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A B S T R A C T

Regression analysis is a common tool in performance management and measurement in industry. Many firms
wish to optimise their performance using Stochastic Programming but to the best of our knowledge there exists
no scenario generation method for regression models. In this paper we propose a new scenario generation
method for linear regression used in performance management. Our scenario generation method is able to
produce more representative scenarios by utilising the data driven properties of linear regression models and
cluster based resampling. Secondly, our scenario generation method is more robust to model ‘overfitting’ by
utilising a multiple of linear regression functions, hence our scenarios are more reliable. Finally, our scenario
generation method enables parsimonious incorporation of decision analysis, such as worst case scenarios, hence
our scenario generation facilitates decision making. This paper will also be of interest to industry professionals.

1. Introduction

Firms are frequently required to undertake decisions under un-
certainty, in a range of sectors such as finance [14], power production
[15] and agriculture planning [5]). Stochastic Programming provides a
powerful method for modelling and optimising decisions under un-
certainty. Stochastic Programming has been proven to provide optimal
solutions to decisions under uncertainty and significant cost savings, for
example $450–$1000 million [33].

A key aspect of Stochastic Programming is scenario generation:
discretisation of the random process into scenarios. It can be shown that
scenario generation is particularly beneficial if a model is significantly
affected by changes in value of the random variables [5]. Most im-
portantly, the scenario generation method fundamentally determines
the quality of the modelling, since crude scenario generation will not
sufficiently model the random process.

Stochastic programming can be applied to a range of applications,
such as optimising a firm’s performance (see for example
[26,35,37,42]). Performance management is an increasingly important
tool used in industry [16], and is frequently used as a method to
measure and improve performance. For example in [4] performance is
measured using the balanced scorecard methodology. Performance
management can be applied to wide range of areas in an organisation,
from measuring the performance of a specific product or service,

measuring the quality of a business process to measuring the overall
performance of a department.

Performance management is a particularly pertinent area to
Management Science because performance management is concerned
with decision making issues to improve organisational effectiveness.
Moreover, it has been demonstrated that performance management
leads to improved financial performance (such sales growth), higher
motivation amongst the workforce (due to improved measurement of
performance), and greater flexibility in responding to changes in the
business environment. Consequently, Management Science has alot to
offer in terms of improving performance management techniques.

One frequently used method in performance analysis is simple
linear regression (SLR), see for example [2,19,31,38]. Although many
firms and analysts are aware of the disadvantages of SLR, it is fre-
quently applied in performance analysis for a wide range of reasons.
This is because SLR has many attractive features for performance
analysis, such as applicability to large datasets, tractable implementa-
tion and little training is required to utilise it compared to other
quantitative methods. Moreover, alternative quantitative methods do
not necessarily provide better analysis results.

Whilst SLR is a common performance analysis tool and stochastic
programming is frequently used to optimise performance, to the best of
our knowledge there is no scenario generation method for regression
analysis. Although many scenario generation methods exist, such as
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moment matching (to be discussed in the proceeding sections), these
are not directly applicable to regression analysis. Moreover, such sce-
nario generation methods are not necessarily desirable for regression
models, or performance management applications.

In this paper we propose a new scenario generation method that can
be applied to SLR for performance management applications. Our
method is able to provide more representative scenarios, rather than
depending on unrealistic error distributions, and more reliable sce-
narios by resampling the data. We are also able to incorporate decision
analysis information, such as worst case scenarios, by conveniently
adjusting our scenario generation process.

This paper is organised as follows: in the next section we review
scenario generation and survey the current literature on scenario gen-
eration. In the next section we explain our regression based scenario
generation method, providing the method and discussing the ad-
vantages of the method. In the next section we conduct numerical ex-
periments to demonstrate our scenario generation method and compare
our method against a standard scenario generation, presenting and
analysing our results. We finally end with a conclusion.

2. Introduction to scenario generation and literature review

In this section we introduce scenario generation and review the
current literature on scenario generation methods.

2.1. Introduction to stochastic programming scenario generation

Firms are frequently interested in improving their performance, in a
variety of areas of their business. In particular, the aim is to optimise
over a set Θ, whose elements represent feasible decisions that a decision
maker can undertake to optimise some outcome. Our goal is to optimise
our objective or cost function f(.) over the set Θ. To define Θ more
specifically, we have [13]

= = …g i ms s S s: { | , ( ) 0, 1, 2, , },n
i

where g s( )i represents constraints on the decision s, = …i m1, 2, , .
We also note in passing that typically we have s S n.

Let us now define a probability space { , , }, where Ω denotes
the sample space, denotes a collection of events in Ω with probability
measure . We have a filtered probability space { , , { } , },t t 1
where the set { }t denotes the set of information that is available to the
observer up to time t and we have

< <u t u t T, , with .u t T

The set { }t t 1 is also known as a filtration. We have a time index
…t T{1, 2, , }, where T is the final time period, and the index is also

known as the time stage of the scenario tree (to be defined later). We
define ω as a scenario, or a state of the world, which is a finite element
of the set ω ∈Ω [5]. We can consider Ω as the set of all outcomes, and ω
has the associated probability measure .

In stochastic optimisation the objective function and the constraints
are function of the decision variable s and the scenarios ω [13], that is
f s( , ) and g s( , )i respectively (for a review see [43]). If we assume
(without loss of generality) that our optimisation is a minimisation
problem then the optimisation is formulated as [13]

= …

f

g i m

s

s

min ( , ),

s.t. ( , ) 0, 1, 2, , .i

s S

Stochastic programming is a flexible and widely applicable method
that can take into account high degrees of uncertainty. As a modelling
method stochastic programming has a number of important advantages
over alternatives. Firstly, one can include constraints without losing
tractability in solutions. Secondly, stochastic programming can be ap-
plied to a wide range of stochastic processes and this is not always
possible in other modelling methods.

A stochastic program is defined as [13]

f dsmin ( , ) ( ).
s S (1)

The integral in Eq. (1) typically cannot be solved as it is intractable,
moreover, the intractability increases in the presence of constraints and
these must be incorporated to have realistic models. In order to solve
the integral one may apply numerical analysis methods (such as
quadratures) however they may not be able to satisfactorily solve the
integral, especially for non-trivial probability measures . An alter-
native solution is to minimise (as suggested in [13])

=f smin ( , ¯), where ¯ [ ].
s S

However, such a simplification can lead to erroneous solutions (see
[13] for a discussion).

In order to feasibly solve stochastic programs, the Eq. (1) is mini-
mised as
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where Nt is the total number of scenarios at time index t; t
i is scenario i

at time index t; pt
i is the branch probability of scenario t

i at time index t
in the scenario tree; f s( , )t

i
t
i is the objective function (as before). The

s s{ }ti is the set of decisions at each time stage …t T{1, 2, , }. The
decision variable st are adapted to the filtration t 1 to reflect the non-
anticipative condition of stochastic programming. The non-anticipative
condition means that decisions are made without anticipating future
outcomes. The stochastic programming formulation (2) can be easily
minimised by computation, including in the presence of constraints.

In order to solve Eq. (2) we require a method to produce ,t
i ∀i, t and

this is known as scenario generation. Scenario generation involves
discretising a random process into a set of discrete outcomes t

i. To
visualise scenarios one can draw a scenario tree (see [5] for an ex-
ample), where the root node represents ‘today’. The times = …t T1, 2, ,
are also known as time stages of the scenario tree. Each branch of the
scenario tree also has a probability p ,t

i with the standard probability
constraint

< <p i t0 1, , .t
i

One can also see from Eq. () that the quality of the solution depends
significantly upon the scenario generation method applied, hence sce-
nario generation is vital to stochastic programming.

The purpose of scenario generation is to find a good approximation
of the original distribution, with discrete scenario values t

i ∀i, t. This is
essentially a goodness of fit test, for example if we apply the
Kolmogorov–Smirnoff test then we would minimise

F y F ysup| ( ) ( )|,
y

t
g

t
l

where F (.)t
g is the cumulative distribution function associated with the

scenarios at time t and F (.)t
l is the original distribution at time t. The

scenario generation process is a non-trivial method because some ap-
proximation methods perform well for small Nt but perform poorly as Nt

increases. In fact, Kaut and Wallace [23] mention that some scenario
generation methods approximate distributions perfectly if Nt→∞, that
is

F y F y N y| ( ) ( )| 0, as , ,t
g

t
l

t

but perform poorly for small Nt.
In addition to approximating the original distribution, the purpose

of scenario generation is to facilitate decision analysis. In other words,
rather than using a probability distribution for decision analysis, many
decision makers prefer to produce and analyse scenarios as they can be
easier to apply to decision making in real world situations. Hence
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scenario analysis and scenario generation are popular in industry. In
such scenario analyses, one is not just interested in approximating a
distribution but also generating scenarios of interest to a decision
maker. For example, a particular case in point in industry is in-
corporating ‘worst case scenarios’, or the effect of low probability but
high impact scenarios [43] in modelling and optimisation methods.

In addition to obtaining scenarios of interest from a probability
distribution, decision makers are also interested in creating scenarios
that can incorporate their expert opinions or judgements. This is desired
for a number of reasons. Firstly, there is sometimes insufficient re-
presentative data to ensure the scenario generation process is unbiased,
hence decision makers want to incorporate their own judgement or
opinions. For example, in financial scenario generation a data sample of
the past 5 years would not be representative of the next 5 years (5 years
prior to the Global Financial Crisis most stock markets were generally
increasing but after the financial crisis started most markets declined).

Secondly, decision makers have become increasingly sceptical of
any quantitative models since the start of the Global Financial Crisis, as
financial models have been partly blamed for the crisis and were unable
to fully take into account all the risks and variables in their applica-
tions. Consequently, decision makers want to incorporate their own
expert opinions and judgements, rather than relying solely on quanti-
tative models.

2.2. Scenario generation methods

In this section we review the main scenario generation methods in
stochastic programming. Firstly, the most common type of scenario
generation method is Monte Carlo sampling based scenario generation,
where different Monte Carlo based sampling methods give different
scenario generation methods [1]; this is one of the most popular sce-
nario generation methods due to its analytical and computational
simplicity. Examples of Monte Carlo based scenario generation are [22]
and the famous Russell–Yasuda Kasai model [8].

Monte Carlo based scenario generation essentially involves random
sampling of a probability distribution, so that each sample produces a
scenario t

i. In Monte Carlo based scenario generation, we typically
assume

= = = …p
N

i N t T1 , 1, ., , 1, 2, , .t
i

t
t

In other words, all scenarios t
i have equal probabilities at a given time

stage t. The simplest Monte Carlo based scenario generation method is
inverse transform sampling based scenario generation. In inverse
transform sampling we firstly obtain Nt random samples from the
Uniform distribution over the unit interval U(0, 1), that is

… U, , , , where (0, 1).N1 2 (.)t

To produce scenarios t
i at time stage t in the scenario tree, we require

the inverse cumulative distribution function associated with the sce-
narios t

i a time stage t, that is F (.)t
1 [27]. The scenario (or equivalently

the sample value) is given by

= = … = …F i N t T( ), 1, , , 1, , .t
i

t i t
1

Consequently, each cumulative distribution function value corresponds
to a unique scenario value t

i and sufficient random sampling would
reproduce the original probability distribution.

Another Monte Carlo based scenario generation method is stratified
sampling based scenario generation. Stratified sampling is a modifica-
tion of inverse transform sampling, however in stratified sampling we
stratify or segment the sampling of the probability distribution. In
stratified sampling we firstly segment the unit interval [0,1] such that

< < <I I I0 1.n1 2

As in standard inverse transform sampling, we require a random sample
ξ but instead of ξ∼U(0, 1), we firstly obtain a random sample from the

first interval, that is ξ1∼U(0, I1). We then obtain a random sample
from the next consecutive interval, that is ξ2∼U(I1, I2), and so on until
all intervals have been sampled and then we return to the first interval.
The scenario values t

i are obtained as before, by using the inverse
cumulative distribution function for time stage t:

= F ( ).t
i

t i
1

However, in stratified sampling we are giving more importance to
particular intervals [Ii, Ij] and so increasing the probability of particular
samples being obtained in F ( )t

1
(.) . Hence stratified sampling will result

in more scenarios (or equivalently samples) from the section of the
probability distribution of interest.

A popular stratified sampling method is Latin Hypercube sampling
[32]. This involves dividing the unit interval [0,1] into +n 1 equal
length subintervals, that is

=
+

< < < = …I
n

I I I i n1
1

, where 0 1, and {1, 2, , }.i n1 2

As before, we require Nt random samples …, , , N1 2 t from the uniform
distribution, however ξ1 will be taken from the first subinterval U(0, I1),
ξ2 will be taken from the subinterval U(I1, I2) etc. The scenario value t

i

is obtained by using the inverse cumulative distribution function for
time stage t as before, = F ( )t

i
t i

1 . In sampling each interval at each
iteration one obtains a more representative statistical sample compared
to inverse transform based sampling, when the number of samples is
small.

The second main group of scenario generation methods is statistical
property matching. Each sub-tree within a scenario tree consists of a set
of pt

i probabilities with scenario values t
i. Consequently, each scenario

subtree will have some statistical properties, such as expectation [.], or
moments. Therefore a viable scenario generation process is to match
the statistical properties of the scenario tree at time t to some target
probability distribution’s properties.

A popular property matching scenario generation method is the
moment matching method proposed by Hoyland and Wallace in [21].
In this method, the scenarios in a given subtree originate from some
stochastic process Z(t), with known kth moments at time t

= …+Z t Z t d k t T[ ( )] ( ) , , 1, 2, , .k k

Furthermore the moments for the scenarios in the subtree at time stage t
are

…
=

=
+p k t T( ) , , 1, 2, , ,

i a

i b

t
i

t
i k

where = …i a b, , are the scenarios in the subtree, at time t. The moment
matching scenario generation process can therefore be expressed as

=

=

Q p Z tmin ( ) [ ( )] ,
p i a

i b

t
i

t
i k k

,t
i ti

where Q(.) is typically some distance measure, such as a Euclidean
distance measure.

The moment matching method is therefore an optimisation problem
in itself, where one optimises the choice of p , ,t

i
t
i ∀i, t, to match the

moments Z t[ ( )]k . Consequently, this scenario generation must be
implemented using an optimisation program, whereby the program’s
constraints, objectives or decision variables can be assigned to pt

i and
t
i. Examples of statistical property matching scenario generation are

given in [18,30,40].
The property matching scenario generation method has a number of

advantages. Firstly, it does not require a full specification of the target
probability distribution. For example, for the hypergeometric distribu-
tion the probability mass function is given by
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= =
( )( )
( )Z c( ) ,

d
c

q d
a c

q
a

where ( ).
. is the binomial coefficient, q is the population size, d is the

number in success states in the population, a is the number of draws
and c is the number of observed successes. Therefore to fully specify this
distribution we would require estimates of the three parameters d, q
and a. However, with moment matching scenario generation, we may
only need to specify two moments of the distribution.

The fact that we do not require a full specification of the distribution
is desirable for a number of reasons. However, one may be able to
determine one or two moments of a distribution with high accuracy
(such as the mean etc.). Consequently, property matching scenario
generation is more robust to distribution misspecification.

Secondly, property matching scenario generation can easily in-
corporate model specific information in the scenario trees, unlike other
methods. For example, one may wish to generate scenarios from a
distribution with heavier tails, and this can be easily incorporated by
adjusting the moments of the distribution for moment matching by a
weighting factor t

i. The scenario generation method would now be:

=

=
Q p Z tmin ( ) [ ( )] .

p i a

i b

t
i

t
i

t
i k k

,t
i

t
i

(3)

Alternative scenario generation methods, such as Monte Carlo based
scenario generation, would not be able to adjust their scenario gen-
eration method as easily as moment matching. One would require
modifying the entire function F (.)t

1 for the heavy tail of the distribu-
tion, which is non-trivial task.

Thirdly, property matching can perform better at generating sce-
narios over small Nt, that is smaller sized scenario trees, compared to
other methods. This is because property matching based scenario gen-
eration is not as dependent on Nt compared to other methods to pro-
duce representative scenarios of the distribution. Finally, property
matching scenario generation makes it possible to easily implement
correlations compared to other scenario generation methods.

The main disadvantage of property matching based scenario gen-
eration is that implementing the method requires an optimisation
program for p , ,t

i
t
i ∀i, t. The optimisation is typically nonlinear [21]

and so a non-trivial task. In fact in many instances feasible solutions
may not exist for p , ,t

i
t
i ∀i, t, or the quality of the solutions will heavily

depend on the optimisation method. Also, there may not exist a unique
scenario tree and therefore one will require a criteria for choosing be-
tween scenario trees.

The last main group of scenario generation methods is scenario
generation by simulation. In simulation based scenario generation we
are typically concerned with creating scenario tree paths. For example,
one would produce

…{ , , , , , } ,T1
1

2
1

3
1

4
1 1

that is a set of scenarios over consecutive time stages, from one sample
path. For the next sample path one would then produce

…{ , , , , , } ,T1
2

2
2

3
2

4
2 2

that is a set of scenarios over consecutive time stages, but over different
scenario numbers. The scenario tree is therefore created by one sample
path at a time.

The sample paths are generated by simulating a stochastic process,
hence simulating different stochastic processes leads to different si-
mulation based scenario generation methods. In particular, we simulate
the stochastic component of some stochastic process, for example a
Wiener process W(t). This is especially useful in industry and financial
applications because Wiener processes model many variables of in-
terest, for example the model of stock prices [17].

In order to explain the scenario generation process by simulation,

for the benefit of exposition we will assume the stochastic process is a
stochastic differential equation. Stochastic differential equations are
frequently used in finance to model a range of variables, for example
interest rates, GDP and inflation. An example of scenario generation
from stochastic differential equations can be found in [10].

A stochastic differential equation in V(t) is a differential equation of
the form

= +dV t µ V t dt V t dW( ) ( , ) ( , ) ,

where

+W W u(0, ),t u t
2

where ( , )2 denotes the Normal distribution with mean α and var-
iance κ2, μ(V, t) is known as the drift and σ(V, t) denotes the volatility.
One example of a stochastic differential equation is the Brownian mo-
tion process

= +dV t µ t dt t dW( ) ( ) ( ) .

In simulation we generate values at discrete points in time
0 < t1 < t2 < ⋅⋅⋅ < tn, that is …V t V t V t( ), ( ), , ( ),n1 2 we therefore re-
quire values …W t W t W t( ), ( ), , ( )n1 2 . One can simulate values of W(ti) by
using the following simulation process [17]:

= + = …+ + +W t W t t t R i n( ) ( ) ( ) , for 0, 1, 2, . 1,i i i i i1 1 1

where +Ri 1 is a random sample drawn from the standard Normal dis-
tribution (0, 1). The resulting simulation process is therefore

= + +

= …
+ + + +V t V t µ t t t t R

i n

( ) ( ) ( ) ( ) ,

for 0, 1, 2, . 1.
i i i i i i i1 1 1 1

One can therefore obtain the scenario tree path …{ , , , , }n1
1

2
1

3
1 1 by

calculating +V t( )i 1 for = …i n0, , 1 and we have = V t( )i i
1 . To obtain

the second scenario tree path …{ , , , , }n1
2

2
2

3
2 2 we would restart the

simulation at V(t1) and obtain the scenarios such that = V t( )i i
2 .

Another popular simulated stochastic differential equation in in-
dustry is the Geometric Brownian motion. This is because many real
world phenoma and variables are modelled by Geometric Brownian
motion and Samuelson is credited with introducing it to economic ap-
plications [39]:

= +dV t V t µdt dW( )/ ( ) .

The scenarios i
t are obtained in a similar process to the approach taken

for Brownian motion. We therefore simulate the stochastic process to
obtain a sample path and assign the scenario values i

t to them.
In addition to simulating stochastic differential equations, another

set of commonly simulated equations for scenario generation are
econometric equations. An econometric model for the dependent vari-
able V(t) is generally of the form

= + + + +V t Z t Z t Z t t( ) ( ) ( ) ( ) ( ),n n1 1 2 2

where βi is a constant for = …i n1, 2, , and Zi(t) are independent vari-
ables. The variable ϵ(t) is a noise term, for example

t( ) (0, 1).

The most commonly known econometric model is the GARCH
model [6], which models volatility of economic time series and is one of
the most successful econometric models. The econometric model is si-
mulated by firstly calibrating the model parameters βi and Zi(t),

= …i n1, 2, , . We then obtain V(t), at each time stage t, by randomly
sampling the distribution of ϵ(t). Consequently we obtain a sample path
and this provides a scenario tree path. We repeat the process to obtain
additional sample paths which also provide the other scenario tree
paths.

The advantage of simulation based scenario generation is that we
can generate scenarios from practically any stochastic process. This is a
significant advantage because there exist many analytically intractable
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processes where other scenario generation methods become infeasible.
For simulation based scenario generation we randomly sample only
from the noise term’s distribution, which is generally easy to imple-
ment, and so simulation based scenario generation is possible for most
processes.

The second advantage of simulation based scenario generation is
that it enables one to capture the behaviour of complex processes
through the sample paths that give the scenario tree paths. For example,
an Ornstein–Uhlenbeck process is defined by

= +dV t µ V t dt dW( ) ( ( )) ,

where α is a constant. Both processes have similar probability dis-
tributions and so would provide similar scenarios under Monte Carlo
based scenario generation. However, both processes have different
sample paths, therefore simulation based scenario generation would
produce different scenarios. The key disadvantage of simulation based
scenario generation is that it typically requires running multiple sample
paths and time periods in order to obtain meaningful scenario values.
This can consequently lead to an excessive number of scenarios, which
can increase the computation time of the stochastic optimisation.

For the benefit of completeness we mention that other scenario
generation processes exist and that a comprehensive of all scenario
generation methods would be beyond the scope of this paper. We
mention that the reader may also be interested in firstly surveying
scenario generation methods consistent with no-arbitrage theory [25].
Klaassen [24] investigated the conditions required for financial sce-
nario generation to conform to no arbitrage conditions and states that
in an N-node scenario tree with n assets, spanning time period T, that no
arbitrage opportunities exist if

> = …p i N0, 1, 2, , ,i

such that

= = …
=

=
V e p j n(0) , 1, 2, , ,j

rT

i

i N
i i j

1

( , )

where r is the riskless rate, ω(i, j) is the scenario value in branch i for
asset j, and Vj(0) is the initial price of asset j at time 0. Other scenario
generation methods of interest include boostrapping which is used for
small samples of data (a detailed review of is given in [29]) and is
computationally intensive; this has been used in scenario generation in
[7,9]. Another scenario generation method is scenario reduction (which
reduces the given scenario tree size); see [12,20]) for examples.

3. Regression based scenario generation

In this section we explain our scenario generation method, gen-
erating scenarios from linear regression in performance measurement
applications. We firstly introduce linear regression, the motivation for
scenario generation in linear regression and then discuss our method.

3.1. Introduction to linear regression and performance measurement

Performance management and measurement are increasingly im-
portant tools used in industry [16,28,36]. It is frequently used as a
method to measure and improve performance. For example in [34]
performance management systems are analysed, such as the organisa-
tional processes, monitoring methods and methods of learning. In [4]
performance is assessed in terms of the balanced scorecard metho-
dology, and combined with a fuzzy set concept to measure supply chain
performance.

Whilst a range of methods exist for measuring performance, which
can be qualitative or quantitative, firms have increasingly adopted
quantitative methods. This is because quantitative methods tend to
include more objectivity and they are amenable to substantial analysis
and insight. Alternative performance measurement methods (such as

qualitative methods) rely too heavily on subjective opinions and they
do not facilitate further analysis (such as forecasting). Hence firms have
adopted quantitative measures.

One particularly popular quantitative tool in performance mea-
surement is simple linear regression (SLR), see for instance [31,41] for
examples. For a given dataset …x y x y x y{( , ), ( , ), , ( , )}t t1 1 2 2 for

…t T1, 2, , , one can model the dependent variable Yt as

= + +Y x ,t t t0 1

where β0 and β1 are model parameters and ϵt denotes the error or noise
term. We also assume that the error term has =[ ] 0,t =Var ( )t 2 ∀t,
and that ϵt is identically and independently distributed, so that

… …t T, , , (0, ), 1, 2, , .t1 2
2

In order to calibrate the SLR model parameters, specifically the re-
gression coefficients β0 and β1, we apply the Ordinary Least Squares
method. Let us define

= +
=

=
H y x[ ( )] ,

t

t T

t t
1

0 1
2

and the ordinary least squares method calibrates the model parameters
such that

=

=

H

H

0,

0.

0

1

Although many firms and users are fully aware of the significant dis-
advantages of SLR, particularly for the non-linear and noisy data that
occurs in performance measurement applications, SLR is widely and
frequently used. In other words, if we quantify the error in the model δ
as

= Y y( ),t t

where Λ(.) is some distance measure, then δ can be extremely large,
especially for some values of t.

One of the reasons SLR is extremely popular is that it is very easy to
implement with a range of datasets and one can obtain useful insights
from the data (although many assumptions must be applied). For ex-
ample, large datasets can be easily analysed on any Excel package, with
little training and knowledge required to obtain the results. Secondly, it
is one of the parsimonious quantitative methods that can be used for
performance analysis. The SLR method can be taught and understood to
managers and non-specialists without any significant mathematical
training. In fact many users cite that alternative quantitative methods
are no better. Consequently, this makes SLR a popular analysis tool.

3.2. Scenario generation method

The SLR model is typically used to forecast some variable related to
performance, for example sales, income, market share etc. In particular,
managers are especially keen to forecast future performance in relation
to some variable. This enables firms to plan into the future (eg increase
the capacity of their business), forecast costs, to determine whether
performance is line with future expectation or whether corrective ac-
tions need to be taken.

In order to achieve a forecast, one can extrapolate the regression
line, however this would not be informative because performance
measurement data can be highly non-linear. Consequently, the SLR
regression line tends not to provide a good forecast of the future.
Additionally, most organisations engage in scenario analysis for fore-
casting future values; rather than using one value as a future value firms
like to consider a range of values or scenarios. This is because it is
unrealistic that one value will closely approximate a single future
outcome. Moreover, scenarios are required for stochastic optimisation
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methods such as stochastic programming.
To generate or forecast scenarios from SLR at time period T′, where

T′ > T, one could consider the error distribution (0, ),t
2 and

apply some Monte Carlo based (or other) scenario generation method to
the distribution of YT . In other words the random sample or scenario
from YT would be given by

= + +Y x ˜ ,T T T0 1

where ˜T is a random sample from (0, )2 . The key disadvantage of
this method is that it is well known that the error distribution

(0, )t
2 is frequently a poor model of future values. Consequently,

sampling from the error distribution does not necessarily provide a
viable scenario generation method.

We now explain our scenario generation process in more detail and
for the benefit of exposition we restrict our scenario generation process
to a single period. To generate scenarios from our regression model for
forecasting, we take a different approach. Given that SLR is a data
driven model, that is the SLR model’s results and parameters are
completely determined by the data, scenario generation from the error
distribution alone is not a meaningful scenario generation process. This
is because we are assuming that the SLR and the input data will be
representative of the future, however historic data is not always a good
representation of future outcomes and the forecasting capability of one
SLR is limited. Therefore to generate scenarios we start with the pre-
mise of varying the data inputs into the SLR model.

We firstly partition our data into clusters by undertaking cluster
analysis. Clustering is a method of partitioning data into mutually ex-
clusive subsets, which are called clusters. Let the entire set of data ζ be
partitioned by n subsets ϕi, for = …i n1, 2, , , so that

= ……
= …i j n i j

. ,
, , {1, 2, , } s.t. ,

n

i j

1 2

then we say we have ϕi clusters in ζ. Generally, we can consider a
cluster as a group of objects that are more similar to one another than to
members of other clusters.

To ensure our sampling includes important segments of the data we
firstly cluster the data. Otherwise the scenario generation process will
be based on unrepresentative data. This also enables us to generate
more SLRs and generate more realistic scenarios values. In performance
based data we expect clusters of data to exist because it is common for
performances to occur in clusters, rather than data being randomly
distributed.

The fact that performance management data tends to occur in
clusters provides a significant advantage to our scenario generation
method. This is because we can easily determine the number of clusters
n by inspecting the data. Normally for a computer program to de-
termine n is a non-trivial issue because data generally does not easily
segment into clear clusters. Moreover, the number of clusters is gen-
erally not a unique solution but can be a range of viable numbers.
Furthermore, if one can determine n then the cluster method (and
therefore our scenario generation method) can produce better results.

In order to assign every datapoint to a particular cluster ϕi, we re-
quire some metric to assign them. Typically this is based on assigning
each datapoint to a cluster such that we minimise the distance of the
datapoint to the nearest cluster. If we have a data set belonging to one
cluster ϕ1, that is …v v v{ , , ., }k1 2 1 where = …i kv , 1, 2, , ,i

n then
the centroid Ci

n is given by

= + + +
k

C v v v .i
k1 2

(4)

A centroid is the central value of each cluster.
To cluster data we apply the following algorithm. Let there exist
…, , m1 clusters with m centroids …C C C{ , , , },m1 2 and T datapoints

…v v v{ , , ., }T1 2 . To commence the algorithm we must initialise
…C C C{ , , , }m1 2 because we have not assigned any datapoints

…v v v{ , , ., }T1 2 to …, , m1 yet, hence the centroids have no value. Once
…C C C{ , , , }m1 2 values are assigned, for each …j m1, 2, , we assign vj

to cluster ϕi, such that we minimise

i mv Cmin ( ) 1, 2, ., ,
j T

j i
1,., (5)

where Λ(.) is some distance measure.
Once all the datapoints …v v v{ , , ., }T1 2 are assigned to a cluster ϕi we

now re-calculate the centroid values …C C C{ , , , }m1 2 using Eq. (4) (as
their values would have changed with the new datapoint member-
ships). We then again re-assign …v v v{ , , ., }T1 2 by applying Eq. (5) and
check if the set membership of ϕi ∀i has significantly changed since the
previous assignment. If the assignment has significantly changed we
repeat the algorithm until there is no significant change in cluster
membership (or some other stopping criteria is met). The grouping of
datapoints into clusters is therefore an iterative process.

For the function Λ(.) a number of possible distance measure func-
tions are available. We apply the Euclidean distance measure, that is for
data vj

N and centroids C ,i
N the Euclidean distance is given by

= + + +v C v C v Cv C( ) ( ) ( ) ( ) ,j i j i j i jN iN1 1
2

2 2
2 2 (6)

where = …v v vv { , , , }j j j jN1 2 and = …C C CC { , , , }i i i iN1 2 . Although alternative
distance measures are possible (such as the Mahalanobis distance or
Manhattan distance measures) such measures do not necessarily im-
prove clustering performance. For example, it has been found that the
Mahalanobis distance measure is less robust to noisy data.

For SLR the dataset vj is restricted to v ,j
2 that is cartesian co-

ordinates …x y x y x y{( , ), ( , ), , ( , )}T T1 1 2 2 . We stratify the data in each
cluster into n strata, by values yi. One can choose any n but =n 2 is
generally sufficient. We then produce n SLRs Yt

i for …i n1, , , where Yt
i

is obtained by random cluster sampling of data from strata i in each
cluster. Assuming we create two SLRs Yt

1 and Yt
2 then we have:

= + +Y x ,t t t
1

0
1

1
1 1

and

= + +Y x .t t t
2

0
2

1
2 2

To produce scenarios at time T′ we sample from the distributions as-
sociated with YT

1 and YT
2 .

We mention in passing that our scenario generation method differs
from Beraldi and Bruni [3]. In [3] scenario reduction is proposed as a
scenario generation method, whereby scenarios are firstly produced,
and then clustered together. A reduced set of scenarios are produced by
taking a representative scenario value from each cluster. In our scenario
generation method we produce the scenarios by sampling from the
distributions associated with YT

1 and YT
2 . Whilst the data for YT

1 and YT
2

may have originated from clustered data, we do not use the clustering
process itself to produce scenarios or implement scenario reduction.

Our scenario generation method has a number of advantages.
Firstly, our scenario generation method produces more representative
scenarios compared to using a single SLR, fitted to the original data.
Linear regression is a data-driven method, therefore the regression will
only provide meaningful scenarios if the data inputs are also mean-
ingful. However, fitting a regression line to a single set of (performance
measurement) data is unlikely to produce a representative set of data,
as data frequently changes with samples. To ensure we take a re-
presentative data sample, we group the data into clusters, so that we
have identified the representative segments of the population. This is
because performance measurement data (as well as many other types of
data) exist in clusters. We then use cluster based sampling to obtain
more than one sample of data, rather than relying on one sample of data
for modelling.
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Secondly, our scenario generation method is more robust to data,
that is it is less affected by overfitting to data. Overfitting occurs when a
SLR’s forecast underperforms because the regression line is too reliant
on historic data for forecasting purposes. Whilst fitting to data is ad-
vantageous if the data is an accurate representation of the future, for
many applications (in particular performance management applica-
tions) the data frequently changes with each sample. Hence overfitting
is a significant disadvantage in scenario generation for SLR.

To achieve more robust scenario generation and overcome over-
fitting, our scenario generation method incorporates the robustness
principle of scenarios in [11]. In [11] scenario robustness is defined as
resistance to variation in input samples used for scenario generation. In
our method we achieve robust scenario generation by engaging in
random sampling of the original dataset, and we use a set of SLRs Yt

i

(rather than a single SLR) to generate our scenarios. This ensures the
input data sample is more varied and our generated scenarios are less
likely to be affected to changes in input data sample values. Hence our
scenario generation method is more robust to data.

Thirdly, our scenario generation method can easily incorporate
expert opinions and judgement, or other modelling information in our
method. If one were to use an alternate scenario generation method
such as moment matching scenario generation (one of the easiest and
simplest scenario generation methods) then one would need to choose
appropriate values for t

i ∀i, t in Eq. (3), however, there is no specific
method for choosing t

i and so the scenario generation process can
become arbitrary to some extent. Moreover, if one aimed to incorporate
expert opinion or judgement for a single scenario =i 1 (a common
reason for this is incorporating a ‘worst case scenario’ in the scenario
tree) then the choice of t

1 may unintentionally impact the value of all
other scenarios ∀i≠1. Hence expert opinion or judgement incorpora-
tion is not a completely straightforward process in moment matching.

In our scenario generation method, one can incorporate expert
opinion by changing the strata one draws samples from, or one can
directly adjust the value of samples within the clusters. The processes
are straightforward to implement for either method. If we adjust the
value of samples within each cluster then we can directly utilise
quantitative data value as our expert opinion or judgement, unlike ar-
bitrary choices of t

i. Moreover, our scenario generation process does
not lead to unintentional changes in the value of other scenario values.

4. Numerical experiment

In this section we conduct numerical experiments to demonstrate
our new scenario generation method. We explain our method, present
our results and then discuss our results.

4.1. Method

In this section we conduct numerical experiments to demonstrate
our scenario generation method using performance measurement data
from IBM Watson Analytics. An algorithm is given in Appendix 1. Our
data contains information on monthly pay and the number of years of
working in a company. This reflects a common application of perfor-
mance management, where management would hypothetically like to
see a positive trend between years of work and income. This is because
it is frequently assumed, on aggregate, that a worker is more skilled
according to the more years of experience he has obtained. Conse-
quently correct performance management should reveal that workers
with greater years of work should earn higher incomes.

The data is collected from approximately 1500 workers, giving 1500
data points. The workers are sampled over working years between 0 to
40 years, and the monthly income is sampled in the range $0 to
$20,000 per month. Typically in performance management the man-
agers would fit a SLR model to obtain some insight on performance. As

no data exists beyond 40 years, a possible management application
would be forecasting scenarios for monthly income for working ages
beyond 40 years. We would therefore need to generate scenarios for
working ages at 50 years.

The scenario generation of monthly incomes for working ages at 50
years is a realistic application for performance management because
many workers are living longer, retirement ages have also been in-
creased and workers are aiming to work longer. Consequently, a firm
would need to know the expected monthly income required for em-
ployees with longer working years. This would be an important ques-
tion because firms may need to set aside funds to pay for higher earning
workers.

We apply our scenario generation method using two SLRs Yt
1 and Y ,t

2

for =t 50 years, and create scenarios from their distributions. We de-
note the scenarios from our scenario generation method at time t by Ỹt .
To provide a comparison of our scenario generation method we also
generate scenarios using a standard SLR model, that is fitting an SLR to
the original data. We will denote this standard SLR by Yt with model

= + +Y x .t t t0 1

The model Yt resulting distribution at =t 50 years will be used to ob-
tain scenarios by Monte Carlo based scenario generation.

4.2. Results

In this section we give our results.

4.3. Analysis

In Fig. 1 we have a plot of the original empirical data of working
years against monthly income ($), for approximately 1500 data points.
Although it can be visually seen from a plot of the data in Fig. 1 that we
do not have a linear trend, SLR is still a commonly applied tool for data
analysis in many social science applications, such as economics or
performance measurement. For any regression model there exists un-
certainty in parameter estimation, for example in i

j where =i 0, 1 and
=j 1, 2, . However, as mentioned previously, it is understood in

performance management that the data will be highly non-linear as it
tends to cluster (such as in Fig. 1) and the regression line is only an
approximation of the data (such as in Fig. 1). The SLR is still the pre-
ferred method for performance management because it is a highly
tractable method and easy to implement. Although there may be un-
certainty in the parameter values, the focus of our study and perfor-
mance management is the fitted regression line (and the associated
scenarios).

As one can see from Fig. 1, performance analysis data tends to occur
in clusters, as we have previously mentioned. One can see approxi-
mately two clusters occurring in the data at 0–20 years, and then a
second group at data values 20–40 years. In Fig. 1 the regression line for
Yη is shown, and as one might expect there is a positive relationship
between Working Years and Monthly Income. This implies that workers
(in general) are being correctly rewarded in relation to their perfor-
mance (specifically their skills and experience).

In Fig. 2 we have a plot of the resampled data, used in our scenario
generation method. In other words Fig. 2 provides a plot of the samples
arising from cluster based sampling of the original data. One can see by
inspection that Fig. 2 looks similar to Fig. 1; we have two clusters of
data in the same ranges of 0–20 years and 20–45 years. This is a re-
assuring result because we want to generate scenarios that are re-
presentative of the original data, hence a highly significant difference
between Figs. 1 and 2 would not indicate this. We have also fitted a SLR
line in Fig. 2 for comparison to Yη in Fig. 1. We note that both re-
gression lines are similar in gradient and y-intercept, implying that both
sets of data have similar regression properties.
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In Table 1 we have the scenarios generated from Ỹt and Yη. We have
also calculated the percentage difference in the value of the scenarios in
the final column. As one can see, whilst the value of the scenarios are

not dissimilar, there are significant differences, particularly for sce-
narios 1–5 where there is an approximately 20% difference in value.
This is a significant difference and provides useful information to

Fig. 1. Graph of empirical (Original) data with regression line Yt .

Fig. 2. Graph of sampled data with a regression line.

S. Mitra, et al. Operations Research Perspectives 6 (2019) 100095

8



performance management, that is under 5 scenarios we can expect a
lower payment to workers compared to using Yη scenario generation.

The magnitude in the difference in values is important for perfor-
mance management decision making. For example, it is common for
employee disputes to occur over pay rises that are less than 5% (for
example since the start of the financial crisis public sector workers in
the UK have taken industrial action over far smaller pay rises). Hence a
20% difference pay would be considered significant. Moreover, if our
model forecasts 20% lower payment required for staff then this would
potentially provide significant savings for a company.

An additional advantage of Ỹt scenarios in Table 1 is that the sce-
narios are more reliable, that is we can have more confidence in these
scenarios compared to Yη scenarios. This is because Ỹt scenarios are
produced by using more than set of (resampled) data and random
cluster sampling. However, Yη scenarios are produced from one set of
data and a single SLR equation. Our scenarios are therefore produced
over a greater range of regression data. Furthermore, in producing Yη

scenarios from one set of data the scenarios are more vulnerable to
producing scenarios specific to a particular set of data, which may not
be representative of the future. Consequently Yη scenarios are less likely
to be reliable scenarios.

In Table 2 we calculate the kth statistical moments associated with
the scenario trees, using the scenarios in Table 1 for Ỹt and Yη. We notice
that our method produces significantly different moment values for

= …k 1, 2, , 5. Therefore a more robust scenario generation process
provides different distribution properties. The different moment values
not only affects the distribution of future values, which could affect the
performance measurement decisions for monthly income, but also im-
pact risk measurement of the distributions. The statistical moments are
frequently used as a risk measure for statistical distributions, hence the
change in moments implies a change in the risk profile of the dis-
tribution of pay. An organisation with a higher or lower risk of low pay
would impact future performance management decisions.

In Table 3 we provide the empirical cumulative distribution func-
tions F(x) for Yη and Ỹt generated scenarios. The graphs of F(x) are also
plotted in Figs. 3 and 4. As one can observe from the graphs, there is
higher probability of lower monthly incomes in Ỹt compared to Yη,
particularly around the $15,000–20,000 range. The Yη scenarios give a
higher probability on higher monthly incomes in the range of $25,000

onwards.
Our scenario generation method therefore provides a significantly

different distribution function. In other words, a more robust scenario
generation process changes the cumulative probabilities for different
income values. The distribution of income in firms (and in economies in
general) is a frequently investigated metric of employee conditions,
particular with respect to fair pay (in fact after the start of the Global
Financial Crisis the pay of Chief Executive Officers of banks with re-
spect to junior staff was heavily reported in the media). Therefore our
scenario generation method provides useful insight into such perfor-
mance analyses.

5. Conclusion

Scenario generation is an important decision analysis tool and a
fundamental aspect of Stochastic Programming. In this paper we have
demonstrated a new method for scenario generation that is applicable
to regression analysis and performance management. We have provided
computational results on our method and benchmarked our perfor-
mance against a standard scenario generation method, in the numerical
experiments section. We have shown that our scenario generation
method can produce representative scenarios, using cluster based
sampling to ensure we sample relevant segments of the population data.

Secondly, our method is more robust to overfitting as we use mul-
tiple regression lines to produce scenarios. In using multiple regression
lines, our scenario generation is more robust compared to using a single
regression line, and so a more reliable scenario generation process.
Therefore our scenario generation method should provide a cost saving
to firms (either through their own stochastic programming optimisation
method or for any forecast) and improving firm management.

Thirdly, our scenario generation method enables us to take into
account modelling and expert opinion. This is achieved by adjusting the
sampling process for the scenario generation method, for example in-
corporating worst case scenarios in the scenario generation. Finally, our
scenario generation method is also particularly suitable for perfor-
mance management applications, where such data exhibits clustering
and they typically make use of regression modelling methods.

In terms of future work the paper could be extended to other per-
formance management and measurement applications, for example
other industry sectors or different operations of a business (such as
marketing). In other operations of a business (such as sales) there are
higher levels of uncertainty and therefore scenario generation may
prove more useful to businesses. Additionally, it well known that some
industries are far more unstable than other industries (for example the
pharmaceutical industry is considered far more stable than the airline
industry), hence scenario generation may offer more insight in such
uncertain industries.

Secondly, we would also like to develop the paper to combine the
scenario generation process with other scenario generation methods,

Table 1
Scenario values for Ỹt and Yt .

Scenario No. Ỹt Scenarios Yt Scenarios Percentage Difference (%)

1 15896.09 19530.94 −18.61
2 16523.46 20458.31 −19.23
3 16900.10 21015.06 −19.58
4 18356.52 23167.92 −20.77
5 19784.90 25279.33 −21.73
6 24874.10 25730.62 −3.33
7 25984.96 26915.25 −3.46
8 26978.06 27974.29 −3.56
9 27639.53 28679.68 −3.63
10 29497.15 30660.66 −3.79

Table 2
Scenario tree kth moment values.

Moment Number k Ỹ Scenariot Tree Y Scenariot Tree

1 22243.48 24941.20
2 519.6× 106 635×106

3 12.7×1012 16.5× 1012

4 3.2× 1017 4.35× 1017

5 8.29×1021 1.17× 1022

Table 3
Cumulative distribution function F(x) for each scenario generation method.

F(x) Ỹt Method Yt Method

0 0 0
0.1 15896.09 19530.94
0.2 16523.46 20458.31
0.3 16900.10 21015.06
0.4 18356.52 23167.92
0.5 19784.90 25279.33
0.6 24874.10 25730.62
0.7 25984.96 26915.25
0.8 26978.06 27974.29
0.9 27639.53 28679.68
1 29497.15 30660.66
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such as moment matching. In combining scenario generation methods
we can increase the number of properties we wish to incorporate within
our scenario generating process, and therefore produce better quality
scenarios. Finally, we would like to apply our scenario generation
method to different stochastic programming optimisation models and
see the impact of our scenario generation process. We would also like to

investigate how our scenario generation method can be applied to si-
milar models to regression, such as generalised linear models.
Generalised linear models are another set of important statistical
models (similar to simple linear regression but not as common) and so it
would be useful to investigate if scenario generation from such models
leads to improved performance analysis.

Fig. 3. Cumulative distribution function plot for Yt .

Fig. 4. Cumulative distribution function plot for Ỹt .
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Appendix 1

Algorithm for numerical experiment:

1. Initialise number of iterations =N 1.
2. Obtain data …v v v{ , , ., }T1 2 containing T datapoints from performance dataset. The datapoint = v vv { , }j j j1 2 for performance data, where we assume

vj1 is the independent variable and vj2 is the dependent variable.
The dataset can be raw data or cleaned data.

3. Assign the number of clusters m for data …v v v{ , , ., }T1 2 .
Choice of m can be set by decision maker, analyst or plotting the graph for performance data …v v v{ , , ., }T1 2 . Alternatively, one can apply a
quantitative metric.

4. Calculate centroid values …C C C{ , , , }m1 2 for clusters …, , ,m1 where = C CC { , }j j j1 2 for performance data.
If =N 1 then initialise …C C C{ , , , }m1 2 with random value from data …v v v{ , , ., }T1 2 .

5. Assign vj to cluster ϕi, … …j T i m{1, 2, , }, {1, 2, ... , }.
(a) Assign vj where …j T{1, 2, , } to cluster ϕi, where …i m{1, 2, , }, using objective function

…i mv Cmin ( ), 1, 2, , ,
j T

j i
1,.,

where Λ(.) is the specified distance measure:

= +v C v Cv C( ) ( ) ( ) .j i j i j i1 1
2

2 2
2

(b) Increment N.
(c) If N > 2 goto next step, otherwise goto step 4.
(d) Calculate change in set membership for ϕi, …i m1, 2, , , for iterations N( 1) and N( 2).
(e) Goto step 6 if:

(1) number of iterations N > 2, and no change in set membership for ϕi, …i m1, 2, , , for iteration N( 1) and iteration N( 2); or
(2) number of iterations N > S, where S is number of iterations limit.

Otherwise goto step 4.
6. Stratify sample clustered data:

(i) For each cluster ϕi for …i m1, 2, , sort data by vj2, ∀j.
(ii) Stratify clusters into n strata by vj2, ∀j, for each ϕi, …i m1, 2, , , and sample each strata where Θi is the set of data samples for strata i.

7. Calibrate regression model: for each simple linear regression model Yt
i where = …i n1, , and = + +Y x ,t

i i i
t t

i
0 1 fit Yt

i to Θi.
8. Generate scenarios at time =t by taking samples from distributions Y ,i for = …i n1, , .
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