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A broad-spectrum anti-vomiting effect of neurokinin1 receptor antagonists (NK1RA),

shown in pre-clinical animal studies, has been supported by a more limited range of

clinical studies in different indications. However, this review suggests that compared

with vomiting, the self-reported sensation of nausea is less affected or possibly unaf-

fected (depending on the stimulus) by NK1 receptor antagonism, a common finding

for anti-emetics. The stimulus-independent effects of NK1RAs against vomiting are

explicable by actions within the central pattern generator (ventral brainstem) and the

nucleus tractus solitarius (NTS; dorsal brainstem), with additional effects on vagal

afferent activity for certain stimuli (e.g., highly emetogenic chemotherapy). The cen-

tral pattern generator and NTS neurones are multifunctional so the notable lack of

obvious effects of NK1RAs on other reflexes mediated by the same neurones sug-

gests that their anti-vomiting action is dependent on the activation state of the path-

way leading to vomiting. Nausea requires activation of cerebral pathways by

projection of information from the NTS. Although NK1 receptors are present in cere-

bral nuclei implicated in nausea, and imaging studies show very high receptor occu-

pancy at clinically used doses, the variable or limited ability of NK1RAs to inhibit

nausea emphasizes: (i) our inadequate understanding of the mechanisms of nausea;

and (ii) that classification of a drug as an anti-emetic may give a false impression of

efficacy against nausea vs. vomiting. We discuss the potential mechanisms for the

differential efficacy of NK1RA and the implications for future development of drugs

that can effectively treat nausea, an area of unmet clinical need.
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1 | INTRODUCTION

Drugs treating nausea and vomiting as disease symptoms or as

adverse effects of therapy are usually classified as anti-emetics.

However, the term emetic refers to a substance that causes vomiting

(or retching). Emesis does not mean nausea. Further, increasing evi-

dence indicates differential efficacy of anti-emetic drugs against nau-

sea vs. vomiting. Seifert and Alexander1 proposed a rational drug class
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terminology based on a drug's pharmacological actions rather than its

therapeutic orientation (e.g., anti-emetic). Applying this terminology

to nausea and vomiting means that the term anti-emetic must be writ-

ten in italics to denote the fact that efficacy against nausea and vomit-

ing should not be assumed to be the same.2 Here, we emphasize the

importance of differentiating between nausea, a self-reported aver-

sive sensation involving cortical and sub-cortical brain regions3–6 and

the mechanical events of retching and vomiting involving multiple

brainstem nuclei.7

The introduction of neurokinin1 receptor antagonists (NK1RAs)

further improved control of chemotherapy-induced nausea and vomiting

(CINV) and post-operative nausea and vomiting (PONV).8 In addition, a

potential expansion of indications may be appropriate, to include, for

example, motion sickness.9 If confirmed, this would point towards a

relatively wide spectrum of anti-emetic activity for the NK1RAs in

humans, as suggested by animal studies (see below). However, origi-

nating primarily from studies of CINV, there has been a concern that

nausea is less well treated than vomiting10 and this concern persists,

as reflected in the comment by Aapro11 that “Perhaps the greatest

unmet need in CINV is the lack of complete nausea control.” Accord-

ingly, in an attempt to understand the nausea vs. vomiting question in

relation to NK1RAs, from both clinical and basic science perspectives,

we identified five key questions:

1. Has the broad spectrum of activity of NK1RAs suggested by

animal studies of vomiting translated to humans?

2. Where do NK1RAs act to inhibit vomiting?

3. To what extent do NK1RAs inhibit nausea as compared to

vomiting?

4. If NK1RAs have a differential effect against nausea compared

to vomiting, what is the explanation?

5. What are the implications of the answers to the above

questions in terms of patient satisfaction and for future

development of drugs to treat nausea?

Different emetic stimuli signal to the brain via different routes.

This is why it is first necessary to determine if the broad-spectrum

ability of NK1RAs to prevent vomiting in animals translates to humans

in a similar manner; such a profile directs the discussion on potential

mechanism of action against vomiting and nausea. Accordingly, we

begin by briefly describing the NK1RA studies in animals and then

review the effects of NK1RAs against vomiting and nausea in different

clinical indications (see below for selection criteria), identifying differ-

ences in efficacy between these different indications.

2 | ANIMAL STUDIES: SPECTRUM OF
NK1RA EFFECTS AGAINST VOMITING AND
NAUSEA-LIKE BEHAVIOURS

In this section we consider only data from species with a vomiting

reflex (ferret, dog, cat, house musk shrew [Suncus murinus] and least

shrew [Cryptotis parva]). To simplify comparisons between species

and between the effects of drugs on vomiting and nausea, we have

not considered nausea-like behaviour data from rodents, which cannot

vomit.12,13

2.1 | Vomiting

Studies in multiple animal species (Table 1) have demonstrated broad–

spectrum effects of NK1RAs, markedly reducing/blocking retching

and/or vomiting induced by diverse stimuli acting via three key inputs

to the brainstem (Figure 1; 7,8 for references).

2.2 | Nausea-like behaviours

Administration to animals of substances inducing nausea and vomiting

in humans evoke behavioural changes (often referred to as nausea-

like), but their significance and relevance to the human sensation of

nausea is contentious (Chapter 117,10). In summary, and in contrast to

the clear effects of NK1RA on vomiting, effects on nausea-like behav-

iours (as defined in individual papers) are absent or inconsistent

(e.g., Table S1). Given this lack of clarity and since the relevance of

these behaviours to the human experience is unknown, they will not

be considered further (Chapter 11,7,10 for detailed discussion).

3 | HUMAN STUDIES: SPECTRUM OF
NK1RA EFFECTS AGAINST VOMITING AND
NAUSEA

It is important to determine if the broad-spectrum ability of NK1RAs

to prevent vomiting in animals translates to the vomiting and

nausea of humans. Accordingly, we searched either the name of

individual antagonists and/or the therapeutic area (e.g., motion sick-

ness, CINV, PONV, gastroparesis and cyclical vomiting syndrome).

For CINV and PONV, where there has been more extensive investi-

gation of NK1RAs anti-emetic efficacy, we initially reviewed system-

atic reviews/meta-analyses and then analysed data in selected

original papers. As our focus was on the relative efficacy of NK1RAs

against nausea and vomiting, we included papers where data on

both vomiting and nausea were presented and in particular where

adequate information was provided in the methods about how each

was quantified, with data presented in a form allowing comparison.

We note that few studies have given an NK1RA alone, n values can

be small (e.g., in PONV the n value for seven studies of aprepitant

included in a meta-analysis ranged from 30 to 5560) and some stud-

ies are uncontrolled. Nausea is often a secondary outcome with

methodological variations in its assessment complicating inter-study

comparisons (see below).

Sections 3.1 to 3.7 describe the results of studies investigating

the effects of NK1RAs against different emetic challenges. Section 3.8

then provides an overview of the spectrum of efficacy against nausea

and vomiting.
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TABLE 1 A summary of pre-clinical studies investigating the efficacy of neurokinin1 receptor antagonists against retching/vomiting induced
by a range of stimuli across multiple species. The studies show the broad-spectrum effect of the neurokinin1 receptor antagonists against stimuli
acting via the vestibular system, area postrema or abdominal vagal afferents. See text for discussion of mechanisms.

Species

Neurokinin1 receptor

antagonist Stimulus details References

Cytotoxic anti-cancer drugs

Acute phase of cisplatin

Ferret CJ-11974

CJ-17493

CP-99994

CP-122721

GR203040

L-742694

L-741671

Netupitant

SCH 619734

Given either i.p or i.v. 14–19

20

Dog FK886

Maropitant

21–24

Suncus GR203040 25

Doxorubicin emesis (5 days)

Dog Maropitant i.v. 26

Delayed phase of cisplatin

Ferret CJ-11974

Netupitant

SCH619734

Given either i.p or i.v. 14,16,27

Cyclophosphamide

Ferret GR203040

GR205171

Given i.p. 25,28

Pharmacological agents

Apomorphine

Dog CP-99994

FK886

Maropitant

Given s.c. 22,29,20

Ferret CP-99994

Netupitant

SCH619734

14,16,30,20

Brimonidine

Cat Maropitant Sedative given as eye drops 31

Copper sulphate

Dog CP-99994 Given p.o. 32,20

Ferret CP-99994

Netupitant

Given p.o. 16,20

Ethanol

Suncus CP-99994 Given i.p. 33

FPL64176

Least shrew Netupitant L-type Ca++ channel agonist 34

GR73632

Least shrew CP-99994 Neurokinin1 receptor agonist; given i.p. 35

Halothane/N2O

Suncus GR205171 Inhaled 36

(Continues)
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TABLE 1 (Continued)

Species

Neurokinin1 receptor

antagonist Stimulus details References

Ipecacuanha

Ferret CP-99994

CP-122721

GR205171

GR203040

Netupitant

R116301

Given p.o. 25,28,37,38,20

Dog GR203040

GR205171

Maropitant

Given p.o. 25,28,29

Lycorine

Dog Maropitant Alkaloid from daffodils; given s.c. 39

2-methyl 5-hydroxytryptamine

Least shrew CP-99994 5-HT3 receptor agonist; given i.p. Note no

significant effect of CP-99994 given at same

dose that blocked NK1 agonist (GR73632; see

above)

35

Naloxone

Suncus CP-99994 Given s.c. 40

Nicotine

Suncus CP-99994

CP-122721

RP67580

Given s.c. 30,40

Opiate receptor agonists

Ferret CP-99994 Loperamide; s.c. 41

Ferret GR203041 Morphine; s.c. 25

Dog Maropitant Morphine; s.c. 42,43

Dog Maropitant Morphine; s.c. 44

Dog Maropitant Hydromorphone; i.m. 45

Dog Maropitant Hydromorphone; i.m. 46

Dog Maropitant Hydromorphone; i.m. + acepromazine; i.m. 47

Cat Maropitant Dexmedetomidine + morphine; i.m. 48

Phosphodieseterase IV Inhibitors

Ferret CP-99994 R-rolipram, CT-2450, RS14203; given p.o. 49

Prostaglandin E2

Ferret CP-99994 Given i.p. 50

Pyrogallol

Ferret CP-99994 Reactive oxygen species donor; given i.p. Andrews and Matsuki,

unpublished

Resiniferatoxin

Suncus CP-99994 Given s.c. 51

Tranexamic acid

Dog Maropitant Fibrinolytic 52

U46619

Suncus CP-99994 TP agonist; given i.p. 53

Xylazine

Cat R116301 Given s.c. 38
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TABLE 1 (Continued)

Species

Neurokinin1 receptor

antagonist Stimulus details References

Non-pharmacological stimuli

Motion

Cat CP-99994 Ferris wheel 54

Dog Maropitant Car journey 55

Suncus GR203040

Netupitant

Horizontal motion 25,16

Total Body Radiation

Ferret GR203040

GR205171

X-radiation 25,28

Ferret CP-99994 X-radiation (3-week post-abdominal vagotomy

and greater splanchnic nerve section)

Andrews and Watson,

unpublished

Electrical stimulation of vagal afferents

Dog (decerebrate) GR205171 Stimulation either at the level of the terminal

thoracic oesophagus or abdomen; fictive emesis

measured in the decerebrate dog.

56,57

Ferret (urethane

anaesthesia)

CP-99994 20

Parvoviral enteritis-induced vomiting

Dog Maropitant 58

Post-neurosurgery vomiting

Macaca fascicularis

Macaca mulatta

Maropitant 59

Abbreviations: i.m., intramuscularly; i.p, intraperitoneally; i.v., intravenously; p.o., orally; s.c. subcutaneously.

F IGURE 1 A summary of the major pathways implicated in the motor events of vomiting and the sensation of nausea. The diagram shows the
major inputs (vestibular system, abdominal vagal afferents, area postrema) to the nucleus tractus solitarius (NTS) in the brainstem by which both
nausea and vomiting are evoked. The mechanical events of vomiting only require activation of brainstem and spinal cord nuclei. Most notable are
the dorsal motor vagal nucleus (DMVN) projecting vagal efferents to the digestive tract to induce gastric relaxation and intestinal retrograde giant
contraction, and the ventral respiratory group (VRG) of neurones driving the spinal phrenic nerve nucleus (PNN) responsible for contraction of the
costal diaphragm, which together with the anterior abdominal muscles (not shown) provides the main force compressing the stomach and leading
to forceful oral ejection of contents. Nausea requires activation of cerebral structures and is associated with the secretion of high concentrations
vasopressin (AVP/ADH) from the hypothalamic/pituitary axis but other hormones are also released (e.g., cortisol). The main sympathetic motor
outputs associated with nausea are shown in the right-hand red rectangle and are a consequence of descending pathways from the visceromotor
cortex activating the pre-sympathetic nuclei (PSN) in the brainstem, which in turn drive the pre-ganglionic sympathetic neurones in the spinal cord
(ILH). For details and references see text. Adapted and modified from previous studies.6
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3.1 | Motion sickness

Studies in humans are limited as ethical considerations usually dictate

that vomiting endpoints cannot be used in laboratory-based studies

inducing motion sickness in healthy human volunteers. Two

laboratory-based studies employed the well proven method of highly

provocative whole-body rotational motion with head movements to

induce motion sickness (so-called cross-coupled motion). These studies

showed no significant efficacy of an NK1RA (GR205171 [vofopitant];

L-758298) using the degree of motion exposure tolerated before

onset of nausea as the endpoint; this suggests no efficacy against nau-

sea.61,62 A study of healthy human volunteers using inescapable

motion at sea investigated the NK1RA tradipitant (VLY-686/

LY686017)9 and unlike laboratory-based trials, it was possible to mea-

sure both vomiting and nausea. Tradipitant was significantly effective

(placebo comparator) in protecting against vomiting, but less effective

against nausea, using the motion sickness severity scale as an index

(Figure 2). Only for selected data obtained during rough seas did the

NK1RA provide any protection against nausea compared to vomiting

in this sub-group (Figure 2). By contrast, well proven muscarinic

acetylcholine receptor antagonists such as scopolamine (hyoscine),

provided protection against both nausea63,64 and vomiting.65 More

detailed studies are now required, investigating, for example, the

effects of NK1RA on the physiological changes accompanying motion

sickness such as the reduced gastric antral contractile activity,66 a

pathway of potential relevance to understanding the effects of

NK1RAs in gastrointestinal conditions associated with nausea, such as

gastroparesis (see below).

From these very limited data, we tentatively conclude that

NK1RAs are effective against vomiting induced by abnormal motion

but are less effective against nausea.

3.2 | CINV

We focus on NK1RA use in the acute and delayed phases of highly

emetogenic chemotherapy (HEC) discussing their effects against

vomiting before effects against nausea.

A study of CINV in seven patients given CP-122721 alone

showed that in the acute phase (first 24 h) of HEC five patients had

≤2 episodes vs. 7 episodes of emesis in an historic control group and

in the delayed phase, six had no emesis.67 A larger study with

L-758298 (the prodrug for the NK1RA, aprepitant [L-754030])

showed that 37% of patients (n = 30) had no vomiting or retching in

the acute phase, compared with 52% of patients in an ondansetron

(5-hydroxytryptamine3 receptor antagonist; 5-HT3RA) group (n = 23;

not significantly different).68 However, confining analysis to the first

8 h following cisplatin showed 37% of patients had no vomiting or

retching in the NK1RA group compared to 83% in the 5-HT3RA group

(P = .001) but, in the delayed phase, 72% of patients were without

vomiting or retching in the NK1RA group vs. 30% in the ondansetron

group (P = .005).68 This study suggests a shift in the relative involve-

ment of 5-HT3 and NK1 receptors driving retching and vomiting

between the acute and delayed phases following cisplatin, a finding

confirmed by detailed time course analysis of the efficacy of aprepi-

tant, L-758298, ondansetron and granisetron in treatment of CINV.69

Recent meta-analyses demonstrate additional protection against

vomiting when NK1RAs are given with a 5-HT3RA and dexamethasone

during both acute and delayed phases in HEC (�15–20% more com-

plete protection), with a greater effect in the delayed phase.70–72

Overall, and despite an ability of NK1RAs to further reduce the

incidence of vomiting during the acute phase when combined with a

5-HT3RA and dexamethasone, the incidence of nausea is not further

reduced during this phase. For example, an initial study with L-754030

F IGURE 2 The effects of the NK1 receptor antagonist (NK1RA) tradipitant vs. placebo on motion sickness signs and symptoms, are shown for
vomiting (left) and for nausea (right). Motion sickness was provoked by motion at sea. Voyages inevitably varied in terms of the weather and
roughness of waves; consequently, the data are presented in terms of all data (i.e. all voyages combined) and split by lower wave motion calm seas
and higher wave motion rough seas. Vomiting is shown as % incidence. Nausea is shown as the mean sickness rating scale, with higher scores
indicating more severe nausea. Note the differences in levels of statistical significance for the different comparisons. Data were adapted from
previous studies.9
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showed an additional effect on vomiting in the acute phase (day 1) fol-

lowing cisplatin when added to a 5-HT3RA/dexamethasone regimen,73

but no significant reduction in nausea frequency. An analysis of the

Phase III studies of NK1RAs added to a 5-HT3RA and dexamethasone

regime in HEC, found no consistent evidence for an improvement in

the incidence of no significant nausea (NSN) or no nausea (NN) in the

acute phase.74 For example, the percentage of patients experiencing

NN in the NK1RA arm vs. placebo in the acute phase was 53.6 vs.

52%,75 65 vs. 66%,76 68 vs. 61% (Study 277) and 73 vs. 68% (Study 177).

A pooled analysis of studies with rolapitant showed a small but statisti-

cally significant increase in the percentage of patients reporting NN

(respectively, 64 and 70%) in the acute phase of HEC.74 Saito et al.78

found a tendency for the incidence of NSN to increase (90.2 vs. 84.9%)

when using intravenous fosaprepitant (150 mg + granisetron/dexa-

methasone) in patients receiving high-dose cisplatin, although the dif-

ference was not statistically significant and the NN incidence was

unchanged (67.6 vs. 67.5%) compared to placebo.

Some, but not all, studies reported that during the delayed phase

the addition of an NK1RA significantly increased the percentage of

patients reporting NN or NSN. In the initial study with daily L-754030

(±placebo + granisetron/dexamethasone73) the median nausea score

was reduced on a 100 mm visual analogue scale (higher score indicating

more severe nausea) from 19 to 1 mm on day 2 and over days 2–5 from

10 to 1 mm. Similarly, others reported that the percentage of patients

experiencing NN in the NK1RA arm vs. placebo/comparator arm in the

delayed phase increased significantly: 52.7 vs. 39.9%,79 53 vs. 42%

(Study 177) and 58 vs. 47% (Study 277). However, some showed no sta-

tistically significant change in NN (e.g., 28 vs. 17% days 2–7 but day

2 only, 52 vs. 22%,68; 43.9 vs. 49.1%,75; 71.4 vs. 73%,80; 48 vs. 45%,76).

A pooled analysis of studies using rolapitant showed a significant 12%

increase in the NN percentage (44 vs. 56%) in the delayed phase.74

A recent meta-analysis investigated the addition of aprepitant to

a 5-HT3RA/dexamethasone regimen in patients receiving HEC treat-

ments for lung cancer.81 While the overall complete response rate

(no vomiting/no rescue medication) was significantly better when

aprepitant was given, the NN rate was not statistically significantly

different.

In summary, there are insufficient data to compare different

NK1RAs, but it is possible to draw general conclusions about their effi-

cacy in HEC:

i. NK1RAs further reduce the incidence of vomiting during the

acute phase when combined with a 5-HT3RA and dexametha-

sone, but the effect is more marked in the delayed phase of HEC.

ii. When added to a 5-HT3RA/dexamethasone regime, the ability of

NK1RAs to further reduce the incidence of nausea appears

inconsistent.

3.3 | Post-operative nausea and vomiting

Table 2 summarizes the effects of NK1RAs in PONV using the out-

come from studies reporting nausea and vomiting separately to

illustrate the efficacy differences. Overall, several NK1RAs show effi-

cacy against post-operative vomiting in a proportion of patients but

the block is not complete in all patients and, the efficacy against nau-

sea is inconsistent (e.g., small changes in incidence, inconsistent

change in intensity, Table 2) and lower than against vomiting. A

Cochrane meta-analysis examined the efficacy of diverse pharmaco-

logical agents in treating vomiting in the first 24 h95 and concluded

that single NK1RAs were as effective as other drug combinations. The

analysis did not compare efficacy against nausea.

Assessment of the overall efficacy of NK1RAs against PONV is

complicated by the variety of types or surgery (e.g., open abdomen,

laparoscopic) and anaesthesia/analgesia protocols. A further issue is

that in studies where a range of doses has been investigated the rela-

tionship between NK1RA dose and efficacy against either nausea or

vomiting is not always clear (e.g., casopitant,90 rolapitant,96

vestepitant88).

3.4 | Cyclical vomiting syndrome

An open-label uncontrolled trial of aprepitant in a paediatric popula-

tion refractory to conventional treatment showed reduction in the

number of cyclic vomiting episodes/year and number of vomits/h.97

Although nausea is a feature of cyclical vomiting syndrome it was not

assessed in this study.

3.5 | Paediatric patients with life-limiting
conditions

A case series showed aprepitant (2.0–2.5 mg/kg, intravenously) was

effective in complete resolution of nausea (parental reports of impact

on mobility and feeding used as proxy efficacy markers) in paediatric

patients receiving palliative care, with different diagnoses and unre-

sponsive to at least two drugs classified as anti-emetics (e.g., cyclizine,

ondansetron, metoclopramide, levomepromazine98). Additionally,

aprepitant increased the ability to tolerate feeds as might be expected

from the proposal that food refusal in children could be used as a sur-

rogate marker for nausea,99 although NK1RA-induced changes in gas-

tric accommodation100 offers an alternative explanation.

3.6 | Gastric distension-induced sensations and
gastroparesis

In healthy human volunteers a single dose of aprepitant (80 or 125 mg)

had no effect on gastric compliance or sensitivity to distension.101 Also,

in healthy volunteers, aprepitant (125 mg orally [p.o.] day 1 + 80 mg

p.o. days 2–5) did not affect gastric emptying of liquids or solids, intes-

tinal or colonic transit.102 Using the same repeat dosing schedule but

following a dyspeptogenic meal, Jacob et al.100 confirmed no change in

gastric emptying with aprepitant but found a modest increase in fasting

(�10%), postprandial (�9%) and gastric accommodation (�5%)
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TABLE 2 A summary of studies investigating the efficacy of neurokinin1 receptor antagonists against post-operative nausea and vomiting
(PONV). Studies are selected to show the relative efficacy against nausea and vomiting and hence only studies in which they were assessed
independently are included. See text for further discussion.

Compound Efficacy against nausea in PONV Reference

CP-122721

(100 mg,

200 mg, p.o.)

In patients undergoing abdominal hysterectomy the maximum nausea score

appeared to be reduced by CP-122721 in both dose groups compared to

placebo but any effect was not statistically significant (n = 20–24). Visual
analogue scale nausea score did not differ between ondansetron, CP-

122721 and combination groups (n = 52–53).

82 (abstract),83

Vofopitant

(GR-205171)

(25 mg, i.v.)

In patients undergoing major gynaecological surgery vofopitant showed

superiority compared to placebo (n = 18 in both groups) for the

percentage of patients without nausea (2-h complete control nausea: 55

vs. 20%) and reduced the severity of nausea over the entire 24-h post-

operative observation period.

84

Aprepitant

(L-754030)

(40 mg/125,

p.o.)

Peak nausea score distribution (interquartile range) was significantly lower

(P < .05, n = 280–293) for both aprepitant groups (40/125 mg) compared

to ondansetron (4 mg) but the percentage of patients reporting no

significant nausea was only significantly higher than that ondansetron for

40-mg aprepitant (62 vs. 53%). For vomiting both doses of aprepitant were

superior to ondansetron and blocked vomiting in �85% of patients. Open

abdominal surgery.

85

Aprepitant

(L-754030)

(80 mg p.o.)

In patients undergoing laparoscopic gynaecological surgery nausea intensity

was significantly lower with aprepitant compared to palonosetron on

arrival in the recovery room (11.2 ± 2.1 vs. 19.0 ± 2.2) and at 2 h (9.7 ± 2.1

vs. 19.4 ± 3.5) but not in the subsequent 46 h. The complete response rate

over 48 h did not differ (74 vs. 77%)

86

Aprepitant

(L-754030)

(40 mg p.o.)

In patients undergoing plastic surgery compared to placebo (+ondansetron)

the severity of nausea was lower (P = .014, n = 75/arm) in the aprepitant

group (+ondansetron) between 0-48-h post-surgery. Vomiting incidence

was also significantly lower in the aprepitant group (7/75 vs. 22/75).

87

Vestepitant

(6-36 mg, i.v.)

Non-emergency surgery under general anaesthesia in patients failing

prophylaxis with pre-surgery ondansetron. Nausea numerical rating scale

median values did not differ between ondansetron (4 mg) alone and any

dose of vestepitant (n = 7–15/group) given subsequently but overall

vestepitant was superior to ondansetron (10.1–22.9%) improvement

except at a dose of 18 mg when there was a �1.2% difference.

88

Fosaprepitant

(150 mg, i.v.)

In patients undergoing surgery requiring general anaesthesia the percentage

of patients vomiting was significantly lower with fosaprepitant (n = 82)

than with ondansetron (n = 89) at 0–2 h (2 vs. 17%), 0–24 h (2 vs. 28%)

and at 0–48 h (2 vs. 29%). However, the percentage of patients reporting

nausea in the fosaprepitant was higher than for vomiting at all time points

(e.g., at 0–2 h, nausea 41 vs. vomiting 2%).

89

Casopitant

(GW679769)

(50 100 150 mg,

p.o.)

Only female patients, laparoscopic/laparotomic gynaecological procedure or

laparoscopic cholecystectomy. All doses of casopitant further reduced the

percentage of patients with vomiting at both 0-24 h (ondansetron 28.6 vs.

casopitant + ondansetron 4.3–9.3%) 0–48-h time points (ondansetron

32.9 vs. casopitant + ondansetron 6.4–12.9%). There was no difference in

the % of patients reporting nausea between ondansetron and casopitant

+ ondansetron groups. The % of patients experiencing nausea was higher

that the % experiencing vomiting for all three doses of casopitant

+ ondansetron (casopitant 50 mg, nausea 70.0 vs. vomiting 9.3%; 100 mg,

nausea 63.6 vs. vomiting 4.3%; 150 mg, nausea 66.4 vs. vomiting 7.1%).

The intensity of nausea did not differ between the three casopitant doses.

90

Aprepitant

(L-754030)

(40 mg, p.o.)

Craniotomy patients. No difference between nausea scores, incidence or

significant nausea between aprepitant and ondansetron (4 mg) up to 48-h

post-surgery but the study may not have been sufficiently powered to see

statistical differences at all time points.

91

Aprepitant

(L-754030)

(80 mg, p.o.)

In patients undergoing bariatric surgery aprepitant increased the number of

patients without nausea and vomiting (42.18 vs. 36.67%) compared to

ondansetron alone and nausea scores were unaffected by aprepitant.

92
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volumes, and a tendency to increase maximal tolerated volume

(�25%). Interestingly, the aggregate symptoms, nausea and pain scores

(but not bloating or fullness) increased significantly following the dys-

peptogenic meal in the aprepitant group compared to placebo (median

36 vs. 4).

A 4-week placebo-controlled study of aprepitant (125 mg/day,

p.o.) involving 126 patients failed to demonstrate an improvement in

the primary outcome measure of nausea,103 in a population with 57%

gastroparesis patients and the remainder with chronic unexplained

nausea and vomiting. The study also used the Gastroparesis Clinical

Symptom Index104 to assess symptom severity as a secondary out-

come and this showed significant reductions in overall symptom score

(1.3 vs. 0.7), vomiting (1.6 vs. 0.5 [69% decrease]) and nausea (1.8 vs.

1 [44% decrease]). The number of hours per day when nausea was

experienced was reduced and the proportion of nausea-free days

increased (� twofold).

A placebo-controlled trial of 152 patients with idiopathic or dia-

betic gastroparesis and moderate-to-severe nausea, investigated tra-

dipitant (85 mg p.o.) twice daily (daily total 170 mg) for 4 weeks.105

The trial met the primary outcome measure of a reduction in average

daily diary nausea score measured using the Gastroparesis Clinical

Symptom Index Daily Diary with a difference in score reduction

between placebo and tradipitant of �10%. Nausea severity appeared

to begin decreasing by week 2 and this was statistically significant by

week 3. Additionally, tradipitant increased secondary outcomes of

nausea-free days (�14% > placebo) and nausea response rate (�21%

> placebo). Patients who responded to tradipitant with a reduction in

nausea also had improved early satiety, excessive fullness, bloating

and upper abdominal pain, compared to placebo. Two case reports

involving single patients with gastroparesis report stoppage of previ-

ously intractable nausea106 or vomiting107 on administration of

aprepitant.

A recent systematic review and network meta-analysis of drugs

used to treat gastroparesis showed that NK1RAs were efficacious (risk

ratio = 0.69) using global symptom score. When individual symptoms

were assessed tradipitant was more effective than placebo in treating

nausea (tradipitant risk ratio = 0.77; 95% CI 0.65–0.91).108 By con-

trast, a recent phase III trial of tradipitant in gastroparesis showed no

difference from placebo in the change of severity of nausea (prespeci-

fied primary endpoint) over a 12-week period.109

3.7 | Overview of clinical efficacy against nausea
vs. vomiting

Summarizing Sections 3.1 to 3.7, NK1RAs can block vomiting induced

by HEC (± 5HT3RA and dexamethasone) and PONV, and with much

more limited evidence perhaps also the vomiting associated with

cyclical vomiting syndrome and motion-induced vomiting. NK1RAs do

not block vomiting in all patients/subjects exposed to a given stimulus

and for CINV the efficacy may depend on the phase (potentially,

delayed>acute). When nausea is assessed, several studies report no

significant benefit although there is some evidence that even if not

completely blocking nausea NK1RAs may reduce its intensity (e.g., see

PONV data, Table 2). Overall, however, the NK1RAs are less effica-

cious or have more variable efficacy against nausea than vomiting

over the same range of stimuli but more quantitative data are needed.

We now attempt to explain this differential effect by a detailed

analysis of the sites at which NK1RAs could act to affect vomiting

(Section 4) and nausea (Section 5).

4 | POTENTIAL SITE(S) OF ACTION OF
NK1RA AGAINST RETCHING AND VOMITING
(FIGURE 3)

The sites at which NK1RA block retching and vomiting have been

investigated in animals (primarily dog and ferret). The findings of these

studies are included here because the afferent, integrative and motor

pathways responsible for vomiting are comparable between animals

TABLE 2 (Continued)

Compound Efficacy against nausea in PONV Reference

Aprepitant

(L-754030)

(80 mg, p.o.)

Laparoscopic gynaecological surgery. Significant (P = .014) additional

reduction in nausea incidence (24 h) when aprepitant was given with

ondansetron but no change in severity of nausea or incidence of vomiting.

93

Aprepitant/

rolapitant/

casopitant

Systematic review and meta-analysis of 14 randomized control trials of three

neurokinin1 receptor agonists in patients undergoing mainly either

abdominal or gynaecological surgery including open abdomen approaches.

Aprepitant (80 mg) showed an additional increase of 31% in the patients

protected from nausea compared to placebo.

94 Note that table 2 in this paper contains a

detailed summary of results from all studies

included.

Aprepitant

(L-754030)

(80 mg, p.o.)

Systematic review and meta-analysis of seven randomized control trials of

aprepitant (80 mg) in patients undergoing laparoscopic procedures. Risk

ratio for nausea 0.56 vs. 0.2 for vomiting compared to placebo or no anti-

emetic therapy. Risk of vomiting reduced by 80% in first 2 h post-

operatively vs. 44% for nausea.

60 Note that table 2 in this paper contains a

detailed summary of results from all studies

included.

Abbreviations: i.v., intravenously; p.o., orally.
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(e.g., dog, ferret110) and humans.7 For each potential site of action, we

will consider whether it could account for a broad-spectrum effect

against vomiting or whether it can only explain an action against

vomiting induced by a specific stimulus or pathway. This analysis also

provides an essential background for understanding the differential

effects against nausea.

4.1 | Vestibular system

The vestibular system is essential for induction of nausea and

vomiting caused by abnormal body motion. From an evolutionary

perspective the vestibular system is considered a component of the

mechanisms protecting the body against ingested toxins (see111–114).

Although sensitivity to motion sickness is a predictive factor for

both CINV and PONV,115,116 there is no evidence that the vestibu-

lar system (including vestibular nuclei) is directly implicated in the

induction of either. During motion sickness, the motor pathways for

vomiting are activated via projections of the vestibular nuclei to the

medial and caudal nucleus tractus solitarius (NTS; studies in the

cat117,118). There is no evidence that NK1RAs affect transmission in

the pathway between the vestibular system, the vestibular nuclei

and the NTS, to block induction of vomiting. This contrasts with the

actions on this pathway of H1 and muscarinic acetylcholine

(M3/M5) receptor antagonists, used to treat motion sickness.63,64,119

An action of NK1RAs within the NTS or at a site(s) deeper in the

brainstem is therefore the most likely site for effects against

motion-induced vomiting.

4.2 | Area postrema

The area postrema (AP) projects to neurones in the medial NTS

(mNTS) which can be activated by emetic stimuli applied to the AP

(e.g., apomorphine, L-glutamate) and by vagal afferent stimulation

(dog studies120). However, the evidence that NK1 receptors occur

within the AP is weak, and their functional relevance uncertain. For

example, low levels of [3H]-substance P binding displaced by CP-

99994 (0.1–100 nM) were found in the ferret AP, as compared to the

NTS (particularly subnucleus gelatinosus).20 Ariumi et al.121 reported

dense 3H-substance P binding in the AP and NTS of ferret but dis-

placement by an NK1RA was not studied. Comparable evidence is

available for S. murinus and rat,122,123 Iontophoretic application of

substance P (SP) activated �50% of AP neurones tested (dog124), but

F IGURE 3 A diagrammatic summary of the central and peripheral sites at which NK1RA could act to reduce nausea and vomiting. AP = area
postrema; CPG = central pattern generator for vomiting; DMVN = dorsal motor vagal nucleus EC = enterochromaffin cell;
EEC = enteroendocrine cell; EP = epithelial cell; HPV = hepatic portal vein; ICC = interstitial cells of Cajal; NK1RA = neurokinin1 receptor

antagonist; NTS = nucleus tractus solitarius; VNN = vestibular nerve nucleus. In the periphery, NK1 receptors located on the gastric smooth
muscle, the enteric neurones and possibly the ICCs could modulate motility contributing to a reduction in nausea when disordered motility is
implicated (e.g., gastroparesis). NK1RA can prevent activation/sensitisation of both muscle mechanoreceptors and epithelial chemoreceptive vagal
afferents driving nausea and vomiting by locally released SP. The latter are particularly implicated in nausea and vomiting induced by anti-cancer
chemotherapy, gastric irritant and some infections (e.g., rotavirus). NK1 receptors are also implicated in inflammation the reduction of which by
NK1RA could also contribute to reducing afferent drive. The sites at which vomiting can be blocked all reside in the brainstem (particularly the
NTS and CPG), although it is unclear if the AP is a site of action other than when vomiting is induced by an NK1 receptor agonist. Induction of
nausea requires activation of higher brain regions and although NK1 receptors are present at multiple sites in the mid-brain and cerebral
hemispheres the data implicating them in anti-nausea effects is circumstantial. See text for details and references.
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although assumed to play a role during vomiting induced by intrave-

nously administered SP (dog125), the receptor type activated by the

applied concentration of SP and the link between activation and

vomiting was not identified. In the ferret, application of SP to the AP

can evoke vomiting123 but microinjection studies126 suggest that this

response was probably due to SP penetration to the subjacent NTS as

the blood–brain barrier between these two areas may have some per-

meability. A similar explanation of leak into the NTS may account for

the block in morphine (subcutaneously) and reduction in copper

sulphate (intragastric)-induced vomiting in the ferret by administration

of the NK1RAs CP-99994 or HSP-117 into the AP.121

It is a possibility that NK1 receptors in the AP could be activated

if SP (or other tachykinins) are released from gut enteroendocrine cells

(EEC)127 to enter the blood circulation in addition to acting more

locally. However, the evidence for this possibility in response to

emetic stimuli is weak. Thus, in patients undergoing chemotherapy,

the elevation of serum concentrations of SP during the delayed phase

of vomiting was inconsistent128–132 although this is the phase during

which NK1RA are most effective (see above).

Another possibility is that SP could arise from neurones intrinsic

to the AP following direct activation by endogenous or exogenous

emetic substances or by abdominal vagal afferents projecting to the

AP. However, SP-like immunoreactivity (SP-Li) was absent in the AP

of a human infant,133 consistent with the absence of SP-Li cell bodies

in the AP of adult cat, rat134 and ferret.135 Previously, extraction stud-

ies in humans found some SP in the AP136,137 and radioligand binding

showed a moderate uptake of an NK1RA by the human AP.138 Sparse

SP-Li nerve fibres have been found in the AP (cat, rat) but their origin

is most likely to be from either vagal nerve afferents terminating there

or from the NTS134; this is consistent with the finding of high densi-

ties of SP immunoreactive fibres in lateral borders of the AP in the

ferret.135 However, in the least shrew SP-Li fibres and puncta were

present at a moderate level in the AP.139

Finally, it is worth noting that the concept of the AP as a site

at which systemic agents act to induce nausea and vomiting was

originally derived from studies showing abolition of vomiting

induced by apomorphine (a dopamine D2 receptor agonist), follow-

ing surgical ablation of the AP including in humans,140,141 Similarly,

other exogenously administered agents (e.g., morphine, loperamide,

cisplatin) can induce emesis via the AP.142–144 However, there is

only limited evidence that systemic endogenous agents which can

induce vomiting (e.g., adrenaline, cholecystokinin, GDF15, arginine-

vasopressin), act via the AP, with alternative sites of action

suggested.143,145,146 The above discussion suggests that SP, acting

via NK1 receptors in the AP should be added to the list of systemic

endogenous emetic agents.

4.3 | Abdominal vagal afferents

There are two sites at which vagal afferent activation by emetic stim-

uli could be affected by an NK1RA; they are not mutually exclusive

(Figure 3).

4.3.1 | The peripheral transduction mechanism

A potential ability of SP from enterochromaffin cells (ECs) to induce

vomiting by acting on vagal afferents was hypothesised >30 years ago

(147; for details see8). Potentially, such a mechanism would be similar

to that for 5-HT, which is released from ECs in response to chemo-

therapeutic agents (e.g., cisplatin) and other emetic stimuli

(e.g., rotavirus), causing vomiting by stimulating and sensitizing

abdominal vagal afferent terminals via 5-HT3 receptor activation

(8,148; for reviews). In rats, treatment with methotrexate or cisplatin

increased the number of SP-containing ECs within the intestine, 24 h

after administration149,205 but studies have not yet looked for local

release of SP from ECs in response to anti-cancer chemotherapeutic

agents or other emetic stimuli. By analogy with 5-HT (see above), any

release of SP might be expected to activate vagal nerve terminals.

Recently, SP (1 μM)-induced depolarisation of human isolated vagus

was shown to be blocked by aprepitant.150 However, the authors

used a concentration (10 μM) at least 10 000� the human NK1 recep-

tor binding half-maximal inhibitory concentration, at or above the

concentrations examined for selectivity of action,151 and now under-

stood to also activate the mechanosensitive t-pore domain potassium

channel, TRAAK (encoded by the KCNK4 gene).152 Interestingly,

recordings from abdominal vagal afferents of ferrets show an interac-

tion between 5-HT and SP153 and cross talk has been demonstrated

between NK1 and 5-HT3 receptors in relation to the anti-emetic effect

of palonosetron.154

4.3.2 | Vagal afferent to NTS transmission

Abdominal vagal afferents terminate in the mNTS.155 There is evi-

dence that SP is a transmitter from vagal afferents to NTS neurones

(cat156; dog157) and for activation of NTS neurones by iontophoreti-

cally applied SP (ferret158; rat122). However, any action of NK1RA on

vagal to NTS transmission must be selective for afferents involved in

induction of vomiting as NK1RAs do not block the gag reflex, the car-

diac or respiratory components of the von Bezold–Jarisch reflex or

apnoea induced by cervical vagal afferent stimulation.20,56 Addition-

ally, while systemic administration of the NK1RA, CP-99994 in the

anaesthetized ferret blocked licking, swallowing and retching induced

by electrical stimulation of the abdominal vagal afferents, the accom-

panying rise in blood pressure was unaffected.20 This makes it

unlikely that vagal to NTS transmission per se is blocked and sug-

gests that the block is either within the NTS integrative pathways

that initiate vomiting or on the output side of the system in the cen-

tral pattern generator (CPG) for vomiting located in the reticular for-

mation dorsomedial to the retrofacial nucleus (Bötzinger complex) in

the region of the NA (compact region) and the associated prodromal

sign centre (PSC in the semi-compact area of the nucleus ambi-

guus).155,159,160 Further support for a specific activity on some but

not all vagal functions comes from studies in the decerebrate dog

where the NK1RA, GR-205171 (intravenously) blocked fictive

retching, the accompanying antral contractile response (probably the
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extension of the Retrograde Giant Contraction [RGC] that originates

in the small intestine and immediately precedes the onset of retching

mediated by vagal efferents; see161,162), and reduced the hypersaliva-

tion (mediated by PSC) evoked by vagal afferent stimulation, but not

the accompanying vagal efferent mediated relaxation of the proximal

stomach.57

It is self-evident that blockade of vagal afferent activation at a

peripheral site or vagal afferent transmission to the mNTS would only

contribute to the anti-vomiting effects of NK1RAs when the primary

stimulus activates the vagus (e.g., acute phase of CINV, possibly gas-

troparesis163). Therefore, a vagal site of action would not account for

block of stimuli acting only either via the AP or the vestibular system

so additional site(s) of action need to be considered.

4.4 | Brainstem integrative mechanism and the
drive to the visceral and somatic motor outputs

The selective effects of NK1RA on reflex responses to vagal afferent

stimulation (as above) show that actions of NK1RA within the brain

stem integrative pathways (i.e. NTS, CPG, ventral respiratory group

[VRG]) are selective to neurones involved in the vomiting motor pro-

gramme occurring as a result of reconfiguration of the pattern of activ-

ity in the multifunctional respiratory neurones (164,206) (c.f. cough,

yawn, sneeze). These same sets of neurones can also be driven to

evoke vomiting by stimuli acting on the vestibular system and the AP

(Figure 4). Thus, the effects of NK1RAs on the brainstem pathways

are state dependent and this could explain the selectivity of effects

against vomiting; when the brainstem is involved in baseline respira-

tion and some respiratory reflexes there is probably little critical

dependence on SP as a transmitter but when the pathway reconfi-

gures and is highly active as occurs for vomiting then it becomes criti-

cally dependent on SP.

Overall, there is evidence for either the presence of SP positive

neurones and/or NK1 receptors in the key brainstem sites implicated

in vomiting.

4.4.1 | Nucleus tractus solitarius

SP-like immunoreactive neurones are present in the human NTS, par-

ticularly subnucleus gelatinosus, and this is consistent with studies in

both the cat and ferret.135,165 A human brain PET study using a fluo-

rine18-labelled NK1RA reported moderate uptake in the NTS, the

nucleus ambiguus and other nuclei of the vagus (not specified).138

A site of action within the NTS is supported by studies showing

microinjection of CP-99994 in the region of the NTS inhibited, but did

not completely block, cisplatin-induced acute retching and vomiting in

the ferret.19,126 An important point is that the NK1RA was injected

after retching/vomiting began showing that the antagonist was block-

ing a pathway driven by ongoing NK1 receptor activation. The peptide

NK1RA, GR-82334 was infective against cisplatin-induced retching/

vomiting when given intravenously but was effective (77% reduction)

when given into the NTS.126 Rupniak et al.17 correlated anti-emetic

activity against cisplatin in the ferret with central penetration using a

range of NK1RAs with differing brain penetration. These studies

argued strongly that central penetration (at least to the NTS) is

required for the acute anti-emetic effect of an NK1RA. Further sup-

port for an action of NK1RA in the NTS comes from inhibition of SP

(1 μM)-induced discharge in NTS slices by HSP-117 (10 μM), without

affecting baseline spontaneous neuronal discharge (ferret158).

4.4.2 | Dorsal motor vagal nucleus

NK1 receptors are present in the dorsal motor vagal nucleus (DMVN;

ferret20), the site of origin of vagal efferents supplying the upper

digestive tract and regulating the proximal gastric relaxation and RGC

prior to the onset of retching and vomiting.162 In the rat, neurones in

the DMVN responsive to gastric distension ±24 h post cisplatin had

their baseline activity altered by CP-99994 (5 μM)166 but the results

should be interpreted with caution as the efferent projection (e.g., the

stomach) of the neurones was not identified (e.g., using antidromic

collision167) and the effects of CP-99994 were not controlled for by

using its less potent 2R, 3R enantiomer, CP-100263.20 Although these

studies show that the DMVN is a potential target for NK1RA it should

be noted that preventing the gastric relaxation and RGC will not block

retching and vomiting as they can occur even in the absence of the

stomach168 and when the RGC is blocked by atropine.161 An action of

NK1RA on the DMVN is therefore unlikely to explain their anti-vomit-

ing action.

4.4.3 | Ventral brainstem

Neurophysiological studies of fictive emesis in the dog implicate

nuclei in the ventral brainstem.110,155,159,160 When administered sys-

temically, the NK1RA, GR-205171 reduces vagal afferent activation

(via the mNTS) of the CPG for vomiting and/or in the pathway linking

the NTS to the CPG via the PSC155,159; immunohistochemistry has

demonstrated the presence of NK1 receptors in both regions of the

dog ventral brainstem.160 The CPG connects with the VRG, the loca-

tion of the neurones driving the phrenic and abdominal motor neu-

rones involved in normal respiration as well as retching and vomiting

(Figure 4).

Total block of transmission at either the NTS or CPG is probably

not required to stop induction of vomiting; a reduction in transmission

at either site is likely to be sufficient as triggering vomiting requires a

higher frequency stimulus, which also lasts for an extended time

(e.g., �20s of vagal afferent stimulation is required in dog120 and fer-

ret169), presumably to prevent inappropriate triggering. It is particu-

larly notable that NK1RAs prevent the wind-up of CPG neurones

induced by vagal afferent stimulation and blunts the rise in firing fre-

quency when continuous vagal afferent stimulation is used, prevent-

ing the CPG reaching a threshold for induction of the oscillatory

activity required for retching and vomiting55,159 (Figure 5).
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F IGURE 4 (A–D) Diagrammatic
representation of a longitudinal section through
the brainstem showing the key nuclei and
pathways implicated in retching, vomiting and
nausea. AP = area postrema; CPG = central
pattern generator responsible for the generation
of the oscillatory pattern of activity driving the
somato-motor pathways for retching and vomiting
in the VRG; DMVN = dorsal motor nucleus of the

vagus, origin of pre-ganglionic efferents to the
digestive tract; NTS = nucleus tractus solitarius;
VRG = ventral respiratory group of neurones;
Ph = phrenic nerve nucleus in cervical (C3-C-5)
spinal cord; ab = abdominal muscle motor
neurones in ventrolateral thoracic and lumbar
spinal cord. See text for further explanation and
references. (A) Resting state; (B) low level of
activation of pathways inputting to the NTS
resulting in activation of NTS and ascending
pathways inducing nausea including secretion of
anti-diuretic hormone (ADH/AVP) from the
posterior pituitary; (C and D) more intense
activation of the inputs results in more intense
nausea and proximal gastric relaxation, a
preparatory action to accommodate refluxed
material resulting from the retrograde giant
contraction originating in the small intestine when
the input is sufficient to exceed the threshold for
induction of retching and vomiting when the
phrenic and abdominal motor neurones are
activated. Note that the CPG and the DMV
outputs must be coordinated (dotted arrow) as
retching does not begin until the retrograde giant
contraction reaches the gastric antrum.
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4.5 | Overview of site(s) of action against vomiting

The clinically used NK1RAs are brain penetrant so when given system-

ically they can act at both the central and peripheral neuronal sites

involved in retching and vomiting:

i. For vomiting induced by abnormal motion, the brainstem integra-

tive pathways (NTS, CPG) are the most likely site of action.

ii. For stimuli involving abdominal vagal afferents it is possible that

NK1RA can: (a) block effects of any SP released from EEC cells

onto NK1 receptors on the peripheral afferent nerve termi-

nals153; (b) reduce tachykininergic transmission between vagal

afferents and the NTS123,160; or (c) modulate the brainstem inte-

grative pathways (NTS, CPG) sufficiently to disrupt the signals

encoding induct vomiting.20,123,155,159,160 At present, the evi-

dence for (b) and (c) is stronger.

iii. For stimuli acting on the AP via the circulation (or cerebrospinal

fluid) including exogenous emetics and endogenous substances

released for example from the digestive tract because of dam-

age/inflammation (e.g., during the delayed phase of CINV and

chronic phases of infection; 8,170,171 for references), the brain-

stem integrative mechanisms (NTS, CPG) are the most likely sites

at which vomiting is affected as there is little evidence for an

action within the AP itself.

The NTS and CPG sites of action of NK1RA are common to all

stimuli inducing vomiting. However, for stimuli where abdominal vagal

afferent activation occurs two additional sites of action are implicated,

which, if operational, would block vagal afferent input and thereby

make it unnecessary for NK1RA to act within the NTS and CPG. How-

ever, although the NK1RA are highly effective against vomiting in a

number of clinical settings, NK1 receptors are not the only receptors

involved in all of the pathways and this may explain why they may not

always be fully effective in all patients. For example, SP is likely to co-

transmit with a non-peptide (e.g., glutamate) with the former likely to

be released by a higher frequency or different pattern of nerve fir-

ing.172 Further, glutamate has been implicated in abdominal vagal

afferent to mNTS transmission as NBQX blocked vagal afferent-

induced retching in dog and ferret and the resulting mNTS activation

in the dog.110,173 Nevertheless peptides, as co-transmitters, are

known to be involved in network reconfiguration with release deter-

mined by both neuronal firing pattern and time.174 Variations in the

predominant transmitters in the nausea and vomiting pathways, possi-

bly as a response to disease, especially if chronic (e.g., in chronic vis-

ceral pain NK1 receptor availability is downregulated175), may also

contribute to NK1RAs spectrum of clinical efficacy.

5 | THE POTENTIAL SITE(S) OF NK1RA
ACTION AGAINST NAUSEA

Anti-emetics must not be assumed to equally affect both nausea and

vomiting.2 Accordingly, we discuss the relative effects of NK1RA

against nausea and vomiting by considering specific questions about

F IGURE 5 Diagrammatic representation of the likely neuronal discharge pattern in the medial nucleus tractus solitarius (mNTS) and the
central pattern generator (located in the compact part of the nucleus ambiguus, cAMB) in response to electrical stimulation of infra-cardiac vagal
afferents based on neurophysiological studies in the dog reported in previous works.110,155,160 Vagal afferent stimulation results in a uniform
increase in NTS firing frequency, which ceases at the end of stimulation. NTS activation results in central pattern generator (CPG) activation after
a lag period and is followed by a progressive increase in frequency which is due to wind-up. The CPG firing frequency reaches at threshold at
which the pattern becomes oscillatory with the output driving the ventral respiratory group of neurones (VRG) which in turn drive the phrenic
and abdominal motor neurones responsible for the mechanical events of retching a vomiting. The CPG oscillations causing retching are shorter
and smaller magnitude than the ultimate burst of activity resulting in vomiting and continue beyond the period of vagal afferent stimulation
showing a protracted effect of the initial stimulation.
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the pathways involved; this also informs directions for development

of novel drugs (Section 6). Direct experimental data are not available

to answer all the questions raised, so some answers are speculative

and hypothetical but experimentally testable.

5.1 | What information reaches the NTS from the
abdominal vagal afferents in the presence of NK1RAs?

This question is relevant to both CINV and gastroparesis where

abdominal vagal afferents are implicated in genesis of nausea and

vomiting.8,163 Regardless of whether NK1RAs reduce vagal afferent

firing by acting peripherally (e.g.,153) or centrally (e.g.,160), the degree

of activation, and the pattern, frequency and duration of abdominal

vagal afferent activity required for induction of nausea as compared

to vomiting is unknown. It is, nevertheless, a reasonable assumption

that nausea requires less intense activation of afferent pathways than

vomiting (see176 for discussion in relation to the vagus). The effects of

NK1RAs on vagal afferent activity evoked by a wide range of stimulus

intensities, ± substances that may sensitize the afferents (e.g., 5-HT,

prostaglandins) need to be investigated directly to answer the above

question. The development of vagal afferent recording techniques in

humans may eventually allow direct testing of this hypothesis.177

5.2 | Do differential effects of NK1RAs on the NTS
account for the differential effects against nausea and
vomiting?

NK1RA modulation of the vagal afferent drive to the NTS and/or

transmission within the NTS (vagal, AP and vestibular inputs) could

contribute to a reduction in nausea intensity by decreasing the drive

from the NTS to supra-medullary structures implicated in the sensa-

tion of nausea. However, the evidence for such an action is poor, as

discussed below.

5.3 | Are NK1 receptors in the mid-brain and
cerebral hemispheres involved in potential anti-nausea
effects of NK1RA?

In contrast to vomiting, the brain pathways responsible for nausea are

not well defined. The majority of brain imaging studies are in subjects

reporting nausea induced by illusory-self motion (vection; visually

induced motion sickness), with only single studies using realmotion or a

pharmacological challenge6 making it difficult to assess whether the

findings have general applicability. Cortical and sub-cortical areas con-

sistently showing an increase in activity in healthy volunteers reporting

nausea include the frontal lobe (e.g., anterior cingulate cortex), occipital

lobe (e.g., posterior cingulate cortex), temporal lobe (e.g., amygdala, part

of the limbic cortex) and basal ganglia (e.g., putamen).6

NK1RA binding in the human brain using PET shows NK1 recep-

tors in several brain areas implicated in nausea. For example,

aprepitant has receptor occupancy of 50% in the caudate and 90% in

the putamen (basal ganglia) at plasma concentrations of �2 � 10�9

M and �2 � 10�8 M respectively.178 Based on the striatal occupancy

levels, the authors concluded that the recommended anti-emetic

aprepitant regime of 125 mg on day 1 and 80 mg on the subsequent

2 days in CINV would result in an occupancy of >90%.177 Hietala

et al.,138 using the same radioligand confirmed the highest uptake in

the caudate and putamen and levels �50% in regions of the occipital

lobe (e.g., posterior cingulate cortex), temporal lobe (e.g., amygdala

[forms the limbic cortex with the hippocampus]) and frontal lobe

(anterior cingulate cortex) all of which have been implicated in nau-

sea in brain imaging studies.6

Pharmacological MRI studies provide additional unexpected

insights. Using fosaprepitant, the NK1 receptor distribution profile

identified in the above PET studies was confirmed but in addition

identified activation of brain areas (e.g., cerebellum, red nucleus)

where there were thought to not be any NK1 receptors, an effect

attributed to downstream pharmacodynamic effects206 (see fig. 179).

Such effects demonstrate that in identifying brain sites of drug action

we should not only consider regions that have their activity inhibited;

activation of a pathway that itself is inhibitory on the function under

consideration should not be overlooked. Brain imaging studies in

nausea have identified areas with both increased and decreased

activity.3

Although we focus on areas directly implicated in nausea, as nau-

sea involves heightened anxiety, the potential anxiolytic effects of

NK1RA
180 could indirectly contribute to reducing nausea scores espe-

cially in chronic conditions (e.g., gastroparesis).

Overall, NK1RAs do not appear to have a consistent ability to

reduce nausea induced by multiple stimuli despite high levels of

NK1RA binding in many of the relevant brain areas. Therefore, it is

reasonable to conclude that NK1 receptors do not have a major role in

transmission in the higher brain regions currently implicated in nausea.

We note that NK1RA efficacy in depression (e.g.,181,182), panic

disorder,183 pain179 and anxiety180 are also variable and less than

might be anticipated from NK1 receptor distribution.

5.4 | Do NK1 RA reduce vasopressin secretion?

Relatively high plasma concentrations of arginine vasopressin (AVP)

are associated with nausea induced by stimuli activating the vestibular

system, AP and abdominal vagal afferents.146 A causal link between

AVP and nausea is not proven, but a credible possibility in at least

some clinical scenarios involves the actions of low concentrations of

AVP on gastric pacemaker activity (the interstitial cells of Cajal; ICC),

synergising with actions of other nauseagenic stimuli to disrupt motil-

ity and hence, initiate vagal afferent discharge; the demonstration of

synergy between two different nauseagenic stimuli (adrenaline

+ AVP) was used to argue that antagonism of one alone (e.g., the

effects of vasopressin) might reduce but not prevent the symptom of

nausea.146 In dogs, following cisplatin administration, the NK1RA mar-

opitant was without significant effect on the peak AVP concentration
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or the area under the curve whereas both were significantly reduced

by ondansetron.23 In human patients treated with cisplatin the acute

rise in AVP concentration was blocked by ondansetron184 as in the

dog, but as far as we are aware similar patient studies have not been

performed with an NK1RA.

5.5 | Do NK1RA have a role in treating nausea by
gastric motility modulation?

The presence of SP in the digestive tract in nerve terminals and

EEC185 and of NK1 receptors on smooth muscle cells and interstitial

cells of Cajal (ICCs)186–189 makes the digestive tract a potential target

for NK1RA. However, an ability of NK1RAs to affect nausea by a

direct effect on gastric motility is unlikely. Thus, in healthy volunteers

there is little evidence for an effect of NK1RA on digestive tract motil-

ity (assessed by gastric emptying or compliance, or small and large

bowel propulsion).100–102,190 Interestingly, after a dyspeptogenic

meal, aprepitant (125 mg on day 1, then 80 mg on days 2–5)

increased fasting, postprandial and accommodation gastric volume

but increased aggregate symptoms, nausea and pain scores after

ingestion of the maximum tolerated volume; the authors suggested

that differences between these studies may be dependent on what is

measured and on the application of acute- or longer term dosing with

aprepitant100 but activation of TRAAK channels (see above) should

also be considered.

Dysrhythmic gastric electrical activity has been associated with

nausea in disorders including gastroparesis, chronic unexplained nau-

sea and vomiting, functional dyspepsia, gastro-esophageal reflux dis-

ease, all linked with loss of ICCs.191,192 Thus, any ability of NK1RAs to

affect ICC functions (see above) could, in theory, have an influence on

induction of nausea although an effect on vagal afferent signalling or

the NTS seems more likely based on current knowledge.

6 | CONCLUDING COMMENTS

Irrespective of the stimulus, the effects of NK1RA against vomiting are

explicable by a central action on the NTS and CPG in the brain stem

with potential additional peripheral effects on vagal afferent activity

when activated by an emetic stimulus (e.g., HEC, some ingested

toxins). NK1RAs are not always 100% effective against vomiting in

humans (c.f., pre-clinical studies, Table 1) implicating other transmit-

ter/receptor systems and explaining why optimal anti-vomiting ther-

apy may require drug combinations (e.g., netupitant + palonosetron

+ dexamethasone) in treating complex situations such as HEC.

An additional role for other neurotransmitters/co-transmitters (e.g.,

glutamate) has not yet been fully explored.

A reduction in the projection of information from the NTS to the

higher brain regions by suppression of NTS pathways and the drive

from the abdominal vagal afferents is likely to contribute to any

reduction of nausea by NK1RAs, no matter how sub-optimal the cur-

rent evidence suggests. It could be argued that the distribution of

NK1 receptors in cortical and sub-cortical structures implicated in nau-

sea may predict efficacy against nausea, but it is also possible that

these receptors are coupled to non-nauseagenic pathways, such as

those involved in fear and/or anxiety (which nonetheless may

contribute to the overall sensation of nausea).

Mechanistically, vomiting is well understood and studies with

NK1RAs show that targeting the NTS/CPG in the brainstem is a valid

approach and adverse effects on the respiratory, cardiovascular and

digestive systems all regulated from the brainstem appear to be

avoided. The apparent specificity of NK1RA blockade of vomiting

probably reflects the functional reconfiguration of the neural network

to coordinate retching/vomiting where tachykininergic signalling

becomes critical (state dependence; see193 for a study of NK1 recep-

tors and state dependent functions of pre-Bötzinger complex respira-

tory neurones). The NTS and CPG need investigating in emetic

species using neurophysiological studies similar to those in rodents

showing complex interaction between NK1 receptor activation, gluta-

mate and GABA release194 to understand how NK1RAs are function-

ally specific for vomiting.

Nausea remains a challenge as there are major gaps in knowl-

edge of the cerebral pathways involved and hence in identifying

potential receptor targets to identify broad-spectrum anti-nausea

drugs. As the insular cortex is the highest cortical region consistently

activated in subjects reporting nausea,6 this would be a logical place

to target a drug to block nausea, although the associated physiologi-

cal changes (e.g., regional cold sweating, AVP secretion) may not be

blocked as they involve lower brain regions. An alternative approach

is to selectively suppress transmission of nauseagenic signals from

the NTS to the mid-brain with consideration being given to the

parabrachial nucleus as a potential target. While this might be

achieved by a combination of receptor antagonists the use of ago-

nists (e.g., GABAB, CB1, 5-HT1A, ghrelin, opioid) may provide a more

fruitful approach as this makes fewer assumptions about the nature

of the nauseagenic stimulus.195 A gastric inhibitory polypeptide-1

receptor agonist has been shown to block the acute vomiting

induced by the chemotherapeutic agent cisplatin in the ferret,196

further extending the list of receptor agonists with anti-emetic

potential. The electroceutical approaches to treatment of gastroin-

testinal symptoms, including nausea,197,198 may provide a route by

which this system may be controlled but further study is needed to

determine the pathways and cell types involved. A final approach is

to target the abdominal vagal afferents at a peripheral site but this

would only be applicable when a peripheral release of SP has been

demonstrated and when the original signal originates from disor-

dered upper digestive tract function (e.g., gastroparesis163). Research

into the development of anti-nausea drugs is further hampered by

the paucity of human volunteer studies using stimuli other than

motion. Studies of anti-emetics have been undertaken in humans

using apomorphine, ipecacuanha and morphine as challenges199–201

and a wider range of challenges could be identified from the side

effect profile of licenced drugs (e.g., GLP-1 receptor agonists). The

final issue is quantification of nausea. The assessment tools widely

used in clinical trials rely on an accurate classification of nausea by
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the subject, an assumption that subjects are reporting the same sen-

sation and reliable recollection as data may only be collected daily

giving data with a low temporal resolution (see6 Supporting Informa-

tion). The heterogeneity of nausea assessment instruments was

identified as an issue in a recent US Food and Drug Administration

review of endpoints in CINV and PONV studies, which identified

nausea assessment as an “opportunity for continued research and

development”.202 A reliable, subject independent method for asses-

sing nausea in real time is needed to ensure an accurate assessment

of candidate drug efficacy.10

We close by dedicating this review to a colleague and friend Wes

Miner who died while we were drafting this review. Wes was co-

author of the first paper demonstrating the remarkable anti-emetic

effect of a 5-HT3 receptor antagonist203 and spent his career in the

pharmaceutical industry. In a note to one of the authors (P.L.R.A.) in

1999 Wes made the following insightful comment of relevance to this

review regarding the paper73 reporting some of the earliest clinical

data on NK1RA: “results are very, very good and I think this will just

about wrap it up for pharmaceutical company interest in the N + V

area for the next 20 years”. As Wes predicted, there have indeed

been no major advances in the development in drugs affecting vomit-

ing and especially nausea in the last 20 plus years and as this review

shows the accepted dogma that anti-emetics equally affect nausea

and vomiting requires challenging; a view with which we are sure Wes

would concur.
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