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ON VARIOUS LOW-HARDWARE-COMPLEXITY LMS ALGORITHMS FOR ADAPTIVE 
I/Q CORRECTION IN QUADRATURE RECEIVERS

Ediz Çetin, Izzet Kale and Richard C. S. Morling

University of Westminster, Department of Electronic Systems,
Applied DSP and VLSI Research Group,

London W1W 6UW, United Kingdom

ABSTRACT

In this paper, the performance and convergence time
comparisons of various low-complexity LMS algorithms
used for the coefficient update of adaptive I/Q corrector
for quadrature receivers are presented. We choose the
optimum LMS algorithm suitable for low complexity,
high performance and high order QAM and PSK
constellations. What is more, influence of the finite bit
precision on VLSI implementation of such algorithms is
explored through extensive simulations and optimum
wordlengths established.

1. INTRODUCTION

The homodyne/Zero-IF receivers provide high levels of
integration. With this architecture, I/Q signal processing is 
used to downconvert the RF signal to baseband. However,
this architecture, in common with all I/Q architectures, is
vulnerable to mismatches between the I and Q channels.
Both analog and digital methods for correcting the I/Q
mismatches of homodyne receivers have been proposed in
the literature [1]-[6]. This paper utilizes the
unsupervised/blind adaptive DSP technique developed for
the quadrature receivers in [5], [6]. Performance of
various low complexity algorithms is analyzed and fixed
point effects are taken into account. 

This paper is organized as follows: Section 2 gives brief
overview of the unsupervised adaptive I/Q corrector for
quadrature receivers and shows the structure for
implementing such algorithm. Section 3 looks in reduced
complexity LMS algorithms. Simulation results for the
performance and convergence rate are given for different
algorithms. Section 4 gives information on the
architecture and bit precision effects on the performance
and concluding remarks are given in section 5.

2. UNSUPERVISED/BLIND ADAPTIVE I/Q 
MISMATCH CORRECTOR

In the presence of phase and gain mismatches in the
quadrature downconverter, received baseband signal has
in-phase and quadrature components given as:
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where, is the phase and is the gain mismatch
between the I and Q channels, sI(k) and sQ(k) are the
transmitted in-phase and quadrature signals. Also, and

are 1 and can be safely ignored. The in-phase signal
r1(k) is corrupted by the quadrature signal r2(k) leaked due 
to phase and gain mismatches. A leakage from the
quadrature signal into the in-phase signal also exists.
Ideally the I and Q channels are not correlated with each
other. However, in the presence of the quadrature phase
and gain errors this relationship no longer exists and they
are correlated. The proposed algorithm, depicted in Figure
1, acts as a decorrelator and tries to de-correlate the I and
Q channels hence eliminating phase and gain errors. The
source estimates, c1(z) and c2(z) can be expressed as:
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When the coefficients converge, i.e. w1 = h1 and w2 = h2

then the source estimates become:
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As it can be seen from (3) the sources have been
separated. Furthermore, (1 - h1h2) 1 and can be safely
ignored. The description blind or unsupervised implies
that we do not know the mixing coefficients h1, h2, nor the
probability distribution of the sources except that they are
not correlated. LMS algorithm is used to update w1 and
w2. A significant feature of the LMS algorithm is its
simplicity. Moreover, it does not require the
measurements of the correlation functions nor does it
require matrix inversion. Indeed, it is the simplicity of the
LMS algorithm that has mode it the standard against other
algorithms are benchmarked [7].
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Figure 1 Adaptive I/Q corrector structure.

In spite of the computational efficiency of the LMS
algorithm, additional simplifications may be necessary in
some applications to reduce the computational
requirements of the LMS algorithm. Next section will
look into such reduced complexity LMS algorithms and
compare them in terms of mean Image Rejection Ratio
(IRR) [5] and convergence rate for different modulation
formats and constellation sizes.

3. REDUCED/LOW COMPLEXITY LMS 
COEFFICIENT UPDATE

LMS coefficient update block occupies the large portion
of the adaptive system. Set of simplifications to the LMS
algorithm are found in the sign algorithms [8]. In these
algorithms, the LMS coefficient update equation is
modified by applying the sign operator to either the error
e(k), the data x(k), or both the error and the data.
Depending on which signal(s) the sign operator is applied
to the sign-LMS algorithms can be divided into following
sub-groups:

Sign-Error (SE)
Sign-Data (SD)
Sign-error Sign-data (SS)

Coefficient update equations for above algorithms are
given as [8]:

Coefficient update equation
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Table 1 Coefficient update equations.
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Figure 4, depicts the structures for implementing LMS
and sign-LMS algorithms.

3.1. Performance comparison

In this section we will carry out extensive simulation
studies to evaluate and compare the suitability of sign-
LMS algorithms for adaptive I/Q mismatch correction in
homodyne receivers. The performance is analysed
considering 256-QAM and 32-PSK signals with ideal
symbol rate sampling. AWGN channel is assumed. Phase
and gain errors are randomly distributed between 0-30
and 1dB - 3 dB respectively. Results are averaged over
100 experiments. The performance is characterized by the
IRR which can be expressed as [5]:
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High IRR translates to small residual phase and gain
errors after compensation. Mean number of iterations
needed to locate solution for SE, SD, SS and LMS
algorithms are depicted in Figure 2 for 256-QAM and 32-
PSK modulation formats.
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(a) 256-QAM, SNR=30 dB (b) 32-PSK, SNR=26.1 dB

Figure 2 Mean number of iterations to locate solution. 

Generally, sign-sign algorithm is slower to convergence
then the LMS. However, as can be observed, for our
application, sign-sign LMS algorithm converges faster
when compared to other algorithms. Slower convergence
for 256-QAM compared to the 32-PSK can be explained
by the fact that QAM constellation is more complex then
PSK one. Figure 3 depicts the mean IRR for SE, SD, SS
and LMS algorithms. Once again phase and gain errors
are randomly distributed as in the previous simulation
setup.
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Figure 3 Mean IRR after compensation. 

As can be seen from Figure 3, all algorithms more or less
perform similarly in terms of IRR. There is not much to
choose between them. Another comparison is carried out 
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Figure 4 LMS and sign-LMS structures.
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Figure 5 Mean IRR for low-SNR. Phase error-randomly
distributed between and 0-30 , gain error randomly distributed
between 1dB - 3 dB for (a) 256-QAM and (b) 32-PSK.

in establishing how the algorithms perform under low-
SNR environments. Results are depicted in Figure 5. As
can be seen, sign-sign algorithm performance is better
then the rest under low-SNR conditions. Careful
observation of the results indicate that sign-sign LMS is
most suited for our application in terms of speed and IRR
that can be achieved with very small hardware overhead.
Next sections of this paper will look into fixed point
implementation and performance analysis of the fixed
point sign-sign LMS algorithm.

4. SIGN-SIGN LMS ARCHITECTURE AND 
IMPLEMENTATION

Sign-sign LMS update equation can be further simplified
by observing the fact that sgn{ } is the signum function

which is +1 or 1 for a positive or negative argument,
respectively. The coefficient update then reduces to:

2)()1( kk WW (6)

depending on the product of sgn{e(k)}.sgn{r2(k)}. In the
implementation, either W(k)+2 or W(k)-2 are
computed, while sgn{e(k)}.sgn{r2(k)} is computed using
an eXclusive-OR (XOR) operation on the sign bits of both 
the error and the input to the respective tap. Depending on
the outcome of the XOR operation, W(k)+2 or W(k)-2
is computed. Hence, the multiplications required in the
normal LMS algorithm reduce to a single XOR operation,
which results in significant power and area savings.
Figure 6 shows the area and power efficient, low-
complexity 2-cycle time-multiplex implementation of the
sign-sign LMS based adaptive I/Q corrector.
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Figure 6 sign-sign LMS based adaptive I/Q corrector
architecture.

The architecture consists of 7 registers, 4 operating at the
data rate and rest operating at twice the data rate, a single
multiplier and an adder with negate circuitry implemented
as a bank of xor gates with common negate signal (neg)
and 2-1 muxes to route the data to specific registers.
Schedule of the processor is depicted in Table 2. At the
first half of CO cycle ( 1), r2w1 and w2(k+1) are computed
and then c1=r1- r2w1 is computed in the second half of C0
( 2). This is followed by r1w2 and w1(k+1) computation
for the next stage and c2=r2- r1w2 for the current stage.
Processor takes two cycles to compute c1 and c2. Since
processor operates two times the data rate, it can operate
in real time producing outputs at the data rate.



Cycle Mult.  o/p Accumulator o/p

1 2

C0 r2w1 w2(k+1)= w2(k)±2 c1=r1- r2w1

C1 r1w2 w1(k+1)= w1(k) ±2 c2=r2-r1w2

Table 2 2-cycle architecture schedule

Simulation results depicted on Figure 7 show the mean
IRR than can be achieved as a function of coefficient
wordlength. I/O wordlength is chosen to be 16-bits 2 s
complement sign-fraction number. Coefficient wordlength
less then 13 caused the sign-sign LMS algorithm to
diverge. Once again phase and gain errors are randomly
distributed between 0 30  and 1dB 3 dB
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Figure 7 sign-sign LMS performance estimation of bit precision
for coefficient.

Figures 8 and 9 depict the performance of the fixed-point
sign-sign LMS algorithm for varying phase and gain
errors respectively. As can be observed mean IRR of 75
dB can be achieved with fixed point implementation.
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Figure 8 IRR before and after compensation for varying phase
error -30 30  and fixed gain error of 3 dB.
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Figure 9 IRR before and after compensation for varying gain
error -3  3 dB and fixed phase error or 30 .

5. CONCLUDING REMARKS

In this paper we compared different low-hardware-
complexity LMS algorithms for adaptive I/Q correction in
quadrature receivers. According to results, sign-sign LMS

algorithm is best suited for the required application. Fixed
point design of the sign-sign LMS algorithm is carried out
and optimum wordlengths established. Time-multiplex
low-complexity 2-cycle architecture that operates twice
the data rate is proposed. This is followed by extensive
simulation studies to establish the performance of the
fixed point implementation. Different modulation formats
and constellation sizes are used in the process.

In normal LMS implementation, multipliers occupy large
portion of the coefficient update. The sign-sign LMS
approach eliminates the multipliers in the coefficient
update attaining low hardware complexity and low power
dissipation. Simulation results show that fixed-point sign-
sign LMS satisfy the performance and low hardware
complexity requirements for our application. In
conclusion, sign-sign LMS algorithm is the optimum
solution for adaptive I/Q mismatch correction having low
hardware complexity suitable for any modulation format
and constellation sizes, large and small. Next phase of the
work is to prototype this architecture on FPGA board and
run it in real-time and compare the performance that can
be achieved with the simulated ones.
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