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NOSTROMO  
NEXT-GENERATION OPEN-SOURCE TOOLS FOR ATM PERFORMANCE 
MODELLING AND OPTIMISATION 

 

This deliverable is part of a project that has received funding from the SESAR Joint Undertaking under 
grant agreement No 892517 under European Union’s Horizon 2020 research and innovation 
programme. 

 

 

Abstract 

This deliverable presents the results obtained with the meta-modelling process presented in D3.1 and 
D3.2 applied to the two micromodels (or simulators), Mercury and FLITAN, themselves implementing 
concepts from four SESAR solutions, PJ01.01, PJ07.02, PJ08-01, and PJ02.08.  

The objective of the meta-modelling process is explained briefly again in the introduction, in particular 
with respect to performance assessment. The rationale for the selection of the SESAR solutions 
implemented in the simulators are briefly explained too. 

The simulators are presented in two distinct chapters. First, a general presentation of each simulator 
is given, with past challenges and development, before explaining the development steps carried out 
to implement the concepts from the chosen solutions. Domain research questions that could be 
answered by these implementations are highlighted along the way.  

The meta-modelling process is then briefly explained again, followed by the results obtained with the 
two simulators, in distinct sections. The results highlight the performance of the meta-model with 
respect to approximating the output of the micromodels, but not the performance of the models 
themselves with respect to the research questions, which will be explored in WP7 instead. 

The deliverable closes with some considerations on the meta-modelling performance and next steps 
for this line of work.  
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1 Introduction 

From a key performance assessment point of view, modelling can be a very strong tool to forecast the 
efficiency or the potential downfalls of new processes in the air transportation system before they are 
deployed. Models are sometimes very specialised by nature, able to precisely estimate important KPIs 
tackled by these new processes. However, KPIs are typically highly interdependent, due to the 
complexity of the air transportation system and its actors. Including more systems and actors in 
existing models becomes quickly prohibitive from the computational point of view and thus prevents 
from having a systemic assessment of these new processes.   

Active learning is a possible solution to this issue. By allowing a machine learning model (the 
metamodel) to learn functional relationships between input and output of a low-level model (the 
micromodel)1, one can hope to generate predictions with a much higher speed while retaining a 
satisfactory forecast accuracy. In NOSTROMO we explore this possibility of metamodelling by 
considering two micro-simulators that can answer hypothetical research questions linked to existing 
SESAR solutions. This deliverable presents the results of this metamodelling process applied to the 
modelling of different solutions by the simulators Flitan and Mercury. 

Indeed, we assume in this deliverable that some research questions linked to solutions PJ01.01, 
PJ07.02, PJ08-01, and PJ02.08 have been raised, as explained in D4.1 [1] (and further explained in this 
deliverable). Hypothetically, these research questions could be answered by the micromodels, Flitan 
and Mercury. We are interested in this deliverable in how well these questions would be answered by 
the metamodelling process in terms of quality and speed of computation. Hence, the main objective 
of this deliverable is to assess the metamodelling process from a technical point of view. The analysis 
of results of the micromodels themselves, from ATM domain-knowledge point of view, will be 
examined in WP7 deliverables. 

The metamodelling process, as explained in D3.2 [2], relies on querying a micromodel with specific 
input (in a “smart” way) and getting the output of this micromodel in order to approximate it. In 
NOSTROMO, we used Flitan and Mercury as test cases for the metamodelling process. Both simulators 
have different strengths when it comes to modelling. As a result, NOSTROMO has selected a small 
number of SESAR solutions (PJ01.01 and PJ07.02 for Mercury, PJ08-01, and PJ02.08 for Flitan) for which 
research questions could in principle be answered by the two simulators (see D4.1 for other criteria of 
selection on the solutions).  

Flitan is particularly well suited to research questions related to airspace or runway configuration. As 
a result, concepts from solutions PJ08-01 “Management of Dynamic Airspace Configurations” and 
PJ02.08 “Traffic Optimisation of Single and Multiple Runway Airports” can be modelled by the 
simulator. Section 2.1 explains in detail the past and current development of Flitan in relation to these 
two solutions. It includes a detailed explanation of the concepts taken from these. 

 

 

 

1 Note that in this deliverable we will use “micromodel” and “simulator” quite interchangeably. 

https://www.sesarju.eu/


D5.1 ATM PERFORMANCE METAMODELS - PRELIMINARY RELEASE  

   
 

Page I 8 
 

  
 

 

Mercury has been developed with a strong emphasis on airline cost models and passenger tracking. It 
is thus more suited to modelling concepts from solutions PJ07.02 – AU Fleet Prioritisation and 
Preferences (UDPP) and PJ01.01 – Extended arrival management with overlapping AMAN operations 
and interaction with DCB and CTA. Section 2.2 presents the concepts inspired by these solutions that 
were implemented and tested in Mercury. It shows the potential value of these concepts and explains 
the kind of research questions that can be answered with the new Mercury development. 

The metamodelling process, at the heart of NOSTROMO and this deliverable, has been explained 
previously in deliverables from WP3. In section 3, we explain again briefly the main concepts behind 
it. 

Section 4 presents the results obtained with this process. The results are organised per simulator and 
then per solution. A section for Flitan is present at the beginning to explain the extra steps that were 
needed in order to train the metamodel – mainly encoding the input in a way usable by the training 
procedure. The main focus of the results is on the quality of the metamodelling compared with the 
bare output of the simulators. Note that for reasons explained in sections 3.1 and 4.1, the results of 
solution PJ02.08 could not be produced. These results will instead be included in deliverable D5.2. 

Finally, section 5 draws some conclusions on the simulator development and the metamodelling 
process and highlights the next steps. 

1.1 Acronyms 

Table 1: List of Acronyms 

Acronyms Definition 

3D three dimensional 

ACC area control centre 

AMAN arrival manager 

ANSP air navigation service provider 

AOC airline operating centre 

ATC air traffic control 

ATCO air traffic controller 

ATFM air traffic flow management 

ATS air traffic services 

CASA Computer Assisted Slot Allocation 

CDM collaborative decision making 

CODA Central Office for Delay Analysis 

CTA calculated time of arrival 

CTO computed time over 

DAC dynamic airspace configuration 
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Acronyms Definition 

DCB demand capacity balancing 

DDR2 demand data repository (version 2) 

DMAN departure manager 

EAMAN Extended Arrival Manager 

ETO estimated time over 

EU European Union 

FDR Flight Departure Reordering 

FP7 Framework Programme 7 

FPFS first planned first served 

GP Gaussian process 

IATA International Air Transport Association 

ICAO International Civil Aviation Organisation 

IFPS Integrated Initial Flight Plan Processing System 

ISTOP   

KPI key performance indicator 

NN neural network 

RECAT wake turbulence re-categorisation 

SESAR single European sky ATM research 

SFP Selective Flight Protection 

TOD Time of Descent 

TMA terminal manoeuvring area 

UDPP user driven prioritisation process 

WP work package 
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2 Micromodelling process 

2.1 Flitan core concept  

This document provides relevant information to understand Flitan core concept as well as the various 
software enhancement carried out to support various European projects. 

Flitan executes as a standalone server where scenarios can be loaded, processed and evaluated in a 
consistent and repeatable manner.  

2.1.1 Background 

2.1.1.1 TITAN project 

Flitan was initially developed to support the turnaround analysis for an EU FP7 project called TITAN 
that involved several major European partners. The original name of Flitan was indeed TITAN. It was 
developed to investigate future operational concepts relating to aircraft turnaround. In simple terms, 
the turnaround process involves a set of activities that apply to aircraft in the time period between 
arriving at any given airport and leaving for a subsequent operation. However, instead of considering 
turnaround as a black-box process represented by a sequence of operations that are required from 
the time that an aircraft is stationary at the airport with the wheel chocks in place, to the time that the 
chocks are removed and the aircraft is cleared to leave by ATC, the TITAN model provides a flexible 
and detailed capability that is able to capture and simulate turnaround processes that are made up of 
a complex set of often interdependent processes. 

2.1.1.2 Flite project 

Subsequently, TITAN was adapted to support the SESAR WP-E Flite project with the aim to investigate 
FlightPath 2050 4-hrs door-to-door target. Given the fundamental changes introduced into TITAN core 
concepts in order to support Flite project, the tool was renamed Flitan. 

To realistically evaluate the ability of European ATM system to handle the different traffic growths for 
the year 2050 based on EUROCONTROL Challenges of growth, ISA extended the scope of TITAN to 
include the airborne segment of the ATM network. As part of the software development, Flitan 
included the following features: 

• Modelling of the ATM network as a connected system of nodes where each node is 
characterised by its occupancy time function and capacity 

• Modelling of flight time distribution in the TMA and the En-route in order to predict both the 
estimated time over and transition time at each node. 

• Use of statistical data to derive mean and variance of time distribution in the en-route. 

• Use of statistical data to derive mean and variance of time distribution in the TMA. 

• Feed these results back to the network-level input file system. 

ISA also developed time distribution functions for more than 250 aircraft models for various ATM 
nodes using a variety of fast-time simulation exercises, analytical tools and available data. 
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2.1.1.3 NOSTROMO project 

In support of NOSTROMO project, Flitan is being again enhanced to support the simulation analysis of 
two SESAR solutions namely; 

• PJ.08-01 - Management of dynamic airspace configurations, 

• PJ.02-08 - Traffic optimisation on single and multiple runway airports. 

In the framework of the NOSTROMO project, many enhancements have been introduced into Flitan: 

• The ability to use ALL-FT+ as the primary traffic data information, 

• The ability to read airspace information using the Demand Data Repository (DDR2), 

• The ability to model both airspace and runway configurations, 

• The ability to activate both airspace and runway configurations according to planned schedule, 

• The ability to compute the 4D flight sector crossings, 

• The ability to model dependent runways operations, 

• The ability to balance demand and capacity, 

• The ability to generate various metrics in support of post simulation analysis for both SESAR 
solutions. 

The ultimate goal of Flitan in support of NOSTROMO project is to assess a large set of combinations of 
both airspace and runway configurations in order to train the metamodel to select the best 
configurations for a given traffic demand. 

2.1.2 Flitan simulation engine 

Basically, Flitan abstracts the ATM system as a network of nodes and connectors where flights travel 
safely and efficiently. At the highest level of abstraction, each node represents an ATM entity be it an 
airport, sector, etc.  A node is primarily characterised by its occupancy time distribution function which 
defines the nominal time for the process it represents to be accomplished (e.g. the mean time to use 
a node) and the possible variance in that time.  A Flitan connector is responsible for routing flights 
between adjacent nodes. 

A flight starts its journey at an origin node (e.g. departure airport) and passes through a series of nodes 
and connectors until it reaches the final node (e.g. arrival airport). At each node, its time distribution 
function is sampled to determine the time needed for the flight to use the node. The time distribution 
is defined for a city pair and a specific aircraft model. For example, all the flights with the same aircraft 
model travelling between the same city pair will share the same distribution functions.  

Since the implementation of SESAR solution PJ08-01, Flitan uses a full 4D trajectory flight model. 
Consequently, the time distribution function of a sector is precisely computed from the flight’s sector 
crossings profile. So, the time a flight will need to use a sector is the difference between the sector exit 
time and the sector entry time. 
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The underlying Flitan simulation engine is based on a generic Business Process Modelling (BPM) 
capability and is seeded using a set of flight trajectories, airport and airspace data. Once active, each 
flight progresses through the network from node to the next node via connectors until it reaches its 
final destination. 

The simulation engine is designed using a discrete event simulation engine- a type of simulation engine 
where events within the simulation are scheduled to occur at particular time in the future and each 
event is tied to a piece of code to be executed once that time arrives. It is comprised of a clock, an 
event list and the event scheduling and dispatch system. 

The scheduling-dispatch system acts upon the head of the event list which is always equal to the 
current time. Each piece of code that is tied to the event being processed is able to create new events 
on the schedule either at the current time, or at some time in the future. Once all events at the current 
time are exhausted the clock steps to the next discrete point in time (the next position in the list) and 
events that are scheduled at this new time in the simulation are executed. A simulation continues to 
run until there are no events left in the system to dispatch, at which point the simulation is considered 
to be complete. 

An in-depth discussion of the software enhancement to Flitan simulation engine can be found in the 
sections describing Flitan implementation of SESAR solutions PJ08-01 and PJ02-08. 

2.1.2.1 Data 

Flitan uses a properties data file to provide key simulation and functionality settings that together 
define a particular scenario. The keys are predefined and their values allow Flitan to access the file 
containing the information in order to build the data model that correctly maps to the key. For 
example, the line in the following figure instructs Flitan to construct the flight object model using the 
provided file. 

 

Figure 1. Instruction line in Flitan. 

The value part mostly points to a file, however, there are situations where the value points to ISO date 
as in the case of the start and end Flitan keys. The table below provides a list of keys used by Flitan. 

Table 2. List of keys used by Flitan. 

Key Description 

airports This key provides the list of airports to be simulated in Flitan 

flights This key provides the list of flights to be simulated in Flitan. Flitan 
reads ALL-FT+ format version 5 
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Key Description 

airspaceDelayLookup The airspaceDelayLookup key points to a file containing information 
related to the time distribution in the en-route airspace. Since the 
implementation of SESAR solution PJ08-01, Flitan derives this 
information directly from the flights 4D trajectory data. Therefore, 
this key will be phased out in the coming Flitan version. 

arrivalTimeDelayLookup This key points to a file that provides a list of arrival TMA transit 
time distributions based on departure airport, arrival airport and 
aircraft model 

departureTimeDelayLookup This key points to a file that provides a list of departure TMA transit 
time distributions based on departure airport, arrival airport and 
aircraft model  

log This key points to an output file to be used to store various Flitan 
logging information. The file is mainly used for debugging 
information which is mainly useful for developers when looking for 
issues that may require fixing. 

model The key model should always be equal to v2Model to instruct Flitan 
to use enhancement introduced to support NOSTROMO project 

runwayOccupancyLookup This key provides a list of runway occupancy time distributions 
based on departure airport, arrival airport and aircraft model 

runwayDependencyLookup This key points to a file that provides a list of runway pairs with 
dependent operations. The pair of runways have to coordinate their 
operations. This is a new key introduced to support SESAR solution 
PJ02-08 

runwayConfiguration This key points to a file that provides a list of runway configurations 
and their global capacity. This is a new key introduced to support 
SESAR solution PJ02-08 

runwayConfigurationCapacity This key points to a file that provides the runway configuration time-
based capacity. This is a new key introduced to support SESAR 
solution PJ02-08 

runwayOpeningScheme This key points to a file that provides a list of runway 
configuration activation plan. This is a new key introduced to 
support SESAR solution PJ02-08 

start This key provides the simulation start time. For example, 
start=2019-06-22T00:00:00 

end This key provides the simulation end time. For example, 
end=2019-06-22T23:59:59 

taxiTimeLookup This key points to a file that provides a list of taxi time 
occupancy time distributions based on departure airport, 
arrival airport and aircraft model 
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Given that the DDR2 has a large set of files, describing them in the properties data file using keys will 
be cumbersome. Therefore, Flitan looks for a directory under the scenario directory called ‘rnest’ to 
read all the DDR2 data files. Flitan uses DDR2 file extensions to determine which file will be used to 
build a specific object model. For example, a file with the .cos extension will be used to build the 
airspace configuration opening scheme object model, while a file with .spc will be used to build the 
airspace object model. 

For a description of the list of DDR2 file extensions used by Flitan , please refer to the section dealing 
with Flitan implementation of SESAR solution PJ08-01. 

For a description of the output files, please refer to the sections describing Flitan implementation of 
SESAR solutions PJ08-01 and PJ02-08. 

2.1.2.2 Running Flitan 

Flitan executes as a standalone server where scenarios can be loaded, processed and evaluated in a 
consistent and repeatable manner. The scenario is defined using a properties data file. 

Flitan accepts only a single argument which is the scenario properties data file. Here is how to run 
Flitan to execute a scenario which its properties data file is called integration-scenario.properties: 

java -jar flitan-1.0-RELEASE.jar integration-scenario.properties 

 

Figure 2. Flitan execution window. 

When Flitan starts execution, it logs a variety of messages to allow users monitor its progress as well 
as to track error messages. Flitan may raise an exception that completely stops its execution if the 
error is considered fatal to the completion of the simulation. Flitan is very robust, and it is therefore 
very unlikely to encounter a crash if the scenario is well set up and all the files are correctly prepared. 
We run thousand of simulation iterations with Flitan in a row without experiencing a single crash. 

2.1.3 Dynamic airspace configuration 

This section provides the Flitan implementation of the SESAR Solution PJ-08.01 “Dynamic Airspace 
Configurations”. The main aim of this solution is to allow Air Navigation Service Providers (ANSP) to 
organise, plan and manage airspace configuration in a flexible manner that increases capacity and 
reduces delays without impacting traffic trajectories.  

SESAR solution PJ08-01 is articulated around four key concepts: 

1. Dynamically designed sectors tailored to specific flow patterns, 

2. Dynamic sector configurations adapted to respond flexibly to available air traffic controller 
(ATCO) resources, changes to traffic demand, and performance objectives, 
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3. Dynamic mobile areas which are temporary reserved volumes of airspace designed to 
segregate the military activities from the civil air traffic, 

4. Fully integrated CDM process between civil and military actors enabled by automated support 
tools.   

The scope of the PJ08-01 implementation in Flitan is essentially focused on the second key concept 
“Dynamic sector configurations” and their assessment. Dynamic sector design and sector capacities 
computation are not part of the Flitan implementation of PJ.08-01. 

In implementing SESAR solution PJ.08-1, Flitan targets two specific objectives: 

1. Introduce airspace configurations functions into the Flitan simulation engine, 

2. Train the metamodel through the assessment of a large set of possible combinations of 
sectors.  

The ultimate goal is that for a given traffic demand the metamodel will be able to select and provide a 
ranking of suitable sector configurations for a given traffic demand. 

2.1.3.1 Fundamental Concepts 

2.1.3.1.1 Elementary Sector  

An elementary sector is 3D airspace designed as a unit volume of air traffic control, it cannot be split 
further down. However, the combination of adjacent elementary sectors can form other controllable 
sectors. The design of elementary sectors is an important step in the dynamic airspace configuration 
process: 

• They are designed in both lateral and vertical dimensions to meet traffic flow and airspace 
complexity, 

• They are designed also to adapt to seasonal specificity (i.e, Morning/Evening, 
Weekday/Weekend, Summer/Winter, etc), 

• They are designed to balance the workload among controllers. 

2.1.3.1.2 Configured Sector  

A configured sector is 3D airspace volume designed for air navigation service (ANS) provision tasks. 
They are constructed by combining several adjacent elementary sectors. During the airspace 
configuration process, configured sectors have capacities and time spans.  

2.1.3.1.3 Airspace Sector Configuration 

Several possibilities of combining elementary sectors that cover the whole Air Traffic Control (ATC) 
Centre exist. Any of these possibilities is called an airspace configuration with the constraint that all 
the resulting configured sectors are formed of adjacent elementary sectors and that resulting sectors 
they cover the whole ATC Centre. 

Example: 

Consider the following example where a fictional ATC Centre is composed of four elementary sector, 
as depicted in the figure below.  
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Figure 3. Fictional ATC centre with four elementary sectors. 

The table below highlights the possible airspace sector configuration for this ATC Centre. In the table, 
the sign “+” denotes the combination of elementary sectors into configured sectors. For example, 
configuration CNF1 is composed of a single sector which is the result of combining elementary sectors 
A, B, C and D. 

Table 3. Possible configurations for fictional four-sector ATC centre. 

Sector Configuration ID Configured Sectors 

CNF1 A + B + C + D 

CNF2A A + B 

C + D 

CNF2B A + B + D 

C 

CNF2C A + D 

B + C 

CNF3A A 

B 

C + D 

CNF3B A + B 

C 

D 

CNF4 A 

B 

C 

D 
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2.1.3.1.4 Opening Scheme 

An opening scheme defines an orderly sequence of airspace configurations and their corresponding 
activation periods. An ATC Centre usually has several opening schemes that can be activated to meet 
specific objectives (i.e. ATC resources availability, seasonality and traffic demand). 

Example: From the above fictional ATC Centre, Table 4 and Figure 4 represent possible opening 
schemes. 

Table 4. Example of opening scheme.  

Sector Configuration ID Start of Activation Period End of Activation Period 

CNF1 00:00 03:29 

CNF2A 03:30 06:59 

CNF3B 07:00 13:59 

CNF2B 14:00 17:59 

CNF3A 18:00 21:59 

CNF2A 22:00 23:59 

 

 

Figure 4. Example of opening scheme. 

2.1.3.1.5 Demand Capacity Balancing (DCB) 

When traffic demand is higher then the available capacity, flights are delayed. The process of allocating 
new entry times to upcoming flights in order to respect declared capacity is called Demand Capacity 
Balancing (DCB). 

2.1.3.2 Solution Design and Implementation 

Flitan has been developed to support network assessment and executes as a standalone server in 
which scenarios are loaded, processed, and evaluated in order to provide analytical views of each of 
the involved network nodes.  
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2.1.3.2.1 Airspace Node 

2.1.3.2.1.1 Before PJ08-01 

One of the Flitan network node is the so-called Airspace Node which emulates the operations in the 
enroute airspace. Before Flitan implementation of solution PJ08-01, this node was used as a direct link 
between departure TMAs and arrival TMAs with enough capacity to handle any traffic demand.  

 

Figure 5. Flitan airspace node prior to PJ08-01 implementation. 

The Airspace Node uses a well-calibrated set of time distributions to determine the amount of time a 
specific flight will spend in the enroute airspace. Several fast-time simulations were performed in order 
to derive a database of time distributions for more than 250 different aircraft types based on departure 
and arrival airports. The time distributions can be expressed as: 

• a normal distribution has a mean and standard deviation values; when used, travel times of all 
flights with the specific aircraft type linking the specific city-pair are randomly selected based 
on the normal distribution values, 

• a fixed distribution has only one constant value; when used, all travel times of all flights with 
the specific aircraft type linking the city-pair are equal to this constant value. 

Prior to a flight’s entry to the airspace node, Flitan will pick up the time distribution associated with 
the candidate flight using as the search attributes the flight’s departure and arrival airports as well as 
its aircraft type. Once the time distribution is allocated, Flitan will use it as the flight’s travel time from 
departure terminal maneuvering area (TMA) until the arrival TMA. 

Table 5. Example of flight time draw from distributions. 

Time distributions (milliseconds) Description 

EBBR;LEBL; A320;distribution:normal  5887000 
180000 

The flights operated by A320 aircraft departing from 
EBBR and arriving to LEBL will use this random time 
distributions where the mean flight time is 5887 
seconds and standard deviation is 180 seconds.. 
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Time distributions (milliseconds) Description 

LIMC;EGLL;MD82;distribution:fixed  4778000 The enroute flight times of all MD82 aircraft departing 
from LIMC and arriving to EGLL are equal to 4778 
seconds. 

 

The travel time for any node in Flitan is based on suitable time distributions including;  

• taxi in and taxi out time,  

• runway occupancy time,  

• departure and TMA travel time,  

• enroute travel time.  

Since the time distributions were used to compute travel times, the original flight object model was 
also very basic and did not use 4D trajectory information to derive time information. Only the flight 
schedule information were used:  

• estimated departure time,  

• callsign,  

• departure airport,  

• departure runway,  

• arrival airport,  

• arrival runway,  

• aircraft model,  

• ICAO Wake Category,  

• RECAT Wake Category,  

• entry flight level,  

• cruise level, 

• exit level. 

Flitan is capable of simulating flight operations by simply using the flight schedule information and 
time distributions for each Flitan node as shown below: 

1. Flights are added to Flitan sequencer object in order based on their departure times, 

2. When a flight scheduled departure time is reached, Flitan performs the following tasks in time 
order as the flight progresses from the departure airport to arrival airport: 

a. Estimate the flight taxi out time, 
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b. Estimate the flight take-off time taking into account the runway departure queue, 

c. Block runway while in use, 

d. Estimate the departure TMA travel time, 

e. Estimate the enroute travel time, 

f. Estimate the arrival TMA travel time, 

g. Estimate the runway landing time, 

h. Block runway while in use, 

i. Estimate the taxi-in time. 

This was the original Flitan simulation engine set up that was successfully used to model complex 
studies such as FlightPath 2050. 

2.1.3.2.1.2 Modelling PJ08-01 

The original Flitan simulation engine set up was enough under some very specific simulation 
assumptions like FlightPath 2050 where enroute capacity was assumed to be large enough to handle 
at least 25 million flights a year. However, in order to model PJ08-01 SESAR solution, the original 
simulation engine is no longer sufficient as we need to model both airspace configurations and 4D 
flight trajectories as proper Flitan object models.  

Airspace Configuration 

PJ08-01 is centered on the concept of dynamic airspace configuration (DAC), which allows ANSPs to 
organise, plan and manage airspace configurations with enough flexibility to respond to changes in 
traffic demand. 

To be able to assess airspace configurations, there is a need for Flitan to model at least the following 
elements: 

• Elementary sector, 

• Configured sector, 

• Capacity, 

• Sector configuration, 

• Opening scheme. 

With all these new object models in place, it will be possible to assess many configurations with the 
ultimate goal to deploy the optimum one. 

4D flight trajectories 

One of the key elements in assessing sector configurations is the ability to provide an improved traffic 
prediction in order to allocate efficiently the resources that meet actual traffic demand. 
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The past Flitan flight object model which is based only on flight schedule information does not provide 
for a mechanism to accurately predict demand within a specific airspace volume. 

4D trajectories offer the opportunity to improve traffic demand prediction and therefore allocate 
adequately resources to meet traffic demand and ultimately optimise sector configurations. 

New model 

For this purpose, airspace node needs to be populated with elementary sectors (the building block of 
any airspace volume) and 4D flight trajectories (not just flight schedule information). 

 

Figure 6. Flitan Airspace node to accommodate PJ08-01. 

In this new airspace node model, flight enroute travel times are no longer dependent on calibrated 
and pre-defined time distributions. They are actually dependent on the exact times of flight trajectories 
crossing the elementary sectors.  

Once all flights have been loaded into memory, Flitan will then perform all sector crossing calculation 
for all flights and elementary sectors in the simulation. For a specific flight, Flitan determines the travel 
time within any elementary sector by computing the difference between elementary sector’s exit time 
and elementary sector’s entry time. Therefore, the travel time within the airspace node for a defined 
flight is the sum of the travel times of all crossed elementary sectors. 

Every sector configuration allows to deploy a different sectorisation by scheduled time, where existing 
sectors may be grouped or split into different sectors. The advantage of using elementary sectors as 
the basic volume unit of sector crossing calculation is that configured sectors (i.e. sector deployed by 
a specific sector configuration) entry and exit times can be determined by a simple process as explained 
here. During the simulation run, an elementary sector changes its owner as sector configurations are 
activated and/or deactivated. Every sector configuration is composed of configured sectors and each 
configured sector is composed of one or many elementary sectors. Therefore, at any time during the 
simulation run, we can determine the flight’s entry time to and exit time from a configured sector by 
requesting these times from the elementary sectors they own, sorted them by order and extract the 
first time as the entry time and the last one as the exit time. However, sector crossing calculation would 
have been very expensive if the calculation has to be performed at each sector configuration 
activation. 
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2.1.3.2.1.3 Flitan workflow  

Two sources of information are used in support of the dynamic airspace configuration (see Figure 7) 

• Airspace data in Demand Data Repository (DDR2) format,  

• Traffic data in ALL-FT+ format (version 5). 

 

Figure 7. Flitan workflow. 

2.1.3.2.1.4 Airspace data 

The Demand Data Repository (DDR2) is used as the primary source of airspace data to construct the 
Flitan DAC object model. Flitan processes many of DDR2 files (see the below table); however, there 
are two categories of DDR2 files are that of most important to Flitan DAC object model: 

• Airspace environment category (see Table 6) is composed of information that defines ATC 
centres, their corresponding elementary sectors, 

• Capacity category. 

Table 6. Airspace environment information. 

Key Description DDR2 File 
name 
extension 

Category 

AIRBLOCK Provides a 2D definition of the airblocks used 
in the scenario. 

.gar AIRSPACE 

AIRSPACE Describes how elementary sectors can be 
collapsed (combined) for use in different 
airspace configurations. 

.spc AIRSPACE 
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Key Description DDR2 File 
name 
extension 

Category 

CAPACITY Defines the (hourly) sector and traffic volume 
capacities for the scenario and the time 
periods for which those capacities apply. 

.ncap CAPACITY 

CONFIGURATION Provides the set of available airspace 
configurations for use by ATC in the scenario. 

.cfg AIRSPACE 

CONTROLLER_COUNT Provides information on the number of 
available ATC controllers for each of the 
airspace configurations in the scenario. 

.ncnc AIRSPACE 

PEAK_OCCUPANCY Defines the peak occupancy counts that 
should not be exceeded at any time in the 
scenario. For any period that the max 
occupancy is exceeded OTMV max occupancy 
alerts occur. 

.nocp CAPACITY 

SCHEMA Defines the start and end times when specific 
sector configurations are used in the 
scenario. 

.cos AIRSPACE 

SECTOR Defines how elementary sectors are 
constructed from airblocks. 

.gsl AIRSPACE 

SUSTAINED_OCCUPANCY Defines the maximum sustained occupancy 
for any sector/traffic volume in the scenario. 
If the max sustained occupancy is exceeded 
for more than n-periods in a given window 
an OTMV sustained capacity alert will occur. 

.nocs CAPACITY 

TWENTY_MINUTE_CAPACITY Defines the (20-minute) sector and traffic 
volume capacities for the scenario and the 
time periods for which those capacities 
apply. 

.ncap20 CAPACITY 

 

Flitan uses internally a key-extension mapping to associate a specific DDR2 file to a specific Flitan DAC 
object model. For example, to construct elementary sector object model, Flitan will load and process 
a file with .gsl extension. If two files exist with the same extension then only one file will be picked up 
to construct the object model. Therefore, Flitan users must ensure that there is only a unique file for 
each DDR2 extension in the simulated DDR2 folder. 

2.1.3.2.1.5 ALL-FT+ data 

Prior to the implementation of PJ08-01 SESAR solution, Flitan used a very basic flight object model that 
contains mainly scheduled information. In order to implement DAC, a much more complex flight object 
model was required. After analysis of various flight format, we finally settled for the ALL-FT+ data 
format. 

The Table 7 shows the main ALL-FT+ fields used by Flitan to construct its flight object model. 
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Table 7. ALL-FT+ fields used by Flitan. 

Field Number Description 

1 Departure airport ICAO code 

2 Arrival airport ICAO code 

3 Aircraft Identifier 

5 Aircraft model 

7 Integrated initial flight plan processing system (IFPS) Identifier 

18 Estimated Off Block Time 

79 Departure runway 

80 Arrival runway 

85 Flight’s 4D profile that contains a sequence of points defined by latitude, 
longitude, altitude and estimated time over.  

 

For the sake of uniqueness, Flitan constructs the callsign of each flight by concatenating the aircraft 
identifier (field #3) and IFPS identifier (field #7) using “-” as a separator. 

 

2.1.3.2.1.6 Flitan KPI Files 

Flitan generates several files that contain information that allows subject matter experts to derive 
indicators about the evaluated scenario. Flitan also generates a large file that is mainly useful for Flitan 
software developers when looking to understand and fix issues (if they appear). 

Average open sector file 

This file provides an indication of the average number of open positions in a unit of control during the 
whole simulation run. The file format is as follow: 

• unit of control name, 

• average number of open positions. 

Configuration delay file 

This file captures the total delay incurred by the activation of a specific airspace configuration. The file 
format is as follow: 

• unit of control refers to the air traffic control centre where the configuration was deployed 
such as LECMCTAN, 

• airspace configuration name refers to an airspace configuration that has been activated during 
the simulation run,  

• number of opened positions refer to the number of sectors that have been deployed at the 
activation of the airspace configuration, 
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• total delay in seconds. 

Configuration delay periods file 

This file contains more or less the same information as the configuration delay file. It has been 
generated at the request of DTU university to include also the period of the airspace configuration 
activation. The file format is as follow: 

• unit of control name, 

• airspace configuration name , 

• start time of the activation of the airspace configuration, 

• end time of the activation of the airspace configuration, 

• total delay in seconds. 

Flight delay file 

This file provides entry information into an open position for each flight: the estimated time over and 
computed time over the position. The file format is as follow: 

• Callsign, 

• unit of control name, 

• airspace configuration name, 

• start of activation time, 

• end of activation time, 

• configured sector name, 

• estimated time over, 

• computed time over, 

• delay (in seconds). 

Sector load file 

This file provides sector throughput aggregated over a 20-minute bins from the start to the end of 
activation period. The file format is as follow: 

• unit of control name, 

• airspace configuration name, 

• configured sector name, 

• start of activation time, 

• end of activation time 
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• sequence of flight numbers over a 20-minute period. 

Airspace info file 

This file is used mainly to check which configurations were activated during the simulation run, their 
periods of activation, the deployed configured sectors, their constituent elementary sectors and the 
applied capacity. The file format is as follow: 

• unit of control, 

• airspace configuration name, 

• number of configured sectors, 

• list of configured sectors, 

• list of constituents elementary sectors for each configured sector, 

• list of capacity for each configured sector, 

• list of activation periods. 

Flitan DAC Simulation Engine 

The main steps in Flitan assessment of a given opening scheme are as follow: 

1. Read all DDR2 airspace information: 

o elementary sectors,  

o configured sectors,  

o sectors declared capacities, 

o airspace configurations,  

o opening schemes, 

2. Read ALL-FT+ flight trajectories information for the corresponding day of simulation, 

3. Compute when flights are expected to cross elementary sectors, 

4. Initialise Flitan clock time to the start time of the simulation, 

5. Enter the Flitan event loop, 

o Extract current event, 

o if the event type is an airspace entry event then perform the following sub tasks: 

i. Identify the current active configuration, 

ii. Identify the configured sector based on active configuration and the crossed 
elementary sector, 
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iii. Analyse the demand, 

iv. Compare demand to the available capacity, 

v. Make any necessary adjustment to the expected times over the configured 
sector to solve the demand/capacity imbalances, 

o Exit the event loop when end time of simulation is reached; otherwise go back to the 
beginning of the loop to process the next event. 

6. Output KPIs metrics in terms of delays and sector throughput. 

Flitan uses a simple mechanism to adjust entry times over configured sectors in order to balance traffic 
demand and capacity as explained below: 

1. Every configured sector has its own slot allocation list divided into periods of 20-minute length. 
These periods are referred to here as 20-minute bin. 

2. When a flight is planned to enter a specific elementary sector, Flitan will use the flight 
Estimated Time Over (ETO) to identify the configured sector that currently owns the 
elementary sector. 

3. If the flight is already in the configured sector slot allocation list then no action is performed. 
This case can arise when the current and the previous elementary sectors crossed by the flight 
belong to the same configured sector. 

4. Otherwise, Flitan will use the flight’s ETO to determine the 20-minute bin that will host the 
flight. 

5. In the case that the identified 20-minute bin has already reached its capacity then Flitan will 
check the next 20-minute bin for slot availability and the process will continue until a 20-
minute bin with enough slot is found.. 

6. Flitan will then allocate a time slot to the flight and this time will become the flight’s Computed 
Time Over (CTO). 

2.1.4 Traffic Optimisation on single and multiple runway airports 

This section provides the Flitan implementation of the SESAR solution PJ02-08 “Traffic optimisation on 
single and multiple runway airports”. The main aim of this solution is to enhance airport throughput 
operations by ensuring that runways operate at their optimum capacity. 

SESAR solution PJ02-08 is focused on two key concepts: 

1. An integrated runway sequence function to balance arrival flights and departure flights on 
single runway, dependent runways or parallel runways 

2. Use of a runway manager for airports with more than one runway to plan the optimal runway 
configuration 

The aim is to describe the enhancement introduced into Flitan that translates the PJ02-08 
requirements into a suitable software framework capable of modelling runway sequencing and runway 
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configurations functions for any type of airport (e.g. single or multiple runway airports) as well as 
supporting functions to assist in traffic demand prediction, runway occupancy times, and dependent 
runways operations. 

2.1.4.1 Concepts 

Airports manage at least one runway to handle departing and arriving aircraft. Busiest airports usually 
have a very complex structure of runways that are operated under varying wind conditions, daytime 
or night time operations, inbound or outbound traffic, off peak operations, etc. Additionally, to 
mitigate safety risk and environmental issues (i.e. noise for the communities surrounding the airport), 
airports are assigned a maximum number of operations. As a result, airports are required to operate 
using various runway configurations throughout the day in order to optimise their operations.  

For example, Amsterdam Schiphol airport has six runways but only three runways are active at any 
moment and their configurations change to accommodate traffic pattern. This requires switching 
runways operations to accommodate either inbound or outbound traffic (i.e. two runways can be used 
for departures and one runway for arrival and vice versa depending on the peak direction). 

Wind direction is another factor that impacts runway configurations. Landings and take-offs are 
typically conducted into the wind. For instance, when the wind is from the north, north runway 
configurations will be preferred over others, and landings and take-offs will be performed in a south-
to-north direction. 

A runway can be unavailable for use because of crosswinds. The ICAO specifies that a runway should 
not be used if the magnitude of the crosswind exceeds predefined values. The magnitude of crosswind 
can be computed by simply multiplying the speed of the prevailing wind by the sine of the angle 
between the wind direction and the runway centerline. In practice, airports have runways in various 
directions to ensure a higher level of usability. 

Runways also can be used in segregated mode (used only for departure or arrival), can be used from 
both runway ends, or exclusively from one runway end.  

Runway configuration, when it is done in a timely manner, can lead to a substantial increase in the 
amount of traffic an airport can handle. However, the high amount of possible runway configurations 
makes it difficult even for a skilled subject matter expert to assess and put in place the most optimal 
configuration. One of the biggest challenges in this respect are: 

• selecting the adequate set of runways;  

• considering the operation dependencies among the selected runways;  

• analysing the environmental, safety and throughput implications;  

• determining the orientation of the runways to achieve optimum operations;  

• developing a timely schedule of activation and a transition plan that will allow operations to 
continue smoothly without a decrease in capacity during the runway reconfigurations. 

Long-range planning is also a factor to be considered during the runway configurations as too many 
activation of runway configurations on short time intervals may lead to capacity decrease and 
considerable safety risks. 
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The next section provides an overview of the fundamental concepts that impacts runway planning 
without going into much detail. In all cases, the principal objective is to draw a comprehensive picture 
of the elements essential in maximizing airport throughput. 

2.1.4.1.1 Runway layout 

Of special relevance to the runway configurations is the geometric layout of runways which largely 
dictates the orientation of inbound and outbound traffic and therefore may critically affect operations.  

 

Figure 8.  Example of runway configuration.  

Every runway end is identified by a two-digit number, which indicates its azimuth in the direction of 
operations to the nearest 10 degrees. For example, a runway end with a magnetic azimuth of 224 
degrees is designated as “Runway 22”. The opposite end of runway is designated as “Runway 04”, and 
the runway is referred to as “Runway 04-22”. The identification at the two ends of any runway will 
always differ by 18. 

In the case of parallel runways, the runway end designation can be supplemented by letter R (for right), 
L (for left), or C (for centre) to distinguish between the runways. 

2.1.4.1.2 Dependent runways operations 

Although the number of simultaneously active runways contributes to the enhancement of airport 
throughput, the geometric characteristic of the active runways is another critical parameter in 
selecting the right runway configurations. The proximity and orientation of runways are factors that 
can increase their operation dependency. Obviously, the less dependency between active runways, 
the more airport throughput, which subsequently leads to an optimum runway configuration.  

At major airports, the runway system can consist of two or more runways that have particular 
geometric layout that limit their simultaneous operations: operations on a runway have to be 
coordinated with operations on the adjacent runways. This is not an issue at single-runway airports. 

Parallel runways  

Parallel runways consist of two or more runways whose centre lines are parallel. The selection of 
runway configuration may be impacted by the operation mode of the parallel runways: 

• Simultaneous parallel approaches, 
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• Simultaneous parallel departures, 

• Segregated parallel approaches/departures, 

• Semi-mixed parallel operations, 

• Mixed mode parallel operations. 

 

Figure 9. Example of intersecting runways. 

 

Intersecting runways 

Airports with intersecting runways are more difficult to optimise. Operations on intersecting runways 
may impact the deployment of an optimum runway configurations as operations need to be 
coordinated. From the figure, it is clear that when both runways are active, arrivals on both runways 
are dependent operations and cannot take place at the same time. Additionally, the capacity of the 
runway pair varies depending on the direction in which the operations take place (i.e. the landings on 
the other runways ends are independent operations and may be the preferred choice for landings if 
possible). 

2.1.4.1.3 Runway length 

The runway length is an important factor in determining which runway should be assigned to an 
aircraft type. It is known that heavy aircraft requires longer distances for the take-off and landing. The 
wind direction also impacts these distances: flying facing the wind will require shorter distances while 
a tailwind will require longer distances. 

The relationships between the required runway length and aircraft weight and the prevailing wind are 
quiet obvious; but other factors affect the runway length required for the landing or take-off of any 
aircraft on any given day: 

• Weather temperature - High temperatures create lower air densities, resulting in lower output 
of thrust and reduced lift, this increasing runway length required. 

• Airport elevation - The higher the elevation of an airport, the lower the air density and 
therefore the longer will be the runway required 

• Runway slope - An airplane taking off on uphill slope requires more distance than one on a 
level or downhill slope. 
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• Surface condition - a wet runway will increase the runway length required, especially on 
landing 

• Flap settings 

Consequently, runway length should be considered when assigning a runway to an aircraft. For 
example, at Schiphol airport, the length of the runway 04-22 is short and is used exclusively for general 
aviation traffic. 

2.1.4.1.4 Runway sequence function 

The objective of the runway sequence function is to allocate runways and usage time to aircraft in a 
way that maximize the airport throughput. This involves which runways will be used (if more than one 
runway exist), and in which direction. To select the active runways and the directions of operations, a 
combination of criteria may be used such as maximizing airport throughput, minimizing noise, reducing 
the impact of weather conditions, etc. Traffic mix is another important factor in determining the right 
sequence at a specific runway. In major airport, traffic mix may involve a variety of aircraft models 
from light to heavy which may lead to deviation from the standard first-come, first-served (FCFS) 
queueing model. 

2.1.4.2 Solution design and implementation 

SESAR solution PJ02-08 focuses on two key concepts: 

1. An integrated runway sequence function to balance arrival flights and departure flights on 
single runway, dependent runways or parallel runways 

2. Use of a runway manager for airports with more than one runway to plan the optimal runway 
configuration 

Flitan has already an integrated runway sequence function to balance both arrival and departure flights 
on airport runways. The core function of the Flitan sequence function is to assign flights to runways in 
order to balance the workload among the available runways. In this manner, Flitan prevents 
overloading one runway and under utilizing another. Another aspect of Flitan sequencing function 
worth mentioning is that once a runway is assigned to a flight, its order will not change in the runway 
queue (i.e. first-come, first-served). 

However, a runway configuration manager function was not available in Flitan prior to the 
implementation of PJ02-08. 

2.1.4.2.1.1 Flitan objective of implementing PJ02-08 

In implementing SESAR solution PJ02-08, Flitan targets three specific objectives: 

1. Introduce both the runway configuration manager and runway dependency operations 
functions into the Flitan simulation engine 

2. Enhance Flitan sequencing function 

3. Train the metamodel through the assessment of a large set of possible combinations of runway 
configurations  

The ultimate goal is that for a given traffic demand the metamodel will be able to select and provide a 
ranking of runway configurations to airport decision-makers. 
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2.1.4.2.1.2 Flitan Runway configuration modelling 

For an airport with several runways, it is important to distinguish between the number of runways at 
the airport and the number of runways that are active at any given time. For example, Amsterdam 
Schiphol airport has six runways but no more than three runways are ever active at the same time. 
Each operational combination of runways is called a runway configuration. 

Consequently, a runway configuration is the process of planning and selecting a specific set of runways 
to be operated at any given time. The selection of active runways are usually done to meet specific 
objectives such as traffic demand, weather conditions, resource constraints, etc. An airport can change 
runway configurations several times during an operational day.  

In Flitan, a runway configuration is defined by its name, active runways and type of operations. The 
type of operations is either: 

1. ARRIVAL when the runway is used exclusively for landings, 

2. DEPARTURE when the runway is used exclusively for departures, 

3. MIXED when the runway is used for both take-offs and landings, 

4. INACTIVE when the runway is not used.  

For example, to describe Madrid Barajas north configuration where runways 36R and 36L are used for 
take-offs while runways 32R and 32L are used for landings, Flitan uses the definition depicted in Figure 
10.  

 

Figure 10. Runway configurations description.  

In the above example, the fields are as follow: 

1. field #1 is the airport ICAO code 

2. field #2 is the runway configuration name 

3. field #3 (the letter 'R') indicates that the definition is related to runway configuration 

4. field #4 is the runway identifier 

5. field #5 is the runway end 
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6. field #6 is the operation type 

2.1.4.2.1.3 Flitan Runway configuration capacity modelling 

A change in runway configuration results in the change in the runway system capacity. Therefore, Flitan 
provides two methods to define the runway configuration capacity. 

Global capacity 

The global capacity allows to define the runway configuration independently of the operation time. It 
has three capacities: 

1. Maximum of arrivals per hour, 

2. Maximum departures per hour, 

3. Global movements per hour. 

Flitan defines the global capacity of a runway configuration by also specifying whether the runway 
configuration is optimum. For example, Madrid airport has two runway configurations: north 
configuration and south configuration. Flitan defines the Madrid Barajas airport runway configuration 
capacity as follow: 

LEMD;NORTHCONF;C;48;52;100;;yes 

LEMD;SOUTHCONF;C;48;52;100;;no 

In the above example, the fields are as follow: 

1. field #1 is the airport ICAO code 

2. field #2 is the runway configuration name 

3. field #3 (the letter 'C') indicates that the definition is related to runway configuration capacity 

4. field #4 is the maximum arrivals per hour 

5. field #5 is the maximum departures per hour 

6. field #6 is the global movement per hour 

7. field #7 is used for comments 

8. field #8 is either yes or no to indicate whether the configuration is optimum 

Time-based capacity 

The time-based capacity is similar to the global capacity however the capacity varied with time. Below 
is an example of time-based capacity for Madrid north configuration: 

#1 ;#2 ;#3 ;#4 ;#5 ;#6; #7 

LEMD;00:00;04:59;NORTHCONF;20;20;38 

LEMD;05:00;05:59;NORTHCONF;19;29; 
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LEMD;06:00;21:59;NORTHCONF;48;52; 

LEMD;22:00;22:59;NORTHCONF;28;22; 

LEMD;23:00;23:59;NORTHCONF;20;20;38 

In the above example, the fields are as follow: 

1. field #1 is the airport ICAO code 

2. field #2 is the start time of the capacity enforcement 

3. field #3 is the end time of the capacity enforcement 

4. field #4 is the runway configuration name 

5. field #5 is the maximum arrivals per hour 

6. field #6 is the maximum departures per hour 

7. field #7 is the global movement per hour 

When the global movement per hour in the time-based capacity is not defined, Flitan will compute it 
as the sum of maximum departures per hour and maximum arrivals per hour. 

It should be noted that the time-based capacity has precedence over the global capacity. The global 
capacity is used only when no time-based capacity is found for the operational time under analysis 

2.1.4.2.1.4 Flitan Runway configuration activation plan modelling 

Flitan uses a runway configuration activation plan to select a specific runway configuration. The 
activation plan indicates to Flitan which runways should be selected and what capacities should be 
applied for arrivals and departures during the activation period. 

Amsterdam Schiphol airport (EHAM) has four runway configurations: Off-peak, Outbound-peak, 
Inbound-peak and Night-peak. One can define EHAM runway configuration activation plan as follows: 

#1 ;#2 ;#3 ;#4 

EHAM;00:00;04:30;NIGHTPEAK 

EHAM;04:30;05:00;OFFPEAK 

EHAM;05:00;05:20;OUTBOUNDPEAK 

EHAM;05:20;07:20;INBOUNDPEAK 

The fields are: 

1. field #1 is the airport ICAO code 

2. field #2 is the runway configuration activation start time 

3. field #3 is the runway configuration activation end time 
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4. field #4 is the runway configuration name 

2.1.4.2.1.5 Flitan Runway dependency modelling 

Runways layout may impact airport operations in crucial ways. For example, when it comes to runways 
that either intersect physically or the projection of their centerlines intersect, operations on one 
runway may block operations on the other runway and as a consequence, operations on both runways 
involved cannot take place at the same time. Therefore operations need to be coordinated on these 
runways. Clearly, as shown in the figure under section ‘intersecting runways’, the coordination may 
not involve operations from both runway ends but only operations from/to the runway ends which 
are closer to the intersection.  

Flitan allows the modelling of the runway dependency operations using information about the involved 
pair of runways, the type of operations, and the directions of operations as follow: 

AIRPORT-ID;RUNWAY;RUNWAY-END;OPERATION-TYPE;AIRPORT-ID;OTHER-RUNWAY;OTHER-
RUNWAY-END;OTHER-RUNWAY-OPERATION-TYPE 

1. field #1 is an airport ICAO code 

2. field #2 is a runway identifier of the designated airport in field #1 

3. field #3 is a runway end of the designated runway in field #2 

4. field #4 identifies the operation in the runway from the specified runway end that may block 
the operations in the other runway 

5. field #5 is the airport ICAO code 

6. field #6 is the other runway identifier 

7. field #7 is a runway end of the other runway 

8. field #8 identifies the operation in the runway from the specified runway end that may block 
operations in the other runway 

The field #3 is optional and when it is not specified then Flitan will consider that the operation (field 
#4) from runway (field #2) without regard to the runway ends will block operation (field #8) on the 
other runway (field #6) from runway end (field #7). 

The field #7 is optional and when it is not specified then Flitan will consider that the operation (field 
#8) from runway (field #6) without regard to the runway ends will block operation (field #3) on the 
other runway (field #2) from runway end (field #3). 

The runway operations that may block operations on the other runway are as follow: 

• ARRIVAL  

• DEPARTURE 

• MIXED 
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2.1.4.2.1.6 Flitan simulation of PJ02-08 

Once all the input data is read (see the input data section), Flitan will perform the following main steps 
in order to assess a runway configuration activation plan: 

1. Identify and activate the current runway configuration - As the simulation clock advances, 
Flitan will determine from the runway configuration activation plan which runway 
configuration to activate at the current simulation time.  

2. Select the set of runways based on the active runway configurations - Once the current runway 
configuration is found, Flitan will select the set of active runways as well as for each selected 
runway, Flitan will determine the runway operation orientation by selecting the appropriate 
runway ends 

3. Determine the runway configuration capacity - Given the current runway configuration, Flitan 
will identify the maximum allowed movement per hour for arrivals, departures and global. If a 
time-based capacity is found, Flitan will use those capacities otherwise it will use the global 
capacity  

4. Assign runway to balance workloads among runways - As flights are planned for either 
departures or arrivals, Flitan will assign an active runway as well as a runway end to each flight. 
The runway assignment is done tom preserve a workload balance between active runways. 

5. Consider the runway dependency operations - Before a flight is allowed to perform its 
operation , Flitan will perform a situation awareness to determine whether an operation on a 
runway is blocking the current operation. 

6. Estimate runway time usage and occupancy time - Given the current runway configuration, its 
capacities and possible runway dependency operations, Flitan will either allow a flight to 
continue its operation or wait in the runway queue until all the conditions are met. Once a 
flight is granted the runway usage, the runway is blocked during a selected time. The selected 
time is mainly based on the flight aircraft model  

Once the simulation is completed, Flitan outputs a set of metrics (see the output data section) that 
together provide a clear assessment of a given runway configuration activation plan. These metrics will 
be used to train the metamodel with the ultimate goal that the metamodel will be capable to predict 
and select a combination of runway configurations that meet a given traffic demand without human 
intervention. 

2.1.4.2.1.7 Input Data 

In order to model PJ02-08 SESAR solution, Flitan introduces a new set of input files as described in 
Table 8 below. 

2.1.4.2.1.8 Output Data 

In support of post simulation analysis of SESAR solution PJ02-08, Flitan generates a new set of log files 
that together provide a clear assessment of a runway configuration activation plan. Each generated 
log file contains information about a specific Key Performance Indicator (KPI), see Table 9. 
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Table 8. Input data.  

Input File Description 

Traffic data file This file includes the trajectory as well as the schedule information for each of 
the flights intended to be simulated through Flitan. The traffic data file uses 
the ALL-FT+ in version 5 format 

Runway 
dependency file 

The runway dependency file contains information related to runway pairs 
where their operations need to be coordinated  

Runway 
configuration file 

The runway configuration file contains information related to the definition of 
a given runway configuration at a given airport. This file provides also the 
runway configuration global capacity. Flitan uses this information to select the 
active runways, their directions of operations and capacity 

Runway 
configuration time-
based capacity 

The runway configuration time-based capacity contains runway configuration 
capacity segregated by time intervals 

Runway 
configuration 
activation plan 

The runway configuration activation plan contains schedule information in 
regard to the activation of runway configurations 

 

Table 9. Flitan output files. 

Output File Key Performance 
Indicator (KPI) 

Description 

Flight runway 
delay 

Efficiency This file provides the delay incurred by a given 
runway for each simulated flight  

Runway 
throughput file 

Capacity This file provides the runway hourly throughput 

Runway delay file Capacity This file provides the total delay for each 
simulated runway 
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2.2 Mercury development 

In this section we describe the general purpose of Mercury, a simulator which has been developed 
over several years for specific purposes. We then move on to describe the changes carried out for 
NOSTROMO in order to model the implementation of Solutions PJ01.01 and PJ07.02. 

2.2.1 General description of Mercury 

Mercury is a simulator developed over several years which is able to produce detailed network-wide 
performance assessment, in particular regarding passenger mobility in Europe.  

Mercury is implemented as an event-driven simulator. The underlying model can be seen as a Monte 
Carlo simulation, sampling distributions (delays, missed connections, etc.) based on causal rules 
representing actual processes of the air transportation system (e.g. if passenger delay is bigger than a 
given threshold, an airline incurs costs for compensation and assistance to the passenger). It can also 
be seen as an agent-based model, and this paradigm has been followed closely when it was designed. 
A series of agent instances sends messages back and forth and reacts to events. Their memory is 
private, i.e. they have attributes that cannot be accessed by other agents. This opens the way to 
modelling imperfect knowledge and eases the implementation of rules of thumb and approximated 
decision-making processes, more realistic than full ‘hyper-rational’ agents in general. 

The scope of the simulator is to model individual aircraft throughout one day of operation, including 
turnaround processes, tracking the passengers on board, as well as passenger connections. The 
passengers in Mercury are modelled through passenger processes, simulating for instance connecting 
times for individual passengers, connecting options, etc. The flight is described in terms of times it 
takes to complete different processes (taxi, take-off, cruise, etc). The simulation of the en-route phase 
is approximated using actual flight plans and delay distributions. The fuel consumption can be assessed 
with quite a good precision, thanks to BADA models, but a full trajectory optimiser is not included in 
this version. Hence, the simulator relies heavily on historical flight data to sample navigation times2. 

Different types of agents are present in the system, sometimes instantiated multiple times (e.g. airline 
operating centre), sometimes once (e.g. Network Manager). We describe the most important ones 
succinctly in the following. 

2.2.1.1 Airline Operating Centres (AOC) 

This agent is the most important in the simulation and the most advanced. It is tasked with following 
its flights and passengers, making decisions when disruptions hit, providing information to the Network 
Manager agent if needed, etc. 

 

 

2 A trajectory optimiser is in general required when one wants to modify an aircraft trajectory. For instance, 
modifying the speed of the aircraft in general changes the descent profile. In NOSTROMO we are relying on past 
data instead (for this second iteration), using similar aircraft that underwent similar changes in order to rebuild 
trajectories. Note that in the third iteration of the model, another process will be used, based on BADA4 model 
sampling. 
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AOC decision-making process is based on usage of detailed cost functions, estimated using [13] and 
representing the best guess we have on the costs to airlines. The costs include fuel, explicit passenger 
direct costs (compensation/duty of care), implicit maintenance and crew costs, curfew costs, etc. The 
cost function of a flight (the cost as a function of the arrival time for instance) is deterministic and 
features typically various ‘jumps’, corresponding to passengers missing their next connections or 
curfew infringement (potentially on the next rotations). 

The cost function is used for different processes, like the two mechanisms described thereafter.  

2.2.1.2 Flight 

The flight agent is tasked with estimating different phases of flights, drawing randomly delays where 
needed, based on historical distributions. It is mainly communicating with its AOC. For instance, the 
AOC may provide to the flight its cost function to be able to make informed decision on speed in 
advanced mechanisms. 

2.2.1.3 Ground Airport 

The ground airport takes mostly care of two processes. First, it manages the connecting passengers, 
drawing random values for their connecting times, sampled from a distribution calibrated on past data. 
This connecting time is compared to the minimum connecting times, available for each airport and 
type of connection (national-international, international-international, national-national). Second, it 
does the same for the aircraft, drawing at random values for their turnaround times. This distribution 
is also calibrated on past data. The departure delay is then applied to the next flight if the turn-around 
time is too high. 

2.2.1.4 DMAN and AMAN 

These agents track explicitly the departures and arrivals at their airport and ask for ATFM regulations 
if the traffic needs to be regulated. Depending on their nature (see new mechanisms thereafter 
2.2.3.2), they may communicate to the flights en-route to ask them to change their speed. 

2.2.1.5 Network Manager 

The Network Manager is responsible for considering flight plan submissions from the airlines and 
managing ATFM regulations. It checks with DMAN and AMAN if the estimated traffic would surpass 
the capacity in their respective airports and arranges for flights to be delayed, according to different 
rules (see mechanisms thereafter). Note that on top of regulations for traffic, regulations can be 
randomly sampled from historical data, to simulate loss of capacity due to other events, like weather. 

2.2.1.6 Other considerations 

Passengers are bundled in groups that share common itineraries, and these groups are handled by the 
other agents, like the AOC and the ground airport. These groups are dynamic, i.e. in case of missed 
connections they can be split if their respective passengers need to board different planes. Note that 
in this simulator the passengers do not have to make any decision and are thus not considered as 
agents.  

Finally, we highlight two important limitations of the simulator: 

• The crew is not explicitly considered by the model. In other words, the airline does not take 
into account crew rotations. It only considers an approximated cost for the airline to operate 
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with delay, which takes into account the average cost of dealing with disrupted crew 
processes. This is due to the difficulty to get historical crew rosters from airlines. 

• Apart from the runways themselves, there is no explicit model of the airspace. In other words: 

o the model does not track through which sectors a flight is going, and thus cannot issue 
regulations based on traffic on these pieces of airspace. En-route ATFM regulations 
are thus simulated as random delays.  

o no tactical traffic control takes place. We do not model controllers, and the trajectory 
is not modified based on their potential actions. Instead, we used distribution of 
“delays”, which modify the flight times between navigation points, extracted from 
historical data. 

As highlighted above, the simulator relies heavily on historical data, that it uses in particular to create 
and then sample various distributions. The results in this deliverable have been obtained with a 
calibration of the model on the 12th of September 2014, for which we have all the required data, and 
the data sources are shown in Table 10. 

Table 10. Data used by Mercury. 

Data source Main usage Reference 

DDR2 Used to get the set of flights, origin-destination, routes, aircraft 
type, estimated cruise wind, distributions on climb and descent 
profiles, requested nominal cruise speeds and flight levels, 
companies, alliances, airspace structure, ATFM regulations 

[3] 

Cost of delay 
report 

Used to compute cost of delay function [4] 

IATA Summer 
Season 2010 
from CODA 

taxi times [5] 

DDR2 minimum turnaround times, minimum connecting times [6] 

CODA non-ATFM delays [7] 

Paxis, GDS For passenger itineraries, including fares and class [6] 

Innovata 
(Cirium) 

Flight schedules, for scheduled times of arrival and departure - 

 

For the third iteration of the model (to be presented in D5.2), the project will use the same kind of 
data, updated to match the 14th of September 2018, thus provided a more up to date estimation of 
the KPIs. 

More details on the Mercury simulator can be found in [8]. 
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2.2.2 PJ01.01 - Flight Arrival Coordination 

2.2.2.1 The role of the Arrival Manager 

As explained in D4.1 [1], PJ01.01 was selected as a case study for Mercury. Indeed, the simulator is 
well suited to model decisions made by airlines, thanks to its detailed cost model. This case study has 
also been selected to highlight the potential importance of systemic effects, such as network knock-
on effects, triggered by delays incurred during the arrival phase. 

Flight arrival coordination is an important present and future ATM feature both for airlines and the 
corresponding control systems. Indeed, arrival flights need to be arranged into a sequence at arrival 
by the arrival manager, making sure that safety is enforced, but also that the runway throughput is as 
high as possible given its capacity. Indeed, contrary to en-route control, where the focus is almost only 
on separating aircraft, i.e. safety, arrival at the airports also includes optimisation considerations. Since 
runway capacity cannot be infringed, any traffic overload translates into delay, usually materialised by 
a holding stack, whereby flights wait for a slot to land. Hence, the arrival manager needs to ensure 
safety while decreasing delays/optimising runway throughput. 

Arrival managers use various strategies, but all consider a certain horizon, in time or space, where they 
start building up a queue of flights in arrival. An important parameter of this process is the size of this 
horizon, because getting information early means that the AMAN can build its queue more efficiently. 
In practice, uncertainties may be so big that increasing the horizon may not be useful, and, more 
importantly, the AMAN cannot give arbitrary commands (for instance a slowdown command) to a 
flight, in particular because this command may not be consistent with other commands from 
controllers in intermediate sectors. Equally important, for the airline changing the speed has a cost. 
Indeed, by increasing their speed, they will burn more fuel, and by decreasing it, they may have 
passenger connection issues, for example (cost of delay). 

In summary, the future of arrival coordination must include the following considerations: 

• An extended horizon, in order to build an efficient queue at arrival. 

• Airspace user preferences (e.g. related to their costs). This is related to business trajectories, 
where airlines are part of the decision-making process leading to their final trajectory. 

• Other sectors' overloading. This is related to 4D trajectories, with consistent constraints 
throughout the airspace leading to a full specification of the trajectory, as opposed, currently, 
to mostly independent safety control processes. 

• Uncertainty in the 4D trajectory, directly linked to the (maximum) efficiency of the queue 
optimisation. 

The research questions that Mercury – and the meta-modelling process – could tackle are related to 
these considerations. In NOSTROMO, we decided to focus on the extension of the horizon, the airline 
preferences, and the uncertainty. The study of the en-route sector overload is less adapted to Mercury, 
given its lack of modelling precision in the airspace. 

In NOSTROMO, we extended the capabilities of Mercury by implementing an advanced form of AMAN 
that can monitor flights in a larger area, give commands earlier than in reality, and taking into account 
the airline cost model. 
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The following section describes the implementation in Mercury, as simulated for the second iteration. 
They only use delay minimisation, but in a smarter way for the advanced implementation, taking into 
account reactionary delay (one of the most important elements of the cost of delay). 

 

2.2.2.2 Description of the Extended Arrival Manager 

The E-AMAN manages an explicit queue of slots for the airport. The algorithm optimises the arrival 
sequence between the planning and the tactical horizon considering a particular objective function. 

The final sequencing (from tactical horizon to runway) is out of scope of the optimisation. 

Optimisation inside E-AMAN 

When a flight enters the planning horizon, all flights which are located in the scope of the arrival 
manager, i.e., between the planning and the execution horizon, are re-optimised, i.e., assigned to 
the slots which are either planned or available, considering a given optimisation function which 
depends on the level of the mechanism. 

The optimisation of all the flights within the E-AMAN every time a flight enters or exits the system 
ensures that the best sequence is maintained within the arrival manager with respect to the 
optimisation function, and that a flight may slow down to absorb part of the delay saving some fuel if 
delay is assigned by the E-AMAN. However, this re-optimisation does not consider an update on the 
position and expected delays/costs of the flights already inside the E-AMAN process, i.e., reuses the 
cost function for those flights as provided when entering the E-AMAN. 

As the amount of delay that can be absorbed (by slowing down) is very limited, only the flight which 
enters the arrival manager considers this speed and TOD variation. Note that only available or planned 
slots are considered in the optimisation and once a landing slot has been assigned to a flight which 
reaches the tactical horizon it is fixed. Note that in some cases, the slot which has been planned at the 
planning horizon for a given flight might not be still available when it reaches the execution horizon. 
Finally, at both horizons, the arrival capacity at the airport is considered to ensure that the arrival 
sequence respects airport throughput. 

Use of delay by flights 

At the planning horizon, a flight which triggers this optimisation, i.e., which enters the arrival manager, 
receives the amount of delay that it is expected to experience and tries to absorb as much delay as 
possible by slowing down (saving some fuel). At the tactical horizon, a flight will be issued with a slot 
(assigned as the output of another re-optimisation) and the required delay (if any) will be performed 
as holding. 

Airports without E-AMAN 

For airports which are considered to have an E-AMAN, a simple arrival manager located at 100 NM 
from the airport is considered, and a first-in first-out approach modelled. The assigned delay is done 
as holding. This ensures that the arrival capacity at the airport is not exceeded. 
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Airports with E-AMAN 

In this case the focus is on minimising the total expected delay that the flight will experience at the 
airport (arrival and departure). This is done considering arrival and expected reactionary delay, which 
act as a better proxy for the cost of the airline.  

When a flight enters the planning horizon, the information on the expected delay that the flight will 
have (both arrival and reactionary) per slot available (i.e., not assigned yet to a flight in the tactical 
horizon) is communicated to the E-AMAN. 

The E-AMAN uses this information to optimise the sequence aiming at minimising the total delay. 

2.2.3 PJ07.02 - Airspace user prioritisation for hotspots 

2.2.3.1 Hotspot solving 

‘Hotspots’ are areas of the air traffic network that are (likely to be) stressed due to high levels of traffic. 
Indeed, based on the traffic forecast from flight plan submissions, the area control centres and the 
Network Manager monitor whether the traffic will be over capacity for any portion of airspace, at 
specific times. If this is the case, the Network Manager can issue an ATFM regulation, i.e. a restriction 
on the number of flights that can enter a given volume of airspace for a given time. The flights that 
were supposed to cross this zone during the regulation duration are then explicitly assigned ATFM 
slots. A departure delay is issued to the flight based on this slot (ATFM delay). Note that airlines may 
also resubmit a new flight plan in order to avoid the regulated zone (although this may not be very 
effective). 

The way flights are currently assigned to ATFM slots is using the so-called “First-Planned First served” 
CASA algorithm (FPFS) [9]. CASA assigns each flight to the first available slot, starting from the earliest 
one. This algorithm is used because it is considered as fair among flights and airlines, but also because 
it minimises the total delay assigned to flights in the regulation. 

However, the FPFS rule fails to take into account an important dimension for airlines: cost. Indeed, 
flights have usually very different importance for an airline. Some, for instance, carry many connecting 
passengers, which may miss their next flight. On the contrary, some flights may carry a small number 
of non-connecting passengers, or do not have another rotation before the following day. As a 
consequence, delays will have very different effects on them in terms of costs, which is crucial to 
airlines. 

Various rules and mechanisms have been suggested to improve the situation, but they all come down 
to flight swapping, i.e. the ability to swap flights present in the regulation queue. This is the focus of 
the study in PJ07.02, the User-Driven Prioritisation Process (now solution #57, ready for 
industrialisation). 

A first improvement over the FPFS rule is to let the airlines swap their own slots, i.e move flights back 
and forth in their slots, without interacting with other airlines. This can be done through different 
automated processes, such as Flight Departure Reordering (FDR) , Selective Flight Protection(SFP), and 
‘Margins’, etc., which aim at helping the airline to make the best decision. Among these processes, 
some of them are still in the deployment phase (Margins), others are active only at some airports (FDR) 
while others are more widely in operation (SFP).  
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Whilst swapping is efficient in some cases, it lacks the capacity to find good solutions when airlines 
have a small number of flights in the regulation (the issue of so-called low-volume users). For this 
reason, different projects are exploring the possibility to trade or at least exchange slots across airlines. 
In ER-4, the projects BEACON and SlotMachine are studying such mechanisms. We decided to use some 
concepts developed in BEACON – of which two of the consortium members are part – to test the meta-
modelling process. See BEACON deliverable D3.1 for more details about the mechanisms [10]. 

The goal in NOSTROMO is to assess the efficiency of these potential future mechanisms – once again 
more efficiently thanks to the meta-modelling process. We restricted ourselves to regulations hitting 
arrival airports, for two reasons: a) to avoid having to model the behaviour of airlines changing their 
flight plan to avoid en-route regulations and b) because it is the initial scope of UDPP, and thus allows 
an easier comparison with the previous state. 

2.2.3.2 Mechanisms tested in the second iteration of NOSTROMO 

The mechanisms we considered in this second iteration of the model are shown in Table 11. 

Table 11. Mechanisms tested.  

Mechanism Main principles 

FPFS Serves as baseline to compare the other mechanisms; current mechanism in use, 
minimises the total delay assigned to flights in a regulation 

UDPP Optimal allocation intra-airlines. It represents the efficiency in the current situation, 
if all airlines use the UDPP tools in an efficient way. 

ISTOP Developed in BEACON, it uses information akin to what is passed to UDPP to rebuild 
an approximated normalised cost function and suggests suitable slot swaps among 
airlines. 

NNBound Uses the true cost functions of the airlines, it finds the best allocation, given that no 
airline loses in terms of cost. This is used for benchmarking, since it represents the 
maximum efficiency if local “fairness” is enforced (nobody loses). 

GlobalOptimum Uses the true cost functions from the airlines, it finds the best allocation overall. This 
is used for benchmarking, since it represents the maximum theoretical efficiency 
reachable by any mechanism. 

 

The important mechanism that we want to test in this second iteration of the model is ISTOP. In this 
mechanism, the Network Manager asks every airline in the regulation to provide two parameters 
called “margin” and “jump” (note that names are not definitive and come from the current state of 
the ER-4 BEACON project). Notionally, one can think of this parameter as the location and the height, 
respectively, of the first jump in the flight’s cost function (see Figure 11). This first jump is typically 
well-known to the operator, and represents an important piece of information on the flight. They are 
also related to parameters provided by airlines in some UDPP mechanisms: the ‘margin’ is almost the 
same as the ‘time not after’ present in the Margin mechanism, and the ‘jump’ is closely related to the 
priority of the flight, as featured in the UDPP prioritisation mechanism. These are thus quite intuitive 
and already known, to some extent, by operators using the present-day or near-future UDPP 
capabilities. Moreover, note that the jumps provided do not need to be given in absolute terms, but 
relative to each other, which is far easier (and, once again, akin to priorities). 
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Figure 11: Approximated cost function used by the UDPP mechanisms, with the two parameters, margin and 
jump. 

The reason for that lies in the next step of the algorithm, where the Network Manager rebuilds 
approximated, normalised cost functions for each flight in the regulation. This cost functions are then 
used to find suitable swaps between flights, with pairs (or triples) of slots being exchanged between 
airlines, resulting in a smaller cost for both airlines. In theory, these swaps are then suggested to the 
airlines, who may or may not accept them. In NOSTROMO, for simplicity, we assumed that the airlines 
always accept the swaps suggested. 

2.2.4 Simulations 

As mentioned previously, we use the 12th of September 2014 to calibrate the model. In order to have 
faster simulation time, we also decided to reduce the geographical scope of the model and consider 
only the flights to and from Charles De Gaulle airport – with all corresponding information on 
passenger connections and turnaround. Another reason for this selection is to have decent statistics 
when it comes to ATFM regulations. Indeed, regulations are quite rare in a normal day of operation, 
or at least not big enough so that advanced UDPP mechanisms could be used. For the same reason, 
we considered a scenario where exogenous delays have been artificially inflated, in order to stress the 
system and have a better assessment of the mechanisms.  

In order to answer the research questions and find interesting relationship between variables – harder 
to model and thus more interesting from the metamodelling point of view – we selected the input 
variables shown in Table 12 to be studied by the metamodelling process. The table includes the 
possible values, practical range, and default values of the parameters, all used during the 
metamodelling process. 
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Table 12. Mercury input variables.  

Variable Name in model Description Theoretical range Practical 
range 

Default 

Fuel price fuel_price Price of one 
kg of fuel - 
Continuous 

[0, infty) [0, 5] 1 

Hotspot 
solver 

hotspot_solver Type of solver 
in the hotspot 

['globaloptimum', 
‘nnbound’, 
‘udpp_merge’, 
udpp_merge_istop'] 

NA 'udpp_merge_ist
op' 

Planning 
horizon 

eaman_planning_horizon Distance 
horizon 
where the 
EAMA tries to 
optimize the 
arrival, in NM. 

(100, infty) [100, 
1000] 

200 

Cruise 
uncertainty 

cruise_uncertainty_sigma Deviation in 
the aircraft 
speed during 
cruise 

[0, infty) [0, 10] 1 

Turn-
around 
time scale 

alpha_tat_mean Scaler of 
mean of the 
distribution 
of turn-
around times 

[0, infty) [0, 10] 1 

Minimum 
connecting 
time scale 

alpha_mct Scaler of 
mean of the 
distribution 
of passenger 
minimum 
connecting 
times 

[0, infty) [0, 10] 1 

Claim rate claim_rate Proportion of 
passengers 
claiming 
compensation 

[0, 1] [0, 1] 0.14 

  

Finally, we decided to select the performance indicators included in the Table 13 as output variables 
to be learnt by the metamodel. They represent the most interesting variables that can be extracted 
from the model related to the two mechanisms described above. The table also shows a priority 
number that could be used by the metamodellers to incrementally improve their model. 
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Table 13.. Mercury output variables.  

Variable Description Name in model Priority 

Holding time Holding time incurred by 
the flight at arrival 

m3_holding_time 2 

Assigned 
delay at 
planning 
horizon 

Delay assigned the E-AMAN 
at the first horizon of 
command. 

eaman_planned_assigned_delay 3 

Planned 
absorbed 
delay 

Delay can the E-AMAN 
planned to be absorbed by 
the flight (via speed 
change) 

eaman_planned_absorbed_air 2 

Extra tactical 
delay 

Actual delay incurred by 
the flight 

eaman_extra_arrival_delay 1 

Assigned 
delay at 
tactical 
horizon 

Delay assigned by the E-
AMAN at the second 
horizon 

eaman_tactical_assigned_delay 3 

Diff in tactical 
and assigned 
delay 

Difference between the 
actual delay and the 
assigned delay 

eaman_diff_tact_planned_delay_assigned 1 

Saved REAL 
cost in 
regulation 
w.r.t. FPFS 
allocation 

Ratio of the cost incurred 
by the airlines with a given 
mechanism after allocation 
with respect to cost 
incurred in FPFS 

ratio_cost 1 

Saved 
DECLARED 
cost in 
regulation 
w.r.t. FPFS 
allocation 

Ratio of the cost incurred 
by the airlines, as declared 
through their 
approximated cost 
functions, with a given 
mechanism after allocation 
with respect to cost 
incurred in FPFS 

ratio_cost_approx 1 

  

https://www.sesarju.eu/


D5.1 ATM PERFORMANCE METAMODELS - PRELIMINARY RELEASE  

   
 

Page I 48 
 

  
 

 

3 Metamodelling process 

Simulation constitutes a well-known and established tool to model complex real-world systems. 
However, despite its clear practical advantages, simulation models, when embedded with enough 
detail and realism, can become computationally expensive to run. This shortcoming may pose a 
hindrance to the exploration of their input-output behaviour. ATM research, particularly the sub-field 
that deals with the simulation of air traffic systems, is no stranger to such concerns. 

To tackle the above-mentioned computational challenges, simulation metamodels [10], [11], [12] can 
be employed to approximate the underlying function inherently defined by the simulation model and 
used as a modelling proxy for the latter. In turn, this allows for a reasonable number of exhausting 
computer experiments to be bypassed during the exploration process. 

Additionally, the problem of expensive simulation runs has a clear resemblance with modelling 
scenarios where labelled data tends to be particularly difficult or time-consuming to acquire. In such 
situations, active learning [13], [14] emerges as a powerful learning paradigm aiming at attaining high 
prediction performance with as few data points as possible. Remember that labelled data point 
corresponds to a single tuple encompassing both input values and output results. In our specific 
context, a label is nothing more than an output simulation result. 

In this project, we adopt an integrated approach that employs active learning strategies on top of 
simulation metamodelling processes aiming at reducing the computational burden often associated 
with exhaustive and systematic simulation analysis. Eventually, the ultimate goal is to provide ATM 
researchers and practitioners with an auxiliary tool to explore the output behaviour of simulation 
models in a more insightful and computationally efficient manner. For details on this methodology, as 
well as on its elementary constituents, please refer to the deliverable D3.1 [15]. 

Figure 12 depicts an overview of the metamodelling process underlying the results presented herein.  

 

 

Figure 12. Active learning-based metamodelling process overview. 

This process has at least two starting requirements, namely, the specification of the input-output 
variables necessary to study a particular solution, and, due to its iterative nature, an initial training 
data set. The latter comprises a small set of simulation results generated according to the specified 
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simulation variables of interest and a certain sampling strategy such as the Latin hypercube sampling 
[16]. Additionally, the metamodel itself should be chosen a priori. While the Gaussian Processes (GP) 
regression framework, also known as Kriging, is the traditional and still common choice for 
metamodelling, other machine learning approaches can be tested, such as Neural Networks (NN). In 
fact, in the document, we present initial results using both modelling approaches. 

Alternating between the metamodeling and the active learning phases, the integrated methodology is 
composed of four elementary steps: 

1. Training: the metamodel is fitted to the simulation data. 

2. Prediction: the fitted metamodel is used to predict over the simulation input region of interest.  

3. Request: based on some acquisition criteria, new input data points are selected to be run by 
the simulator. 

4. Response: the simulator provides new simulation output results corresponding to the points 
from step 3, which are then added to the current training set. 

Steps 1-4 are repeated cyclically until a stopping criterion is satisfied. This criterion can be defined, for 
example, as a function of the metamodel’s performance, such as accuracy or predictive variance 
reduction, or simply the number of iterations to be performed with respect to the available time, 
budget and resources. 

Remember the approximative nature of the metamodel which calls for careful handling of the trade-
off between speed, accuracy and computational budget. It is important to recognize and identify the 
performance threshold from which the mere addition of new training points will not significantly 
improve the ability of the metamodel to approximate the simulation results. In those cases, and 
especially from a metamodelling perspective, requesting more simulation results might prove to be a 
waste of computational resources.  
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4 Metamodelling results 

In this section, we briefly present part of ongoing metamodelling results with respect to solutions 
PJ.08-01 (Flitan) as well as PJ01.01 and PJ07.02 (Mercury). With respect to Flitan, due to unforeseen 
data collection difficulties, we only briefly mention solution PJ02-08, referring its results to the 
upcoming deliverable during the project’s 3rd iteration. 

Due to the nature of Flitan’s categorical input data types, extra steps of data encoding and preparation 
before metamodelling had to be undertaken. As most statistical and machine learning-based 
metamodels cannot operate directly with categorical values, in both input and output, appropriate 
transformation is applied to the original data so that it can be converted to some kind of numeric form. 
Here we also detail how we conducted such data conversions. Hence, this is a highly tailored encoding 
solution to handle Flitan’s categorical data. 

Within the scope of this project, the procedures involved in the kind of steps mentioned above 
constitute part of what we have deemed as the “translation layer” [17] responsible for converting the 
simulator’s data types and structures into those of the metamodel itself, ensuring a smooth 
communication link between both. Although subtle and typically not accessible to the end-user, this 
layer constitutes a fundamental part of the metamodelling process. Its importance is further extended 
if we take into account the fact that many ATM simulation models use, in fact, categorical variables. 
Therefore, we should highlight the development of such translation layers as a co-product of the 
metamodelling process and results. 

On the other hand, no real data preparation is required with respect to Mercury as most of it is 
essentially comprised of numerical values that can be fed directly into the metamodel. 

4.1 Flitan 

In this section, we detail the translation layer for Flitan’s categorical variables and present some results 
from ongoing experiments, focusing on solution PJ.08-01.  

The experiments reported herein used a version of Flitan loaded with real daily traffic data dated from 
21/06/2019 to 23/06/2019 and for North Madrid Air Traffic Control (LECMCTAN). The DAC analysis 
itself was limited to 22/06/2019, although it trivially encompasses the flights that departed on 21/06 
and arrived at LECMCTAN on 22/06 and, similarly, that departed on the latter, arriving only at their 
destination on 23/06. For this single day, a metamodel was trained and used to virtually explore around 
4 million opening schemes. 

4.1.1 Data encoding 

As oftentimes occurs with other ATM simulation models implementations, totally or partially, Flitan 
does not follow the required specifications of the data format specified in [2]. Due to the categorical 
(string-based) nature of some of Flitan’s input data, data conversion schemes to numerical types are 
required for the type of metamodels being used in this project. Consequently, an extra step for data 
preparation and encoding is necessary prior to the metamodelling process itself. 
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PJ.08-01 Solution 

This solution regards the implementation of Dynamic Airspace Configuration (DAC). The main objective 
of DAC is to allow the adjusting of capacity to meet available Air Traffic Control (ATC) resources, 
changes in traffic demand and various performance indicators. DAC itself involves several fundamental 
concepts, namely (for details see section 2.1.3): 

• elementary and configured sectors,  

• sector configuration,  

• opening scheme (schedule of sector configurations),  

• capacity,  

• demand,  

• and demand capacity balancing (DCB), 

which can be generally regarded as inputs for this particular DAC implementation. In terms of outputs, 
Flitan provides performance metrics such as the average number of open sectors, configuration and 
flight delays, and sector loads.  

In this document, we focus on the opening schemes as input data and the configuration delays as the 
output performance metric. For a single operation day and fixed traffic demand, the idea was to 
establish a relationship between the opening scheme and configuration delay via metamodel, and to 
eventually be able to predict the latter and to allow a more efficient exploration of the simulator’s 
behaviour while minimizing the corresponding computational burden. 

Table 14 depicts an example of an opening scheme as it is loaded into Flitan. As stated earlier, an 
opening scheme is a schedule of sector configurations. These configurations are then referenced by 
their code name. From this data, we can obtain which configuration was active and when. For example, 
configuration “CNF8B1” was active from 05h30m to 12h59m on 22/06/2019. 

Table 14. Format of an opening scheme for a single day 

Date Unit of Control Start Time End Time Configuration Name 

22/06/2019 LECMCTAN 00:00 03:29 CNF1A 

22/06/2019 LECMCTAN 03:30 04:59 CNF5A 

22/06/2019 LECMCTAN 05:00 05:29 CNF5A 

22/06/2019 LECMCTAN 05:30 12:59 CNF8B1 

22/06/2019 LECMCTAN 13:00 20:29 CNF8B1 

22/06/2019 LECMCTAN 20:30 21:29 CNF8B1 

22/06/2019 LECMCTAN 21:30 23:59 CNF5A 

22/06/2019 LECMCTAS 00:00 03:29 CNF1A 

22/06/2019 LECMCTAS 03:30 04:59 CNF5A2 

22/06/2019 LECMCTAS 05:00 05:29 CNF5A1 
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Date Unit of Control Start Time End Time Configuration Name 

22/06/2019 LECMCTAS 05:30 08:59 CNF8A2 

22/06/2019 LECMCTAS 09:00 11:29 CNF8A1 

22/06/2019 LECMCTAS 11:30 20:29 CNF8A2 

22/06/2019 LECMCTAS 20:30 21:29 CNF6D2 

22/06/2019 LECMCTAS 21:30 22:59 CNF3C 

22/06/2019 LECMCTAS 23:00 23:59 CNF3C 

 

Each sector configuration can be broken down into a particular list of configured sectors, each being 
further associated with a specific combination of elementary sectors. This information is stored in the 
airspace information log, mostly as categorical data. A partial example of this file is given in Table 15.  

Table 15. Format of an airspace information log file. 

Unit of 
Control 

Configuration 
Name 

Number of 
Configured 
Sectors 

Configured 
Sectors 

Elementary Sectors Capacity 
(20-
minute 
period) 

LECMCTAN CNF1A 1 LECMR1I LECMASL +LECMASU 
+LECMBLL +LECMBLU 
+LECMDGL + +LECMDGU  + 
+LECMPAL +LECMPAU 
+LECMSAO+LECMSLE 

6 

LECMCTAN CNF5A 5 LECMASI 
LECMBLI 
LECMDGI 
LECMPAI 
LECMSAN 

LECMASL+LECMASU 
LECMBLL+LECMBLU 
LECMDGL+LECMDGU 
LECMPAL+LECMPAU 
LECMSAO+LECMSLE 

12 15 13 
12 11 

LECMCTAN CNF8B1 8 LECMASL 
LECMASU 
LECMBLI 
LECMDGL 
LECMDGU 
LECMPAL 
LECMPAU 
LECMSAN 

LECMASL LECMASU 
LECMBLL+LECMBLU 
LECMDGL LECMDGU 
LECMPAL LECMPAU 
LECMSAO+LECMSLE 

12 12 15 
13 15 12 
15 11 

 

Column “Elementary Sectors” refers to the combination of elementary sectors that compose each of 
the sectors under “Configured Sectors”. For example, the configuration with name “CNF5A” 
corresponds to the following elementary sector configuration: “LECMASL+LECMASU” (LECMASI), 
“LECMBLL+LECMBLU“ (LECMBLI), “LECMDGL+LECMDGU“ (LECMDGI), “LECMPAL+LECMPAU” 
(LECMPAI), and “LECMSAO+LECMSLE“ (LECMSAN). Each sum (“+”) means that the corresponding 
involved elementary sectors are combined into a single sector. 
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Given a specific daily traffic demand, the performance of each configured sector can be assessed via 
flight delays, among other metrics, as mentioned above. Table 16 provides an example of a 
configuration delay file providing the total flight delay per configuration. 

Table 16. Format of a configuration delay file. 

Unit of Control Configuration Name Configuration Delay (in 
seconds) 

LECMCTAN CNF8A 8629 

LECMCTAN CNF5A 480 

LECMCTAN CNF1A 2020 

LECMCTAN CNF3C 2335 

LECMCTAN CNF4B 6245 

LECMCTAN CNF9A2 9121 

LECMCTAN CNF9A1 1901 

 

In order to infer a functional relationship via simulation metamodelling, the contents summarily 
represented in previous three tables must be properly prepared, parsed, merged and finally converted 
to quantitative values so that they can be finally handled by the metamodel itself. To this end, we 
made use of dummy variables to encode the indication of the activation status of each elementary 
section: “0” for inactive, and “1” otherwise. Hence, a conversion layer (encoding) was generated 
univocally linking sector configurations, elementary sectors, and dummy variables. Table 17 on next 
page provides a partial overview of this mapping. 

Finally, we are in conditions to convert Flitan’s original data to numeric-based values. Note, however, 
that this corresponds only to one solution which was highly tailored to the specific problem at hand 
and the simulator’s characteristics. Other encoding solutions could also have been adopted and 
explored. Table 18 provides an example of the final data format to which the metamodel is fitted. 
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Table 17. Data encoding from combined elementary sectors names to dummy variables. 

Unit of 
Control 

Configuration 
Name 

Elementary 
Sectors 

LECMASL LECMASL
+ 

LECMASU 

LECMASL+ 
LECMASU+ 
LECMBLL+ 
LECMBLU+ 
LECMDGL+ 
LECMDGU+ 
LECMPAL+ 
LECMPAU+ 
LECMSAO+ 
LECMSLE 

LECMASL
+ 
LECMASU
+ 
LECMBLL+ 
LECMBLU
+ 
LECMSAO
+LECMSLE 

… LECMD
GL+ 
LECMD
GU 

LECMD
GL+ 
LECMD
GU+ 
LECMP
AL+ 
LECMP
AU 

LECMCTAN CNF1A LECMASL+LEC
MASU+LECM
BLL+LECMBL
U+LECMDGL+
LECMDGU+LE
CMPAL+LECM
PAU+LECMSA
O+LECMSLE 

0 0 1 0 … 0 0 

LECMCTAN CNF2A LECMDGL+LE
CMDGU+LEC
MPAL+LECMP
AU 
LECMASL+LEC
MASU+LECM
BLL+LECMBL
U+LECMSAO+
LECMSLE 

0 0 0 1 … 0 1 

LECMCTAN CNF7G1 LECMASL 
LECMASU 
LECMBLL 
LECMBLU 
LECMDGL+LE
CMDGU 
LECMPAL+LE
CMPAU 
LECMSAO+LE
CMSLE 

1 0 0 0 … 1 0 

… … … … … … … … … … 

 

Table 18.  An example of the explored metamodel data format (not exhaustive due to space restrictions, only 
the most relevant columns are displayed). 

Date Config. 
Name 

Start 
Time 

End 
Time 

LECMA
SL 

LECMASL+ 
LECMASU 

LECMASL+LECMASU 
+LECMBLL+LECMBLU 
+LECMDGL+LECMDG
U+ 
LECMPAL+LECMPAU+ 
LECMSAO+LECMSLE 

… Configuratio
n Delay 

22/06/2019 CNF1A 00:00 03:29 0.0 0.0 1.0 … 2020.0 

22/06/2019 CNF5A 03:30 04:59 0.0 1.0 0.0 … 60.0 

… … … … … … … … … 
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PJ02-08 Solution 

In implementing SESAR solution PJ02-08, Flitan targets three specific objectives: 

1. Introduce the runway configuration manager and runway dependent operations functions into 
the Flitan simulation engine 

2. Enhance Flitan sequencing function 

3. Train the metamodel through the assessment of a large set of possible combinations of runway 
configurations 

By training metamodel with enough simulation data points via active learning, the ultimate goal is that 
for a given traffic demand, the metamodel will be able to select and provide a ranking of runway 
configurations without human intervention. The experiment is essentially identical to solution PJ08-
01, except that sector configurations are replaced by runway configurations. Therefore, due to the 
categorical nature of this input, another specific translation layer will be necessary for PJ02-08. 

In order to achieve this goal, a large collection of runway configurations of a given airport are required. 
At this stage, we are still looking to find suitable runway configurations data and their associated 
activation plan that will allow us to carry out the simulations for a set of European airports. 

4.1.2 Results 

PJ.08-01 Solution 

One of the objectives of employing a metamodel within the implementation of this solution is to 
explore a multitude of opening schemes and assess their corresponding output performances by 
bypassing the burden of systematic and exhausting simulation runs in an approximative manner. Given 
a rather small set of training observations, the metamodel should be able to generalise and explore 
the remaining input space, predicting the associated output performance values with reasonable 
accuracy and controlled prediction error. 

Currently, the generation of opening schemes over a single day is based on random combinations of 
pre-defined time windows and sector configurations selected by observation of historical data as 
follows: 

1opening_scheme_lecmctan = [ 

2    {'period': ['00:00', '03:29'], 'config': ['CNF1A']}, 

3    {'period': ['03:30', '04:59'], 'config': ['CNF4A', 'CNF5A', 'CNF5B']}, 

4    {'period': ['05:00', '05:29'], 'config': ['CNF5A', 'CNF6A', 'CNF6B', 'CNF6C', 'CNF7A']}, 

5    {'period': ['05:30', '08:59'], 'config': ['CNF8A', 'CNF8B1', 'CNF8B2', 'CNF9A1', 'CNF9A2']}, 

6    {'period': ['09:00', '10:59'], 'config': ['CNF8A', 'CNF9A1', 'CNF9A2']}, 

7    {'period': ['11:00', '12:59'], 'config': ['CNF8A', 'CNF8B2', 'CNF9A1', 'CNF9A2']}, 

8    {'period': ['13:00', '14:59'], 'config': ['CNF7A', 'CNF8A', 'CNF8B2', 'CNF9A2']}, 
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9    {'period': ['15:00', '17:19'], 'config': ['CNF7A', 'CNF8A', 'CNF8B2', 'CNF9A2']}, 

10    {'period': ['17:20', '20:29'], 'config': ['CNF7A', 'CNF8A', 'CNF8B2', 'CNF9A2']}, 

11    {'period': ['20:30', '21:29'], 'config': ['CNF7A', 'CNF8A', 'CNF8B1', 'CNF8B2', 'CNF9A1', 'CNF9A2']}, 

12    {'period': ['21:30', '22:29'], 'config': ['CNF4A', 'CNF4B', 'CNF4C', 'CNF5A']}, 

13    {'period': ['22:30', '23:59'], 'config': ['CNF3B', 'CNF3C', 'CNF3D']} 

14] 

 

From here, we can observe that there are more than 4 million (1 x 3 x 5 x 5 x 3 x 4 x 4 x 4 x 4 x 6 x 4 x 
3 = 4,147,200) possible different opening schemes. Running all these combinations via actual 
simulation runs would be clearly unfeasible: simply considering 1 minute per single simulation run, 
testing all these opening schemes would take more than eight years. 

A Neural Network (NN) was used as a metamodel and trained on a data set comprised of 2500 unique 
opening schemes, followed by the prediction of the configuration delay over the set of all 4 million 
possibilities. Figure 13 depicts a histogram of the resulting predicted delays.  

 

Figure 13. Histogram of the predicted configuration delays over approximately 4 million different opening 
schemes. 

It is interesting to observe that the predicted delays appear to be clustered into five different Gaussian 
distributions. This allows us to classify each opening scheme into a specific delay profile, thereby 
simplifying the exploration process of the simulation output performance behaviour. For a given daily 
demand, this kind of metamodelling exploration may therefore help the ATM practitioner to find the 
most suitable opening scheme or set of opening schemes with respect to a particular system 
performance metric, without the burden of conducting all the different associated simulation runs. In 
this particular case, one may trivially aim to find the sector configurations that lead to the lowest values 
of flight delays. 
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Remember, however, the approximative nature of the obtained metamodels and the relative trade-
off between computational speed and the ability to closely reproduce the real simulation results. 
Ultimately, our proposal is to always use the metamodels bundled together with the simulators 
themselves as an integrated modelling and exploration tool.  

In the following set of experiments, we employed a GP to develop an integrated simulation active 
learning metamodelling strategy. Due to their nice capabilities for handling both data and predictive 
uncertainty, GPs are commonly used within active learning settings in which there is a direct cost (e.g. 
computational, such as in our case) of obtaining new labelled data. In such scenarios, modelling is often 
conducted with relatively small datasets and in an iterative manner.  

As a Bayesian approach, the GPs generate predictions in form of well-defined Gaussian probability 
distributions, instead of single-point ones. Typically, each prediction comes associated with a pair of 
parameters, often called the predictive mean and the predictive variance, which unambiguously 
defines the latter mentioned distributions. Here, the variance itself can be viewed as a proxy for the 
modelling or prediction uncertainty, in the sense that high predictive variance regions potentially 
enclose more data variability and information (entropy). Therefore, it is generally wise to sample new 
simulation points from regions that potentially lead to more learning gains, while redundant simulation 
runs are avoided, resulting in a more computationally efficient and economical exploratory process. 

In Figure 14, we present the evolution of Root Mean Square Error (RMSE) as the active learning process 
advances. In each iteration, the RMSE is computed by comparing the current metamodels' predictions 
against the real simulation output observations contained in a fixed data set generated a priori. From 
a computational perspective, the faster we reduce RMSE, i.e., with fewer simulation runs, the better. 

 

 

Figure 14. Active learning metamodelling performance for Flitan with DAC implementation. Each line 
corresponds to the average value across 30 independent algorithm runs and the shades to +/- standard 
deviation. 

This active learning strategy is based on the sampling of high variance points and it is compared with 
a naive baseline with no query criterion (random selection). This criterion uses the predictive variance 
computed over the search input space or, in other words, the unexplored simulation region of interest, 
selecting the points yielding higher values to be posteriorly labelled by the simulator and eventually 
added to the expanding training set. From Figure 14, we see that the tested strategy outperforms, on 
average, the random selection of data points for the entire experimental setting of 120 simulation 
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runs. Moreover, observe that the variability across experiments is consistently lower when active 
learning is employed, particularly after approximately 80 simulation requests.  

In the limit, and in the absence of limited computational budgets, it is not difficult to conclude that all 
active learning strategies eventually lead the metamodels to converge to similar prediction 
performances or to reach their modelling plateau. The latter trivially holds even for the random 
querying. However, finite computational resources, amongst other limitations that constrain the 
timely exploration of a simulation model’s output behaviour, call for the adoption of more efficient 
processes capable of extracting, to the greatest possible extent, more learning information with less 
computing demand. 

PJ02-08 Solution 

As mentioned earlier, we are still looking for historical data sets that can fit both Flitan’s 
implementation of traffic optimisation on single/multiple runway airports and NOSTROMO’s 
objectives. For this reason, we are unable to deliver any metamodelling results at the moment and 
refer further developments to the next iteration of the project. 

 

4.2 Mercury  

Unlike Flitan, most of Mercury’s input variables do not require any kind of data encoding due to their 
already quantitative nature. Therefore, these inputs can be used directly by the metamodel, rendering 
the previously mentioned translation layer [9] mostly unnecessary. Some transformations may still be 
applied, such as data normalization, though not in terms of inherently encoding the variables’ values. 

For Mercury, and in order to assess the performance of solutions PJ01.01 and PJ07.02., a set of seven 
input variables and eight output variables were considered, summarized in Table 12 and Table 13, 
respectively. Except for the “Hotspot solver”, all the remaining variables encompass quantitative (and 
continuous) values. For this reason, the former was encoded via one-hot-encoding. 

4.2.1 Results  

The main objective of this set of experiments was to explore and show the advantages of employing 
active learning to guide the exploration process of Mercury’s input space. For each output variable, a 
different metamodel (in this case, a Gaussian Process) was independently used. Ultimately, we aim at 
approximating the simulator with a metamodel that should be able to predict the value of a single 
output within the predefined practical ranges given in Table 1 in the previous section. In other words, 
we seek not to find any specific or optimal set of inputs but to correctly predict the output of the 
simulator given that, e.g., if the fuel price is 1 or 5, or if the claim rate is 10% or 90%. Once again, one 
active learning strategy is presented and compared against the random selection of data points. 
Whereas the former is based on the data points with the highest predictive variance in each iteration, 
the latter has effectively no query criteria, thus representing both a simple and naive baseline.  

Figures 14-21 present the results for the eight studied output variables of interest in the scope of 
solutions PJ01.01 and PJ07.02 using Mercury’s scenario 9. In practice, the user should only run the 
active learning once, but in order to quantify the variation in the active learning strategies (mostly 
originated from the simulator’s stochasticity and the first few randomly chosen simulations/samples), 
the two different strategies are run 30 times. Within each plot, the solid lines depict the average run 
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and the shades are +/- one standard deviation. Here we use the negative log-likelihood to assess the 
fitting performance of the metamodel given both mentioned learning strategies. The likelihood 
function describes how likely is a certain model, along with its parameters, to generate the observed 
data, capturing both the error and the stochasticity/noise. Generally, given some data, the higher the 
likelihood of a model is, the better. In fact, it is common, especially within the Gaussian Process 
framework, to estimate the “best” models' parameters by maximizing the associated likelihood 
function, or equivalently, by minimizing the negative log-likelihood, given some training data. In this 
sense, the negative log-likelihood can be viewed as a kind of loss function which we trivially aim to 
minimize. 

 

Figure 15. Active learning metamodelling performance for holding time. 

 

Figure 16. Active learning metamodelling performance for the saved declared cost in regulation w.r.t. FPFS 
allocation. 
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Figure 17. Active learning metamodelling performance for the assigned delay at tactical horizon. 

 

 

Figure 18. Active learning metamodelling performance for the planned absorbed delay. 
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Figure 19. Active learning metamodelling performance for the assigned delay at planning horizon. 

 

Figure 20. Active learning metamodelling performance for the saved real cost in regulation w.r.t. FPFS 
allocation. 
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Figure 21. Active learning metamodelling performance for the extra tactical delay.  

 

 

Figure 22. Active learning metamodelling performance for the difference between the tactical and the assigned 
delay. 

Remember that active learning aims to use as few data points as possible. Starting from a rather small 
training data set, the process evolves sequentially as new simulation results are added to the latter, 
thereby expanding it. At each active learning step, the parameters of the metamodel are re-estimated 
with the additional new labelled data (i.e., new simulation result) originating from the simulator 
through query requests. While initially high, when just a few points are used to fit the metamodel, it is 
expected that the likelihood tends to decrease towards the model’s modelling performance threshold 
as the process advances. We can clearly observe this behaviour in Figures 14-21. Across all the studied 
outputs, with a few exceptions, we generally see that at least after circa 40-60 simulation runs, both 
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metamodels begin to stabilize with respect to the attained negative log-likelihood. Naturally, if the 
number of simulation runs is large enough, then any kind of query strategy will eventually lead the 
metamodel to achieve its modelling plateau. However, our objective with active learning is to achieve 
the lowest values as soon as possible or, in other words, with the least number of simulation runs, 
assuming a certain computational budget or minimum accuracy requirements. 

Except for the “eaman_diff_tact_planned_delay_assigned” output (see Figure 22), the active learning 
strategy shows, on average, a superior performance against the random approach, generally reaching 
lower negative log-likelihood values in earlier modelling stages.  

It is easy to observe that the performance of the metamodel varies as a function of the output being 
considered. A different GP was employed to model the outputs individually. Since each of the latter 
ultimately describes a different input-output mapping, it is not a surprise that the individual GPs 
perform differently in both prediction and active learning performances. For this reason, more often 
than not, it can be tricky to choose a clear cut-off point from which we decide that the metamodel is 
performing well enough concerning the modelling needs and objectives at hand. In the present case, 
we can arguably assume that, with approximately 50 simulation runs or less, the metamodel attains a 
reasonably good performance across all the output metrics, additionally nearing its modelling 
threshold at the same time. 

In Figure 23, we present two correlation matrices computed across the output variables of the 
metamodel predictions (left) and real simulation results (centre). Additionally, for enhanced 
comparison, we also computed the entry-wise difference between the latter and the former (right). 
The metamodel in question was trained with 50 simulation results chosen by active learning guided by 
the predictive uncertainty in “Assigned delay at planning horizon”. The predictions were computed 
over a random set comprised of 1k input data points (simulation results). Here we can observe that 
the metamodel captures the simulator’s output behaviour generally well, attaining a reasonably good 
prediction across the board. Recall the approximate nature of the metamodel, which is also clearly 
displayed in these results. 

 

Figure 23. Correlation matrices computed across the output variables of the metamodel predictions (left) and 
real simulation results (centre). 
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4.3 Computational analysis preview 

We now provide a brief overview of the computational workloads and experimental settings involved 
in the reported experiments.  

All the experiments were conducted on a shared 24-core 3.8 GHz CPU with 128 GB RAM under Ubuntu 
20.04 LTS. Depending on its use, a single simulation run of Flitan can approximately take up to two 
minutes, whereas Mercury can reach up to four. As of now, in both cases, we are using simplified 
scenarios to facilitate the exploratory nature of the present work and more easily gain new insights 
and develop guidelines to readily embrace the modelling challenges of the upcoming steps. 
Nonetheless, in the next iteration of the project, we aim at exploring more realistic simulation settings 
which will inevitably lead to increased computer running times. In any case, the results reported herein 
show the potential of the presented methodology in minimizing the computational burden of 
systematic computer experiments within the ATM research field and its simulation modelling 
applications. 

As mentioned before, the reported Flitan’s DAC results refer only to a single day of traffic data and air 
traffic controller. In practice, it takes the day D of interest, plus days D-1 and D+1. We can reasonably 
assume its time complexity to be mostly a linear function of the number of days being processed and 
the number of daily flights. For example, considering the current one-day data from Madrid ATC, 
Flitan’s runtimes for each different opening scheme are expected to easily increase to approximately 
one hour if we consider a month of daily traffic data. 

In its turn, Mercury’s time complexity seems to be generally related to the number of flights and 
passengers, and layovers, as well as to the type of optimizing procedures (e.g. integer-programming 
solvers) underlying the simulation model’s implementation itself. Currently, a single run for the 
scenario loaded with CDG airport data and encompassing just 1423 flights, takes roughly 3 to 4 minutes 
to conclude. Similar run times are observed with another scenario with lower levels of delays. On the 
other hand, similar scenarios with only departure flights at CDG both contain 711 flights, yielding about 
2 minutes. Moreover, from previous experiments with a more complete 27k flights scenario [18], we 
obtain times in the order of 20+ minutes. Hence, the number of flights, and consequently their intrinsic 
interactions, have an expected trivial impact on the simulator’s time complexity, seemingly a non-
linear one. 

Hereupon, the ultimate aim of the employed methodology is to reduce the computational burden 
underlying systematic simulation-based analysis while, at the same time, contributing to an efficient 
way of guiding the exploration process of the simulators' input-output behaviour. Note, however, that 
is it not our intent to entirely replace the simulation in question with the corresponding metamodel, 
as the simulator itself constitutes a crucial provider of the ground truth data. In this sense, this 
approach aims at deploying both the metamodel and the simulator in a bundled solution, where the 
performance and trade-offs are constantly monitored, potentially allowing for interactive supervision 
by ATM experts throughout the entire process.  

Given an arbitrary case study, guidelines for sampling computer observations from the underlying 
simulators, may not be entirely clear or, for that matter, unanimously established across the entire 
ATM field. For this reason, it is generally difficult to adopt a baseline experimental design to which we 
compare our results and finally assess how much computational burden are we saving in practice. 
Regardless of the rather generalized or ad-hoc way of conducting such computer experiments, the 
required number of simulation runs is by and large conditional on the output stochasticity, 
dimensionally of both input and output spaces, specificities of the case study, and, naturally, on the 
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simulation model itself. In any case, a reference of 100 model (simulation) runs, suggested by [8] within 
a particular application of network-wise assessment using Mercury, is adopted in the following, 
generally representing what one would do in the absence of any active learning metamodelling 
strategy. 

Previously, we argued that 80 simulation runs seem to be a candidate cut-off point in which we obtain 
a reasonably good metamodel for Flitan addressing the DAC solution. In turn, this decision would lead 
to savings of approximately 40 minutes. With respect to Mercury, we argued that 50 model runs would 
suffice to train the metamodel, therefore saving up to 200 minutes in this case. Although these 
processing runtimes refer to rather simplified scenarios, they provide us with a glimpse of the potential 
savings with more realistic ones. 

On the other hand, we also must take into account the underlying workload associated with the 
metamodelling process itself. The GP framework used as a metamodel has cubic complexity, N^3, 
meaning that the computing time is proportional to the cube of the number N of training points. As 
pointed out in [19], it can become a real computational issue in settings with more than 10k data 
points. There are several solutions that aim at reducing the complexity of the GPs, such as, via the 
introduction of inducing points [20], [21], or spectral representation [21]. However, this is not the 
typical problem we are addressing in this project. On the contrary, we are interested in maximizing the 
insights with respect to the simulator of interest, while minimizing the number of simulation 
observations (or runs) required to do so.  

In this context of a relatively low number of data points, the complexity of the GPs is unlikely to pose 
a significant hindrance to the overall active learning metamodelling process. Finally, it is worth 
mentioning that, as with most machine learning techniques, after a GP is fitted to the training data, its 
prediction time is generally fast and oftentimes negligible in practical terms. Within the current setup, 
a batch of 50 iteration steps takes less than 3 minutes to process with respect to the metamodel’s 
sequential refitting, regardless of the simulator used. Note that the complexity of GPs is a function of 
the number of data points and not so much on the dimensionality of the input space. 
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5 Conclusions and next steps 

The two simulators, Flitan and Mercury, have different strengths and weaknesses when it comes to 
modelling. For this reason, we selected different solutions, the concepts of which could be 
implemented in the simulators.  

The development in Flitan first focused on airspace dynamic configurations. By implementing really 
detailed rules for merging and splitting sectors, the model is able to assess various sector 
configurations opening schemes. The development in Flitan then focused on runway traffic 
optimisation. By implementing specific rules for runway capacity, mirroring the actual capacity 
variations due to different configurations, Flitan is now able to assess different possible runway 
configurations and their associated activation plans. 

Mercury development was focused first on the UDPP solution, allowing airlines to swap their flights 
delayed by an ATFM regulation. By implementing several algorithms for solving hotspots, Mercury is 
now able to assess how efficient UDDP and these other algorithms are, and what other impact they 
may have on the air transportation system. Further, a simple extension of the EAMAN concept was 
implemented in Mercury, where a better proxy for the airlines' costs are taken into account when 
assigning speed changes and holding delays. This allows to estimate not only the amount of delay 
reductions, but also the related costs, improving the overall performance assessment of the solution 
implementation.  

The results of the metamodel show that the procedure of active learning is very efficient in most cases, 
as opposed to random estimations of the micromodels. For Flitan, after 80 simulation points, the 
results from the model are particularly satisfying, especially from the variance point of view. 
Furthermore, the experiments with this simulator also highlighted the importance of “translation 
layers” that transform categorical or string-based data in quantitative values so that it can be handled 
by most machine-learning techniques, particularly the GPs used in this work. For Mercury, 
independent GPs used on different output variables show that the active learning procedure is 
reasonably better than random sampling and that 50 runs of the micro-simulator allow attaining a 
good approximation already. Correlation matrices – which only capture linear relationships between 
variables – show that the metamodel captures well some of the relationships between variables, but 
not so much for others. It might be the case that the metamodel is capturing non-linearities on the 
latter variables, which cannot be reported via the correlation coefficient. Nonetheless, alternative 
performance metrics should be used and further investigation will be conducted in the near future. 

It is important to always bear in mind the approximate nature of the metamodel. It is not our 
expectation that it can fully and perfectly capture the functional form mapping the simulator’s inputs 
into the outputs. Instead, we acknowledge that the metamodel is a de facto approximator of the 
underlying simulation model and should be used as an auxiliary exploratory tool to enhance 
simulation-based studies. As such, the critical trade-off between accuracy and computational speed 
should be constantly supervised and adjusted, whenever possible and needed, following the 
metamodelling’s initial objectives.  

Although active learning provides a rather automatic approach to the training of the metamodel, it 
should not waive frequent monitoring and assessment from a domain expert throughout the entire 
process. Fine-tuning and other adjustments might be required in more complex settings. To this end, 
the metamodel should be deployed in a bundle together with the simulator itself and allow for a 
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certain degree of interactivity with the user. Whereas the metamodel helps reduce the redundancy of 
simulation-based processes, providing directions on how to explore the simulation input space more 
efficiently, the simulation model guarantees that this exploration is supported on solid ground truth 
data (simulation results). The metamodel can be particularly relevant in suggesting potential trends in 
the simulator’s behaviour and uncovering associations between the involved variables or ultimately 
serving as a confirmatory tool of domain knowledge premisses. 

In summary, the results from the metamodel are satisfactory, despite requiring more work to 
understand why some of the variables are less well modelled than others. The next steps for the 
project will thus be: 

• to analyse in more depth, particularly from the domain knowledge point of view, the results 
obtained with both the micromodels and metamodel, which will then be assessed in WP7. 

• to investigate how well the metamodel reproduces the micromodels, in particular with respect 
to training times and execution time, and its limitations. 

• to expand the concepts presented herein for the third iteration of the micromodels, using 
more realistic scenarios, advanced algorithms and combining them whenever possible. 
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