
Describing and Processing Topology and Quality of Service
Parameters of Applications in the Cloud

Gabriele Pierantoni & Tamas Kiss & Gabor Terstyanszky &

James DesLauriers & Gregoire Gesmier & Hai-Van Dang

Received: 24 September 2019 /Accepted: 24 May 2020
The Author(s) 2020

Abstract Typical cloud applications require high-level
policy driven orchestration to achieve efficient resource
utilisation and robust security to support different types
of users and user scenarios. However, the efficient and
secure utilisation of cloud resources to run applications
is not trivial. Although there have been several efforts to
support the coordinated deployment, and to a smaller
extent the run-time orchestration of applications in the
Cloud, no comprehensive solution has emerged until
now that successfully leverages applications in an effi-
cient, secure and seamless way. One of the major chal-
lenges is how to specify and manage Quality of Service
(QoS) properties governing cloud applications. The so-
lution to address these challenges could be a generic and
pluggable framework that supports the optimal and se-
cure deployment and run-time orchestration of applica-
tions in the Cloud. A specific aspect of such a cloud
orchestration framework is the need to describe complex
applications incorporating several services. These appli-
cation descriptions must specify both the structure of the
application and its QoS parameters, such as desired
performance, economic viability and security. This pa-
per proposes a cloud technology agnostic approach to
application descriptions based on existing standards and
describes how these application descriptions can be
processed to manage applications in the Cloud.

Keywords Application description template .

Application-levelcloudorchestration .Qualityofservice,
automated scalability, TOSCA

1 Introduction and Problem Statement

Cloud computing has successfully addressed issues
how to run applications on complex distributed com-
puting infrastructures. Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software
as a Service (SaaS) [1] solutions are widely used in
academia and business to manage applications in the
Cloud. However, there are application and infrastruc-
ture specific challenges, such as deployment, scal-
ability and security requirements that must be ad-
dressed. At the one hand, on-demand access to cloud
resources and services in a flexible and elastic way
could result in significant cost savings due to more
efficient and convenient resource utilisation. Addi-
tionally, it can also replace large investment costs and
decrease long-term operational costs. On the other
hand, the efficient and dynamic utilisation of cloud
resources and services is not trivial. The take up of
cloud computing is still relatively low due to limited
application-level flexibility and shortages in cloud
specific skills.

Porting and running applications in the Cloud has
also been slowed down by the intrinsic complexity
required to describe the services that compose the ap-
plications considering their deployment, migration,
scalability and security requirements. As a result, the

J Grid Computing
https://doi.org/10.1007/s10723-020-09524-0

G. Pierantoni : T. Kiss (*) :G. Terstyanszky :
J. DesLauriers :G. Gesmier :H.<V. Dang
Centre for Parallel Computing, University of Westminster, 115
New Cavemdish Street, London W1W 6UW, UK
e-mail: T.Kiss@westminster.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-020-09524-0&domain=pdf
http://orcid.org/0000-0002-3241-633X

move to the Cloud has been somehow slower and more
cautious in some application areas due to both
application- and infrastructure-level complexity. For ex-
ample public sector organisations [2] and Small- and
Medium-sized Enterprises (SME) [3] are increasingly
considering using the Cloud in their everyday activities
but they still face difficulties of both economic and
technical nature. Applications in these areas might run
simulations, collect and process public service and so-
cial media data, etc. They have to process large volume
of data and might have restrictions on execution, such as
costs, deadlines, security, etc. To meet these require-
ments, efficient resource utilisation including resource
scalability, such as CPU, disk and memory scalability
has to be achieved. When faced with such complexity,
application developers may decide not to take up or to
abandon the Cloud if they are not properly supported.
Although there have been several efforts to support the
deployment, and to a smaller extent run-time orchestra-
tion of cloud applications, no comprehensive solution
has emerged that could be applied in both academia and
business to address the above challenges.

To enable the execution of a large variety of applica-
tions in the Cloud in a cost effective, flexible, seamless
and secure way, applications must be deployed,
launched, executed and removed through a framework
that hides cloud specific details from users. These
phases need information about the applications, such
as their architecture, resources and services they need,
and Quality of Service (QoS) parameters they must
meet. Application descriptions should define the appli-
cation architecture, specify where to deploy and run
applications, and formulate requirements towards their
cost-effective execution and desired security policies.
Application description is one of the major challenges
in cloud computing considering complexity of applica-
tions and the Cloud itself. This description should help
application developers to define applications in a sim-
ple, flexible, reusable and seamless way. It allows them
specifying services and QoS properties of applications
to enable their deployment and execution in the Cloud.

Although there are several approaches that describe
application architectures or even specify some policies,
such descriptions are typically limited in their reach and
specific to particular cloud infrastructures. Existing ap-
plication description approaches (see in Section 3) allow
specification of application architecture and definition
of some policies that regulate deployment and execution
of applications, but these approaches are not as efficient

and flexible as required. Moreover, there is also a lack of
a cloud agnostic framework that processes and enforces
such descriptions in various cloud infrastructures. To
support application developers, we elaborated a technol-
ogy agnostic application description solution, called
Application Description Template (ADT) that is pre-
sented in this paper together with a prototype framework
that processes and acts upon such descriptions.

The paper is structured as follows. Section 2 intro-
duces an abstract view of application description. It
identifies three challenges we addressed and design
guidelines that the challenges are mapped to. Section 3
describes the state of the art in application description
approaches used in the Cloud and explains why we
selected TOSCA (Topology and Orchestration Specifi-
cation for Cloud Applications, an OASIS standard) [4]
to implement ADT. Section 4 outlines the design of the
ADT and the extended TOSCA policy architecture and
explains how this design realises our design guidelines.
Section 5 demonstrates the feasibility of the concept by
presenting how a commercial application, called Magi-
cian, can be described with the ADT andmanaged in the
Cloud with the MiCADO (Microservices-based Cloud
Application-level Dynamic Orchestrator) [5] generic
cloud orchestration framework. Section 6 contains con-
clusions and future work.

2 Abstract View of Application Description

To deploy and execute applications in the Cloud, first we
have to describe them in a way that can be understood by
all components involved. Such application description
acts as conduits of information which connects various
stakeholders and components. Furthermore, to foster
cloud adoptionwemust strive to lower the learning barrier
required to write the application descriptions and reduce
as much as possible technology-specific constraints.

We defined two main domains of this context. On the
left of Fig. 1 lies the technology agnostic Application
Domain in which various application stakeholders en-
gage in creating applications, describing them in a way
which supports their deployment on cloud infrastruc-
tures, and finally, defining and selecting appropriate
policies that govern their lifecycle. The right-hand side
of Fig. 1, Infrastructure Domain, contains elements that
are specific to the deployment and execution services
used by cloud providers (e.g. monitoring services, or-
chestration tools, security frameworks, etc.). These two

G. Pierantoni et al.

domains might contain different solutions that offer
similar or overlapping functionalities, and this can raise
interoperability issues among different technologies.

There are two main approaches to solve this problem
and connect these two domains. In the first case
(Approach A in Fig. 1) a single description language
specific to an infrastructure domain is propagated
throughout all the elements and must be used to de-
scribe application and policies. This approach has the
advantage to be simple and naturally arises when one
single technology becomes dominant imposing its own
language. On the other hand, it constrains the freedom
of choice to the solution decided by the adopted tech-
nology. In comparison, Approach B allows for both
domains to use different languages and employs a
“lingua franca” which acts as a decoupling element in
the middle. In our work we have followed Approach B
whereby the two domains are connected by a concep-
tual component, named Application Submitter, as
depicted in the middle of Fig. 2. The Application

Submitter is a service that is be capable of converting
the technology agnostic General Application Descrip-
tion (created and provided by the Application Stake-
holder(s), typically the users or owners of the system) to
an Infrastructure Specific Description used by different
Infrastructure Components.

3 Related Works: Application Description in Cloud
Computing

3.1 Overview of Application Description Approaches

There are currently three major application description
approaches to target challenges described previously:
cloud platform (e.g. Amazon, Microsoft Azure, Oracle,
or OpenStack) dependent, cloud orchestration tool (e.g.
Chef, Ansible or Juju) dependent, and platform and tool
independent approaches (e.g. Camp and TOSCA).

Applica�on Domain Infrastructure Domain

a

b

Applica�on domain language 1 Infrastructure domain language 1

Applica�on domain language N Infrastructure domain language N

…

“Lingua
Franca” used
for generic

applica�on and
policy

descrip�on

Applica�on domain language 1

Applica�on domain language 2

Applica�on domain language N

…

Infrastructure domain language 1

Infrastructure domain language 2

Infrastructure domain language M

Fig. 1 Abstract View of the Context of the Application Description Template

Applica�on
Submi�er

Infrastructure
Components

Applica�on
Stakeholder(s)

General
Applica�on
Descrip�on

Infrastructure
Specific

Descrip�on

Infrastructure DomainApplica�on Domain

Fig. 2 The Application Submitter as a decoupling element

Describing and Processing Topology and Quality of Service Parameters of Applications in the Cloud

Cloud Platform Dependent Approaches Most leading
cloud providers offer ways of describing applications
and their properties. Amazon uses Amazon Machine
Image (AMI) Template to describe all information re-
quired to launch an Amazon EC2 instance, and AWS
Cloud Formation Template [6] to support development,
deployment and running of applications on the Amazon
cloud.MicrosoftAzure Resource Manager Template [7]
combines compute, storage and network resources into a
single entity to manage applications in the Cloud. ORA-
CLE uses Oracle VM Template [8] to enable quick
configuration and provisioning of multi-tier application
topologies onto virtualised and cloud environments by
capturing the configuration and packaging of software
components as self-contained building blocks called ap-
pliances that can be easily connected to form application
blueprints, called as assemblies. OpenStack Heat Or-
chestration Template (HOT) [9] provides a template-
based orchestration for describing a cloud application
by executing OpenStack API calls. The template allows
creating most OpenStack resource types as well as more
advanced functionalities, such as high availability in-
stances, auto-scaling and nested stacks instances.

C l o u d O r c h e s t r a t i o n T o o l D e p e n d e n t
Approaches Cloud orchestration tools typically offer
higher level automation of application deployment com-
pared to the native solutions of cloud providers. Chef
and Juju are both open-source cloud orchestration tools.
Chef [10] uses cookbooks and recipes to support inte-
gration with cloud-based platforms. Cookbooks and
recipes describe system configuration and explicitly
specify how to deploy and connect cloud application
components. Ansible [11] takes an agentless approach
and deploys and configures services and systems on
cloud-based hosts from a remote server. Playbooks de-
clare the desired state of a system, and the Ansible server
executes commands via SSH to realise that state on a
host. Juju [12] uses charms to enable deploying, man-
aging, and scaling services on a wide variety of clouds.
Charms encapsulate application configuration, define
how services must be deployed, how they connect to
other services, and how they can be scaled. They also
define how services can be integrated, and how services
react to events in the distributed environment.

Platform and Tool Independent Approaches These ap-
proaches provide a high-level description of applications
that is not coupled with any specific cloud platform/

middleware and tool. Topology and Orchestration Spec-
ification for Cloud Applications (TOSCA) [4] is an open
source language specification that enables the description
of portable cloud applications and the automation of their
deployment and management. It allows the description of
topologies, including nodes with their relationships and
their policies. Cloud Application Management Platform
(CAMP) [13] is a simple API specification to standardise
the API of PaaS systems. The CAMP API has been
designed for lifecycle management of applications. This
management supports performing, uploading, configur-
ing, customising, deploying/un-deploying, starting/stop-
ping, snapshotting, suspending/restarting and deleting
operations on an application/service, as well as monitor-
ing the operation of the application.

3.2 Comparison of Application Description Approaches
and Justification of the Selected Approach

All three investigated approaches properly describe the
application architecture (or topology) specifying ser-
vices they are composed of, how these services are
connected, and artefacts and resources needed to run
applications. Although cloud platform dependent ap-
proaches work well in the given cloud environment,
these do not fulfil our need for a “Lingua Franca” due
to their specific dependencies on a particular cloud
technology. Using these approaches would mean
adopting Approach A and developing different applica-
tion descriptions based on the targeted cloud platform.
Although some of the cloud orchestration tools (e.g.
Chef and Juju) support multiple cloud technologies
providing certain independence from the cloud
middleware, application developers are still restricted
to use the given cloud orchestrator tool only. Therefore,
such solutions still do not fulfil the requirements of a
“Lingua Franca”. Further, these approaches are not
based on standards and the majority of these approaches
do not provide flexible QoS properties management.

On the other end, TOSCA, as an application descrip-
tion solution, offers all features that cloud platform and
orchestration dependent approaches do plus provides
some additional ones. First, it defines the application
architecture describing it as a combination of services
specifying their topology and relationships. It also sup-
ports publishing, sharing and storing application de-
scriptions. Second, TOSCA specifies how to manage
applications defining implementation characteristics
and constraints such as the packaging of installation

G. Pierantoni et al.

artefacts and large variety of installation methodologies
that vary from simple scripts to complex workflows.
TOSCA does explicitly provide container or runtime
support, for example it can specify how to run applica-
tions in Docker containers and virtual machines. Third,
TOSCA allows specification of applications’QoS prop-
erties, such as deployment, scalability, security, etc.
This approach is flexible and generic enough to allow
for the development of a comprehensive policy structure
for the definition of various aspects and various stages
of the applications’ lifecycle. Fourth, TOSCA is an open
standard application description language supported by
a growing number of communities and by OASIS as
standardisation body. As a result, all major cloud or-
chestration tools and several cloud platforms either cre-
ated plug-ins to process TOSCA-based application de-
scriptions or developed translators to convert TOSCA
descriptions into their native descriptions. For example,
IBM developed a TOSCA plug-in [14] to process
TOSCA application descriptions in Chef to be used in
IBM Smart Cloud Orchestrator. OpenStack Heat lever-
ages TOSCA as a standard based approach for model-
ling cloud stacks and applications using TOSCA Parser
and Heat Translator [15]. Juju was extended to parse
TOSCA based application descriptions transforming
Juju topology model components into TOSCA compli-
ant topology model components [16]. Finally, TOSCA
is being actively used in both academic and non-
academic communities. Therefore, there is large variety
of implementations that offers a vast experience from
which application developers can greatly benefit.
Among these, the most promising are OpenTOSCA
[17] and TOSCAMart [18]. Considering the features
of TOSCA listed above, we selected it as the basis of
our Application Description Template. However,
TOSCA also has some limitations as it is highlighted
in the related literature.

Based on the overview of related works we identified
three challenges designing and implementing ADT:

& Challenge 1: to describe and manage containerised/
virtualised applications in the Cloud,

& Challenge 2: to define extensible and flexible poli-
cies for the management of a wide range of QoS
properties and to provide parametrised support for
these policies, and

& Challenge 3: to support the deployment and
management of the applications in a platform
agnostic way.

There were several efforts using TOSCA to address
challenge 1 (description and management of
containerised/virtualised applications in the Cloud) and
challenge 3 (deploying and managing applications in a
platform agnostic way). Cloudify [19] is an orchestra-
tion framework that has been extended with plugins to
provide support for different cloud service providers,
container platforms, as well as a variety of automation
tools. It has its own Domain Specific Language (DSL)
that uses TOSCA Simple Profile in YAML v1 as a base
specification. DSL has strict typing, for example, there
is one type defined for creating a non-orchestrated
Docker container, another type for a Docker container
orchestrated by Docker Swarm, and a third type for a
Docker container orchestrated by Kubernetes. ARIA
[20], built on the Cloudify code base, keeps strict ad-
herence to the normative DSL. It offers a set of TOSCA-
based tools to support the orchestration of TOSCA
normative templates. Puccini [21] extended ARIA with
a frontend that translates an extended TOSCA v1.1/v1.2
template into a middle language called Clout, then again
into an orchestrator specific language before being fed
to that orchestrator. Alien4Cloud [22] is an application
management platform, which leverages the portability
of TOSCA to encourage uptake of the cloud by enter-
prise organisations. It offers a custom DSL with strict,
but not total adherence to TOSCA Simple Profile in
YAML v1.0. Plugins and a graphical interface offer
support for orchestrating and designing these TOSCA
templates using various tools, including Cloudify,
Mesos, Kubernetes and Puccini.

There were further research efforts to address chal-
lenge 2 (extensible and flexible policies to manage
QoS properties). The TOSCA specification defines
some abstract non-normative policy types (access
control, placement, etc.), and offers some design
guidelines (such as the declarative approach), but it
does not offer a detailed description on how to spec-
ify such policies. Breitenbücher et al. [23] elaborat-
ed an approach to assign policies to node templates
and extended the TOSCA access policy with public
access, no public access, secure password and only
modelled port sub-policy. They also introduced a
policy-aware deployment approach that generates an
imperative executable Policy-Aware Provisioning
Plan. It translates the topology template into an exe-
cutable provisioning plan to enforce provisioning
policies using the Policy-Aware Provisioning Plan
Generator. They developed the OpenTOSCA

Describing and Processing Topology and Quality of Service Parameters of Applications in the Cloud

platform to create, process and execute TOSCA spec-
ifications using Winery [24] and Vinothek [25].
Waizenegger et al. [26] proposed a taxonomy to
describe policies. It contains four entities: stage, lay-
er, effect and property. Stage defines the lifecycle
stage in which the policy must be applied. Layer
specifies the topology layer where the policy needs
to be applied (similarly to TOSCA Targets). Effect
defines how the policy effects the application. Prop-
erty specifies parameters of the application. They
combine the topology template and policies. They
also defined two new policies: database encryption
policy (sub-policy of the access control policy) and
region policy (sub-policy of the placement policy).
Kepes et al. [27] further extended policy taxonomies
defining the policy signature and gave detailed over-
view of their policy taxonomy. They also introduced
further sub-policies, such as response time and SQL
injection firewall sub-policy. The authors elaborated
a policy framework that transforms the abstract
TOSCA entities into specific ones considering their
functional requirements and policies. Their Plan En-
gine deploys and runs the application cooperating
with the Runtime Monitor and the Policy Enforcing
Manager.

Our research, that was first outlined and initiated in
[28], extends the above described related work on
TOSCA regarding all three identified challenges. As a
result, the presented ADT enables the description of
applications at two different levels (virtual machines
and containers), supports the definition of an extendable
set of policies to manage QoS requirements, and enables
the definition of a generic framework to process and act
upon such descriptions for application-level cloud or-
chestration. Detailed analysis of these contributions is
provided in Section 4.

4 Extending TOSCA to Support Application-Level
Orchestration in the Cloud

This section defines the Application Description Tem-
plate (ADT), describes its structure and its elements,
outlines the extended TOSCA policy hierarchy and
explains the MiCADO reference architecture used to
process and execute ADTs.

To design the ADT, we have mapped the three chal-
lenges listed in Section 3 into six Design Guidelines. To

target Challenge 1 (description of containerised/
virtualised applications) we defined:

& DG1 - Topology-based Description: We assume
that the application architecture is described as to-
pologies which represent the application services,
their relations and how they are deployed into the
infrastructure.

& DG2 - Two-Level Topologies. We have restricted
the deployment and execution of the applications
into either containers or virtual machines, where
containers could be further embedded in virtual
machines. Such assumption does not dictate that
each application needs to be deployed in containers
(as some applications may be deployed directly into
virtual machines) but sets a limit on the number of
layers within the topologies.

To address Challenge 2 (extensible and flexible
policies) and Challenge 3 (technology agnosticism)
we defined

& DG3 - Policy-based Behaviour: The behaviour of
applications can be described by policies which
govern the various aspects of the application
lifecycle.

& DG4 - Extensible Description. At the time of design
not all requirements may have been known. There-
fore, application descriptions should be extensible to
cope with additional requirements.

& DG5 - Infrastructure and Technology Agnosti-
cism. The implementation of cloud infrastructure
services must not affect the application description
in any way.

To help application developers in describing and man-
aging applicationswe specified onemore design guideline:

& DG6 – Stakeholder vsApplicationDescription.There
are several stakeholders in the Cloud, such as cloud
service developers, application developers, users, etc.
They may need either the whole or a sub-set of the
application description based on their role. The appli-
cation description should provide information about
the application considering stakeholders’ role.

Considering the limitations of the TOSCA based
solutions, discussed in Section 3, we elaborated three
major contributions addressing challenge 1, 2 and 3:

G. Pierantoni et al.

& Contribution 1: developing the concept of the Ap-
plication Description Template to describe applica-
tions deployed and executed in two levels, i.e. in
containers and/or virtual machines (challenge 1),

& Contribution 2: introducing an extendable set of
TOSCA policies to manage deployment, perfor-
mance, scalability and security requirements of ap-
plications (challenge 2), and

& Contribution 3: elaborating a generic framework
that can automatically process Application Descrip-
tion Templates to deploy and manage applications
in the Cloud in a platform agnostic way (challenge
3).

4.1 Entities of the Application Description Template

The ADT should manage three major structural entities:
container images, virtual machines images and their
policies, depicted in Fig. 3. These entities are derived
from the TOSCA Node element. They allow ADTs to
satisfy three of the Design Guidelines: DG1 (Topology-
based Description), DG2 (Two-Level Topologies), and
DG3 (Policy-based Behaviour). In Fig. 3 there are
TOSCA nodes representing container images (Cont. 1,
Cont. 2 and Cont. M) and a correlated set of nodes
representing virtual machine images (VM 1 and VM
N). Container images are connected by TOSCA Rela-
tionships (continuous arrow) that define their mutual
dependencies. Container images can be assigned to vir-
tual machines using TOSCA Relationships (dotted ar-
row). Virtual machines can host one or more container
images (e.g. VM 1 hosts two container images). Finally,
policies (Policy 1 to Policy L) can target different nodes
(containers or virtual machines). While relations

between container images and container images and
virtual machines are directly implemented with the
TOSCA Relationship type, the connection between pol-
icies and nodes is implemented indirectly by defining
one or more target nodes within the policies (dashed
arrow).

4.2 Structure of the Application Description Template

TOSCA describes applications in Service Templates.
These templates incorporate the Topology Template
and the Management Plan. The Topology Template de-
fines the structure of the application using
NodeTemplates to specify nodes, and RelationTemplates
to define how NodeTemplates are connected.
NodeTemplates, derived from NodeTypes, define attri-
butes, capabilities, interfaces, properties and requirements
of applications’ nodes. TOSCA also specifies abstract
PolicyTypes and PolicyTemplates that can be used to
define certain aspects of the lifetime behaviour of the
application. The Management Plan describes how to
deploy and run the application in the Cloud.

We have defined the Application Description Tem-
plate (ADT), presented in Fig. 4, based on many (al-
though not all at the moment) of the features offered by
TOSCA. We have used hierarchies of NodeTypes to
define a simplified application topology spanning Con-
tainers and Virtual Machines, and TOSCA Policy con-
structs to define extensible and composable policies. An
ADT defines the container and virtual machine levels in
the Topology Template. At the bottom level are the
virtual machines that host one or more containers.
ADT specifies the number of containers and virtual
machines and how containers are allocated to virtual
machines. This template enables assigning policies to

Fig. 3 Structural Entities of the Application Description Template

Describing and Processing Topology and Quality of Service Parameters of Applications in the Cloud

applications, containers and virtual machines to govern
how these entities are deployed and executed in the
Cloud. It allows the definition of complex topologies
and a rich and extendable set of policies that specify
properties of the applications, for example deployment,
security, scalability, etc. The ADT-based descriptions
can be processed by different deployment and run-time
orchestrators. ADT minimises the application devel-
opers’ efforts required to specify applications. This can
be achieved by decomposing the application’s topology
and policies into components that can be reused by
application developers.

The structure of the ADT is elaborated considering
design guidelines DG4 (Extensible Description) and
DG6 (Stakeholders vs Application Description). Each
ADT contains four sections as illustrated on Fig. 4. The
Input/Output Section consists of the input and output
variables of the application. The input sub-section enables
application developers, who have written the ADT, to
create a list of parameters of those values that either they
or the applications’ users can define before submitting the
application without any further knowledge of TOSCA or
the ADT. This capability addresses DG6 (Stakeholders vs
ApplicationDescription) distinguishing application devel-
opers, who have a deeper understanding of ADT, and
application users, who only want to override a few select-
ed variables. The output sub-section contains variables
which are set during execution and should be returned to

the user, for example the public IP address of a virtual
machine provisioned during application deployment.
These variables can refer to structural entities included in
the Containers, Policies and Virtual Machines sections.
The Container and Virtual Machine Sections describe
containers, virtual machines and their relations. The con-
tainers are connected through TOSCA ConnectsTo Rela-
tionships, while containers are linked to a virtual machine
on which they should be deployed using the TOSCA
HostedOn Relationship. The Policies Section defines the
QoS properties as Policy Elements which, in addition to
specific information, also define a set of target nodes and
the lifecycle phase to which these apply.

4.3 Extended Policy Hierarchy

In order to comply with DG4 (Extensible Description)
we use TOSCA types arranged in hierarchies to define
the various structural entities of the ADT to allow ex-
tension of elements to match with a modification in one
of the elements of the ADT. As a result, application
developers can define a new sub-type in the hierarchy
whilst the topology and overall structure of the ADT
remains unchanged. This approach is particularly rele-
vant for the definition of the extended policy hierarchy
which we have designed considering TOSCA recom-
mendations. First, the extended policy hierarchy follows
the Declarative Model, e.g. it describes the parameters

Fig. 4 Structure of the Application Description Template (ADT)

G. Pierantoni et al.

that govern the policy, but it does not specify how to
implement the policy. Such Declarative Model supports
developing various different application level orchestra-
tors that act upon the defined policies, i.e. the policy
definition does not define or restrict the implementation
of the orchestrator. Second, we support the aggregation
of policies in two different ways. First, policies can
target one, more or all nodes, i.e. it is possible to define
one policy for the entire application and a second one for
a sub-set of nodes or for a single node. Second, policies
cover distinct aspects of QoS, for example scalability,
security, etc., and can be composed for each node. Such
composition could lead to conflicts among the policies.
As an example, a budget-constraining policy applied to
the entire application may be in conflict with a deadline
policy applied to either the entire application or one of
its components that requires the usage of expensive
resources. Another example could be that of a privacy
constraint that requires the placement of a database in a
certain geographical area with a policy that defines an
incompatible budget limit. It must be emphasised that
we do not address the conflicts of policies, but we added
a priority field to the policy template which expresses
conflict resolution criteria that can be used by the rele-
vant element of the ADT.

We extended the Scaling and the Placement sub-
policies of the TOSCA PolicyType and specified a
new sub-policy called Access Control sub-policy to
support deployment and execution of applications in
the Cloud. The original TOSCA policies are highlighted

in grey and new ones are presented in white in Fig. 5.
The Placement and Scaling sub-policies contain several
sub-sub-policies to support placement and scaling of
different types of applications, for example Advanced
Consumption Based Scaling and Budget Constrained
Consumption Based Scaling. The Access Control
branch encompasses security-related policies to describe
functionalities such as Firewall Control and Secret Data
Management which can be handled by security-specific
services of the targeted orchestrator (e.g. the MiCADO
framework). By extending each branch, we have created
a multi-layer hierarchy of TOSCA. Each sub-policy
contains the information summarised in Fig. 6.

The first part, the Description Section, comprises of
meta-data which defines the name, type and description
of the policy, aswell as a target (defined as a set of nodes in
the topology) to which the policy should apply. The sec-
ond part, the Properties Section, contains data that is either
common to all policy types or specific to a particular policy
type. Common Properties are Stage that defines at which
stage of the lifecycle of the element the policy is applied,
and Priority that is an arbitrary integer ranging from 0 to
100 used to define the priority with which the policy will
be implemented. Specific Properties vary depending on the
nature of the policy itself. For example, a scalability policy
based on CPU consumption defines various parameters
that specify scalability thresholds, while a deployment
policy defines minimum number of CPUs and minimum
memory size for deployment. To allow for a uniform
representation and to support the automatic parsing of the

Root Policy

Access Control Scaling Placement

Firewall Control … Access to Secret
Data

Simple
Consump�on
Based Scaling

Resource Based
Placement

Loca�on Based
Placement

Advanced
Consump�on
Based Scaling

Budget Constrained
Consump�on
Based Scaling

Fig. 5 ADT Extended Policy Hierarchy

Describing and Processing Topology and Quality of Service Parameters of Applications in the Cloud

policy parameters, the specific properties are arranged in a
table whereby each property is defined with name, value,
range, default value and other meta-data fields.

This combination of the hierarchical structure of types
and sub-types, combined with the standard tabular repre-
sentation of the parameters, support the extension of dif-
ferent policies with different levels of sophistication. As an
example, the Consumption Based Budget Constrained
policy (see Fig. 5) extends the data set that defines Simple
Consumption Based scalability policy. The possibility to
define sub-policies similarly to the creation of sub-classes
in object-oriented design also allows definition of the level
of details which are exposed to ADT developers thus
improving separation of concerns between application de-
velopers with different interests and competences in the
policy details. For example, the Advanced Consumption
Based policy defines additional parameters governing the
policy which are not defined in the Simple Consumption
Based scalability policy (see Fig. 5).

4.4 Reference Architecture to Manage Application
Description Templates

Although DG5 (Technology Agnosticism) predicates to
keep the dependencies on the technologies of the

technology-specific domain (See Fig. 1) to a minimum,
we must define a minimal set of components and func-
tionalities which we assume will be the recipients of the
information contained in the ADT. To such aim, we
have defined a generic reference architecture that is
presented in Fig. 7 and that we call MiCADO
(Microservices-based Cloud Application-level Dynamic
Orchestrator) Reference Architecture. Detailed descrip-
tion of MiCADO can be found in [5]. In this paper we
only identify and describe the high-level building blocks
of MiCADO that are required to process ADTs.

In the MiCADO Reference Architecture, ADTs are
submitted to the Application Submitter which parses the
description and creates three datasets: Virtual Machine
(VM), container and policy related datasets. The Cloud
Orchestrator creates and runs VMs in the Cloud using
the VM data set. This orchestrator can either be cloud
specific that is tightly coupled to particular cloud
middleware (e.g. Amazon or OpenStack), or it can also
be more generic that supports the deployment of VMs in
multiple heterogeneous clouds (e.g. Occopus [29]). The
Container Orchestrator is working with a container man-
ager (e.g. Docker Swarm or Kubernetes) to deploy and
run containers in previously created VMs using the
container data set. Finally, one or more Policy Enforcers

Fig. 6 Structure of the ADT Policy Template

G. Pierantoni et al.

receive the policy dataset and enforce various types of
policies, for example scaling policies, security policies,
etc. Due to the very different nature and behaviour of
these enforcers, the reference architecture allows multi-
ple independent Policy Enforcer components. The pres-
ence of the Cloud Orchestrator and the Container Or-
chestrator supports the two levels of DG2 (Two-Level
Topologies), whilst one or more Policy Enforcer(s) al-
low to follow DG4 (Policy-based Behaviour).

5 Deploying and Orchestrating Applications Using
ADT – Case Study

Although ADTs have been designed without the con-
straints of specific implementation technology, they have
been used and tested for the description and execution of
applications in the COLA (Cloud Orchestration at the
Level of Application) project [30]. COLA is elaborating
a generic pluggable framework called MiCADO
(Microservices-based Cloud Application-level Dynamic
Orchestrator) [4], to support optimal and secure deploy-
ment and run-time orchestration of applications in the
Cloud, following the idea of the generic reference archi-
tecture presented in Fig. 7 . MiCADO is a generic frame-
work whose services are not restricted to particular tech-
nologies and can be implemented using different existing
technologies. This framework provides the missing link
between existing non-cloud aware applications and the
dynamic capabilities of IaaS clouds by allowing connec-
tion to multiple technology implementations on demand.
For example MiCADO can be connected to multiple
cloud middleware (e.g. EC2 [31], CloudSigma [32],
OpenStack [33], OpenNebula [34], etc.) and generic
cloud access layers (e.g. CloudBroker Platform [35])
via well-defined interfaces to avoid dependence on one
particular cloud technology. The current implementation
of the framework is based on existing container

management technologies (e.g. Docker Swarm [36]),
cloud management and orchestration solutions (e.g.
Occopus [29]), and monitoring tools (Prometheus [37]).
For detailed architectural description of MiCADO please
refer to [5].

5.1 Magician –Data Mining Application

In order to demonstrate the feasibility of the ADT con-
cept, particularly how applications can be described,
deployed and executed in a secure and scalable way, a
social media data analytics application called Magician
has been utilised as an example.

The Aragon Regional Government in Spain decided
to develop new communication channels with citizens
to collect their feedback about the government’s ser-
vices in order to further improve them. The authorities
also want to provide information to companies in the
region to improve existing businesses and develop new
ones. The Regional Government utilises Magician, de-
veloped by Inycom [38], a Spanish ICT company. Ma-
gician offers social media data mining, competitor anal-
ysis and brand management needed for the Aragon
Regional Government. It collects information from in-
teractions with citizens and companies, and from Twit-
ter tweets. Magician runs crawlers every 2 h to collect
Twitter tweets and data from authorities’ websites. The
crawlers produce at least 1 TB data every year.

The high-level architecture of Magician is presented
in Fig. 8. There are two major Magician services,
highlighted in the figure in red boxes. The Semantic
Processing service receives data from the social media
crawlers and from local/regional authorities’websites. It
semantically processes and stores data in the Feed DB.
The Classification service runs periodically to assort the
semantically processed information based on categories
defined by particular users. The Semantic Processing
service can be deployed into multiple containers while

Fig. 7 MiCADO Reference
Architecture

Describing and Processing Topology and Quality of Service Parameters of Applications in the Cloud

the Classification service should be hosted in a single
container to avoid database read/write inconsistency
issues. Magician has to process and classify the collect-
ed data in less than 2 h. The bottleneck is the Semantic
Processing service because of the large data volume it
has to handle. To process data and meet the time con-
straint the processing service should be scaled up and
down automatically based on its load. Otherwise the
service crashes when the load exceeds a certain level.

5.2 Description of the Magician Application with an
ADT

Magician has several requirements that need to be de-
scribed in the ADT to support its deployment and exe-
cution. First, the application requires a two-layer topol-
ogy made up of Docker containers running inside Vir-
tual Machines. Second, a scaling policy is needed that
allocates and releases resources and containers at certain
CPU thresholds. Third, a security policy is required that
controls access to sensitive data at runtime.

In order to meet these requirements, standard
TOSCA normative types were used alongside custom
defined types which would support the specific

technologies used in the MiCADO implementation that
performs the required deployment, monitoring and scal-
ing functionalities. As depicted in Fig. 9, first, virtual
machines are described in the VirtualMachineNode sec-
tion using TOSCA normative compute nodes which
have been extended to support a specific cloud orches-
trator (Occopus [29]) and a specific IaaS cloud
(CloudSigma [32]). This description features capabili-
ties that match the CPU, memory and storage resources
that the virtual machine must provide. Next, the Docker
containers and their specific deployment properties are
specified as custom types, which derive from the nor-
mative TOSCA type for container nodes, in the Magi-
cian section. At least two containers are needed to run
Magician: one for the Semantic Processing service and
another one for the Classifier service. These container
nodes also describe the specific requirement of host,
which links containers to virtual machines using the
TOSCA normative HostedOn relationship type. The
processing container should be scaled up and down
considering the workload. The scaling policy is defined
as a custom type which derives from the normative
TOSCA type for scaling policies in the Scalability sec-
tion. The scaling policy specifies the minimum and

Fig. 8 Magician Application

G. Pierantoni et al.

maximum CPU utilisation as 20% and 85% respective-
ly, to guide the scaling operation. This means that when
average CPU utilisation is above 85% then a new con-
tainer is launched, and the infrastructure is scaled up.
Similarly, when CPU usage falls below 20% then a
container is released and the infrastructure scales down.
The security policy is specified as a custom type in the
Secret_Distribution section. It is derived from the
TOSCA Security policy. All these policies are related
to the Semantic Processing service containers, and there
is no specific policy assigned to the Classifier container.

5.3 Processing the Application Description Template

In order to process the generated ADT, we implemented
a first prototype of the Application Submitter (see the
MiCADO Reference Architecture on Fig. 7). While the
final version of the submitter will be richer in function-
ality, this version is sufficient to provide evidence re-
garding the applicability of the ADT concept. The ge-
neric architecture of the submitter is shown in Fig. 10. It
is derived from the MiCADO Reference Architecture
illustrated in Fig. 7. In the current submitter implemen-
tation, the Cloud Orchestrator is hard-coded (i.e. no VM
scalability is supported, only container scalability),

which permits testing of container orchestration and
policy enforcement in isolation. This is the reason why
in Fig. 10 there is no VM Adaptor, only a Docker
Adaptor for container orchestration. The Application
Submitter contains two Policy Enforcers: the Scaling
Policy Enforcer and the Security Enforcer.

After submission, the ADT passes through the
series of steps visualised in Fig. 10. In the first step,
the ADT is parsed and validated by the OpenStack
TOSCA Parser [39], which checks whether the ADT
follows the YAML syntax, and whether it adheres to
the syntactic rules laid out in the TOSCA specifica-
tion. Successful validation returns a complex Python
object whose attributes and methods facilitate future
processing of the template. This object is passed to a
proprietary MiCADO Validator, which performs
further validation to ensure that the ADT is compli-
ant with the custom types that were described earli-
er. The Mapper component resolves any relative
links and references in the Python object and sepa-
rates the security-relevant sections of the template
from the whole. Next, adaptors developed for each
of the three end-components (Docker, Scaling Poli-
cy Enforcer and Security Enforcer) receive the new-
ly parsed ADT and begin the translation step.

Fig. 9 Application Description Template Instance for Magician

Describing and Processing Topology and Quality of Service Parameters of Applications in the Cloud

The container-level portion of the ADT is translated
into the format of a Docker Compose file so that it may
be processed by Docker Swarm. The scaling policy and
security descriptions from the ADT are translated into
configuration files which will be interpreted by their
respective proprietary components, by the Scaling Pol-
icy Enforcer and the Security Enforcer.

The translation of the container-level portion con-
siders three basic sets of information within data pro-
vided by the Mapper. The first are the TOSCA proper-
ties defined within the description of containers. These
properties should align with the runtime arguments that
can be passed to Docker via the docker run command or
via a Docker Compose file and should follow the nam-
ing conventions of the Docker Compose format. The
second set of information is contained within TOSCA
artefacts, which define external data which must be
retrieved during orchestration. The image from which
to build the container is described as an artefact with
properties that define the image name, as well as the
repository where it can be found. The final set of infor-
mation to translate comes in the form of TOSCA rela-
tionships. Relationships, such as the HostedOn relation-
ship used in the Magician ADT, describe how the var-
ious nodes defined within the ADT should interact with
each other. Translation of the HostedOn relationship
first defines a constraint inside the Docker Compose
file, but also requires cooperation from the cloud or-
chestrator to ensure an appropriate reference is made for
that constraint. TOSCA standards also define a
ConnectsTo relationship between two containers, and

an AttachesTo relationship for connecting a container to
a block storage volume. Translating an AttachesTo re-
lationship requires defining a new volume and provid-
ing an appropriate reference to that volume, both inside
the Docker Compose file. On the other hand, translating
a ConnectsTo relationship involves defining a new net-
work and referencing that network under both of the
connecting components, again inside the Docker Com-
pose file. Translating the scaling policies into an appro-
priate format is straightforward as the scaling compo-
nent configuration file is also in YAML. Translation
involves creating a new key in the scaling configuration
with the name of the container to be deployed and the
minimum and maximum CPU thresholds for scaling.
The translation step for the Security Enforcer involves
the creation of the Docker secret through API calls to
Docker’s SDK.

Once the translation is complete, the submitter instructs
the related components to deploy and manage the appli-
cation as specified in the policies. In the current prototype
Docker Swarm [36] is responsible for the deployment of
containers. We implemented a simple Scaling Policy En-
forcer that uses alerts generated by a Prometheus-based
monitoring system [37] to monitor the applications’ be-
haviour. The proof of concept Security Enforcer leverages
the secrets feature built into Docker.

To launch the application and enforce the necessary
policies, the Application Submitter begins the execution
step. The three components are executed in sequence
and point to the configuration files which were created
during the translation step. First, the Docker Compose

Fig. 10 Flow of ADT during processing by the Application Submitter

G. Pierantoni et al.

file is passed to Docker Swarm and executed with the
docker deploy command. Next, the Scaling Policy En-
forcer generates an alert based on the new information in
the configuration file by reloading the Prometheus mon-
itoring to check whether any scaling operation is need-
ed. Finally, the Security Enforcer is executed and makes
API calls to pass the sensitive data along a secure
channel to the deployed container.

5.4 Orchestrating Magician in the Cloud

In order to test that deployment has been successful, and
that the intended policies are indeed being enforced,
several tools are used to monitor the application at
runtime. Grafana [40] is an open-source graphing tool
which offers out-of-the-box support for the graphical
display of metrics from the Prometheus monitoring
system. Grafana is used to show CPU usage as it sur-
passes the scaling thresholds set out in the ADT policies.
Prometheus itself is utilised to ensure that accurate alerts
have been generated by the scaling policy adaptor.
Lastly, to provide a real-time visualisation of containers
as they scale, Docker SwarmVisualiser, which connects
directly to the Docker socket, is applied. Please note that
as it was explained earlier, in this implementation only
containers are scaling as the Cloud Orchestrator compo-
nent is hard-coded.

After deploying Magician on the CloudSigma cloud
[32] it must be connected to an external database to
begin data mining. Once connected, data mining starts,

and CPU resources will be consumed. After a period of
mining, Magician enters a sleep phase, waits for more
data to be consolidated in the database and then begins
mining again. Figure 11 shows the scaling-up stage of
the Magician lifecycle after the application has been
deployed and after the connection to the database has
been established. The scaling policies are taking effect
and the framework is scaling-up in response to the
container CPU usage (in the upper-left graph) being
well above the set threshold of 85%. At 16:08 a second
(manually provisioned) virtual machine begins to pull
the Magician image from an external repository as the
container continues to scale-up. At 16:15 the pull com-
pletes, and the second Magician container begins min-
ing data as well. Other virtual machines, which have
also been started manually, begin pulling the Magician
image as the containers scale, at 16:14 and 16:22. The
first of these can been seen completing at 16:20 when
the new container begins to mine and the CPU usage
increases. The Docker-Swarm-Visualiser shows all four
worker virtual machines and the status of the containers
within them – either running or preparing. The Magi-
cian image on the fourth worker machine can still be
seen in a preparing state since the pull has not yet
finished. The Classifier container can be seen running
on the first virtual machine and it is not scaling with the
rest of the deployment.

Figure 12 shows the scaling down stage of the
lifecycle, where Magician enters sleep mode and the
Scaling Policy Enforcer begins a scale down response.

Fig. 11 Magician after launch and during the scale-up phase

Describing and Processing Topology and Quality of Service Parameters of Applications in the Cloud

CPU usage by containers can be seen dropping as there
are fewer database operations to carry out. Finally, with
all mining tasks completed, all CPU usage drops, and
containers are removed one by one from the infrastruc-
ture. Virtual machines which have already been manu-
ally shut down are shown with a red light in the Docker
Swarm Visualiser.

The above experiment has successfully demonstrated
that a suitable Application Submitter can be written that
reads and processes the designed ADT, and that is
capable of deploying the described infrastructure and
enforcing the defined policies. Further experimentation
is currently ongoing and long-term pre-production runs
are planned to further investigate how such solution
eliminates system crashes and reduces costs.

6 Conclusion and Future Work

This paper described how a technology agnostic applica-
tion description allows the definition of complex topolo-
gies and specification of an extendable set of policies based
on the TOSCA language specification. We elaborated the
Application Description Template (ADT) that can be proc-
essed by various deployment and run-time orchestrators.
ADT describes applications to be deployed and executed
in two levels: in containers and/or in virtual machines.
Additionally, ADT enables defining scale up/down rules
allowing adding and removing containers to/from virtual
machines during scaling up/down operations. The TOSCA

policy hierarchy was extended with several scalability and
security policies, such as advanced consumption-based
scalability, consumption-based budget constrained scal-
ability, firewall setting, and secret management policy to
handle deployment, performance, scalability and security
requirements of applications. We defined a generic refer-
ence architecture, the MiCADO Reference Architecture,
that processes Application Description Templates to de-
ploy and manage applications in the Cloud in a platform
agnostic way. The implemented proof of concept proto-
type has demonstrated the viability of the technology-
agnostic approach and the way a TOSCA-based ADT
can be used to describe application topologies and delegate
to a component (Application Submitter) the translation to
formats that are technology-specific. The use case present-
ed in this paper has demonstrated that the designed ADT
was capable of describing amulti-node topology of a fairly
complex commercial application with specific policies.

As ongoing and future work, the MiCADO
application-level orchestration framework is currently
being extended to implement further functionalities such
as flexible submission lifecycle management and sup-
port for more detailed policies through an advanced
Policy Keeper component. The Application Submitter
is being embedded into the MiCADO architecture and it
will connect the ADTs with the application-level or-
chestration features of MiCADO. Additionally, over
20 applications (both commercial and scientific applica-
tions) are being described with ADTs and prototyped
with MiCADO within the COLA project.

Fig. 12 Magician during the end of its execution, during a scale-down phase

G. Pierantoni et al.

Acknowledgements This work was funded by the European
Commission’s H2020 COLA (Cloud Orchestration at the level
of Applications) Project No. 731574 and ASCLEPIOS (Advanced
Secure Cloud Encrypted Platform for Internationally Orchestrated
Solutions in Healthcare) Project No. 826093 projects.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format,
as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party
material in this article are included in the article's Creative Com-
mons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article's Creative Com-
mons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of
this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. S. Khurana and A. G. Verma, “Comparison of Cloud
Computing Service Models: SaaS, PaaS, IaaS,” IJECT 4
(Spl-3): 2013

2. Outsourcery and Cloud Industry Forum, “Cloud UK White
Paper 16: Cloud Adoption Trends in the UK Public Sector -
2015,” [Online]. Available: https://www.cloudindustry
forum.org/content/cloud-adoption-trends-uk-public-sector-
2015, [Accessed 28 April 2020]

3. F. Leymann, “Cloud computing” it-Information Technol.
Methoden und Innov. Anwendungen der Inform. und
Informationstechnik, 53(4): 163–164, 2011

4. “TOSCA Simple Profile in YAML Version 1.0.” [Online].
Available: http://docs.oasis-open.org/tosca/TOSCA-
Simple-Profile-YAML/v1.0/csd03/TOSCA-Simple-Profile-
YAML-v1.0-csd03.html. [Accessed: 20-Jun-2018]

5. Kiss, T., Kacsuk, P., Kovacs, J., Rakoczi, B., Hajnal, A.,
Farkas, A., Gesmier, G., Terstyanszky, G.: MiCADO –
microservice-based cloud application-level dynamic orches-
trator. Futur. Gener. Comput. Syst. 95, 937–946 (2019)

6. “Learn Template Basics - AWS CloudFormation.” [Online].
Available: http://docs.aws.amazon.com/AWSCloud
Formation/latest/UserGuide [Accessed 28 April 2020]

7. "ARM Template Documentation" [Online]. Available:
https://docs.microsoft.com/en-us/azure/azure-resource-
manager/templates/, [Accessed 28 April 2020]

8. Y. Gao, K.Yu, “Design and Implement a Self-Enabled
Private Cloud: Oracle Enterprise Manager 12” Oracle
Open World 2015

9. “Heat - OpenStack.” [Online]. Available: https://wiki.
openstack.org/wiki/Heat. [Accessed: 29-Mar-2017]

10. “Chef - Automate IT Infrastructure | Chef.” [Online].
Available: https://www.chef.io/chef/. [Accessed: 20-Jun-
2018]

11. “Ansible is Simple IT Automation” [Online]. Available:
https://www.ansible.com/. [Accessed: 29-Apr-2020]

12. C. Butler, “Automating Orchestration in the Cloud with
Ubuntu Juju” USENIX Configuration Management
Summit 2014 (UCMS '14), June 19, 2014, Philadelphia,
USA

13. “Cloud Application Management for Platforms Version 1.1,
” [Online]. Avai lable : ht tp: / /docs.oasis-open.
org/camp/camp-spec/v1.1/camp-spec-v1.1.html, 9
November, 2014 [Accessed 28 April 2020]

14. G. Breiter, M. Behrendt, M. Gupta, S. D.Moser, R. Schulze,
I. Sippli, and T. Spatzier: Software defined environments
based on TOSCA in IBM cloud implementations, IBM
Journal of Research and Development, Volume: 58 , Issue:
2/3 , March-May 2014

15. M. Caballer, S. Zala,·A. L. Garcia,·G. Molto, P. O.
Fernandez, M. Velten: Orchestrating complex application
architectures Inheterogeneous clouds, J. Grid Comput.,
2018, 16, 1, 3–18

16. J. Wettinger, U. Breitenbücher and F. Leymann: Standards-
based DevOps Automationand Integration Using TOSCA,
in Proceedings of the 7th International Conference on Utility
and Cloud Computing (UCC 2014), 59–68

17. T. Binz et al., “OpenTOSCA – A Runtime for TOSCA-
based Cloud Applications.” 11th International Conference
on Service-Oriented Computing, 2013

18. Soldani, J., Binz, T., Breitenbücher, U., Leymann, F., Brogi,
A.: ToscaMart: a method for adapting and reusing cloud
applications. J. Syst. Softw. 113, 395–406 (2016)

19. Cloudify, “Cutting Edge Orchestration.” [Online].
Available: https://cloudify.co/. [Accessed: 5-Mar-2019]

20. Apache, “About ARIA TOSCA.” [Online]. Available:
http://ariatosca.incubator.apache.org/. [Accessed: 5-Mar-
2019]

21. Puccini - Deliberately stateless cloud topology management
and deployment tools based on TOSCA.” [Online].
Available: https://github.com/tliron/puccini. [Accessed: 5-
Mar-2019]

22. “ALIEN 4 Cloud.” [Online]. Available: http://alien4cloud.
github.io/. [Accessed: 5-Mar-2019]

23. U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann,
and J. Wettinger, “Combining Declarative and Imperative
Cloud Application Provisioning based on TOSCA.” 2014
IEEE International Conference on Cloud Engineering,
Boston, MA, 2014, 87–96

24. O. Kopp, T. Binz, U. Breitenbücher, F. Leymann, and U.
Breitenb, “Winery – A Modeling Tool for TOSCA-based
Cloud Applications.” 8274. https://doi.org/10.1007/978-3-
642-45005-1_64

25. U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann,
“Vinothek - A self-service portal for TOSCA,” ZEUS 2014

26. Waizenegger, T., et al.: Policy4TOSCA: a Policy-Aware
Cloud Service Provisioning Approach to Enable Secure
Cloud Computing, pp. 360–376. Springer, Berlin,
Heidelberg (2013)

27. K. Képes, U. Breitenbücher,M. Philipp Fischer, F. Leymann
and M. Zimmermann: Policy-Aware Provisioning Plan
Generation for TOSCA-Based Applications, in Proc of 11th

International Conference on Emerging Security Information,
Systems and Technologies (SECURWARE 2017)

28. G. Pierantoni, T. Kiss, G. Terstyanszky: Towards Cloud
Application Description Templates Supporting Quality of
Service, in proceedings of IWSG 2017, 9th International

Describing and Processing Topology and Quality of Service Parameters of Applications in the Cloud

https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-642-45005-1_64
https://doi.org/10.1007/978-3-642-45005-1_64

Workshop on Science Gateways, 19–21 June, 2017, Poznan,
CEUR Workshop Proceedings, Vol 2363, ISSN1613-0073

29. Kovács, J., Kacsuk, P.: Occopus: a multi-cloud orchestrator
to deploy and manage complex scientific infrastructures. J.
Grid Comput. 16(1), 19–37 (2018)

30. “About – COLA Project – Cloud Orchestration at the Level
of Application.” [Online]. Available: http://www.project-
cola.eu/cola-project/. [Accessed: 27-Mar-2017]

31. Amazon EC2, Amazon, [Online], available https://aws.
amazon.com/ec2, [Accessed: 28-April-2020]

32. “Cloud Hosting Pricing | CloudSigma.” [Online]. Available:
https://www.cloudsigma.com/pricing/. [Accessed: 27-Jun-
2018]

33. OpenStack - Built the Future of Open Infrastructure,
[Online], available www.openstack.org, [Accessed: 28-
April-2020]

34. OpenNebula, [Online], available https://opennebula.org/,
[Accessed: 28-April-2020]

35. “CloudBroker GmbH | Compute-intensive applications in
the cloud.” [Online]. Available: http://cloudbroker.com/.
[Accessed: 27-Jun-2018]

36. “Docker Swarm overview | Docker Documentation.”
[Onl ine] . Avai lable : h t tps : / /docs .docker .com/
swarm/overview/. [Accessed: 20-Jun-2018]

37 . P r ome t h e u s web p ag e [On l i n e] Ava i l a b l e :
https://prometheus.io/ [Accessed: 5 May 2018]

38. “Inycom | Tecnología e Innovación para tu Negocio.”
[Online]. Available: https://www.inycom.es/. [Accessed:
18-Mar-2018]

39. “TOSCA-Parser - OpenStack.” [Online]. Available:
https://wiki.openstack.org/wiki/TOSCA-Parser. [Accessed:
29-Oct-2017]

40. “Grafana - The open platform for analytics and monitoring.”
[Online]. Available: https://grafana.com/. [Accessed: 28-
Jun-2018]

Publisher’s Note SpringerNature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

G. Pierantoni et al.

https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/
https://doi.org/http://creativecommons.org/licenses/by/4.0/

	Describing and Processing Topology and Quality of Service Parameters of Applications in the Cloud
	Abstract
	Introduction and Problem Statement
	Abstract View of Application Description
	Related Works: Application Description in Cloud Computing
	Overview of Application Description Approaches
	Comparison of Application Description Approaches and Justification of the Selected Approach

	Extending TOSCA to Support Application-Level Orchestration in the Cloud
	Entities of the Application Description Template
	Structure of the Application Description Template
	Extended Policy Hierarchy
	Reference Architecture to Manage Application Description Templates

	Deploying and Orchestrating Applications Using ADT – Case Study
	Magician –Data Mining Application
	Description of the Magician Application with an ADT
	Processing the Application Description Template
	Orchestrating Magician in the Cloud

	Conclusion and Future Work
	References

