Diabetologia
https://doi.org/10.1007/500125-019-4906-1

ARTICLE m

Check for
updates

Discovery of biomarkers for glycaemic deterioration before
and after the onset of type 2 diabetes: descriptive characteristics
of the epidemiological studies within the IMI DIRECT Consortium

Robert W. Koivula'?@® - lan M. Forgie® - Azra Kurbasic' - Ana Vifiuela*>® . Alison Heggie” - Giuseppe N. Giordano -

Tue H. Hansen?® - Michelle Hudson® - Anitra D. M. Koopman '° - Femke Rutters'® - Maritta Siloaho'"
Kristine H. Allin®'2 . Sgren Brage'®'* . Caroline A. Brorsson'® - Adem Y. Dawed? - Federico De Masi'” -
Christopher J. Groves? - Tarja Kokkola'' - Anubha Mahajan'® - Mandy H. Perry® - Simone P. Rauh'® -
Martin Ridderstrale'”'® . Harriet J. A. Teare'® - E. Louise Thomas?° - Andrea Tura?' - Henrik Vestergaard® -
Tom White'* - Jerzy Adamski®? - Jimmy D. Bell?® - Joline W. Beulens'° - Sgren Brunak '>? .

Emmanouil T. Dermitzakis *>® - Philippe Froguel®** . Gary Frost®® - Ramneek Gupta'® - Torben Hansen
Andrew Hattersley®?’ . Bernd Jablonka?® - Jane Kaye'® - Markku Laakso'" - Timothy J. McDonald® - Oluf Pedersen® .
Jochen M. Schwenk?® - Imre Pavo>° - Andrea Mari®' - Mark I. McCarthy*'%3' . Hartmut Ruetten?® - Mark Walker” -
Ewan Pearson> @ - Paul W. Franks "***33@ . for the IMI DIRECT Consortium

8,14

Received: 13 July 2018 / Accepted: 10 April 2019
© The Author(s) 2019

Abstract

Aims/hypothesis Here, we describe the characteristics of the Innovative Medicines Initiative (IMI) Diabetes Research on Patient
Stratification (DIRECT) epidemiological cohorts at baseline and follow-up examinations (18, 36 and 48 months of follow-up).
Methods From a sampling frame of 24,682 adults of European ancestry enrolled in population-based cohorts across Europe,
participants at varying risk of glycaemic deterioration were identified using a risk prediction algorithm (based on age, BMI, waist
circumference, use of antihypertensive medication, smoking status and parental history of type 2 diabetes) and enrolled into a
prospective cohort study (n=2127) (cohort 1, prediabetes risk). We also recruited people from clinical registries with type 2
diabetes diagnosed 6—24 months previously (n =789) into a second cohort study (cohort 2, diabetes). Follow-up examinations
took place at ~18 months (both cohorts) and at ~48 months (cohort 1) or ~36 months (cohort 2) after baseline examinations. The
cohorts were studied in parallel using matched protocols across seven clinical centres in northern Europe.

Results Using ADA 2011 glycaemic categories, 33% (n =693) of cohort 1 (prediabetes risk) had normal glucose regulation and
67% (n = 1419) had impaired glucose regulation. Seventy-six per cent of participants in cohort 1 was male. Cohort 1 participants
had the following characteristics (mean + SD) at baseline: age 62 (6.2) years; BMI 27.9 (4.0) kg/mz; fasting glucose 5.7 (0.6)
mmol/l; 2 h glucose 5.9 (1.6) mmol/l. At the final follow-up examination the participants’ clinical characteristics were as follows:
fasting glucose 6.0 (0.6) mmol/l; 2 h OGTT glucose 6.5 (2.0) mmol/l. In cohort 2 (diabetes), 66% (n=>517) were treated by
lifestyle modification and 34% (n=272) were treated with metformin plus lifestyle modification at enrolment. Fifty-eight per
cent of participants in cohort 2 was male. Cohort 2 participants had the following characteristics at baseline: age 62 (8.1) years;
BMI 30.5 (5.0) kg/mz; fasting glucose 7.2 (1.4) mmol/l; 2 h glucose 8.6 (2.8) mmol/l. At the final follow-up examination, the
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What is already known about this subject?

e Type 2 diabetes is a heterogeneous disease composed of several pathophysiological insults with the combined result

of a loss of blood glucose control

e Measurement of these pathophysiological insults may facilitate the stratification of type 2 diabetes into treatable

subclasses

What is the key question?

e To provide context for subsequent analyses, what are the characteristics of the two IMI DIRECT cohorts at baseline

and follow-up examination?

What are the new findings?

e  |MIDIRECT cohort 1 (prediabetes): 2127 participants at risk of rapid glycaemic deterioration were recruited from a

sampling frame of 24,682 participants

e |MIDIRECT cohort 2 (diabetes): 789 participants with recently diagnosed type 2 diabetes were recruited from local
registries and primary care centres at six European study centres

e  Both cohorts are richly phenotyped and include: metabolic biochemistry, measures of glycaemic control
(OGTT/mixed-meal tolerance test), region/organ-specific adiposity (MRI), physical activity/sleep (accelerometry), diet
(self-reported and objectively assessed), blood omic assessments (genomic, transcriptomic, metabolomic, proteomic)

and faecal microbiomics

How might this impact on clinical practice in the foreseeable future?

e  Therichly phenotyped IMI DIRECT cohorts will facilitate the discovery of biomarkers for glycaemic control in

individuals at risk of, or with, type 2 diabetes

participants’ clinical characteristics were as follows: fasting glucose 7.9 (2.0) mmol/l; 2 h mixed-meal tolerance test glucose 9.9

(3.4) mmol/l.

Conclusions/interpretation The IMI DIRECT cohorts are intensely characterised, with a wide-variety of metabolically relevant
measures assessed prospectively. We anticipate that the cohorts, made available through managed access, will provide a powerful
resource for biomarker discovery, multivariate actiological analyses and reclassification of patients for the prevention and

treatment of type 2 diabetes.

Keywords Diet - Ectopic fat - Genome - Glycaemic control - Insulin secretion - Insulin sensitivity - Personalised medicine -

Physical activity - Prediabetes - Type 2 diabetes

Abbreviations

ALT Alanine aminotransferase

ASAT Abdominal subcutaneous adipose tissue
AST Aspartate aminotransferase

DIRECT Diabetes Research on Patient Stratification
fSOGTT  Frequently sampled OGTT

GLP-1 Glucagon-like peptide-1

hpfVM  High-pass-filtered vector magnitude

IAAT Intra-abdominal adipose tissue
IGR Impaired glucose regulation
IMI Innovative Medicines Initiative
MMTT  Mixed-meal tolerance test
NGR Normal glucose regulation
OGIS Oral glucose insulin sensitivity

TAAT Total abdominal adipose tissue
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Introduction

The global prevalence of type 2 diabetes is burgeoning.
There is no cure, nor are there treatments effective enough
to halt the progression of the disease. The burden the dis-
ease conveys at a societal and personal level is enormous,
with an estimated world prevalence in 2017 of around 425
million people with type 2 diabetes and a further 352 mil-
lion at risk of developing the disease [1]. The global cost of
diagnosing and treating the disease and its complications in
2017 was estimated to be around €730 billion [1]. This
bleak picture emphasises the profound shortcomings in
our understanding of type 2 diabetes actiology and patho-
genesis, and the inadequate tools available with which to
combat the disease.
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Like some other complex diseases, the clinical presenta-
tion and prognosis of type 2 diabetes is heterogeneous. The
risk conveyed by established diabetogenic factors such as
obesity, physical inactivity and certain dietary components
varies widely from one person to the next, as does the re-
sponse to interventions targeting these risk factors. This is
also true for those in whom diabetes is manifest, with re-
sponse to glucose-lowering therapies, occurrence of adverse
events and rates of progression being variable and hard to
predict.

The diagnosis of type 2 diabetes is relatively straightfor-
ward, relying primarily on evidence of chronically elevated
blood glucose concentrations [2]. However, elevated blood
glucose concentrations can be the consequence of multiple
defects in energy metabolism occurring across several organs
and tissues [3—5] caused by myriad acquired or inherited fac-
tors. Thus, type 2 diabetes as currently defined characterises a
collection of underlying pathologies [6], each with the com-
mon feature of elevated blood glucose that may require tai-
lored therapies. The stratification of type 2 diabetes into treat-
able subclasses might be possible if accessible biomarkers of
the disease’s underlying pathologies were known.

Although improving the management of type 2 diabetes
through subclassification may lead to more focused treat-
ment, susceptibility to risk factors and response to treatments
also vary. Thus, stratifying patient populations into subgroups
defined using biomarkers quantifying susceptibility to risk
factors and responsiveness to specific therapeutics would fur-
ther enhance our ability to treat and ideally prevent the
disease.

The Innovative Medicines Initiative (IMI) Diabetes
Research on Patient Stratification (DIRECT) Consortium is
a collaboration among investigators from some of Europe’s
leading academic institutions and pharmaceutical companies
[7]. The overarching objective of IMI DIRECT is to discover
and validate biomarkers of glycaemic deterioration before
and after the onset of type 2 diabetes. To this end, we
established two new multicentre prospective cohort studies
comprised of adults from northern Europe at risk of or with
recently diagnosed type 2 diabetes. Within these cohorts, a
comprehensive array of risk factors, intermediate phenotypes
and metabolic outcomes were repeatedly assessed using
cutting-edge technologies. The richly phenotyped IMI
DIRECT cohorts will facilitate the discovery of biomarkers
for glycaemic control in individuals at risk of or with type 2
diabetes.

Here we describe the characteristics of the two IMI
DIRECT cohorts at baseline and at the two major follow-up
visits up to 48 months later, to provide context for those sub-
sequently analysing and reviewing studies based on these da-
ta. We also consider these results in the context of the imple-
mented protocols and plans outlined at the beginning of the
project, as described previously [7].

Methods

The rationale and design of the epidemiological cohorts within
IMI DIRECT are reported elsewhere [7]; here we provide data
and information about key variables and methods, respective-
ly, that were not described in the rationale and design paper
published previously.

Approval for the study protocol was obtained from each of
the regional research ethics review boards separately and all
participants provided written informed consent at enrolment.
The research conformed to the ethical principles for medical
research involving human participants outlined in the declara-
tion of Helsinki.

Recruitment, enrolment and eligibility The derivations of co-
hort 1 and cohort 2 are shown in Fig. 1. The sampling frame for
cohort 1 comprised four existing prospective cohort studies:
Metabolic Syndrome in Men (METSIM, Finland) [8];
Relationship between Insulin Sensitivity and Cardiovascular
disease (RISC) [9], Hoorn Meal Study (HMS) and New
Hoorn Study (NHS) [10] (Netherlands); Health2010 [11],
Health2006 [12], Danish Study of Functional Disorders
(DanFunD) [13] and Gut, Grain and Greens (GGG) [14] studies
(Denmark) and Malmo Diet and Cancer (MDC) study (Sweden)
[15]. Participants for cohort 2 were identified through general
practice and other registries, as described previously [7].

After excluding participants who did not meet the inclusion
criteria or whose data failed quality control, a total of 2127
participants at risk of diabetes and 789 participants with type 2
diabetes were retained in cohort 1 and cohort 2, respectively.
In cohort 1, emphasis was placed on recruiting participants
deemed at high risk of type 2 diabetes according to ADA
2011 HbA . criteria (HbA;. 40-48 mmol/mol [5.7-6.4%])
[2, 7]. As anticipated during the design phase, the sampling
frame contained too few participants that fulfilled this criteri-
on; thus, we proceeded to enrol participants with progressive-
ly lower HbA . concentrations, who were also considered at
highest risk of glycaemic deterioration according to the
DIRECT-DETECT risk algorithm (based on age, BMI, waist
circumference, use of antihypertensive medication, smoking
status and parental history of type 2 diabetes) applied to the
parent cohort sampling frame [7, 16].

In cohort 1, 1989 (93%) participants enrolled at baseline
also attended the first major follow-up visit at a mean of 18.6
(SD 1.4) months and 1729 (81%) attended the final follow-up
visit 30.8 (SD 1.3) months later. In cohort 2, 668 (85%) par-
ticipants enrolled at baseline attended their first major follow-
up visit at 18.2 (SD 0.6) months and 552 (70%) attended the
final follow-up visit 18.2 (SD 1.0) months later.

Glycaemic biochemistry assays Plasma glucose, insulin and C-

peptide assays for cohort 1 were carried out centrally at the
University of Eastern Finland (Kuopio, Finland), where
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Cohort 1: prediabetes

Cohort 2: diabetes

Pre-screening with
DIRECT-DETECT GGG
(recruited/sampling frame) 11/118
2235/24682
NHS DanFunD |
434/2870 87/7439
HMS Health 2006 ||
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Fig. 1 Participant flow of cohorts 1 and 2. DanFunD, Danish Functional
Disability study; GGG, Gut, Grain and Greens study; HMS, Hoorn Meal
Study; METSIM, Metabolic Syndrome in Men study; NHS, New Hoomn

plasma glucose was analysed using the enzymatic glucose
hexokinase method and photometric measurement on Konelab
20 XT Clinical Chemistry analyser (Thermo Fisher Scientific,
Vantaa, Finland). In cohort 2, plasma insulin and C-peptide were
analysed using chemiluminometric immunoassay (CLIA)
(Liaison Insulin [DiaSorin, Saluggia, Italy] and Liaison C-
peptide [DiaSorin]). The instrument used was DiaSorin
Liaison Analyser (DiaSorin Deutschland, Dietzenbach,
Germany). Plasma glucose, insulin and C-peptide assessments
for cohort 2 were carried out centrally at the University of Exeter
(Exeter, UK). Assessments of HbA ., blood lipids, alanine ami-
notransferase (ALT) and aspartate aminotransferase (AST) for
both cohorts were carried out centrally at the University of
Exeter. Glucose was measured by the enzymatic colorimetric
assay GOD-PAP using Roche MODULAR P analysers
(Hoffmann-La Roche, Basel, Switzerland). Insulin was mea-
sured by electrochemiluminescence using Roche E170
Analysers (Hoffmann-La Roche). C-peptide concentrations in
plasma and urine were measured by electrochemiluminescence
using Roche E170 Analysers (Hoffmann-La Roche). HbA
was measured by ion-exchange high-performance liquid chro-
matography using Tosoh G8 analysers (Tosoh Bioscience, San
Francisco, CA, USA). Each biochemical assay was performed
using validated standard methods. Reference samples were in-
cluded in all procedures to control for inter-assay variation and
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18 month follow-up | i~ May 2014-Mar 2016 i
| Aug 2014—Apr 2016 -1 668

May 2017-Mar 2019 !
1
Dec 2016-Oct 2018 -4 552

789
Lost to follow-up
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18 month follow-up

| » Lost to follow-up
116

36 month follow-up

Study; RISC, Relationship between Insulin Sensitivity and
Cardiovascular disease cohort

laboratories regularly participated in international external qual-
ity assessment schemes. In addition, a subset of samples was
assayed for C-peptide, insulin and glucose on both sites to assess
inter-laboratory variation.

Blood lipid and liver enzyme biochemistry assays
Triacylglycerol was measured by quantitative determination
with glycerol blanking. HDL-cholesterol was measured di-
rectly using polyethylene glycol-modified enzymes and dex-
tran sulphate. When cholesterol esterase and cholesterol oxi-
dase enzymes are modified by polyethylene glycol, they show
selective catalytic activity towards lipoprotein fractions,
with reactivity increasing in the order LDL < VLDL =
chylomicrons < HDL. Total cholesterol was measured by
an enzymatic, colorimetric method. LDL-cholesterol was
calculated from the total cholesterol, HDL-cholesterol and
triacylglycerol concentrations using the Friedewald formu-
la: LDL = total cholesterol — HDL-cholesterol — (triacyl-
glycerol/2.2). ALT and AST were measured by UV absor-
bance without pyridoxal phosphate activation. ALT, AST,
cholesterol, glucose, triacylglycerol and HDL-cholesterol
were measured using a Roche MODULAR P analyser
(Roche Diagnostics, Indianapolis, IN, USA). Insulin and
C-peptide were measured using a Roche E170 analyser
(Roche Diagnostics).
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Blood glucagon-like peptide-1 assays Plasma concentrations
of glucagon-like peptide-1 (GLP-1) were determined by draw-
ing blood samples collected at two different time points (0 and
60 min) during the 75 g frequently sampled OGTT (fsOGTT)/
mixed-meal tolerance test (MMTT) (baseline samples only).
P800 tubes (Becton Dickinson, Wokingham, UK) were used
to provide immediate protection from intrinsic proteolysis.
Quantitative determination of active GLP-1 was achieved
using MSD GLP-1 active kit (product code K150JWC;
Meso Scale Diagnostics, Rockville, MD, USA). Total GLP-
1 was assayed using MSD GLP-1 total kit (product code
K150JVC; Meso Scale Diagnostics).

Abdominal MRI analyses The volume of adipose tissue was
measured in litres using MRI, as described elsewhere [17].
Total abdominal adipose tissue (TAAT) may be separated into
intra-abdominal adipose tissue (IAAT), also known as “viscer-
al’ fat, and abdominal subcutaneous adipose tissue (ASAT).
IAAT is the volume of adipose tissue within the abdominal
cavity. TAAT is the sum of IAAT and ASAT. Liver and pan-
creas fat and iron (T2*) were derived simultaneously using a
multiecho MRI technique, as previously described [17, 18].
This method has the advantage over single voxel MR spec-
troscopy in that regional differences in ectopic fat distribution
can be measured. Furthermore, it is often possible to obtain a
single slice quantification of the liver and pancreas, allowing
simultaneous measurement of fat and iron within two separate
organs. A biexponential curve-fitting model was used to de-
rive the relative signal contributions from fat and water from
the many images normally obtained with the multiecho se-
quence. Briefly, tissue with no fat infiltration generates a very
smooth decay curve, whereas tissue containing a higher level
of fat is characterised by significant oscillations throughout
the decay curve [18]. A further output from the multiecho
technique is T2* tissue values; as changes in these are indic-
ative of iron content, this provides a clinically relevant addi-
tional measurement. Tissue iron concentration (mg/g dry
weight tissue) was estimated from T2* using a validated
model [19].

Diet assessment Self-reported dietary intake was assessed by a
24 h multi-pass method, using food habit and 24 h recall
questionnaires. Analysis of these diet data was undertaken
using Dietplan-6 (version 6.70.43, 2013; Forestfield
Software, Horsham, UK). The specific analysis methods are
described in detail elsewhere [7]. We also objectively assessed
diet using discriminative metabolite signatures, an approach
described in detail elsewhere [20]. Briefly, each participant’s
serum metabolite profile was obtained using a targeted meta-
bolomics assay (Absolute/DQ p180 Kit; BIOCRATES Life
Sciences, Innsbruck, Austria), which simultaneously quan-
tifies 188 metabolites. In a previously published diet interven-
tion study [20], serum samples had been collected in 19

participants who had undergone a metabolic ward-based su-
pervised diet intervention. We assayed these blood samples
using the BIOCRATES Absolute/DQ p180 Kit and derived
diet-discriminatory metabolomic signatures, using previously
described methods [20]. These data were then used to predict
the dietary characteristics of the IMI DIRECT study
participants.

Physical activity assessment Objective measures of physical
activity were derived from triaxial accelerometers (ActiGraph
GT3X+/GT3X+w/GT3X+bt; ActiGraph Co., Pensacola, FL,
USA) as described previously [7]. Raw data files (.gt3x) were
converted to comma separated value (.csv) format storing raw-
est possible accelerations for each axis at a resolution of 30 Hz
using ActiLife 6 (version 6.11.5; ActiGraph Co.). All inferred
measures of physical activity were calculated using PAMPRO
(version uploaded 21 Oct 2015; MRC Epidemiology unit,
Cambridge, UK), custom open source software available un-
der public license (https://github.com/Thomite/pampro). Data
from each axis of acceleration was auto-calibrated to local
gravity. Non-wear was inferred as a vector magnitude SD of
less than 4 mg for a consecutive period greater than 60 min.
All measures presented here have been adjusted for diurnal
rhythm to account for bias from non-wear removal. However,
due to the wear method (non-dominant wrist fastened using
the manufacturer’s non-removable hospital band), intermittent
non-wear time was rare. The main physical activity estimates
presented here are high-pass-filtered vector magnitude
(hpfVM), which infers intensity of participants’ movement
in any direction at any given time (here, averaged during wear
period). Time spent in established physical activity intensities
by physical activity energy expenditure was estimated using
calculated hpfVM cutpoints: sedentary (<48 mg hpfVM),
light (48—154 mg hpfVM), moderate (154-389 mg hpfVM)
and vigorous (>389 mg hpfVM). The methods used to infer
these measures have been validated and described in detail
elsewhere [21].

DNA extraction and genotyping DNA extraction was carried
out using Maxwell 16 Blood DNA purification kits and a
Maxwell 16 semi-automated nucleic acid purification system
(Promega, Southampton, UK). Genotyping was conducted
using the Illumina HumanCore array (HCE24 v1.0) and ge-
notypes were called using Illumina’s GenCall algorithm.
Samples were excluded for any of the following reasons: call
rate <97%; low or excess mean heterozygosity; sex discor-
dance and monozygosity. Genotyping quality control was
then performed to provide high-quality genotype data for
downstream analyses using the following criteria: call rate
<99%; deviation from Hardy—Weinberg equilibrium (exact
p<0.001); variants not mapped to human genome build
GRCh37 and variants with duplicate chromosome positions
(a total of 30,318 markers were excluded). A total of 3032
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samples and 517,958 markers across the two studies passed
quality control procedures. We took autosomal variants with
MAF >1% that passed quality control and constructed axes of
genetic variation using principal components analysis imple-
mented in the GCTA (version 1.24.4, downloaded from
https://cnsgenomics.com/software/gcta/#Download) software
to identify ethnic outliers defined as non-European ancestry
using the 1000 Genomes samples as reference. We identified
six individuals as ethnic outliers.

Additional measures (not presented here) Biomarker discov-
ery analyses using these data also employ additional measures
(including ‘omic’ measures), which are outside the scope of
this cohort description. Additional measures that are not de-
scribed here include transcriptomics (RNA sequencing from
fasting whole blood), microbiomics (DNA isolation and deep
sequencing in faecal samples), proteomics (targeted array in
fasting plasma) and metabolomics (targeted and untargeted
assays in fasting plasma). GAD/islet antigen-2 assessments
from fasting serum samples were also undertaken. Data from
the Recent Physical Activity Questionnaire (RPAQ) and sleep
diaries were also collected in subcohorts.

Statistical power of study A detailed section on sample size
and power for the study is available in the previously pub-
lished rationale and design paper [7]. Briefly, statistical power
will vary depending on a number of factors specific to the
analysis to be carried out, such as biomarker effect sizes,
variance/frequency of outcome and biomarker, statistical
modelling methods employed, number of tests (multiple test-
ing adjustment) and of course sample size, available for the
relevant variables included in the model. The dataset will
therefore be well powered for some analyses while it may be
underpowered for other analyses and will thus be covered in
detail for the specific scenarios in subsequent analyses.

Statistical methods for descriptive data Based on ADA 2011
diagnostic criteria, impaired fasting plasma glucose is 5.6—
6.9 mmol/l (100-125 mg/dl), impaired glucose tolerance is
2 h 75 g OGTT plasma glucose 7.8—11.0 mmol/l (140-
199 mg/dl) and prediabetes HbA . is 4048 mmol/mol (5.7—
6.4%) [2]. Accordingly, below and above these cut-offs was
considered ‘normal’ and ‘diabetic’ ranges, respectively.
Cohort 1 was stratified into two categories of blood glucose
level: normal glucose regulation (NGR) and impaired glucose
regulation (IGR). NGR was defined as the HbA,, fasting
glucose and 2 h glucose values being within the normal ranges
for each measure. IGR was defined as there being impaired
values in at least one of HbA ., fasting glucose or 2 h glucose.
Cohort 2 was stratified into treatment categories: lifestyle ad-
vice only or metformin plus lifestyle advice. Descriptive sta-
tistics are presented as mean + SD. Pairwise Pearson correla-
tions were calculated for all key variables described here. For
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these analyses, continuous variables were first inverse normal
transformed and then adjusted for age, sex and study centre by
two-step residual regression. We present the same type of data
for anthropometric and glycaemic variables for the main
follow-up visits, as well as the differences for these variables
between the baseline and the final follow-up visit measures
(follow-upA = final follow-up value — baseline value). We
also calculated pairwise Pearson correlations for the follow-
upA values; for these analyses, continuous variables were first
inverse normal transformed and then adjusted for age, sex,
study centre and days since baseline visit by two-step residual
regression. All statistics were computed using R software ver-
sion 3.4.0 [22]. The IMI DIRECT data release version used
for the analyses in this article was direct 03-29-2019.

Glycaemic trait modelling Glycaemic traits were derived from
the 75 g fSOGTT (sampling at 0, 15, 30, 45, 60, 90, 120 min)
and MMTT (sampling at 0, 30, 60, 90, 120 min) for cohort 1
and cohort 2, respectively. Analyses used a mathematical
model that describes the relationship between insulin secretion
and glucose concentration [23, 24]. The model expresses in-
sulin secretion as the sum of two components, the first of
which represents the dependence of insulin secretion on abso-
lute glucose concentration at any time during the fsSOGTT/
MMTT, through a dose-response function. Characteristic pa-
rameters of the dose—response relationship are the mean slope
over the observed glucose range, denoted as glucose sensitiv-
ity. The dose—response relationship is modulated by a poten-
tiation factor, which accounts for the fact that during acute
stimulation, insulin secretion is higher on the descending
phase of hyperglycaemia than at the same glucose concentra-
tion on the ascending phase. In participants with NGR and
normal insulin secretion, the potentiation factor typically in-
creases from baseline to the end of a 2 h OGTT [25]. To
quantify this excursion, the ratio between the 2 h and the
baseline value was calculated. This ratio is denoted as poten-
tiation ratio and reflects late insulin release. The second insu-
lin secretion component represents the dependence of insulin
secretion on the rate of change of glucose concentration. This
component is termed derivative component and is determined
by a single parameter, denoted as rate sensitivity. Rate sensi-
tivity reflects early insulin release [25].

The model parameters were estimated from glucose and C-
peptide concentrations by regularised least-squares, as previ-
ously described [23]. Regularisation involves the choice of
smoothing factors, which were selected to obtain glucose
and C-peptide model residuals with SDs close to expected
measurement error (~1% for glucose and ~4% for C-peptide).
Insulin secretion rates were calculated from the model every
5 min. The integral of insulin secretion during the fSOGTT
was denoted as total insulin output.

The validity of the fSOGTT and MMTT for the assessment
of insulin sensitivity has been shown in the original
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Table 1 Baseline clinical and

phenotypic characteristics of co- Characteristic Cohort 1 Cohort 2
horts 1 and 2 (prediabetes) (diabetes)
Value n Value n
Male sex, % 76 2127 58 789
Time since screening visit, months 6.4 (4.8) 2127 0.9 (0.9) 787
Age (years) 62 (6.2) 2127 62 (8.1) 787
Height, cm 174 (8) 2127 171 (9.8) 787
Weight (kg) 85 (13) 2127 89 (17) 787
Waist circumference, cm 99 (11) 2127 103 (13) 781
BMI, kg/m? 27.9 (4.0) 2127 30.5 (5.0) 787
Systolic blood pressure, mmHg 131 (15) 2107 131 (16) 664
Diastolic blood pressure, mmHg 81 (9.0) 2107 75 (9.5) 664
HbA., mmol/mol 37 (2.9) 2113 46 (5.8) 784
HbA,., % 5.5(0.3) 2113 6.4 (0.5) 784
Fasting glucose, mmol/l 5.7 (0.6) 2126 7.2 (1.4) 787
Fasting insulin, pmol/l 78.2 (54.5) 2124 106.6 (70.9) 787
Fasting HDL-cholesterol, mmol/l 1.3(0.4) 2123 1.2 (0.4) 789
Fasting LDL-cholesterol, mmol/l 3.2(0.9) 2123 2.3(1.0) 781
Fasting triacylglycerol, mmol/l 1.4 (0.6) 2123 1.5 (0.9) 789
ALT, U/ 18 (12) 2120 26 (14) 789
AST, U/l 27 (10) 2052 26 (12) 789
Total cholesterol, mmol/l 5.1(1) 2123 4.2(1.2) 789
Fasting intact GLP-1 concentration, pg/ml 0.41 (0.59) 2121 0.67 (1.05) 782
Fasting total GLP-1 concentration, pg/ml 6.5 (4.4) 2120 9.4 (9) 780
Fasting glucagon, pg/ml 98 (41) 2116 111 (51) 758
1 h intact proinsulin, pg/ml 19 (11.7) 578 21 (13.6) 382
1 h GLP-1 increment, pg/ml 9.3 (12.1) 2103 9.8 (12.5) 774
1 h glucagon increment, pg/ml —10.7 (38) 2097 -3.9(51) 746
Mean 2 h glucose, mmol/l 7.7 (1.5) 2126 9.3(2) 779
Mean 2 h insulin, pmol/l 383 (260) 2126 457 (275) 779
2 h glucose, mmol/l 5.9(1.6) 2127 8.6 (2.8) 786
2 h insulin, pmol/l 48 (48) 2102 445 (348) 786
Fasting insulin secretion, pmol min~! m 2 106 (40) 2126 137 (48) 779
Integral of total insulin secretion, nmol/m? 52 (18) 2126 44 (14) 779
Glucose sensitivity, pmol min™" m 2 (mmol/1)”! 113 (55) 2126 83 (55) 779
Rate sensitivity, pmol m 2 (mmol/1) ! 921 (699) 2126 1124 (1082) 779
Potentiation factor ratio, dimensionless 1.7 (0.6) 2126 1.4 (0.6) 777
Insulin sensitivity (2 h OGIS), ml min ' m > 381 (59) 2118 298 (69) 775
Stumvoll insulin sensitivity index, ml min ' kg™ 7.8 (2.4) 2099 5.5(2.7) 775
Matsuda insulin sensitivity index, arbitrary units 5@.1) 2126 2.92.2) 779
TAAT, 1 552.4) 956 5722 374
ASAT, 1 6.1(2.6) 953 8.1(3.8) 374
TAAT, | 12 (3.9) 953 14 (4.8) 374
Liver fat, % 5(4.7) 959 8.7 (7.1) 498
Pancreatic fat, % 13 (8.9) 929 11 (7.3) 446
Liver iron content, mg/g tissue 1.3 (0.26) 958 1.4 (0.31) 498
Pancreatic iron content, mg/g tissue 1.3(0.43) 927 1.2 (0.33) 447
Mean physical activity intensity: hpfVM, mg 37 (10.2) 1714 34 (9.9) 722
Sedentary, % of time 82 (4.2) 1714 83 (4.3) 722
Light physical activity, % of time 10.9 (2.3) 1714 104 (2.3) 722
Moderate physical activity, % of time 5.3 (1.5) 1714 4.9 (1.6) 722
Vigorous physical activity, % of time 1.5(0.7) 1714 1.3(0.7) 722
Total energy intake, kJ/day 8213 (3142) 2064 7699 (2519) 707
Carbohydrate intake, g/day 223 (96) 2064 213 (78) 707
Fat intake, g/day 79 (39) 2064 72 (33) 707
Protein intake, g/day 99 (44) 2064 87 (31) 707
Sugar intake, g/day 96 (53) 2064 85 (43) 707
Fibre intake, g/day 20 (9.8) 2064 19 (8.4) 707
Saturated fat intake, g/day 29 (16) 2064 26 (14) 707
Monounsaturated fat intake, g/day 27 (17) 2064 24 (13) 707
Polyunsaturated fat intake, g/day 13 (8.2) 2064 12 (8) 707

Data are mean (SD) except for sex, which is n%, and reflect the data available at the time of publication

Values are untransformed and unadjusted
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publications presenting the indices [26-28]. In the studies, the
OGTT/MMTT indices are compared with values obtained by
euglycaemic glucose clamp. The validity of the beta cell func-
tion model is supported by numerous studies [25]. For beta
cell function, it is not possible to validate an OGTT/MMTT
method against the classical tests with glucose intravenous
infusion, due to the presence of the incretin effect. However,
it has been shown that the estimated beta cell dose-response is
consistent with the graded glucose infusion test across the
spectrum of glucose tolerance [29, 30].

Results

Cohort 1 (prediabetes) Of 2235 enrolled participants in co-
hort 1, 2127 passed all inclusion, exclusion and quality con-
trol criteria. Of these, 1419 (67%) had IGR according to at
least one ADA category for HbA,., fasting glucose or 2 h
glucose [2] and were thus within the target ‘prediabetes’
range. A total of 693 participants (33% of cohort 1)
displayed NGR according to all three glycaemic measures.
Participants with prevalent type 2 diabetes (n = 105) or who
withdrew from the study (n=3) were excluded from further
analyses.

The number of participants enrolled into cohort 1 varied
between centres, with the Finnish subcohort being the largest
(providing 58% [n = 1240]) of the total cohort 1 baseline sam-
ple. The other centres in the Netherlands, Denmark and
Sweden enrolled 22% (n=473), 13% (n=275) and 7% (n=
139) of the total cohort, respectively.

The ratio of men to women varied in each subcohort, with
all participants at the Finnish centre being male, and 43%,
45% and 29% being male in the subcohorts from the
Netherlands, Denmark and Sweden, respectively.

Detailed participant baseline characteristics for cohort 1 are
shown in Table 1 (and stratified by glycaemic category in
electronic supplementary material [ESM] Table 1). Figure 2
shows the pairwise correlations between a selection of key
phenotypic variables at baseline. Participant characteristics at
the follow-up visits and the difference (A) between baseline
and final follow-up for cohort 1 are shown in Table 2. The
pairwise correlations between the baseline to final follow-up
difference for anthropometric and glucose-control variables
are shown in Fig. 3.

Briefly, at baseline, participants had a mean (SD) age of 62
(6.2) years, BMI 27.9 (4.0) kg/mz, HbA . 37 (2.9) mmol/mol
[5.5 (0.27)%], fasting glucose 5.7 (0.6) mmol/l, 2 h glucose
5.9 (1.6) mmol/l, fasting insulin 10.9 (7.6) pmol/l, glucose
sensitivity 113 (55) pmol min ' m 2 (mmol/) ' and insulin
sensitivity (2 h oral glucose insulin sensitivity [OGIS]) 381
(59) ml min ' m 2. Participants had a 0—48 month mean (SD)
difference in fasting plasma glucose levels of 0.3 (0.2) mmol/l.

@ Springer

Fig. 2 Pairwise correlation matrix. Fill colour indicates Pearson P>
correlation coefficient (), where positive is denoted by red fill, inverse
by blue fill and magnitude by intensity. Cohorts 1 and 2 are separate,
above and below the diagonal, respectively. All continuous variables
were normally transformed and adjusted for age, sex and study centre.
ActGLP1min0, fasting intact GLP-1 concentration; BasalISR, fasting
insulin secretion; CHOI, carbohydrate intake; Chol, total cholesterol;
DBBP, diastolic blood pressure; Fatl, fat intake; Fibrel, fibre intake;
Glucagonmin0, fasting glucagon; Glucose, fasting glucose;
GlucoseSens, glucose sensitivity; HDL, fasting HDL-cholesterol;
IncGLP1min60, 1 h GLP-1 increment; IncGlucagonmin60, 1 h
glucagon increment; Insulin, fasting insulin; LDL, fasting LDL-
cholesterol; LiverFat, liver fat; Liverlron, liver iron content; LPA, light
physical activity (% of time); Matsuda, Matsuda insulin sensitivity index;
MeanGlucose, mean 2 h glucose; Meanlnsulin, mean 2 h insulin; MPA,
moderate physical activity (% of time); MUFatl, monounsaturated fat
intake; OGIS, 2 h insulin sensitivity; PA, mean physical activity
intensity; hpfVM; PancFat, pancreatic fat; Panclron, pancreatic iron
content; PFR, potentiation factor ratio; Prolnsmin60, 1 h intact
proinsulin; Proteinl, protein intake; PUFatl, polyunsaturated fat intake;
RateSens, rate sensitivity; SatFatl, saturated fat intake; SBP, systolic
blood pressure; SPA, sedentary (% of time); Stumvoll, Stumvoll insulin
sensitivity index; Sugarl, sugar intake; TEI, total energy intake; TG,
fasting triacylglycerol; TotalISR, integral of total insulin secretion;
TotGLP1minO, fasting total GLP-1 concentration; TwoGlucose, 2 h
glucose; Twolnsulin, 2 h insulin; VPA, vigorous physical activity (% of
time)

Cohort 2 (diabetes) Of 830 individuals in cohort 2 enrolled to
attend the screening visit, 789 passed all inclusion, exclusion
and quality control criteria. Of these, 272 were treated with
lifestyle modification plus metformin and 517 were treated
with lifestyle intervention only. Participants who withdrew
consent, who were receiving any other oral hypoglycaemic
agent or who reported ever receiving insulin treatment were
excluded (n=41).

Of'the participants in cohort 2 at baseline, the UK (Dundee,
Exeter, Newcastle), Dutch (Amsterdam), Swedish (Lund) and
Danish (Copenhagen) study centres enrolled 21% (n=167),
18% (n=141), 21% (n=166), 21% (n=167), 12% (n=96)
and 7% (n=52) of the total cohort, respectively; 52—63% of
the subcohort participants were male.

Detailed participant characteristics and key variables for
cohort 2 at baseline are shown in Table 1 (and stratified by
treatment category in ESM Table 1). Figure 2 shows the
pairwise correlation matrix for key variables at baseline ad-
justed for age, sex and study centre. Participant characteristics
for follow-up visits and the difference between the baseline
and final follow-up visit (A) for cohort 2 are shown in Table 2.
A pairwise correlation matrix for the anthropometric and
glucose-control A variables are shown in Fig. 3.

Briefly, at baseline, participants had a mean (SD) age 62
(8.1) years, BMI 30.5 (5.0) kg/m?, HbA . 46.5 (5.8)
mmol/mol [6.4 (0.53)%], fasting glucose 7.2 (1.4) mmol/l,
2 h glucose 8.6 (2.8) mmol/l, fasting insulin 107 (71) pmol/l,
glucose sensitivity 83 (55) pmol min ' m 2 (mmol/l) ' and
insulin sensitivity (2 h OGIS) 298 (69) ml min~ ' m 2.
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Participants had a 0 months to 18 months mean difference in
fasting plasma glucose levels of 0.8 (1.9) mmol/l.

Genetic population substructure As some study centres en-
rolled participants into both cohorts, we elected to charac-
terise the genetic population substructure across the co-
horts by study centre (i.e. pooling both cohorts at a given
centre where possible). Genetic substructures closely map

0.0 0.5 1.0

to the geographic location of the populations [31], indicat-
ing ethnic homogeneity within regions from which the co-
horts were recruited, whereas there is far greater heteroge-
neity between centres, the latter driven mainly by the in-
clusion of Finnish participants. This is illustrated in Fig. 4
where Finnish participants form a distinct cluster (to the
north east) compared with the population from the other
cohorts.

@ Springer
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Fig.3 Pairwise correlation matrix
of follow-up A (difference
between 48 month follow-up
assessment and baseline visit).
Fill colour indicates Pearson
correlation coefficient (r), where

positive is denoted by red fill, Height

inverse by blue fill and magnitude

by intensity. Cohorts 1 and 2 are Weight |+ . I
separate, above and below Waist o+ oe o
diagonal, respectively. All . .
continuous variables were BMI . o
normally transformed and SBP

adjusted for age, sex and study bBP ..

centre. BasalISR, fasting insulin
secretion; DBP, diastolic blood HbA;, -
pressure; Glucose, fasting
glucose; GlucoseSens, glucose
sensitivity; Insulin, fasting
insulin; Matsuda, Matsuda insulin
sensitivity index; MeanGlucose,
mean 2 h glucose; MeanInsulin,
mean 2 h insulin; OGIS, insulin
sensitivity (2 h OGIS); PFR,
potentiation factor ratio;
RateSens, rate sensitivity; SBP,
systolic blood pressure; Stumvoll,
Stumvoll insulin sensitivity
index; TotalISR, integral of total
insulin secretion; TwoGlucose,

2 h glucose; Twolnsulin, 2 h

Insulin .
TwoGlucose - -

Twolnsulin |+«
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insulin.
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Discussion

Here, we report the characteristics of the IMI DIRECT cohorts
at baseline, at 18 months follow-up, and at 48 or 36 months
follow-up (for cohorts 1 and 2 respectively) for glycaemic
deterioration and consider these results in the context of the
implemented protocols and the plans outlined in the design
and rationale paper published previously [7]. The descriptive
statistics, pairwise correlations and genetic substructures pre-
sented in this article are not intended for aetiological infer-
ence; instead, the purpose is to provide context and details
for subsequent IMI DIRECT papers, as well as to inform
scientists outside the Consortium who might in the future
consider using the IMI DIRECT data in their research.
Major advances in technologies and methods over the past
decade make high-resolution quantification of disease pheno-
types and processes possible in large sample collections.
Applying modern assays to historical biosamples is particular-
ly useful when studying processes that take decades to unfold.
However, biosamples often degrade during long-term storage

Glucose | ++ . .
-1

mmllll

W Cohort 1 (prediabetes), 4 Cohort 2 (diabetes)

- p<0.05 : p<0.005 .. p<0.0005
Pearson correlation coefficient (r)
-1.0 0.5 0.0 0.5 1.0

and many older studies did not deploy the advanced phenotyp-
ing methods available today. Recognising these limitations, we
designed and initiated two state-of-the-art prospective cohort
studies as part of the IMI DIRECT Consortium. Designed for
biomarker discovery in glycaemic deterioration and diabetes
progression, the IMI DIRECT cohorts include conventional
and cutting-edge phenotyping techniques and technologies that
are repeated on multiple occasions during a follow-up period
of up to 48 months (currently ongoing). We note that the sub-
sequent biomarker discovery analyses using these cohorts will
combine the clinical phenotypic data described in this paper
with omic measures such as transcriptomics (RNA sequencing
from fasting whole blood), microbiomics (DNA isolation and
deep sequencing in faccal samples), proteomics (targeted array
in fasting plasma) and metabolomics (targeted and untargeted
assays in fasting plasma).

The recruitment strategies for the two IMI DIRECT cohorts
differed in that cohort 1 focused on recruiting participants
from an existing large sample frame (N =24,682) derived
from established prospective cohort studies, whereas cohort

@ Springer
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Fig. 4 Genetic population structure within the cohorts. A statistical sum-
mary of genetic data from cohorts 1 and 2 (combined) based on principal
component axis one (PC1) and axis two (PC2). Points are coloured ac-
cording to recruitment centre

2 used clinical registries to identify eligible participants. The
strategy for recruiting participants from existing prospective
studies for cohort 1 facilitated access to data that were used to
predict risk of rapid glycaemic deterioration. However, despite
the relatively large sampling frame, it was necessary to enrol
lower-risk participants in order to achieve the target sample
size; in doing so, we recognised that this would likely reduce
the overall rate of glycaemic deterioration in the cohort, al-
though the generalisability of the study’s findings will be
greater. In cohort 2, we fell slightly short of the target sample
size of 1000 participants (N =789 with complete and high-
quality data eventually enrolled). This reflects the difficulties
in engaging some general practices, which was necessary to
access diabetes registries in some regions.

We stratified cohorts 1 and 2 by broad glucose-control
category (overtly normoglycaemic or impaired glycaemic reg-
ulation in any ADA category) or treatment category (lifestyle
only vs lifestyle plus metformin), respectively, to reflect the
basic stages of progression at baseline for descriptive purposes.

The two IMI DIRECT cohorts are not identical. However,
they share many methodology parallels that permit compli-
mentary analyses to be performed, such as determining wheth-
er biomarkers for glycaemic deterioration are conditional on
disease state. Nevertheless, several key differences in the pro-
tocols (e.g. fSOGTT vs MMTT) should be considered when
interpreting results. We also note a difference in missing
accelerometry (physical activity) data between cohort 1
(19%) and cohort 2 (8.5%); we were unable to definitively

@ Springer

explain this discrepancy. Partitioning change from error is
very challenging when variables are assessed at only two time
points owing to regression to the mean. Notwithstanding this,
we note a modest 0 month to 48 month difference in mean
(SD) fasting plasma glucose levels, 0.3 (0.5) mmol/l and 0.8
(1.9) mmol/l in cohort 1 and cohort 2, respectively (Table 2),
which likely reflects the relatively brief between-visit interval.
Furthermore, we note that the 0.5 mmol/l and 1.9 mmol/l SDs
in these differences, for cohort 1 and cohort 2, respectively,
suggest the potential heterogeneity in changes in glycaemic
control within each cohort. With this in mind, the IMI
DIRECT cohorts are being followed further with record-
linkage through 2026. It should also be noted that the IMI
DIRECT cohorts are predominantly of European ancestry;
therefore results from subsequent analyses on these cohorts
will need to be replicated in other cohorts of relevant ancestry
before generalising findings to other ethnicities. Finally, we
note that the results presented here reflect the data available at
publication and as long-term follow-up progresses additional
data will accrue.

Conclusion

The study described here is being used to unravel the heteroge-
neous nature of glycaemic deterioration in individuals at risk of
diabetes and in those with diabetes, and to discover biomarkers
that might prove useful for patient stratification and therapeutic
optimisation. As more prospective data are accrued, the IMI
DIRECT cohorts will grow in value. In the long term, the IMI
DIRECT Consortium intends to make these data available to
other researchers through a managed-access repository.
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