

WestminsterResearch
http://www.westminster.ac.uk/research/westminsterresearch

Tackling Incomplete System Specifications Using
Natural Deduction in the Paracomplete Setting

Alexander Bolotov
Vasilyi Shangin

This is a copy of the author’s accepted version of a paper subsequently
published in the Proceedings of 2014 IEEE 38th Annual Computer Software
and Applications Conference (COMPSAC), pp. 91-96. ISBN 9781479935741.
It is available online at:

https://dx.doi.org/10.1109%2FCOMPSAC.2014.15

The WestminsterResearch online digital archive at the University of
Westminster aims to make the research output of the University available to a
wider audience. Copyright and Moral Rights remain with the authors and/or
copyright owners.

© 2014 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of WestminsterResearch:
(http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail
repository@westminster.ac.uk

Tackling Incomplete System Specifications Using
Natural Deduction in the Paracomplete Setting.

Alexander Bolotov
Department of Computer Science and Software Engineering

University of Westminster, W1W 6UW
Email: A.Bolotov@wmin.ac.uk

Vasilyi Shangin
Department of Logic, Lomonosov Moscow State University,

Moscow, 119991, Russia.
Email: shangin@philos.msu.ru

Abstract—In many modern computer applications the signifi-
cance of specification based verification is well accepted. However,
when we deal with such complex processes as the integration of
heterogeneous systems, parts of specification may be not known.
Therefore it is important to have techniques that are able to
cope with such incomplete information. An adequate formal set
up is given by so called paracomplete logics, where, contrary
to the classical framework, for some statements we do not have
evidence to conclude if they are true or false. As a consequence,
for example, the law of excluded middle is not valid. In this
paper we justify how the automated proof search technique
for paracomplete logic PComp can be efficiently applied to
the reasoning about systems with incomplete information. Note
that for many researchers, one of the core features of natural
deduction, the opportunity to introduce arbitrary formulae as
assumptions, has been a point of great scepticism regarding the
very possibility of the automation of the proof search. Here, not
only we show the contrary, but we also turned the assumptions
management into an advantage showing the applicability of the
proposed technique to assume-guarantee reasoning.

Keywords - incomplete information, automated natural de-
duction, paracomplete logic, requirements engineering, assume-
guarantee reasoning, component based system assembly.

I. INTRODUCTION

When we speak about the reasoning tools associated with
different software engineering tasks related to modern com-
puter systems we must take into account that these systems
are complex, dynamic and heterogenous and often the speci-
fications are not fully given. Consider, for example,
(a) the problem of reduction of complex software require-

ments to simpler ones in the lack of complete specifica-
tions,

(b) a typical integration task of various resources, which
could be the problem of formation of heterogeneous
resources into networks or clouds, or component based
system engineering where components are not fully spec-
ified, or

(c) the problem of finding assumptions in assume-guarantee
reasoning in the context of incomplete specifications.

To tackle such heterogeneous, incomplete information, so
called classical reasoning is not suitable as it validates the
famous principle of excluded middle which assumes that
truth values of every primitive statement are fully defined.
Therefore, there is a need to develop high level specification
languages and the corresponding deductive methods suitable

in cases where some statements in the specification are not
completely defined.

We concentrate on paracomplete logic PComp, [1], [19]
where the principle of excluded middle and some correspond-
ing reasoning cases (such as from A ⊃ B to infer ¬A ∨ B)
are prevented. We restrict our considerations by proposi-
tional reasoning without tackling temporal/dynamic aspects.
To tackle the reasoning applicable to the problem setting of
cases (a) - (c) above, we need efficient deductive techniques.
Our reasoning on the selection of existing formalisms and
deductive techniques is based upon the following:

(i) Need to keep track on the assumptions, to know which
assumptions and how have been involved into the proof.

(ii) Presence of the automated proof search should enable the
implementation.

(iii) The deductive techniques and proof search should be
generic enough to enable re-use and adaptability to vari-
ous types of formal specifications, for example, not only
to incomplete specifications but also to inconsistent or
to those that are both incomplete and inconsistent, and
would enable further extensions to richer formalisms, e.g.
dynamic systems.

From the point of view of these criteria, we believe that
natural deduction represents a very attractive framework. Nat-
ural deduction allows not only to establish that there exists
a desired proof but also allows for the explicit construction
of the proof. Logic PComp has been given natural deduction
formulation and algorithmic proof search [9], thus meeting
our requirements (i) and (ii). We have not found any other
natural deduction formulation of paracomplete setting. Note
that most research on paracomplete logic (and paraconsistent
logic) is devoted to philosophical problems thus traditionally
tackling axiomatic constructions [16] or tableau techniques [4]
or sequent constructions [14]. At the same time, in [3] the
authors introduce natural deduction systems for paracomplete
setting defining the translation techniques to Isabelle, hence
no direct deductive method is given.

Moreover, PComp has its dual system, PCont, which tackles
dual, inconsistent systems. This logic was also given natural
deduction formulation and algorithmic proof search [7], based
on the same generic foundation as PComp which meets our
criterion (iii). Having in mind that the algorithmic proof search

has the core goal-directed procedure adapted in both cases it
also meets our adaptivity element in our requirement (iii).

The main contribution of this paper is justifying how the
automated proof search technique for PComp can be efficiently
applied to the reasoning about systems with incomplete infor-
mation.

The rest of the paper is organized as follows. In §II we
describe the natural deduction calculus and in §III we describe
the proof searching algorithm. In §IV we discuss efficiency
of the proof search algorithm. In §V we consider simple
scenarios of requirements engineering and component based
system synthesis and assume-guarantee technique. We apply
paracomplete logic to tackle incomplete specifications and the
proof search algorithm for PComp as deductive verification.
Finally, in §VI, we provide concluding remarks and identify
future work.

II. NATURAL DEDUCTION SYSTEM NPComp

As the specification framework we utilise the formal lan-
guage of paracomplete logic PComp. PComp syntax is based
upon the propositional syntax with the standard set of Boolean
operations. PComp has the matrix semantics with three values
1, f , 0 with the designated value 1 such that 0 < f < 1 and
A∨B = max(A,B) and A∧B = min(A,B). The matrices
for ¬ and ⊃ are given below:

⊃ 1 f 0
1 1 f 0
f 1 1 1
0 1 1 1

A ¬ A
1 0
f f
0 1

The axiomatics for PComp can be found in [1].

Now, as it is indicative for the natural deduction construc-
tion, we define two classes of rules of inference: elimination
and introduction rules in Figure 1.

• ⊃in discards each formula starting from the last alive
assumption up to the conclusion of this rule;

• ∨el discards each formula starting from assumption A up
to formula C, inclusively, as well as each formula starting
from assumption B up to formula C, inclusively;

• ⊃p discards each formula starting from assumption A ⊃
B up to formula A, inclusively. This, as before, is ab-
breviated by enclosing relevant discharged and discarded
formulae into square brackets.

Definition 1 (Inference, Proof): An inference in the system
NPComp is a finite non-empty sequence of formulae where
each formula is an assumption or is derived from the previous
ones via a NPComp-rule. A proof in the system NPComp is
an inference from the empty set of assumptions.

It has been shown [20] that the presented natural deduction
calculus is sound and complete, below |= stands for logical
consequence:

Theorem 1: Γ ⊢NPComp A ⇔ Γ |= A.

Elimination Rules :

∧ el1
A ∧B
A

∧ el2
A ∧B
B

¬ ∧ el
¬(A ∧B)
¬A ∨ ¬B ¬ el

¬¬A
A

¬ ∨ el1
¬(A ∨B)

¬A ¬ ∨ el2
¬(A ∨B)

¬B

⊃ el
A ⊃ B, A

B
¬ ⊃ el1

¬(A ⊃ B)
A

¬ ⊃ el2
¬(A ⊃ B)

¬B ∨el A ∨B, [A]C, [B]C,
C

Introduction Rules :

∧ in
A, B
A ∧B

¬ ∧ in
¬A ∨ ¬B
¬(A ∧B)

∨ in1
A

A ∨B
∨ in2

B
A ∨B

¬ ∨ in
¬A,¬B
¬(A ∨B)

⊃ in
[C] B
C ⊃ B

¬ ⊃ in
A,¬B

¬(A ⊃ B)
¬ in

B
¬¬B

⊃p
[A ⊃ B] A

A
PComp¬ in

A, ¬A
B

Fig. 1. NPComp-ND-rules

III. PROOF SEARCHING FOR NPComp

In [9] we defined the proof search technique for the
logic PComp. Here we only describe the algorithm behind
this search referring an interested reader to [9] for details.
The proof search strategy is goal-directed, it runs over two
sequences: list proof which lists formulae in the proof and
list goals which lists goals to be reached. Each step of the
algorithmic proof is associated with a specific goal, called
current goal. Checking the reachability of the current goal is
one of the core procedures.

Definition 2 (Current goal reachability): Current goal,
Gn, 0 ≤ n, occurring in list goals= ⟨G0, G1, . . . , Gn⟩, is
reached if

• Gn is some formula B and there is a formula A ∈
list proof such that A is not discarded and A = B or

• Gn is of the form [A]B and there is a list proof(B+)
such that a non-discarded assumption A ∈ list proof and
B is the last formula of list proof.

• Gn is a contradiction and there are two contradictory
statements, A ∈ list proof and ¬A ∈ list proof.

A. Proof-Searching Algorithm NPCompALG

The proof search algorithm defined below utilises searching
procedures Procedure 1 - Procedure 4 defined in [9].

Algorithm NPCompALG.

list proof = list goals = ∅. Given a task Γ ⊢ G,

(1) Gcur = G.
(Γ ̸= ∅) −→ (list proof = Γ, list goals = G, go to (2))
else
list goals = G, go to (2).

(2) Procedure(3)(Gcur) = true (check the reachability of
the current goal)
∀Gi(0 ≤ i) ∈ list goals ((Gi = Gcur) −→
(Procedure (3)(Gi) = true)).

(2a) Reached(Gcur) −→ go to (3) else
(2b) go to (4).

(3) Procedure(4)(⟨list proof, list goals⟩) = true (apply
relevant introduction rule)

(3a) (Reached(Gcur) = true)AND (Gcur = G) −→
go to (6a) else

(3b) Procedure (4)(⟨list proof, list goals⟩) =
true , go to 2.

(4) Procedure (1)(⟨list proof⟩) = true (apply elimination
rules)

(4a) Elimination rule is applicable, go to (2) else
(4b) (if there are no compound formulae in list proof to which

an elimination rule can be applied), go to (5).

(5) Procedure (2)(⟨list proof, list goals⟩) = true (update
list proof and list goals based on the structure of Gcur)

(5a) Procedure (2.1)(⟨list proof, list goals⟩) = true
(analysis of the structure of Gcur), go to (2) else

(5b) Procedure (2.2)(⟨list proof, list goals⟩) = true
(searching for the sources of new goals in list proof),
go to (2) else

(5c) (if all compound formulae in list proof are marked,
i.e. have been considered as sources for new goals),
go to (6b).

(6) Terminate(NPCompALG).

(6a) The desired ND proof has been found. EXIT,
(6b) No ND proof has been found. EXIT.

IV. CORRECTNESS AND EFFICIENCY

When we speak about the efficiency of the proof search
we consider two aspects of the procedure - its metatheoretical
properties (termination and correctness) and its complexity. In
this section we discuss these issues.

The following theorems reflect the metatheoretical proper-
ties of the above algorithm [9].

Theorem 2: NPCompALG terminates for any input formula.

Theorem 2 guarantees that for any input formula for the
NPCompALG the sequences list proof and list goals are finite.

Theorem 3: NPCompALG is sound.

Theorem 3 ensures that every formula for which an ND
proof is constructed according with NPCompALG is valid.

Theorem 4: NPCompALG is complete.

Theorem 4 establishes that for every valid formula, A,
NPCompALG finds a PCompND proof. Altogether, Theorems
2, 3 and 4 imply the following fundamental property of our
algorithm:

Theorem 5: For any input formula A, the NPCompALG
terminates either building up a PCompND-proof for A or
providing a counter-model.

Before discussing the issue of the efficiency let us concen-
trate on some core and important features of the proof search.
First of all, recall that natural deduction calculi can be used
to solve different deductive tasks. For example, we might be
given any of the following tasks:

1 to find an ND derivation Γ ⊢ B,
2 to find an ND proof ⊢ B or
3 to check the consistency of some given set of formulae.
In the first and third cases, the ND derivation would

start with some given set of assumptions Γ. In the second
case, i.e. when we need to establish if B is a theorem, we
commence our reasoning by introducing some assumptions. As
in other ND calculi, in constructing an ND derivation, we are
allowed to introduce arbitrary formulae as new assumptions.
Note that for many researchers, this opportunity to introduce
arbitrary formulae as assumptions has been a point of great
scepticism regarding the very possibility of the automation
of the proof search. It is true that without the proof search
technique assumptions can be introduced arbitrarily. However,
due to the goal directed feature of the presented algorithm
any assumption that appear in the proof is well justified
serving a specific goal. Let us emphasise that we also turned
the assumptions management into an advantage showing the
applicability of the proposed technique to assume-guarantee
reasoning as shown in §V.

Secondly, note that, according to the algorithm, the order
in which assumptions are discharged, is the reverse order to
their introduction into the proof.

Finally, introduction rules that have been another point of
scepticism concerning the automation of natural deduction,
in our algorithm are completely determined. Namely, the
reachability of the current goal and the type of the previous
goal determines the a relevant introduction rule. Also, though
the specific for PComp, Pcomp¬ in rule, in general, allows to
derive any formula from the contradiction, the application of
this rule is strictly determined by the searching procedures,
hence the formula that we derived from a contradiction is
always the one mentioned in list goals.

In our discussion of the efficiency of the proof search
algorithm we utilise the concept of nested deduction Frege
systems (ndF) introduced in [10]. The latter was used in the
analysis of the computational complexity of the conventional
proof systems for propositional classical logic. Following [10],
each line in ndF is a sequent of the form Γ ≺ A where Γ is a
set of formulae and A is a formula. Now the inference rules
of the system are:

ndFR1 ≺ A, where A is an instance of an axiom,
ndFR2 {A} ≺ A Hypothesis,
ndFR3 If Γ ≺ A ⊃ B, ∆ ≺ A then Γ ∪∆ ⊢ B, modus ponens
ndFR4 If Γ ≺ B then Γ\{A} ≺ A ⊃ B, deduction rule.

Hypothesis are used in the following fashion. First of all,
they are open or closed (by the deduction rule). Secondly, they
are used in a nested fashion, i.e. they are closed in the order
reversed to their opening. Also, any formula in the scope of
the closed hypothesis is no longer available for the proof.

It is shown in [10], that Frege System (almost) linearly sim-
ulates ndF. Now we observe that our algorithm NPCompALG
is a modification of the proof search algorithm for classical
ND [7], [8] preserving its style, and most of the procedures.
Considering our classical proof search technique, it is possible
to show that any ndF proof can be transformed into the proof
by the classical ND calculus. Indeed, since every axiom of
Frege system is provable by the classical ND proof search
algorithm, we can substitute each formula in the proof derived
by ndFR1 by the corresponding ND proof of the introduced
axioms. Similarly, it is a routine to show how to transform
any proof by rule ndFR4 into an ND proof. Rules ndFR2 and
ndFR3 are simply present in the definition of the ND. Note
that in all these proofs which we cannot present here due to
the room space, we would essentially use the features of the
classical proof ND proof search algorithm (and these are the
features of NPCompALG as well): that our assumptions are
discharged in the reverse order to their introduction due to
the nested fashion, pictorial form of our presentation which
matches the form used in [10].

Therefore, proofs by our search algorithms in the classical
case can be linearly simulated by classical Frege style formula-
tion which puts our Fitch-style natural deduction construction
in line of propositional complexity.

The above observations at least give us an idea how some
fragments of proof search technique behave considering the
complexity. It also gives us grounds to expect that similar
developments can be applied to the case of non-classical logic.

Concluding this section, we note that these general theo-
retical discussions should be supported by the study of the
practical implementation of the NPCompALG which forms part
of our future work.

V. APPLICATIONS IN SPECIFICATION BASED
VERIFICATION

Our development of automated reasoning technique tackles
at this stage only the propositional basis. However, even at this

more or less simple level, we argue that it can significantly
contribute to the areas listed below:

1) Requirements Engineering.
2) Component Based System Assembly.

In the subsequent sections we will justify the application of
the natural deduction to these fields.

A. Requirements Engineering

In a series of works authors indicate the importance of the
specification of high-level requirements of a partial model
such that these specifications are built incrementally from
higher-level goal formulations in a way that guarantees their
correctness by construction [15]. In [5] the approach to tackle
the problem of reduction of complex software requirements to
simpler ones and to reason about the requirements is given.
However, we are not aware of any approach which would
tackle this task using the advances of automated deduction.

Our searching technique enables to trace the dependencies
of the formulae in the proof hence an obvious way of applying
it would be to put the specified requirements as the goals
for the searching technique so the latter returns the set of
assumptions upon which this goal depends. This corresponds
to the layer of ‘global invariants’ mentioned in [15], where
the authors give a very reasonable taxonomy of goal patterns
(see page 26 of [15]).

Now, our solution looks as follows: setting the requirements
Rec as goals for the proof searching technique, we aim
at finding such global invariants. Thus, applying to each
such requirement r ∈ Req our proof searching algorithm,
NPCompALG, we aim at finding the assumptions, Depend(r),
on which r depends in the proof. This set of formulae
Depend(r) represents the desired set of reduced requirements
(global invariants).

B. Component Based System Assembly

Here we apply the searching algorithm NPCompALG as
the deductive verification technique for a component system.
We incorporate the notation of [22] to represent the task
of deductive verification of a system Sys by the following
signature:

V :: Sys× Spec −→ B × [Proof]

where the boolean result of deductive verification based on
theorem proving is either a proof that a system satisfies a
given property or a proof cannot be established.

As an example, let us consider a simple component system
interpreted in The Grid Component Model (GCM) based
on Fractal [12]. Let our component system, Sys have the
following specification Spec. Components interact together by
being bound through interfaces. The system has four core
components P , Q, R and S. Let p, q, r and s represent
properties that core components, P , Q, R and S are bound
to the system (one that should be always available and should

not be touched). Consider as an example the following set of
global requirements and their formalisation:

• Whenever P is bound R should be bound: p ⊃ r
• Whenever P is not bound S should be bound: ¬p ⊃ s.
• Whenever Q is bound both R and S should not be bound:

q ⊃ (¬r ∧ ¬s).
• Q should be bound to the system: q.
Consider now the above verification task to establish if

the above configuration of components is consistent. We
commence the proof (see below) by the given Spec conditions
and set up the goal of the procedure to derive the contradic-
tion, abbreviated in the proof annotation below as ⊥. If the
contradiction is derivable then we would have been able to see
its sources tracing the proof backwards. Otherwise, the Spec
would have been shown consistent.

list proof annotation list goals
1. p ⊃ r given ⊥
2. ¬p ⊃ s given ⊥
3. q ⊃ (¬r ∧ ¬s) given ⊥
4. q given ⊥
5. ¬r ∧ ¬s 3, 4 ⊃ el ⊥
6. ¬r 5,∧ el ⊥
7. ¬s 5,∧ el ⊥

⊥, p
8. p ⊃ (t ∧ ¬t) assumption ⊥, p, p

⊥, p, p,¬p
9. ¬p ⊃ (u ∧ ¬u) ⊥,¬p,¬p

At this moment, the procedure stops. A counter-model is
extractable as follows: p is assigned f because p ⊃ (t∧¬t) is
in the list proof or because ¬p ⊃ (t∧¬t) is in the list proof.
Note that p is assigned f if, and only if, ¬p is assigned f .
Next, r gets the value 0 because ¬r is in the list proofand
s is assigned 0 because ¬s is in the list proof. Under this
valuation, each formula p ⊃ r,¬p ⊃ s, q ⊃ (r ∧ s) and q is
assigned 1. So, this set of formulae in Spec is consistent.

This explicitly shows the nature of the use of paracomplete
logic - the given Spec does not have precise information about
p - if this component should be bound or not.

C. Assume-guarantee reasoning

We consider here how the natural deduction based reasoning
can be applied in the automation of the assume-guarantee
reasoning [13], [18] technique, the most used technique in
the framework of compositional analysis. In assume-guarantee
reasoning, a verification problem is represented as a triple,
⟨A⟩S⟨P ⟩, where S is the subsystem being analyzed, P is the
property to be verified, and A is an assumption about the
environment in which S is used.

The standard interpretation of ⟨A⟩S⟨P ⟩ suggests that A is a
constraint on S and if S as constrained by A satisfies P then
the formula ⟨A⟩S⟨P ⟩ is true. Let us formulate that semantics
of ⟨A⟩S⟨P ⟩ in the following way: S/A |= P where S/A
means the system S with the additional information A. Now,
the typical example of the application of assume-guarantee
reasoning is in the context of decomposing a given system S

into two subsystems S1 and S2 that run in parallel. Suppose
we need to verify that the property P is satisfied in S. Then
we can apply the assume-guarantee rule † in the Figure 2.
Here ⟨true ⟩S2⟨A⟩ and ⟨true ⟩S1||S2⟨P ⟩ mean, respectively,
that A is verified in S2 (without any constraints) and P is
verified in S1||S2 (without any constraints). In terms of natural
deduction we can rewrite this rule as ‡ in Figure 2.

(†)
⟨A⟩S1⟨P ⟩

⟨true ⟩S2⟨A⟩
⟨true ⟩S1||S2⟨P ⟩

(‡)
S1, A ⊢ P
S2 ⊢ A

S1||S2 ⊢ P

Fig. 2. NPComp in Assume Guarantee Reasoning

Now new tasks are to find the natural deduction derivations
S1, A ⊢ P and S2 ⊢ A in order to conclude that S1||S2 ⊢ P
and the application of the proof search technique is the next
logical step here. One of the major obstacles in the efficient
application of assume-guarantee approach [11] is that once
decomposition is selected, to manually find an assumption A
to complete an assume-guarantee proof is difficult. Indeed, the
assumption must be strong enough to sufficiently constrain
the behavior of S1 so that S1, A ⊢ P holds, and must be
weak enough so that S2 ⊢ A holds. The problem of finding
such as assumption A would become even more difficult
if the systems in question are constrained with incomplete
information. The application of the proof search algorithm
of the paracomplete logic PComp described above would
represent an efficient solution (Of course we would need
to introduce the rigorous reasoning here defining what are
‘strong’ and ‘weak’ conditions.)

Let us draw here some directions of the application of the
presented proof search towards the automation of assume-
guarantee technique. In the reasoning below we rigorously
follow the proof search algorithm for PComp. When solving
the problem S1||S2 ⊢ P we look for the assumption A such
that S1, A ⊢ P and S2 ⊢ A. Assume that S1 and S2 are sys-
tems with the specifications containing statements B1, . . . , Bm

C1, . . . , Cn, respectively. Our task is to find an assumption A,
following rule (†) above, such that B1, . . . , Bm, A ⊢ P and
C1, . . . , Cn ⊢ A. Now we commence NPComp proof setting
list proof= B1, . . . , Bn and list goals= P :

list proof annotation list goals
1. B1 given P
. given P
. given P
m. Bm given P
m+ 1. P,⊥

At step m since the goal P is not reachable, we update
list goals by ⊥. If at step m+1 list proof contains contradic-
tory elements then the new goal ⊥ would be reachable and we
would have two contradictory statements within B1, . . . , Bm,
say C and ¬C at the stages 1 ≤ i < j ≤ m. Thus, our
new goal would have been P again which we would reach by
applying PComp¬ in rule:

list proof annotation list goals
1. given P
. given P
i. C given P
. given P
j. ¬C given P
m. given P
m+ 1. P,⊥
m+ 2. P
m+ 3. P i, j, PComp¬ in

Now we found our first candidate for A - contradiction.
Hence we set up the new task - C1, . . . , Cn ⊢ ⊥ and thus
check if we can establish the latter.

Alternatively, we consider the second case at step m above,
when the goal ⊥ at step m is not reachable. In this case we
would have the following continuation of the proof:

list proof annotation list goals
1. B1 given P
. given P
. given P
m. Bm given P
m+ 1.P ⊃ r ∧ ¬r assumption P, [P ⊃ r ∧ ¬r] P

At this stage, since P was not reachable, it is not contained
in list proof hence no elimination rules are applicable and we
search for new assumptions. Namely, we would be looking for
disjunctive and implicative formulae in list proof (but ignoring
the formula P ⊃ r ∧ ¬r at step m + 1). If successful, we
would introduce into the proof the corresponding assumption
and proceed further applying the searching algorithm until it
terminates with either finding the desired proof for P or failing
to do so. In the former case, P would be the last formula
of list proof and we will be able to consider assumptions
appearing in list proof between step m + 1 to test them in
the second task C1, . . . , Cn ⊢ A.

VI. CONCLUSION AND FUTURE WORK

We have shown how the paracomplete logic PComp can
be used providing high level specifications for incomplete
systems and how natural deduction system for this logic,
supported by the algorithmic proof search, can be used to
reason about obtained specifications. To the best of our
knowledge, there is no other similar work on the automation
of paracomplete natural deduction systems or on application
of natural deduction techniques in general to the reasoning
about incomplete specifications. We have shown how these
developments can be integrated into the existing approaches
dealing with the requirements reduction and component based
system assembly. The results presented in this paper have
important methodological aspects forming the basis for the
development of automated goal directed techniques for more
expressive formalisms, for example, temporal and normative
extensions. The feasibility of these extensions is based on
the systematic, generic nature of the natural deduction con-
struction and algorithmic proof search. This will, in turn,

enable the application of the powerful deductive natural de-
duction based reasoning to tackle dynamic systems defined
in heterogeneous environments, with such complicated cases
as the combinations of time/paraconsitency/paracompleteness.
Thus we envisage the extensions of the applicability of our
methodology to the specification of complex dynamic systems,
to the specification of normative systems (i.e. protocols) and
to reasoning about systems that are both inconsistent and
incomplete.

REFERENCES

[1] A. Avron. Natural 3-valued logics - characterization and proof theory.
The Journal of Symbolic Logic, Vol. 56(1): 276 - 294 (1991).

[2] A. Avron and I. Lev. A formula-preferential base for paraconsistent and
plausible non-monotonic reasoning. In Proceedings of the Workshop on
Inconsistency in Data and Knowledge (KRR-4), Int. Joint Conf. on AI
(IJCAI 2001), pages 60-70, 2001.

[3] D. Basin, S. Matthews, and L. Viganò. Natural deduction for non-classical
logics. Studia Logica, 60(1):119–160, 1998.

[4] A. Buchsbaum and T. Tarcisio. A reasoning method for a paraconsistent
logic. Studia Logica, 52(2), 1993.

[5] Bo Wei, Zhi Jin, Didar Zowghi, and Bin Yin. Automated reasoning
with goal tree models for software quality requirements. In COMPSAC
Workshops, pages 373–378, 2012.

[6] A. Bolotov, O. Grigoriev and V. Shangin: Automated Natural Deduction
for Propositional Linear-Time Temporal Logic. TIME 2007: 47-58

[7] A. Bolotov and V. Shangin. Natural Deduction System in Paraconsistent
Setting: proof search for PCont. Journal of Intelligent Systems, Vol. 21,
N1, 2012, pp 1-24.

[8] A. Bolotov, V. Bocharov, A. Gorchakov and V. Shangin. Automated First
Order Natural Deduction. IICAI 2005: 1292-1311

[9] A. Bolotov and V. Shangin. Natural Deduction in a Paracomplete Setting.
Forthcoming in Logical Investigations, Vol. 20, 2014.

[10] M. Bonet and S. Buss. The Deduction Rule and Linear and Near-Linear
Proof Simulations. Journal of Symbolic Logic, Vol. 58/2, 1993, pp 688-
709.

[11] J. Cobleigh and G. Avrunin and L. Clarke. Breaking up is hard to do: An
evaluation of automated assume-guarantee reasoning. ACM Trans. Softw.
Eng. Methodol.: 17(2), 2008.

[12] Program committee Basic Features of the Grid Compo-
nent Model Deliverable D.PM.04 CoreGRID, March 2007
(http://coregrid.ercim.eu/mambo/).

[13] C. Jones. Specification and design of (parallel) programs. Proceedings
of the IFIP 9th World Congress: IFIP: North Holland, 321332, 1983.

[14] N. Kamide. Natural deduction systems for Nelson’s paraconsistent logic
and its neighbors. Journal of Applied Non-Classical Logics. Vol. 15 (4),
2005.

[15] E. Letier and A. van Lamsweerde Deriving Operational Software
Specifications from System Goals. SIGSOFT 2002/FSE-10, Charleston,
SC, USA, pages 18-22, 2002.

[16] C. Middelburg. A Survey of Paraconsistent Logics The Computing
Research Repository (CoRR), vol.1103.4324, 2011.

[17] A. Naddeo. Axiomatic Framework applied to Industrial Design Problem
formulated by Paracomplete logics approach: the power of decoupling
on Optimization-Problem solving, Proceedings of Fourth International
Conference on Axiomatic Design, 2006, pages 1-8.

[18] A. Pnueli. In transition from global to modular temporal reasoning about
programs. In Logics and Models of Concurrent Systems, K. R. Apt, Ed.
NATO ASI: vol. 13. Springer-Verlag, 123144, 1984.

[19] V. Popov. Sequence axiomatisation of simple paralogics. Logical Inves-
tigations, Issue 16, 2010, pp 205-220, (in Russian).

[20] V. Shangin. Natural deduction systems of some logics with truth-value
gluts and truth-value gaps. Logical investigation, StPetersburg, CGI,
2011: 293-308, (in Russian).

[21] Le V. Tien, Quan T. Tho, and Le D. Anh. Specification-based Verification
of Incomplete Programs. ACEEE Int. J. on Information Technology, Vol.
02, No. 02, April 2012, pages 56-61.

[22] Jörg Kreiker, Andrzej Tarlecki, Moshe Y. Vardi, and Reinhard Wilhelm.
Modeling, Analysis, and Verification - The Formal Methods Manifesto
2010 (Dagstuhl Perspectives Workshop 10482). Dagstuhl Manifestos,
1(1):21–40, 2011.

