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Abstract This work describes a neural network based

architecture that represents and estimates object motion in

videos. This architecture addresses multiple computer

vision tasks such as image segmentation, object represen-

tation or characterization, motion analysis and tracking. The

use of a neural network architecture allows for the simul-

taneous estimation of global and local motion and the rep-

resentation of deformable objects. This architecture also

avoids the problem of finding corresponding features while

tracking moving objects. Due to the parallel nature of neural

networks, the architecture has been implemented on GPUs

that allows the system to meet a set of requirements such as:

time constraints management, robustness, high processing

speed and re-configurability. Experiments are presented that

demonstrate the validity of our architecture to solve prob-

lems of mobile agents tracking and motion analysis.

Keywords Motion estimation � Neural architectures �
Topology preservation � Real time � GPGPU

1 Introduction

Algorithms for estimating and characterizing motion in

video sequences are among the most widely used in com-

puter vision. This need is sparked by the number of

applications that require the fast and exact estimation of

object motion. Such applications include the estimation of

ego-motion for robot and autonomous vehicle navigation

and the detection and tracking of people or vehicles for

surveillance applications. Many other applications exist as

well, including video compression and ubiquitous user

interface design.

A sparse motion field can be computed by identifying a

pair of points that correspond in two consecutive frames.

The points used must be distinguished in some way so that

they can be identified and located in both images. Detect-

ing corner points or points of high interest should work.

Alternatively, centroids of persistent moving regions from

segmented color images might be used. Estimation of

motion is also possible using higher level information such

as corners or borders [1]. Viola et al. [2] analyze temporal

differences between shifted blocks of rectangle filters with

good results in low-quality low-resolution images. A large

number of techniques have been proposed to analyze

motion. In [3] a review of direct methods based on pixels

can be found, while [4] reviews feature-based methods.

A different approach analyzes motion following an opti-

cal flow computation, where a very small time distance

between consecutive images is required, and no significant

change occurs between two consecutive images. Optical

flow computation results in motion direction and velocity

estimation at image points determining a motion field. An

early example of a widely used image registration algorithm

is the patch-based translational alignment technique devel-

oped by Lucas and Kanade [5]. Several works have modified

this method in different aspects improving its accuracy and

accelerating its processing [6]. The optical flow analysis

method can be applied only if the intervals between image

acquisitions are very short. Motion detection based on cor-

respondence of interest points works for inter-frame time
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intervals that cannot be considered small enough. Detection

of corresponding object points in subsequent images is a

fundamental part of this method, if feature correspondences

are known, velocity fields can easily be constructed. The first

step is to find in all images points of interest such as borders

or corners that can be tracked over time. Point detection is

followed by a matching process to find correspondences

between these points. In Barron et al. [7], a detailed evalu-

ation of different optical flow methods can be found. In

recent years, several improvements have been proposed to

the classical optical flow estimators. Some of them proposed

bioinspired optical flow VLSI implementations on embed-

ded hardware [8, 9], FPGAs [10–12] or GPUs [13]. Due to

temporal restrictions in most applications, some of the

methods proposed relaxed versions of the algorithm to

accelerate its processing [14–16].

Although the understanding of issues involved in the

computation of motion has significantly increased in the

last decades, we are still far from a generic, robust, real-

time motion estimation algorithm. The selection of best

motion estimator is still highly dependent on the applica-

tion [17, 18]. However, the parallelization of several

computer vision techniques and algorithms to implement

them on the GPU architecture reduces the computational

cost of motion analysis and estimation algorithms.

Visual tracking is a very active research field related to

motion analysis. The process of visual tracking in dynamic

scenes often includes steps for modeling the environment,

motion detection, classification of moving objects, tracking

and recognition of actions developed. Most of the work is

focused on tracking people or vehicles with a large number

of potential applications such as: controlling access to

special areas, identification of people, traffic analysis,

anomaly detection and management alarms or interactive

monitoring using multiple cameras [19].

Some visual tracking systems have marked important

milestones. The visual tracking system in real-time W4 [20]

uses a combination of analysis of shapes and tracking,

building models of appearance to detect and track groups of

people and monitor their behaviors even in the presence of

occlusion and in outdoor environments. This system uses a

single camera and a grayscale sensor. The system Pfinder

[21] is used to retrieve a three-dimensional description of a

person in a large space. It follows a single person without

occlusions in complex scenes, and has been used in various

applications. Another system to track a single person, the TI

[22], detects moving objects in indoor scenes using motion

detection, tracking is performed using first-order prediction,

and recognition is achieved by applying predicates to a

behavior graph formed by matching objects links in suc-

cessive frames. This system does not support small move-

ments of objects in the background. The CMU system [23]

can monitor activity on a wide area using multiple

networked cameras. It can detect and track multiple people

and vehicles in complex scenes and monitor their activities

for long periods of time. Recognition of actions based on

motion analysis has been extensively investigated [24, 25].

The analysis of trajectories is one of the main problems in

understanding actions [26]. Relevant works on tracking

objects can be found in [27–29] among others. Moreover,

the majority of visual tracking systems depend on the use of

knowledge about the scenes where the objects move in a

predefined manner [25, 30–32].

Neural networks have been extensively used to represent

objects in scenes and estimate their motion. In particular,

there are several works that use the self-organizing models

for the representation and tracking of objects. Fritzke [33]

proposed a variation of the original growing neural gas

(GNG) model [34] to map nonstationary distributions that

Frezza-Buet [35] apply to the representation and tracking

of people. In [36], amendments to self-organizing models

for the characterization of the movement are proposed.

From the works cited, only Frezza-Buet [35] represent both

local and global motions. However, there is no consider-

ation of time constraints, and the algorithm does not exploit

the knowledge acquired in previous frames for the purpose

of segmentation or prediction. In addition, the structure of

the neural network is not used to solve the feature corre-

spondence problem through the frames.

Considering the work in the area and previous studies

about the representation capabilities of self-growing neural

models [34], we propose a neural architecture capable of

identifying areas of interest and representing the mor-

phology of entities in the scene, as well as analyzing the

evolution of these entities over time to estimate their

motion. We propose the representation of the entities

through a flexible model able to characterize morphologi-

cal and positional changes of these over the image

sequence. The representation should identify entities or

mobile agents over time and establish feature correspon-

dence through the different observations. This should allow

the estimation of motion based on the interpretation of the

dynamics of the representation model. It has been dem-

onstrated that using architectures based on Fritzke’s neural

network, GNG [37] can be applied on problems with time

restrictions such as tracking objects, with the ability to

process sequences of images fast thus offering a good

quality of representation that can be refined very quickly

depending on the time available.

In order to accelerate the neural network learning

algorithm, a redesign of the sequential algorithm executed

onto the CPU to exploit the parallelism offered by the GPU

has been carried out. Current GPUs have a large number of

processors that can be used for general purpose computing.

The GPU is specifically appropriate to solve computa-

tionally intensive problems that can be expressed as data
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parallel computations [38, 39]. However, implementation

on GPU requires the redesign of the algorithms focused

and adapted to its architecture. In addition, the program-

ming of these devices has a number of constraints such as

the need for high occupancy in each processor in order to

hide latencies produced by memory access, management

and synchronization of different threads running simulta-

neously, the proper use of the hierarchy of memories, and

other considerations. Researchers have already success-

fully applied GPU computing to problems that were tra-

ditionally addressed by the CPU [38, 40]. The GPU

implementation used in this work is based on NVIDIAs

CUDA architecture [41], which is supported by most cur-

rent NVIDIA graphics chips. Supercomputers that cur-

rently lead the world ranking combine the use of a large

number of CPUs with a high number of GPUs.

The remainder of the paper is organized as follows:

Sect. 2 provides a description of the learning algorithm of

the GNG with its accelerated version and presents the

concept of topology preservation. In Sect. 3 an explanation

on how self-growing models can be adapted to represent

and track 2D objects from image sequences is given.

Section 4 presents the implementation of the system on

GPGPU architectures, including some experiments, fol-

lowed by our major conclusions and further work.

2 Neural architecture to represent and track objects

From the neural gas model [42] and growing cell structures

[43], Fritzke [34] developed the GNG model, with no

predefined topology of a union between neurons, from

which an initial number, new ones are added. Previous

work [35] demonstrates the validity of this model to rep-

resent objects in images with its own structure and its

capacity to preserve the input space topology. A new

version of the GNG model called GNG-Seq has been

created to manage image sequences under time constraints

by taking advantage the GNG structure representation,

obtained in previous frames, and by considering that at

video frequency the slight motion of the mobile agents

present in the frames can be modeled. It is only necessary

to relocate neural network structure without the necessity

to add or delete neurons. Moreover, the stable neural

structure permits to use the neurons reference vectors as

features to track in the video sequence. This fact allows us

to solve one of the basic problems in tracking: features

correspondence through time.

2.1 Growing neural gas learning algorithm

The GNG [34] is an incremental neural model able to

learn the topological relations of a given set of input

patterns by means of competitive hebbian learning. Unlike

other methods, the incremental character of this model

avoids the necessity to previously specify the network

size. On the contrary, from a minimal network size, a

growth process takes place, where new neurons are

inserted successively using a particular type of vector

quantization [42].

To determine where to insert new neurons, local error

measures are gathered during the adaptation process and

each new unit is inserted near the neuron which has the

highest accumulated error. At each adaptation step a con-

nection between the winner and the second-nearest neuron

is created as dictated by the competitive hebbian learning

algorithm. This is continued until an ending condition is

fulfilled. In addition, in the GNG network the learning

parameters are constant in time, in contrast to other

methods whose learning is based on decaying parameters.

In the remaining of this section we describe the GNG

algorithm. The network is specified as:

• A set A of nodes (neurons). Each neuron c 2 A has its

associated reference vector wc 2 R
d. The reference

vectors are regarded as positions in the input space of

their corresponding neurons.

• A set of edges (connections) between pairs of neurons.

These connections are not weighted and its purpose is

to define the topological structure. An edge aging

scheme is used to remove connections that are invalid

due to the motion of the neuron during the adaptation

process.

The GNG learning algorithm to map the network to the

input manifold is as follows:

1. Start with two neurons a and b at random positions wa

and wb in R
d.

2. Generate at random an input pattern n according to

the data distribution PðnÞ of each input pattern.

3. Find the nearest neuron (winner neuron) s1 and the

second nearest s2.

4. Increase the age of all the edges emanating from s1.

5. Add the squared distance between the input signal and

the winner neuron to a counter error of s1 such as:

Merrorðs1Þ ¼ kws1 � nk2 ð1Þ

6. Move the winner neuron s1 and its topological

neighbors (neurons connected to s1) towards n by a

learning step �w and �n, respectively, of the total

distance:

Mws1 ¼ �wðn� ws1Þ ð2Þ

Mwsn ¼ �nðn� wsnÞ ð3Þ

For all direct neighbors n of s1.
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7. If s1 and s2 are connected by an edge, set the age of

this edge to 0. If it does not exist, create it.

8. Remove the edges larger than amax. If this results in

isolated neurons (without emanating edges), remove

them as well.

9. For every certain number k of input patterns gener-

ated, insert a new neuron as follows:

• Determine the neuron q with the maximum

accumulated error.

• Insert a new neuron r between q and its further

neighbor f :

wr ¼ 0:5ðwq þ wf Þ ð4Þ

• Insert new edges connecting the neuron r with

neurons q and f , removing the old edge between q

and f .

10. Decrease the error variables of neurons q and f

multiplying them with a consistent a. Initialize the

error variable of r with the new value of the error

variable of q and f .

11. Decrease all error variables by multiplying them with

a constant c.
12. If the stopping criterion is not yet achieved (in our

case the stopping criterion is the number of neurons),

go to step 2.

In summary, the adaptation of the network to the input

space takes place in step 6. The insertion of connections

(step 7) between the two closest neurons to the randomly

generated input patterns establishes an induced Delaunay

triangulation in the input space. The elimination of con-

nections (step 8) eliminates the edges that no longer

comprise the triangulation. This is made by eliminating the

connections between neurons that no longer are next or that

they have nearer neurons. Finally, the accumulated error

(step 5) allows the identification of those zones in the input

space where it is necessary to increase the number of

neurons to improve the mapping (Fig. 1).

2.2 GNG representing sequences GNG-Seq

To analyze the movement, for each image in a sequence,

objects are tracked following the representation obtained

with the neural network structure, i.e., using the position or

reference vector of neurons in the network as stable

markers to follow. It is necessary to obtain a representation

or graph that defines position and shape of the object at

each input frame in the sequence.

One of the most advantageous features of the GNG is

that it is not required to restart the learning of the network

for each input frame in the sequence. Previous neural

network structure, obtained from previous frames, is used

as a starting point for new frames representation, provided

that the sampling rate is sufficiently high. In this way, a

prediction based on historical images and a small re-

adjustment of the network, provides a new representation

in a very short time (total learning time/N), where total

learning time is the complete learning algorithm that lin-

early depends on the number of input patterns k and the

number of neurons N. This provides a very high processing

speed. This model of GNG for representation and pro-

cessing of image sequences has been called GNG for

sequences or GNG-Seq.

The process of tracking an object in each image is based

on the following schedule:

1. Calculation of the transformation function W to

segment the object from the background based on

information from previous frames stored in neural

network structure.

2. Prediction of the new neurons reference vectors.

3. Re-adjustment of neurons reference vectors.

Figure 2 outlines the process to track objects, which

differentiates the processing of the first frame, since no

previous data are available and are needed to learn the

complete network. In the second level, it predicts and

updates the positions of the neurons (reference vectors)

based on the available information from previous frames in

the sequence that are stored in the neural network structure.

In this way, the objects or agents can be segmented into the

new frame, predict the new position and readjust the map

based on information available from previous maps. The

complete GNG algorithm is presented in Fig. 1 and is used

to obtain the representation for the first frame of the image

sequence, by performing the full learning process. How-

ever, for next frames, the final positions (reference vectors)

of the neurons obtained from the previous frame are used

as starting points, doing only the reconfiguration model of

the general algorithm, with no insertion or deletion of

neurons, but moving neurons and deleting edges where

necessary.

2.3 Topology preservation

The final result of the self-organizing or competitive

learning process is closely related to the concept of Dela-

unay triangulation. The Voronoi region of a neuron con-

sists of all points of the input space for what this is the

winning neuron. Therefore, as a result of competitive

learning a graph (neural network) is obtained whose ver-

tices are the neurons of the network and whose edges are

connections between them, which represents the Delaunay

triangulation of the input space corresponding to the ref-

erence vectors of neurons in the network (Fig. 3). This
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feature permits to represent the objects segmented in

images preserving their original topology with a fast and

robust representation model.

3 Motion estimation and analysis with GNG-Seq

The ability of neural gases to preserve the topology will be

employed in this work for the representation and tracking

of objects. Identifying the points of the image that belong

to the objects allows the network to adapt its structure to

this input subspace, obtaining an induced Delaunay trian-

gulation of the object.

To analyze the movement, for each image in a sequence,

objects are tracked following the representation obtained

with the neural network structure, i.e., using the position or

reference vector of neurons in the network as stable

markers to follow. It is necessary to obtain a representation

graph for each of the instances, position, and shape of the

object for all the images in the sequence.

The representation obtained with the neural network

permits to estimate and represent the local and global motion

described by multiple objects tracked in the scenes. That is,

the system is able to estimate the motion of multiple targets

due to the ability of the neural network to split its structure in

different clusters that map to the different objects.

Fig. 1 GNG learning algorithm
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3.1 Motion representation

Motion can be classified according to its perception.

Common or global, and relative or local motion can be

represented with the graph obtained from the neural net-

work for every frame of the image sequence.

In the case of motion tracking in common or global

mode, the analysis of the trajectory followed by an object

can be done following the centroid of its representation

throughout the sequence. This centroid can be calculated

from the positions of the nodes in the graph that represent

the object in each image. To track the movement in relative

or local mode, changes in the position of each node with

respect to the centroid of the object should be calculated

for each frame. Following the trajectory of each node we

can analyze and recognize the changes in the morphology

of the object. One of the most important problems of

tracking objects, the correspondence of features in a

sequence of frames, can be intrinsically solved since the

position of the neurons is known at any time without

requiring any additional processing.

3.1.1 Common motion

To analyze the common motion MC, simply follow the

centroid of the object based on the centroid of the neurons

reference vectors that represent a single trajectory for the

object. In this case, the MC is regarded as the trajectory

described by the centroid Cm of the graph representation

(GR) obtained with the neural network structure over the

frames 0 to f :

MC ¼ TrayCm
¼ Cmt0

; . . .;Cmtf

n o
ð5Þ

3.1.2 Relative motion

To analyze the relative movement of an object, the specific

motion of individual neurons should be considered with

respect to a particular point of the object, usually its cen-

troid, and therefore will require specific tracking for each

of the trajectories of the neurons that map to the object.

Hence, the relative motion MR is determined by the posi-

tion changes of individual neurons with respect to the

centroid Cm for every node i:

Mr ¼ TrayCm

i

� �
8i 2 A ð6Þ

where

TrayCm

i ¼ fwit0
� Cmt0

; . . .;witf
� Cmtf

g ð7Þ

where wi is the reference vector of the node i, and Cm is the

centroid of the graph obtained from the neural network that

represents the image over the frames 0–f .

3.2 Motion analysis

The analysis of motion in a sequence is done by tracking

the individual objects or entities that appear in the scene.

The analysis of the trajectory described by each object is

Fig. 3 a Delaunay

triangulation, b induced

Delaunay triangulation

Fig. 2 GNG-Seq flowchart
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used to interpret its movement. In this case the motion of

an object is interpreted by the trajectories followed by each

of the neurons GR:

M ¼ ½Trayi�; 8i 2 A ð8Þ

where the trajectory is determined by the succession of

positions (reference vectors) of individual neurons

throughout the map:

Trayi ¼ fwit0
; . . .;witf

g ð9Þ

In some cases, to address the recognition of the movement

a parameterization of the trajectories is performed. In [44]

some proposals for parameterization can be found. Direct

measures of similarity between trajectories, such as the

modified Hausdorff distance [45] for comparison of tra-

jectories and learning semantic scene models [46] are also

used.

3.3 Tracking multiple objects in visual surveillance

systems

There are several studies on the labeling and tracking of

multiple objects, with some of them based on the trajectory

[47] or the current state [48–50]. Sullivan and Carlsson

[51] explores the way in which they interact. There is an

important field of study in related problems such as

occlusion [52, 53]. The technique that we use to track

multiple objects is based on the use of the GNG-Seq, since

its fast algorithm separates the different objects present in

the image. Once the objects in the image are separated, it is

possible to identify groups of neurons and map each of

them and follow them separately. These groups will be

identified and labeled to use them as a reference and keep

the correspondence between frames (Fig. 4). The system

has several advantages compared to other tracking systems:

• The graph obtained with the neural network structure

permits the representation of local and global

movement.

• The information stored in the structure of the neural

network through the sequence permits the representa-

tion of motion and the analysis of the entities behavior

based on the trajectory followed by the neural network

nodes.

• The correspondence features problem is solved using

the structure of the neural network.

• The neural network implementation is highly parallel

and suitable to be implemented on GPUs to accelerate

it.

However, some drawbacks should be considered:

• Quality of representation is highly dependent on the

robustness of the segmentation results.

3.3.1 Merger and division

The ability of the GNG network to break up to map all the

input space is specially useful for objects that are divided.

The networkwill eliminate unnecessary edges so that objects

are represented independently by groups of the neurons. If

the input space is unified again, the network adapts these

changes by introducing new edges that reflect homogeneous

input spaces. In all cases the neurons will remain without

adding or deleting them so that objects or persons that appear

together and split into groups after some time, can be iden-

tified and even tracked separately or together. This last

feature is a great advantage of the representation model that

gives the system great versatility in terms of track entities or

groups of entities in video sequences. The merge of entities

is represented as the union of the neural graph representation

thatmapped entities. In other words, the necessary edgeswill

be introduced to convert the isolated groups of neurons in

only one big group. Figure 4 shows examples of neural graph

representation.

GR1

[
GR2

[
� � �

[
GRn ) GRG ð10Þ

In the case of division of entities, the map that represents

the group is split into different clusters. On the contrary to

the merge process, edges among neurons will be deleted to

create a number of clusters that represent the different

entities in the scene.

GRG ) ðGR1;GR2; . . .;GRnÞ ð11Þ

3.3.2 Occlusions

The modeling of individual objects during the tracking does

not consider the interaction between multiple objects or

interactions of these objects with the background. For

instance, partial or total occlusion among different objects.

The way in which the occlusions are handled in this work is

to discard the frames where the objects are completely

concealed by the background or by others objects. In each

image, once an object is characterized and segmented, pixels

belonging to each object are calculated. Frames are dis-

carded, if percentage of pixels loss with respect to the

average value calculated for the previous frames is very high

and resumed the consideration of frames when the rate again

becomes acceptable. In the case of partial occlusion with the

background or between objects would be expected to adapt

to the new transitive form since information from previous

frames is available on the neural network structure.

3.4 Experimentation

To demonstrate the model capability to track multiple

objects, some sequences from database context aware
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vision using image-based active recognition (CAVIAR)

[54] have been used as input.The first section of video clips

were filmed for the CAVIAR project with a wide angle

camera lens in the entrance lobby of the INRIA Labs at

Grenoble, France. The resolution is half-resolution PAL

standard (384� 288 pixels, 25 frames per second) and

compressed using MPEG2. The file sizes are mostly

between 6 and 12 MB, a few up to 21 MB. Figure 5 pre-

sents an example in which two people walk together and

separate in a lobby. This example demonstrates the ability

of the system to represent multiple objects, as well as its

versatility to adapt to different divisions or merger of

objects. Figures 5 and 6 describe the first frame in the top

row, middle frame on the central row, and last frame in the

bottom row from the sequence example. Showing the ori-

ginal image in the left column, segmented image and

application of the network onto the image in central col-

umn and the trajectories described by the objects on the

right one.

In Fig. 5, we observe two people that start walking from

distant points and then meet and walk together. The map

starts with two clusters and then merges into a single one.

In Fig. 6, a group of people walk together and after a few

meters split into groups. At first they are mapped by a

single cluster but when they split, the map that represents

them split into different clusters.

The system represents people with different clusters

while walking separately and merged into a single cluster

when they meet. This feature can be used for motion

analysis systems. The definition of the path followed by the

entities that appear in the image, depending on the path

followed by the neurons that map the entity, allows us to

study the behavior of those entities in time and give a

semantic content to the evolution of the scene. By this

representation will be possible to identify individuals who

have been part of a group or have evolved separately since

there are not deleted or added neurons and neurons

involved in the representation of each entity remain stable

over time. Different scenarios are stored in a database and

can be analyzed through measures to compare sets of

points as the Hausdorff and extended or modified Haus-

dorff distances.

The fact that entities are represented by several neurons

allows the study of deformations of these (local motion)

and the interpretation of simple actions undertaken by such

entities.

All of the above characteristics make the model of

representation and analysis of motion in image sequences

Fig. 4 Examples of GNG graph representation
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very powerful. Image sequences have more than 1,000

frames with an area of 384� 288 pixels and the processing

speed obtained permits the system to work under time

constraints. First frame takes more time to be processed

since the complete learning algorithm should be used.

However, for subsequent frames the speed is higher. Video

acquisition time is not considered since this factor is highly

dependent on the camera and communication bus

employed. Based on a previous work [55], the number of

neurons chosen is N of 1,000 and the number of input

patterns k of 100. Other parameters have been also fixed

based on our previous experience: �w ¼ 0:1, �n ¼ 0:001,

a ¼ 0:5, c ¼ 0:95, amax ¼ 250. Examples of the paper

experiments are available in http://www.dtic.ua.es/jgarcia/

experiments

3.4.1 Tracking and motion estimation

In order to validate our proposal we performed some

experiments to compute the trajectory error for different

video sequences with people moving around the scene. We

focused on four video sequences of the CAVIAR dataset

that present a large range of movements and interactions

between people. Figure 7 shows ground truth trajectories

for different people in these four video sequences.

Since the CAVIAR dataset provides us with ground

truth information about the trajectory of the objects and

people in the scene, we calculated the root mean squared

error (RMSE) with regard to ground truth information

using the proposed method. We also compared our method

with state-of-the-art Lucas and Kanade [5] method for

tracking people in the scene. Lucas–Kanade tracking

algorithm was manually initialized choosing keypoints

over people representation in the scene. These keypoints

were tracked over the sequence and the centroid of the

estimated keypoint trajectories were used for comparison

with the proposed method. Table 1 shows obtained RMSE

for different trajectories in four video sequences. As it can

be seen, the proposed method obtained a lower RMSE in

most cases. This means that the estimated trajectory using

the GNG-based method is more accurate than the one

obtained using the Lucas–Kanade method. Moreover, in

some video sequences such as the MeetSplit3rdGuy, the

Lucas–Kanade method was not able to track trajectories

when two people walk, meet and then move to different

directions, and it failed tracking these kinds of behaviors.

Fig. 5 Motion estimation with GNG graph representation. Merge
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Figure 8 shows the behavior introduced above. On the

left of the figure, Lucas–Kanade (blue line) fails tracking

the person (green line) and continues tracking another

person when these two people meet together. On the right

side, GNG-based method (blue line) succeeds tracking the

person over its trajectory (green line).

In Fig. 9, we show a visual example where the proposed

method achieves a lower RMSE in the trajectory estimation

(right side), whereas Lucas–Kanade method gets lost and

the estimated trajectory has a higher error compared to the

one obtained using GNG-based method.

Finally, we also performed some experiments using a

dense optical flow estimation approach [56]. We were not

able to obtain RMSE with regard to the ground truth

information since dense optical flow estimation approach is

not able to obtain independent trajectories for each person

moving in the scene. Dense optical flow estimation

approach gives us motion estimation for the entire scene

and it is not able to distinguish between trajectories per-

formed by different people. Figure 10 shows motion esti-

mation using a dense optical flow approach in different

video sequences.

Fig. 6 Motion estimarion with GNG graph representation. Split

MeetSplit3rdGuy MeetCrowdMeetWalkSplit MeetWalkTogether

Fig. 7 Ground truth trajectories of the selected video sequences from the CAVIAR dataset
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3.4.2 Discussion

From the experiments, we can conclude that the system is

able to work under time constraints and be close to real

time after processing, representing, and tracking multiple

mobile agents in the first frame and estimating global and

local objects motion. However, in these experiments the

number of neurons and input patterns used in the neural

network learning algorithm is low, less than 500 neurons.

For more challenging scenes: with multiple targets, bigger

images, high resolution images or even to process not only

the moving objects but also the whole scenario, or to scale

the system to represent 3D data, it should be necessary to

dramatically increase the number of neurons. In this case,

the performance of the CPU version of the system will not

be capable to represent and track thousands of neurons with

time constraints. For that reason, we propose the parallel

implementation of the neural model on a GPGPU archi-

tecture (Fig. 11).

4 GPU implementation

In this section we first introduce the GPGPU paradigm and

apply it in order to parallelize and redesign the neural

network learning algorithm. Once the algorithm has been

redesigned and optimized, the motion estimation system

based on the neural networks architecture is highly

accelerated.

4.1 GPGPU architecture

A CUDA compatible GPU is organized in a set of multi-

processors as shown in Fig. 11 [41]. These multiprocessors

called streaming multiprocessors (SMs) are highly parallel

at thread level. However, the number of multiprocessors

varies depending on the generation of the GPU. Each SM

consists of a series of streaming processors (SPs) that share

the control logic and cache memory. Each of these SPs can

be launched in parallel with a huge amount of threads. For

instance, GT200 graphics chips, with 240 SPs, are capable

to perform a computing power of 1 teraflops, launching

1,024 threads per SM, with a total of 30,000 threads. The

current GPUs have up to 12 GBytes of DRAM, referenced

in Fig. 11 as global memory. The global memory is used

and shared by all the multiprocessors but it has a high

latency.

CUDA architecture reflects a SIMT model: single

instruction, multiple threads. These threads are executed

GNGLucas-Kanade

Fig. 8 Estimated trajectory using GNG and Lucas–Kanade method in

the MeetSplit3rdGuy video sequence. Left Lucas–Kanade trajectory

estimation fails due to pixel intensity similarities between different

people moving around the scene. Right GNG-based tracking method

is able to correctly estimate the person trajectory. (Blue line estimated

trajectory. Green line ground truth trajectory.)

Table 1 Computed root mean squared error (RMSE) for different

trajectories regard to ground truth information

Video Person Lucas–Kanade GNG-based

MeetSplit3rdGuy 1 119.108 7.08368

2 17.3801 10.0998

3 84.3251 16.3223

MeetWalkSplit 1 15.2826 7.5423

2 17.4852 10.6566

MeetWalkTogether 1 10.7862 11.7721

2 19.4851 13.8851

MeetCrowd 1 10.7769 14.0695

2 12.3467 24.259

3 32.7781 22.193

4 15.2363 14.5812

The proposed method has been validated in four video sequences with

different number of people and trajectories. RMSE is expressed in

pixels
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Lucas-Kanade GNG

Fig. 9 Estimated trajectory using GNG and Lucas–Kanade method in the WalkSplit video sequence. Left Lucas–Kanade trajectory estimation.

Right GNG-based trajectory estimation. (Blue line estimated trajectory. Green line ground truth trajectory.)

Fig. 10 Dense optical flow estimation approach applied to CAVIAR dataset

Fig. 11 CUDA compatible GPU architecture
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simultaneously working onto large data in parallel. Each of

them runs a copy of the kernel (piece of code that is exe-

cuted) on the GPU and uses local indexes to be identified.

Threads are grouped into blocks to be executed. Each of

these blocks is allocated on a single multiprocessor,

enabling the execution of several blocks within a multi-

processor. The number of blocks that are executed depends

on the resources available to the multiprocessor, scheduled

by a system of priority queues.

Within each of these blocks, the threads are grouped into

sets of 32 units to carry out fully parallel execution onto

processors. Each set of 32 threads is called warp. In the

architecture there are certain restrictions on the maximum

number of blocks, warps and threads on each multipro-

cessor, but it varies depending on the generation and model

of the graphics cards. In addition, these parameters are set

for each execution of a kernel in order to ensure the

maximum occupancy of hardware resources and obtain the

best performance. The experiments section shows how to

fit these parameters to execute our GPU implementation.

CUDA architecture has also a memory hierarchy. Dif-

ferent types of memory can be found: constant, texture,

global, shared and local registries. The shared memory is

useful to implement caches. Texture and constant memory

are used to reduce computational cost avoiding global

memory access which has high latencies.

In recent years, a large number of applications have used

GPUs to speed up processing of neural networks algo-

rithms [57–61] applied to various computer vision prob-

lems such as: representation and tracking of objects in

scenes [62], face representation and tracking [63] or pose

estimation [64].

4.2 GPU implementation of GNG

The GNG learning algorithm has a high computational

cost. For this reason, it is proposed to accelerate it using

GPUs and taking advantage of the many-core architecture

provided by these devices, as well as their parallelism at

the instruction level. GPUs are specialized hardware for

computationally intensive high-level parallelism that use a

larger number of transistors to process data and fewer for

flow control or management of the cache, compared to

CPUs. We have used the architecture and set of program-

ming tools (language, compiler, development environment,

debugger, libraries, etc.) provided by NVIDIA to exploit

the parallelism of its hardware.

To accelerate the GNG algorithm on GPUs using

CUDA, it has been necessary to redesign it so that it better

suits the GPU architecture. Many of the operations per-

formed in the GNG algorithm are parallelizable because

they act on all the neurons of the network simultaneously.

That is possible because there is no direct dependence

between neurons at operational level. However, there exists

dependence in the adjustment of the network, which takes

place at the end of each iteration and forces the synchro-

nization of various parallel execution operations. Figure 1

shows the GNG algorithm steps that have been accelerated

onto the GPU using kernels.

The accelerated version of GNG algorithm has been

developed and tested on a machine with an Intel Core i3

540 3.07 Ghz and a number of different CUDA capable

devices. Table 2 shows different models that we have used

and their features.

4.2.1 Euclidean distance calculation

The first stage of the algorithm that has been accelerated is

the calculation of Euclidean distances performed in each

iteration. This stage calculates the Euclidean distance

between a random pattern and each of the neurons. This

task may take place in parallel by running the calculation

of each distance calculation onto as many threads as neu-

rons the network contains. It is possible to calculate more

than one distance per thread, but this is only efficient for

large vectors where the number of blocks that are executed

on the GPU is also very high.

4.2.2 Parallel reduction

The second task parallelized is the search of the winning

neuron: the neuron with the lower Euclidean distance to the

pattern generated, and the second closest. For the search,

we used the parallel reduction technique described in [35].

This technique accelerates operations such as the search for

the minimum value in parallel in large data sets. For our

work, we modified the original algorithm that we have

called 2MinParallelReduction, so that, with a single

reduction it not only obtained the minimum, but also the

two smallest values of the entire data set. Parallel reduction

can be described as a binary tree where: for log 2ðnÞ steps
operated in parallel in sets of two elements, by applying an

operation on these elements in parallel; at the end of the

log 2ðnÞ steps we obtained the final result of the operation

onto a set of N elements.

Table 2 CUDA capable devices used in experiments

Device

model

Capability SMs Cores

per

SM

Global

mem

(GB)

Bandwidth

mem

(GB/s)

Quadro 2000 2.1 4 192 1 41.6

GeForce GTX

480

2.0 15 480 1.5 177.4

Tesla C2070 2.0 14 448 6 144
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We carried out experiments of 2MinParallelReduction

implementation with different graphics boards using 256

threads per block configuration for kernels launch. We

obtained a speed-up factor up to 43� faster with respect to

a single-core CPU and 40� faster with respect to multi-

core CPU, in the task of taking adjustments of the network

with a number of neurons close to 100 k. As we can see in

Fig. 12 (bottom), the speed-up factor depends on the device

on which we execute the algorithm and the number of cores

it has. Figure 12 shows the evolution of the execution time

in sequential reduction operation compared to the parallel

version. It can also be appreciated how GPU implemen-

tation improves the acceleration provided by the parallel

algorithm as the number of elements grows.

4.2.3 Other optimizations

To speed-up the remaining steps, we have followed the

same strategy used during the first phase. Each thread is

responsible to perform an operation on a neuron: check

edges connections age and in the case that exceeded a

certain threshold delete them; update local error of the

neuron or adjusting neuron weights. In the stage of finding

the neuron with maximum error, we followed the same

strategy used in finding the winning neuron, but in this

case, the reduction is seeking only the neuron with highest

error. Regardless of the parallelism of the algorithm, we

have followed some good practices on the CUDA archi-

tecture to achieve better performance. For example, we

used the constant memory to store the neural network

parameters: �1; �2; a; b; amax: By storing these parameters

in this memory, the access is faster than working with

values stored in the global memory.

Our GNG implementation on GPU architecture is also

limited by the memory bandwidth available. In the exper-

iments section we show a specification report for each

CUDA capable device used and its memory bandwidth.

However, this bandwidth is only attainable under highly

idealized memory access patterns. It does, however,

provide us with an upper limit of memory performance.

Although some memory access patterns, like moving data

from the global memory into shared memories and regis-

ters, provide better coalesced access, to achieve the highest

advantage of memory bandwidth, we used the shared

memory within each multiprocessor. In this way shared

memory acts as a cache to avoid frequent access to global

memory in operations with neurons and allows threads to

achieve coalesced reads when accessing neurons data. For

instance, a GNG network composed of 20,000 neurons and

auxiliary structures requires only 17 MB. Therefore, GPU

implementation, in terms of size, does not present problems

because currently GPU devices have enough memory to

store it.

Memory transfers between CPU and GPU are the main

bottleneck to obtain speed-up. These transfers have been

avoided as much as possible. Initial versions of the

algorithm failed to obtain performance over the CPU

version because the complete neural network was copied

from GPU memory to CPU memory and vice versa for

each input pattern generated. This penalty, introduced due

to the bottleneck of the transfer through the PCI-Express

bus, was so high that the performance was not improved

compared to the CPU version. After careful consideration

about the flow of execution we decided to move the inner

loop of pattern generation to the GPU, although some

tasks are not parallelizable and had to be run on a single

GPU thread.

4.2.4 GNG hybrid version

As we discussed in the previous experiments, the GPU

version has low performance in the first iterations of the

learning algorithm, where the GPU cannot hide the

latencies due to the small number of processing elements.

To achieve even bigger acceleration of the GNG algo-

rithm, we propose the use of the CPU in the first iterations

of the algorithm, and then start processing data in the

GPU only when there is an acceleration regarding CPU,

Fig. 12 Parallel reduction

speedup with different devices
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thus achieving a bigger overall acceleration of the algo-

rithm (see Fig. 13). To determine the number of neurons

necessary to start computing at GPU we have analyzed in

detail the execution times for each new insertion, and

concluded that each device, depending on its computing

power starts being efficient at a different number of

neurons. Following several tests, we have determined the

threshold at which each device starts accelerating com-

pared to the CPU version. As it can be seen in Fig. 8,

threshold values for different devices are set to 1,500,

1,700, 2,100 for GTX 480, Tesla C2070 and Quadro 2000

models. The hybrid version is proposed as some applica-

tions need to operate under time constraints obtaining a

solution of a specified quality within certain period of

time. In cases when the objective is the disruption of

learning due to the application requirements, it is impor-

tant to insert the maximum number of neurons and per-

form the maximum number of adjustments to achieve the

highest quality in a limited time. The hybrid version

ensures a maximum performance in these kinds of appli-

cations using the computational capabilities of the CPU or

the GPU depending on the situation.

4.2.5 Rate of adjustments per second

We have performed several experiments where it is shown

how the accelerated GNG version is not only capable to

perform a complete learning cycle faster than CPU but also

to perform more adjustments per second than the CPU

implementation. For instance, after learning a network of

20000 neurons, we can perform 17 adjustments per second

using the GPU while the CPU only gets 2.8 adjustments per

second. This means that GPU implementation can obtain a

good topological representation with time constraint. Fig-

ure 14 shows the different adjustments rate per second that

performed by different GPU devices and CPU. It is also

shown that by increasing the number of neurons in the

CPU, it cannot handle a high rate of adjustments per

second.

4.2.6 Discussion

From the experiments described above we can conclude that

the number of threads per block that best fits in our

implementation is 256 due to the following reasons: first,

the amount of computation the algorithm performs in par-

allel. Second, the number of resources that each device has

and finally the use that we have made of shared memories

and registries. It is also demonstrated that in comparison to

CPU implementation, the 2MinParallelReduction achieves

a speed-up of more than 40� to find out a neuron at a

minimum distance to the generated input pattern. Theoret-

ical values obtained applying Amdahl’s law and its com-

parison with real values obtained from the experiments

indicate that GPGPU architecture has some implicit laten-

cies: initialization time, data transfers time, memory access

time, etc.

Experiments on the complete GNG algorithm showed

that using the GPU, small networks under-utilize the

device, since only one or a few multiprocessors are used.

Our implementation has a better performance for large

networks than for small ones. To get better results for small

networks we propose a hybrid implementation. These

results show that GNG learning with the proposed hybrid

implementation achieves a speed-up six times higher than

the single threaded CPU implementation.

Additionally, it is shown how our GPU implementation

can process up to 17 adjustments of the network per second

while single threaded CPU implementation only can

manage 2.8, getting a speed-up factor of more than six

times in the extreme situation of using 20,000 neurons and

1,000 input patterns.

Finally, we computed the MegaPixels per second

(MPps) rate achieved by our proposal. Table 3 shows MPps

rates for different number of neurons and k patterns. It can

be seen how the CPU version is able to manage large MPps

rates for small number of neurons and k patterns. However,

for a number of neurons larger than 5,000 the CPU version

is not able to manage reasonable MPps rates whereas the

Fig. 13 Hybrid version speedup

with different devices
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GPU implementation obtains considerable higher rates.

MPps rates where computed considering images resolution

(384� 288 pixels).

5 Conclusions and future work

In this work we presented a system based on GNG neural

network capable of representing motion under time con-

straints. The proposed system incorporates mechanisms for

prediction based on information stored within the network

structure on the characteristics of objects such as shape or

situation to anticipate certain operations such as segmen-

tation and positioning of objects in subsequent frames. This

provides for a more rapid adaptation to the objects in the

image, restricting the areas of search and anticipating the

new positions of objects.

Processing information on the neurons’ position (refer-

ence vectors) through time is possible to construct the path

followed by objects represented and interpret these. This

evolution can be studied from global movement, using the

centroids of the paths or from local movement, by studying

the deformations of the object based on neural network

structure changes. This is possible because the system does

not restart the neural network every frame but only readjust

the network structure starting from previous positions

without inserting or deleting neurons. In this way the

neurons are used as markers that define the stable form of

objects.

The capabilities of the system for tracking and motion

analysis have been demonstrated. The system automati-

cally handles the mergers and divisions among entities that

appear in the images and can detect and interpret the

actions that are performed in video sequences. The GNG-

Seq architecture enables to manage image sequences with

time constraints but the system is limited and we have

proposed the implementation of the model on a GPGPU

architecture.

We identified the stages that employ more time in the

learning algorithm and parallelize and redesign them to

maximize the system performance. Since the GPU imple-

mentation improves the CPU one, only for a high number

of neurons, a hybrid version has been designed that works

on CPU and changes to GPU when the necessary number

of neurons have been inserted. Experiments have been

developed with different devices to demonstrate the

validity of our system.

We can also conclude that although the understanding of

issues involved in the computation of motion has signifi-

cantly increased in the last years, we are still far from

generic, robust, real-time motion estimation algorithm. The

selection of the best motion estimator is still highly

dependent on the application. However, the acceleration of

several computer vision techniques and algorithms to fit

them to the GPU architecture reduces the computational

cost of motion analysis and estimation algorithms.

Fig. 14 Rate of adjustments per

second performed by different

GPU devices and CPU

Table 3 MegaPixels per second rates obtained for different number

of neurons and k patterns

MPps CAVIAR

CPU Quadro

2000

Tesla

C2070

GTX

480

Multi-core

CPU

GNG 1,000 N

500 k
11.88 6.02 6.09 7.14 10.88

GNG 5,000 N

500 k
2.53 4.38 5.35 6.10 3.90

GNG 10,000 N

500 k
1.26 2.67 3.97 4.50 2.68

GNG 20,000 N

500 k
0.62 1.46 2.43 2.80 1.21

GNG 1,000 N

1,000 k
5.92 3.31 3.34 4.14 5.23

GNG 5,000 N

1,000 k
1.24 2.67 3.37 4.08 1.95

GNG 10,000 N

1,000 k
0.61 1.49 2.46 3.00 1.26

GNG 20,000 N

1,000 k
0.31 0.83 1.60 1.89 0.72
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As a further work, we plan to improve the CPU version

in some aspects such as segmentation and prediction. We

also work in the refinement of the GPU version.
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