̈ 2(𝑐𝑘)𝑔𝑡

2(𝑐𝑘) + 𝑜(𝑇6). By substituting 𝐶1  and 𝐶2
2  in 

(32) we get 𝜎𝐼𝑘(𝑡)
2 =

1

120
𝑇6�̈�2(𝑐𝑘)𝑔𝑡

2(𝑐𝑘) −
1

144
𝑇6�̈�2(𝑐𝑘)𝑔𝑡

2(𝑐𝑘) + 𝑜(𝑇6), hence 

𝜎𝐼𝑘(𝑡)
2 =

1

720
𝑇6�̈�2(𝑐𝑘)𝑔𝑡

2(𝑐𝑘) + 𝑜(𝑇6). (43) 

Now we use (33) to calculate 𝜎�̂�(𝑡)
2 =

1

720
𝑇6 ∑ �̈�2(𝑐𝑘)𝑔𝑡

2(𝑐𝑘)
𝑘𝑓(𝑡)−1

𝑘=𝑘𝑏(𝑡)
+ ∑ 𝑜(𝑇6)

𝑘𝑓(𝑡)−1

𝑘=𝑘𝑏(𝑡)
. Since in the 

second summation the number of components is 𝑁(𝑡) then 

by (26) 𝜎�̂�(𝑡)
2 =

1

720
𝑇6 ∑ �̈�2(𝑐𝑘)𝑔𝑡

2(𝑐𝑘)
𝑘𝑓(𝑡)−1

𝑘=𝑘𝑏(𝑡)
+ 𝑜(𝑇5) =

1

720
𝑇6 ∑ �̈�2(𝑐𝑘)𝑔2(𝑡 − 𝑐𝑘)

𝑘𝑓(𝑡)−1

𝑘=𝑘𝑏(𝑡)
+ 𝑜(𝑇5) . Let’s calculate 

𝜎2(𝑡) = lim
𝑇→0

𝜎�̂�(𝑡)
2

𝑇5 =
1

720
lim
𝑇→0

∑ 𝑇�̈�2(𝑐𝑘)𝑔𝑡
2(𝑐𝑘)

𝑘𝑓(𝑡)−1

𝑘=𝑘𝑏(𝑡)
+

lim
𝑇→0

𝑜(𝑇5)

𝑇5 . We use the Riemann integration to calculate the 

first component. Its value is 
1

720
∫ �̈�2(𝜏)𝑔𝑡

2(𝜏)𝑑𝜏
𝑡−𝑇𝐻

𝑡−𝑇𝐷
. The 

second component is clearly 0. Hence we conclude that   

𝜎2(𝑡) =
1

720
∫ �̈�2(𝜏)𝑔2(𝑡 − 𝜏)𝑑𝜏

𝑡−𝑇𝐻

𝑡−𝑇𝐷

 (44) 

and that for sufficiently small 𝑇 



𝜎�̂�(𝑡)
2 ≈

𝑇5

720
∫ �̈�2(𝜏)𝑔2(𝑡 − 𝜏)𝑑𝜏

𝑡−𝑇𝐻

𝑡−𝑇𝐷

 (45) 

IV. THE ALGORITHM FOR SYSTEM REALISATION 

In the previous sections we presented mathematical 
formulas related to DASP implementation of the filter in the 
forms that were best suited for analysing its properties. In this 
section, we rephrase these to clarify how to implement a 
system in DASP. In our discussions we assume that the system 
impulse response 𝑔(∙), 𝑇𝐷, 𝑇𝐻  and the length of the stratum 𝑇 
are already selected. The clue for system implementation is 
given by (23) and (24). We need to select the time instants 𝑡, 
for which the output will be calculated, find out the range of 
the index 𝑘 in (24), and calculate Φ𝑘(𝑡) and Ψ𝑘(𝑡). As we 
show below, this work can be done off-line. Then, once the 
suitable signal samples are collected we need to calculate 𝑎𝑘, 
𝑏𝑘 , 𝑣𝑁𝐿(�̂�𝑘)  and 𝑔(𝑡 − �̂�𝑘)  and use these in (24) or an 
equivalent formula to calculate the output of the system.  

The output of the system will be derived for the time 
instants defined by 𝑡𝑛,𝑙 = 𝑛𝑇 + 𝑡𝑙 , 𝑛 = 0, 1, … , 𝑙 = 1, … , 𝐿 

where 0 ≤ 𝑡1 < 𝑡2 < ⋯ < 𝑡𝐿 < 𝑇. We start with (5) and (6) 
to calculate 𝑘𝑏(∙)  and 𝑘𝑓(∙)  for the selected output time 

instants. We note 𝑘𝑏(𝑡𝑛,𝑙) = ⌊
𝑛𝑇+𝑡𝑙−𝑇𝐻

𝑇
⌋ = 𝑛 + ⌊

𝑡𝑙−𝑇𝐻

𝑇
⌋ . 

Hence 

𝑘𝑏(𝑡𝑛,𝑙) = 𝑛 + 𝑘𝑏(𝑡𝑙) (46) 

Similarly,  

𝑘𝑓(𝑡𝑛,𝑙) = 𝑛 + 𝑘𝑓(𝑡𝑙) (47) 

Let 𝛿𝑘 = 𝑘 − 𝑛 . Hence Φ𝑘(∙) = Φ𝑛+𝛿𝑘
(∙)  and Ψ𝑘(∙) =

Ψ𝑛+𝛿𝑘
(∙) With this notation we can re-write (9)  

𝐼𝑘(𝑡𝑛,𝑙) = 𝑎𝑘Φ𝑛+𝛿𝑘
(𝑡𝑛,𝑙) + 𝑏𝑛+𝛿𝑘

Ψ𝑛+𝛿𝑘
(𝑡𝑛,𝑙)

+ 𝑇𝑣𝑁𝐿(�̂�𝑘)𝑔(𝑡𝑛,𝑙 − �̂�𝑘) 
(48) 

We use (20) to calculate Φ𝑛+𝛿𝑘
(𝑡𝑛,𝑙) = ∫ 𝜏𝑔(𝑛𝑇 + 𝑡𝑙 −

0.5𝑇

−0.5𝑇

𝑐𝑛+𝛿𝑘
− 𝜏)𝑑𝜏 . Since 𝑐𝑛+𝛿𝑘

= 𝑛𝑇 + 𝑐𝛿𝑘
, we get Φ𝑘(𝑡𝑛,𝑙) =

∫ 𝜏𝑔(𝑡𝑙 − 𝑐𝛿𝑘
− 𝜏)𝑑𝜏

0.5𝑇

−0.5𝑇
 and  

Φ𝑛+𝛿𝑘
(𝑡𝑛,𝑙) = Φ𝛿𝑘

(𝑡𝑙) (49) 

Similarly, Ψ𝑛+𝛿𝑘
(𝑡𝑛,𝑙) = ∫ 𝑔(𝑡𝑛,𝑙 − 𝑐𝑛+𝛿𝑘

− 𝜏)𝑑𝜏
0.5𝑇

−0.5𝑇
=

∫ 𝑔(𝑡𝑙 − 𝑐𝛿𝑘
− 𝜏)𝑑𝜏

0.5𝑇

−0.5𝑇
 and  

Ψ𝑛+𝛿𝑘
(𝑡𝑛,𝑙) = Ψ𝛿𝑘

(𝑡𝑙) (50) 

By substituting (49) and (50) in (48) we get   

𝐼𝑘(𝑡𝑛,𝑙) = 𝑎𝑘Φ𝛿𝑘
(𝑡𝑙) + 𝑏𝑘Ψ𝛿𝑘

(𝑡𝑙)

+ 𝑇𝑣𝑁𝐿(�̂�𝑘)𝑔(𝑡𝑛,𝑙 − �̂�𝑘) 
(51) 

Recalling �̂�𝑘 = 𝑐𝑘 + �̂�𝑘 we get from (10) and (11) 𝑣𝑁𝐿(�̂�𝑘) =
𝑣(�̂�𝑘) − 𝑣𝐿𝐼𝑁(�̂�𝑘) = �̂�𝑘 − 𝑎𝑘(�̂�𝑘 − 𝑐𝑘) − 𝑏𝑘 = �̂�𝑘 − 𝑎𝑘�̂�𝑘 −

𝑏𝑘 , and 𝑔(𝑡𝑛,𝑙 − �̂�𝑘) = 𝑔(𝑛𝑇 + 𝑡𝑙 − 𝑐𝑘 − �̂�𝑘) = 𝑔(𝑛𝑇 +

𝑡𝑙 − 𝑐𝑛+𝛿𝑘
− �̂�𝑘) = 𝑔(𝑛𝑇 + 𝑡𝑙 − 𝑛𝑇 − 𝑐𝛿𝑘

− �̂�𝑘) = 𝑔(𝑡𝑙 −

𝑐𝛿𝑘
− �̂�𝑘) . We use these expressions to expand (51): 

𝐼𝑘(𝑡𝑛,𝑙) = 𝑎𝑘Φ𝛿𝑘
(𝑡𝑙) + 𝑏𝑘Ψ𝛿𝑘

(𝑡𝑙) + 𝑇(�̂�𝑘 − 𝑎𝑘�̂�𝑘 −

𝑏𝑘)𝑔(𝑡𝑙 − 𝑐𝛿𝑘
− �̂�𝑘) =

𝑣𝑘+1−𝑣𝑘

𝑇
Φ𝛿𝑘

(𝑡𝑙) +
𝑣𝑘+1+𝑣𝑘

2
Ψ𝛿𝑘

(𝑡𝑙) +

𝑇 (�̂�𝑘 −
𝑣𝑘+1−𝑣𝑘

𝑇
�̂�𝑘 −

𝑣𝑘+1+𝑣𝑘

2
) 𝑔(𝑡𝑙 − 𝑐𝛿𝑘

− �̂�𝑘) =

𝑣𝑘+1 [
Φ𝛿𝑘

(𝑡𝑙)

𝑇
+

Ψ𝛿𝑘
(𝑡𝑙)

2
− (�̂�𝑘 + 0.5𝑇)𝑔(𝑡𝑙 − 𝑐𝛿𝑘

− �̂�𝑘)] +

𝑣𝑘 [−
Φ𝛿𝑘

(𝑡𝑙)

𝑇
+

Ψ𝛿𝑘
(𝑡𝑙)

2
+ (�̂�𝑘 − 0.5𝑇)𝑔(𝑡𝑙 − 𝑐𝛿𝑘

− �̂�𝑘)] +

𝑇�̂�𝑘𝑔(𝑡𝑙 − 𝑐𝛿𝑘
− �̂�𝑘). Therefore,  

�̂�(𝑡𝑛,𝑙)  = ∑ (𝛼𝑛,𝑘,𝑙 − �̂�𝑛,𝑘,𝑙)𝑣𝑘+1

𝑛+𝑘𝑓(𝑡𝑙)−1

𝑘=𝑛+𝑘𝑏(𝑡𝑙)

+ (𝛽𝑛,𝑘,𝑙 + �̂�𝑛,𝑘,𝑙)𝑣𝑘 + 𝛾𝑛,𝑘,𝑙�̂�𝑘 

(52) 

where  

𝛼𝑛,𝑘,𝑙 =
Φ𝛿𝑘

(𝑡𝑙)

𝑇
+

Ψ𝛿𝑘
(𝑡𝑙)

2
 (53) 

�̂�𝑛,𝑘,𝑙 = (�̂�𝑘 + 0.5𝑇)𝑔𝑘 (54) 

 𝛽𝑛,𝑘,𝑙 = −
Φ𝛿𝑘

(𝑡𝑙)

𝑇
+

Ψ𝛿𝑘
(𝑡𝑙)

2
 (55) 

�̂�𝑛,𝑘,𝑙 = (�̂�𝑘 − 0.5𝑇)�̂�𝑘 (56) 

 𝛾𝑛,𝑘,𝑙 = 𝑇�̂�𝑘 (57) 

�̂�𝑘 =  𝑔(𝑡𝑙 − 𝑐𝛿𝑘
− �̂�𝑘) 

and 𝛿𝑘 is a shortcut notation for 𝛿𝑘 = 𝑘 − 𝑛. 
(58) 

Based on these calculations we propose an algorithm for 

calculating the output �̂�(𝑡𝑛,𝑙)  for any integer 𝑛  and 𝑙 =
1, … , 𝐿. The algorithm consists of two parts. The first one is 
preparatory and can be executed before the system realization 
is put in work to produce the output. The second part is 
executed in real time, every time when a new stratum-load of 
input signal samples is available.  

 

Algorithm – Part 1 executed off-line 

Step 1. For every 𝑙 = 1, … , 𝐿 

Step 2. Use (5) and (6) to calculate 𝑘𝑏(𝑡𝑙) and 𝑘𝑓(𝑡𝑙) 

Step 3. For every 𝛿𝑘 = 𝑘𝑏(𝑡𝑙), … , 𝑘𝑓(𝑡𝑙) − 1 

Step 4. Use (20) to calculate  

Φ𝛿𝑘
(𝑡𝑙) = ∫ 𝜏𝑔(𝑡𝑙 − 𝑐𝛿𝑘

− 𝜏)𝑑𝜏
0.5𝑇

−0.5𝑇
  

Step 5. Use (21) to calculate  

 Ψ𝛿𝑘
(𝑡𝑙) = ∫ 𝑔(𝑡𝑙 − 𝑐𝛿𝑘

− 𝜏)𝑑𝜏
0.5𝑇

−0.5𝑇
 

Step 6. Use (53) to calculate 𝛼𝛿𝑘,𝑙 

Step 7. Use (55) to calculate 𝛽𝛿𝑘,𝑙 

 

Algorithm – Part 2 executed in real time 

Step 1. For every 𝑙 = 1, … , 𝐿 

Step 2. For every 𝛿𝑘 = −𝑘𝑏(𝑡𝑙), … , −𝑘𝑓(𝑡𝑙) + 1 

Step 3. Calculate 𝑔𝑙,𝑘 = 𝑔(𝑡𝑙 − (𝑘 − 𝑛 + 0.5)𝑇 − �̂�𝑘) 

Step 4. Use (54) to calculate �̂�𝑛,𝑘,𝑙 

Step 5. Use (56) to calculate �̂�𝑛,𝑘,𝑙 

Step 6. Use (57) to calculate 𝛾𝑛,𝑘,𝑙 

Step 7. Calculate 𝐼𝑘(𝑡𝑛,𝑙) = (𝛼𝑘−𝑛,𝑙 − �̂�𝑛,𝑘,𝑙)𝑣𝑘+1 +

(𝛽𝑘−𝑛,𝑙 − �̂�𝑛,𝑘,𝑙)𝑣𝑘 + 𝛾𝑛,𝑘,𝑙�̂�𝑘 

Step 8. Calculate  �̂�(𝑡𝑛,𝑙) = ∑ 𝐼𝑘(𝑡𝑛,𝑙)
𝑛+𝑘𝑓(𝑡𝑙)−1

𝑘=𝑛+𝑘𝑏(𝑡𝑙)
 

 

V. NUMERICAL EXAMPLES 

In the examples shown in this section, we numerically 
explore the properties of the DASP system implementation 
proposed in this paper. In our experiments we implement a 
system whose impulse response is a delayed and truncated 
sinc function: 𝑔(𝜏) = sinc(𝜏 − 4) 1[1,7] and the input signal 

is 𝑣(𝜏) = 5 exp (−
𝑡2

4
) + 0.4 cos(6𝜋𝑡).  

In the first example we implement the system twice. In the 
first attempt the stratum length is 𝑇 = 0.5, and in the second 
𝑇 = 0.2. Fig. 1 shows the output signal of the system. Owing 
to the use of random sampling, the results of experiments with 



the same implementation of the system differ from case to 
case. Therefore, each implementation is tested ten times and 
all ten recorded outputs are shown. Also, the target response 
of the system, calculated from (1), is superimposed on the 
plots in this figure to illustrate the size of the error.   

 

(a) 

 
(b) 

 
Fig. 1. The response of the system. The target response (thick continuous 

line) and ten responses of DASP system realization (thin broken lines) for 

(a) 𝑇 = 0.5 and (b) 𝑇 = 0.2 

 
The results show that DASP implementation provides a 

good approximation of the system output in the observed 
interval and that reducing the length of stratum clearly 
improves the quality of the results. 

In the second experiment we focus our attention on the 
output signal at 𝑡 = 4, and change the length of the stratum 
from 𝑇 = 1  down to 𝑇 = 10−2.5 ≈ 0.00316 . Fifty stratum 
lengths distributed logarithmically are tested. For each length 
we run 1000 experiments and use these to estimate the 
variance of the output generated by the DASP system 
realization. Note that in the previous sections we only derived 
the asymptotic variance of the estimator. Therefore, it is 
interesting to see the actual shape of the curve representing the 

relation between 𝑇 and 𝜎�̂�(4)
2 . This is shown in Fig. 2. The 

results confirm the property of DASP that the increase or 
decrease of density of the processed-signal samples results in 
gradual improvement or deterioration of the results. This is 
different from non-alias free approaches, where occurrence of 
aliasing can rapidly destroy the quality signal processing. We 
also note that the slope of curve in Fig. 2 for shorter strata 
confirms our earlier prediction that the rate by which the 
variance goes down to zero is 𝑂(𝑇−5). 

 

 
Fig 2. The size of the variance of �̂�(4) as function of 𝑇 

VI. SUMMARY AND CONCLUSIONS 

In this paper we proposed a method for DASP realisation 
of continuous-time, linear, time-invariant systems with finite 
impulse response. In this case we used an equal-length-strata 
version of the hybrid stratified sampling and developed signal 
processing algorithm to produce an unbiased estimator of the 
system output. We showed the conditions, under which the 
proposed realisation is causal. We also showed two rates of 
convergence of the estimate depending on the smoothness of 
the input signal and the impulse response of the system. While 
we did not explore any practical constraints on the alias-free 
features of the proposed approach, we are aware of some of 
them. The DASP works in its full capacity if the random time 
instants can take any value within the given range. Of course, 
many practical solutions will replace this with selecting 
random sampling instants from a dense uniform grid. This 
simplification will immediately impose an upper bound on the 
spectral support of the processed signal 𝑣(∙), although it does 
not limit the spectral support of 𝑔(∙). Second, similarly to 
what was reported in [19] any jitter in timing of sampling 
instants also imposes the limit on the bandwidth within which 
the DASP results are accurate.  

There are still questions that need to be answered. For 
example, for a specific scenario, how to best choose the length 
of the stratum? The analyses in this paper give plenty of clues 
but do not provide a simple answer. Next, how to incorporate 
some knowledge about the signal? e.g. some knowledge of 
spectral occupancy of the processed signal. While classical 
DSP relies on accurate knowledge of the bandwidth(s) of the 
signal, DASP is almost completely indifferent to this 
information. Each approach can claim some benefits from 
making its assumptions but also suffers in terms of quality of 
the results or what it can deliver. In reality we deal with 
scenarios that are somewhere in between both extremes. The 
knowledge of processed signals has often “fuzzy logic” form. 
This partial knowledge should be incorporable into signal 
processing algorithms to remove strict restrictions imposed by 
the Nyquist and Landau rates while further improving the 
quality of results obtainable from DASP. 

REFERENCES 

[1] H. J. Landau, “Sampling, Data Transmission, and the Nyquist Rate,” 
Proceedings of the IEEE, vol. 55, pp. 1701–1706, October 1967 

[2] R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass 
sampling,” IEEE Transactions on Signal Processing, vol. 39, pp. 1973 
–1984, September 1991. 

[3] R. Venkataramani, and Y. Bresler, “Optimal sub-Nyquist nonuniform 
sampling and reconstruction for multiband signals,” IEEE Transactions 
on Signal Processing, vol. 49, pp. 2301–2313, October 2001. 



[4] S. C. Scoular, and W. J. Fitzgerald, “Periodic nonuniform sampling of 
multiband signals,” Signal Processing, vol. 28, pp. 195–200, August 
1992. 

[5] P. Feng, and Y. Bresler, “Spectrum-blind minimum-rate sampling and 
reconstruction of multiband signals,” IEEE International Conference 
on Acoustics, Speech, and Signal Processing, pp. 1688–1691, May 
1996. 

[6] D. D. Ariananda, G. Leus, and Z. Tian, "Multi-coset sampling for 
power spectrum blind sensing," 17th International Conference on 
Digital Signal Processing (DSP), pp. 1–8,  July 2011. 

[7] M. E. Domínguez-Jiménez, N. González-Prelcic, G. Vazquez-Vilar, 
and R. López-Valcarce, “Design of universal multicoset sampling 
patterns for compressed sensing of multiband sparse signals,” IEEE 
International Conference on Acoustics Speech and Signal Processing,  
pp. 3337-3340, March 2012. 

[8] M. Fleyer, A. Linden, M. Horowitz, and A. Rosenthal, “Multirate 
Synchronous Sampling of Sparse Multiband Signals,” IEEE 
Transactions on Signal Processing, vol. 58, pp. 1144 – 1156, March 
2010. 

[9] M. E. Domínguez-Jitnénez, and N. González-Prelcic, “Analysis and 
design of multirate synchronous sampling schemes for sparse 
multiband signals,”, 20th European Signal Processing Conference, pp. 
1184–1188, August 2012. 

[10] E. J. Candes, and M. B. Wakin, “An Introduction To Compressive 
Sampling,” IEEE Signal Processing Magazine, vol. 25, pp. 21–30, 
March 2008. 

[11] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-Based 
Compressive Sensing,” IEEE Transactions on Information Theory, vol. 
56, pp. 1982-2001, April 2010. 

[12] M. Mishali, and Y. C. Eldar, “From Theory to Practice: Sub-Nyquist 
Sampling of Sparse Wideband Analog Signals,” IEEE Journal of 
Selected Topics in Signal Processing, vol. 4, pp. 375-391, April 2010. 

[13] I. Bilinskis and A. K. Mikelson, Randomized Signal Processing. 
Prentice-Hall, Englewood Cliffs, NJ 1992 

[14] I. Bilinskis, Digital Alias-free Signal Processing. John Wiley & Sons, 
Hoboken, NJ 2006. 

[15] H. S. Shapiro, and R. A. Silverman, “Alias-Free Sampling of Random 
Noise,” Journal of the Society for Industrial and Applied Mathematics, 
vol. 8, pp. 225–248, June 1960. 

[16] E. Masry, “Random sampling and reconstruction of spectra,” 
Information and Control, vol. 19, pp 275–288, November 1970. 

[17] F. Beutler, “Alias-free randomly timed sampling of stochastic 
processes,” IEEE Transactions on Information Theory, vol. 16, pp. 
147–152, March 1970. 

[18] E. Masry, “Alias-free sampling: An alternative conceptualization and 
its applications,” IEEE Transactions on Information Theory, vol. 24, 
pp. 317–324, May 1978. 

[19] A. Tarczynski and N. Allay, “Spectral analysis of randomly sampled 
signals: suppression of aliasing and sampler jitter”, IEEE Trans. Signal 
Processing, vol. 52, no. 12, pp. 3324-3334, December 2004. 

[20] E. Masry, “Random sampling of deterministic signals: statistical 
analysis of Fourier transforms estimates”, IEEE Trans. Signal 
Processing, vol. 54, pp. 1750-1761, 2006. 

[21] E. Masry and A. Vadrevu, "Random sampling estimates of Fourier 
transforms: antithetical stratified Monte Carlo”, IEEE Trans. Signal 
Processing, vol. 57, pp. 149-204, 2009. 

[22] A. Tarczynski and B. I. Ahmad, “Estimation of Fourier Transform 
Using Alias-Free Hybrid-Stratified Sampling”, IEEE Trans. Signal 
Processing, vol. 64, pp. 3065 - 3076, 2016. 

[23] M. Al-Ani, A. Tarczynski and B. I. Ahmad “High-order hybrid 
stratified sampling: fast uniform-convergence Fourier transform 
estimation”, 52nd Asilomar Conf. Signals, Systems, and Computers, 
2018. 

[24] K. Kazimierczuk, A. Zawadzka, W. Koźmiński and I. Zhukov, 
“Random sampling of evolution time space and Fourier transform 
processing”, Journal of Biomolecular NMR, vol. 36, pp. 147-168, 
2006. 

[25] H. Semlali, N. Boumaaz, A. Soulmani, A. Ghammaz, and J-F. Diouris,   
“Energy Detection Approach for Spectrum Sensing in Cognitive Radio 
Systems with the Use of Random Sampling,” Wireless Personal 
Communications, vol. 79, pp. 1053–1061, July 2014. 

[26] B. I. Ahmad, and A. Tarczynski, “Wideband spectrum sensing 
technique based on random sampling on grid: Achieving lower 
sampling rates,” Digital Signal Processing, vol. 21, pp. 466–476, May 
2011. 

[27] B. I. Ahmad and A. Tarczynski, “Spectral analysis of stratified 
sampling: a means to perform efficient multiband spectrum sensing”, 
IEEE Trans. Wireless Communications, vol. 11, pp. 178 – 187, 2012. 

[28] M. S. Khan, R. M. Goodall, and R. Dixon, “Design and analysis of non-
uniform rate digital controllers,” UKACC International Conference on 
Control 2010, Coventry, 2010, pp. 1-6. 

[29] H. Darawsheh, and A. Tarczynski, “FIR Filtering of Discontinuous 
Signals: A Random-Stratified Sampling Approach,” IEEE Int. 
Conference on Acoustics, Speech, and Signal Processing, May 2020. 

 

 


