

University of Westminster Eprints
http://eprints.wmin.ac.uk

Security mechanisms for legacy code applications in
GT3 environment.

Gabor Terstyanszky1
Thierry Delaitre1
Ariel Goyeneche1
Tamas Kiss1
K. Sajadah1
Stephen Winter1
Peter Kacsuk1,2

1Cavendish School of Computer Science, University of Westminster
2MTA SZTAKI Lab. Of Parallel & Distributed Systems, Budapest, Hungary

Copyright © [2005] IEEE. Reprinted from 13th Euromicro Conference on Parallel,
Distributed, and Network-Based Processing proceedings: Lugano, Switzerland,
February 9-11, 2005.
This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

Security Mechanisms for Legacy Code Applications in GT3 Environment

G.Terstyanszky1 T. Delaitre1, A. Goyeneche1, T, Kiss1, K. Sajadah1, S.C.Winter1, P. Kacsuk1,2

1Centre of Parallel Computing,Cavendish School of Computer Science,
University of Westminster, 115 New Cavendish Street, London W1W 6UW,

2MTA SZTAKI Laboratory of Parallel and Distributed Systems
H-1518 Budapest, P.O. Box 63, Hungary
e-mail: testbed-discuss@cpc.wmin.ac.uk

Abstract

There are many legacy code applications that cannot be
run in Grid environment without significant modifications.
To avoid re-engineering of legacy code, we developed the
Grid Execution Management for Legacy Code Architecture
(GEMLCA) that enables deployment of legacy code
applications as Grid services. GEMLCA is an OGSI Grid
service layer that supports submitting jobs, getting their
results and status back. Security requirements are essential
to any Grid application to preserve the confidentiality and
integrity of data. To meet these requirements the GT3
security model was implemented in GEMLCA. The paper
introduces GEMLCA and how Grid Security Infrastructure
(GSI) components have been added to GEMLCA in order
to enable secure execution of jobs in Grid. The paper also
presents how a legacy code traffic simulator was
transformed into a Grid service using GEMLCA and gives
some simulation results.

1. Introduction

Legacy code applications may need additional compute
resources as a result of the amount of data to be processed
or tasks to be performed. If additional compute resources
are not available, it could be too expensive to purchase and
maintain them. To avoid this situation, legacy code
applications can be deployed and executed in a Grid
environment to provide access to additional compute
resources . In order to run legacy code applications on the
Grid, the program can be either re-engineered or offered as
a Grid Service without any re-engineering using Grid
Execution Management for Legacy Code Architecture
(GEMLCA).

GEMLCA was developed to support deployment of
legacy code applications as Grid services without
modifying or even requiring access to the original code.
GEMLCA must offer a secure environment to run legacy
code applications as Grid services enabling only

The work presented in this paper is supported by the “Proposal to
Evaluate OGSA/GT3 on a UK Multi-site Testbed” EPSRC
project (Grant No: GR/S77509/01

authenticated users to submit service requests to
GridServices. To provide GEMLCA security the security
mechanisms of Globus Security Infrastructure (GSI) of
Globus Toolkit 3 (GT3) was used. Particularly,
applications security is guaranteed at client-, message- and
server-level using GSI in GEMLCA applications.

Chapter 2 analyses existing solutions to run legacy code
applications in Grid environment. Chapter 3 describes
GEMLCA introducing its architecture and how it works.
Chapter 4 gives an overview how security is implemented
in GT3. In Chapter 5 we explain how security was realised
in GEMLCA. Chapter 6 introduces the implementation of
GEMLCA. In Chapter 7 we present some simulation
results.

2. Using Legacy Code in Grid Environment

Many large industrial and scientific applications are
available today that were written well before Grid
computing or service-oriented approaches appeared. To
integrate these legacy code programs into service-oriented
Grid architectures with the smallest possible effort and the
best performance, is a crucial point in more widespread
industrial take-up of Grid technology.

There are several research efforts aiming at automating
the transformation of legacy code into a Grid service. Most
of these solutions are based on transformation of legacy
code applications into Web services outlined in [1], and
use Java wrapping in order to generate stubs automatically.
One example for this is presented in [2], where the authors
describe a semi -automatic conversion of legacy C code
into Java using Java Native Interface (JNI). After wrapping
the native C application with the Java-C Automatic
Wrapper (JACAW) MEdiation of Data and Legacy Code
Interface tool (MEDLI) is used for data mapping in order
to make the code available as part of a Grid workflow.

Different, non-wrapping approaches are presented in [3]
and [4] but these solutions only define the principles of
legacy code transformation and do not specify an
environment or a tool to do the automatic conversion.

Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing (Euromicro-PDP’05)
1066-6192/05 $ 20.00 IEEE

Compared to Java wrapping GEMLCA is based on a
different principle. It offers a front-end Grid service layer
that communicates with the client in order to submit
service requests, manage input and output parameters, and
contacts a local job manager through Globus MMJFS
(Master Managed Job Factory Service) to submit the
legacy computational jobs. To deploy a legacy application
as a Grid service there is no need for the source code and
not even for the C header files as in case of JACAW. The
user only has to describe the legacy parameters in a pre -
defined XML format. The legacy code can be written in
any programming languages and can be not only a
sequential but also a parallel MPI or PVM code that uses a
job manager like Condor and where wrapping can be
difficult.

3. GEMLCA

GEMLCA is an architecture that supports deployment of
legacy code applications as Grid services without re-
engineering the original code. GEMLCA is based on OGSI
[5] and GT3 [6] infrastructure. However, the concept of
GEMLCA is more generic and can also be applied to other
service-oriented architectures. Using different platforms
the communication and the actual service implementation
is different, but the concept of the architecture remains the
same. This way the transition to new emerging standards
like Web Services-Resource Framework (WSRF) and GT4
will be straightforward.

GEMLCA has been designed as a three-layer
architecture: the first layer, the front-end layer, offers a set
of Grid Service interfaces that any authorized Grid client
can use in order to contact, run, and get the status and any
result back from the legacy code. This layer hides the
second layer, the core layer, which deals with each legacy
code environment and their instances as Grid legacy code
processes and jobs. The final layer, the back -end is related
to the Grid middleware where the architecture is being

deployed. All three GEMLCA layers were developed by
the Centre of Parallel Computing, University of
Westminster. The GEMLCA environment uses either
Globus Fork or Condor [7] as a job manager. To utilise
GEMLCA with other Grid middleware than GT3, like GT4
or a “pure” Web Services based approach, only the back-
end layer has to be modified.

A GEMLCA resource is composed of a set of Grid
services that provides a number of Grid interfaces in order
to control the life-cycle of the legacy code execution. This
architecture can be deployed in several user containers or
Tomcat application contexts.

In order to access a legacy code program, the user
executes the GEMLCA Grid Service client which creates a
legacy code instance with the help of the legacy code
factory. Following this, the GEMLCA resource submits the
job to the compute server through GT3 MMJFS using a
particular job manager.

Figure 1 presents the GEMLCA implementation and its
lifecycle. The scenario for submitting legacy code jobs
using the GEMLCA architecture is composed of the
following steps:

(1) The user signs his/her certificates to create a Grid user
proxy. The proxy contains the user’s Grid credential
to be delegated by the GEMLCA Grid services to
MMJFS for the allocation of resources.

(2) The Grid Service Client, using the Grid Legacy Code
Process Factory (GLCProcessFactory), creates a Grid
Legacy Code Process (GLCProcess) instance where
the initial process legacy code environment is set and
created using the GEMLCA file structure.

(3) The Grid Service Client sets and uploads the input
parameters needed by the legacy code program
exposed by the GLCProcess and deploys a job using a
Resource Specification Language (RSL) file and a
multiuser/instance environment to handle input and
output data.

Figure 1. GEMLCA Lifecycle Management

Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing (Euromicro-PDP’05)
1066-6192/05 $ 20.00 IEEE

(4) If the client credential is successfully mapped,
MMJFS contacts the job manager that allocates
resources and executes the parallel legacy code in a
computer cluster.

(5) As far as the client credentials are not expired and the
GLCProcess is still alive, the client can contact
GEMLCA for checking job status and retrieve it at
any time.

Finally, when the Grid Service instance is destroyed, the
multi-user/instance environment is cleaned.

The description of the GEMLCA class structure and
implementation of its classes are given in [8].

4. GT3 and Security

The Globus Toolkit uses GSI [9] to enable
authentication, to implement authorization and to support
secure communication over a computer network. GT3
provides a set of security components based on GSI to
implement various security mechanisms in Grid
applications. GSI provides three levels of security for Grid
applications: server-side security, message-level security
and client-side security.

The client-side security is based on authentication,
authorisation and credential delegation. A user can use all
or a subset of these security measures before sending a
service request.

Users have to create Grid user proxies to authenticate
themselves. They sign their certificates while they are
creating their Grid user proxies. The user proxy enables
single sign-on in Grid environment. Signing the service
request means that the user’s Grid certificate and signature
are attached to the request. Users can use either the Secure
Message handler or the Secure Conversation Message
handler to sign/encrypt service requests .

The user can also configure the authorization mechanism.
Authorisation is used to determine when a user has a right
to access a resource and perform a job. GSI manages
authorization by reading the user’s identity (or identity
certificate) from the user proxy and maps this identity to a
local identity. Currently, three authorization methods are
supported by GSI: none, self, and grid-map. The “none”
mechanism implies that authorization will be disabled on
the server side. The “self” mechanism means that only
clients with the same identity as the service are allowed to
access the Grid service. The “grid-map” mechanism
implies that grid-map file authorization is performed.

The credential delegation enables a Grid service to utilise
the user’s credential in order to invoke other services on
the user’s behalf. Therefore, a Grid service is able to set the
delegated credentials as its identity before contacting other
Grid services. Credential delegation with user proxy
supports single sign-on in Grid applications. GSI provides
different delegation modes: full proxy delegation, limited
proxy delegation or no delegation. To activate the
credential delegation the service stub must be configured.

To complete the delegation some security code must be
also added at the beginning of all Grid services’ methods.
This code enables the Grid service to check the user’s
identity in order to authenticate it to other Grid services.
So, when a Grid service receives a user’s request, it
forwards it to the MMJFS. The MMJFS identifies the
client who sent the request.

GT3 offers two message-level security modes: GSI
Secure Session mode and GSI Secure Message mode [10].
The GSI Secure Session approach creates a security
context with the server before requesting a Grid service. In
contrast, the GSI Secure Message approach does not create
a security context before sending a message. The message-
level security uses WS Security, XML Encryption and
XML Signature standards to provide security between Grid
clients and Grid services.

To implement the message-level security and to send
requests to Grid services the Secure Conversation Service
handler, the Secure Message handler and the Secure
Conversation Message handler are used as client-side
security handlers. A user has to pass information to the
client-side handlers on what type of security to use. In the
Secure Session Mode the Secure Conversation Service
handler establishes a security context (or session) through a
secure conversation assigned to the Grid service to which
the client wants to communicate. The handler ensures that
a security context is established whenever it gets a message
from the client indicating that session-based security is
required. After establishing the secure session the handler
passes the client’s request to the Secure Message handler.
The handler encrypts and/or signs the message with user’s
credentials using the security context. In the Secure
Message mode the Secure Convers ation Message handler’s
task is to sign and/or encrypt messages. GSI uses the
WS-Security client handler on the client side to receive
responses from Grid services. The main task of the
WS-Security client handler is to verify and decrypt any
encrypted and/or signed messages.

At the server-side when a request arrives for a Grid
service, the WS-Security handler, the Security Policy
handler, the Authorization handler, the Secure
Conversation Message handler and the Secure Message
handler may be invoked to check the security information
of the request before forwarding it to the Grid service. The
first three handlers manage incoming service request while
the last two handlers deal with outgoing responses. First,
the WS-Security handler checks whether the request is
encrypted or signed. Secondly, the Security Policy handler
controls whether the request meets the security
requirements of the service. Finally, the Authorisation
handler checks whether the client is authorized to invoke
the service. If the request has successfully passed all three
handlers, it is sent to the requested Grid service for
processing. In the GSI Secure Session mode the Secure
Conversation Message handler encrypts and/or signs
messages using the established security context before

Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing (Euromicro-PDP’05)
1066-6192/05 $ 20.00 IEEE

returning the reply. In the GSI Secure Message mode the
Secure Message handler encrypts and/or signs messages
before sending the response.

The server-side security is provided through service
authorisation and credential management. The security is
specified via the security deployment descriptor and the
security configuration file. The security deployment
descriptor defines how to configure authentication methods
and run-as identities to access Grid services. It is loaded
when a Grid service is activated. The security
configuration file specifies how each method of a Grid
service must be accessed. The specification is given by an
XML file and a pointer should be added to the deployment
descriptor to point to this file.

5. GEMLCA Security Model

GEMLCA legacy code applications should be run as Grid
services allowing only authenticated users to submit
service requests and authorised users to access compute
resources . To achieve the required security the client-side
should incorporate authentication, authorization and
credential delegation. The server-side security is
implemented through service authorization, service
credentials and credential delegation. Figure 2 presents the
GEMLCA security model.

The GEMLCA Resource must be configured with service
credentials given in the security configuration file to assign
identity to Grid services. GEMLCA also uses the security
configuration file to define how methods of Grid services
must be accessed using authentication and how methods to
be run with the user’s security identifier. GEMLCA utilises
the grid-map authoris ation mechanism in order to control
access to Grid services. When a service request reaches a
Grid service, the service request handler checks the
grid-map file to control if the user is authorised to access
the Grid service. A client is authorized to access the Grid
service if it has an entry in the grid-map file.

The user has to set up the authentication and
authorisation modes. To ensure that the service is executed
on the user’s behalf, credential delegation mode must be
also activated at the client side. The GEMLCA Client has
to sign its credential with its certificate and set up full
delegation mode. To do it a user must create a Grid user
proxy that makes the user’s credentials available in calls to
the Grid service factory. The credential tells the Grid
service that the user allows using its credential to invoke
other services on its behalf. Thus, the Grid service will be
able to use the delegated credentials as its identity before
contacting other services. Through proper security
configuration the credential will be delegated by the Grid
service to MMJFS for resource allocation.

ClusterMaster NodeGrid Service
Client

MMJFS
OGSI
Client

NodesGEMLCA
Service

Server Side Security
a. Security Deployment Descriptor

<parameter name="securityConfig"
value=“my-security-config.xml"/>

b. Service Authorization Settings
<parameter name="authorization"

value="gridmap"/>

c. Service Credentials
<parameter name= “serviceProxy”

value = “<proxy file>”/>

d. Delegation Mode
 SecurityManager.getManager().

setServiceOwnerFromContext(this);

Signed
Message

Message Message

Figure 2. GEMLCA Security Model

Client Side Security
a. Authentication Mode

((stub)gemlca)._setProperty(Constants.
GSI_SEC_CONV, Constants.SIGNATURE);

b. Credential Delegation Mode
((stub)gemlca)._setProperty(GSIConstants

GSI_MODE,GSIConstants.
GSI_MODE_FULL_DELEG)

c. Authorization Mode
 ((stub)gemlca)._setProperty(Constants.
 AUTHORIZATION,NoAuthorization.

getInstance());

firewall

Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing (Euromicro-PDP’05)
1066-6192/05 $ 20.00 IEEE

On Fig. 2 the client generates a Grid user proxy signing it
with its certificate. The proxy is used to authenticate the
user to a Grid service. Having the proxy, the client
generates a service request describing the job to be
executed on its behalf and signs the request with its proxy.

If the user wants to ensure privacy, it can encrypt the
service request. The user sends the signed and/or encrypted
service request as a message to the GEMLCA Service
Factory. To increase the security a firewall is installed
between the Grid Client and Grid Service Factory.

When a Grid service receives a service request first, it
verifies the request’s signature to authenticate the user.
Secondly, the Grid service checks if the user is authorised
to access the Grid service. If the user has the required
authorisation and the credential delegation mode is set, the
job request is forwarded to MMJFS. The MMJFS submits
the job to the compute resource, for example to a cluster,
where it is executed on behalf of the user.

6. GEMLCA Implementation

The GEMLCA is implemented by deploying a set of Grid
services, which represent GEMLCA Resources, and tested
by using secure Grid clients.

The Grid client is a Java program executed by the Java
Virtual Machine from a Grid portal based on P-GRADE
Grid portal. The GEMLCA Resource and MMJFS are
deployed in two separate Java servlet engine containers,
particularly in Tomcat web application contexts hosted by
a single Tomcat server running on the Westminster GT3
master node.

The architecture presented in Chapter 3 requires a
specific job manager such as Fork, Condor or Sun Grid
Engine to be configured for submitting computational jobs
to clusters. Condor is selected as the job management
facility for the Westminster cluster and it requires the
Condor job manager interface to be installed and
configured as well as the GT3 master node to be
configured as a submit host to the Parsifal Condor pool.
The default installation of GT3 only installs the Fork job
manager and an additional step is required to install and
configure Condor, which is bundled with GT3.

GEMLCA uses GSI to enable user authentication and to
support secure communication over a Grid network. A
GEMLCA client needs to sign its credential and also to
work in full delegation mode [11] in order to allow the
GEMLCA environment to work on its behalf in order to

Figure 3. MadCity in P-GRADE environment

Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing (Euromicro-PDP’05)
1066-6192/05 $ 20.00 IEEE

create the legacy code environment and pass the user’s
Grid credential to MMJFS.

GEMLCA has two levels of authorisation. The first level
is implemented by the grid-map file mechanism. The
second level is defined by a set of legacy codes that a Grid
Client is allowed to use. The set is composed of a
combination of a general list of legacy codes, available to
anyone using a specific GEMLCA resource, and a user
mapped list of legacy codes, only available to Grid clients
mapped to a local user by the grid-map file mechanism.

GEMLCA administers the internal behaviour of legacy
codes taking into account the requirements of input files
and output files in a multi-user environment, and also
complies with the security restrictions of the operating
systems where the architecture is running. In order to that,
GEMLCA is using GEMLCA itself in a protected mode
composed of a set of system legacy codes in order to create
and destroy a unique process and job stateful environment
only reachable by the local user mapped by the grid-map
file mechanism.

7. Traffic Simulation Using GEMLCA

The MadCity traffic simulator was used as legacy code
application to be run as a Grid Service through GEMLCA.
MadCity traffic simulator [12] was developed by the
research team of Centre of Parallel Computing, University
of Westminster.

MadCity simulates traffic on a road network and shows
how vehicles move on roads and at junctions. It consists of
the GRaphical Visualiser (GRV) and the SIMulator (SIM)
tools. The GRaphical Visualiser helps to design a road
network file. The SIMulator models the movement of
vehicles using the road network file. After completing the

simulation, the SIM creates a trace file, which is loaded on
GRV in order to display the movement of vehicles.

The computational performance of the simulator depends
on a number of parameters, such as number of vehicles,
junctions, lane cut points and roads. The road network can
contain thousands of vehicles, roads and junctions. SIM
uses a simple set of rules to compute the new position and
state of each vehicle taking into account its current position
and the road network.

The SIM of the MadCity traffic simulator was
parallelised using Parallel Grid Run-Time and Application
Development Environment (P-Grade) [13]. A pipeline
template was used where all nodes perform the same task
simulating different segments of the road network. Four
children nodes participate in the traffic simulation on
Figure 3. The reason for using the pipeline template was its
scalability; i.e. the number of nodes could be decreased or
increased using the template attribute window without
modifying the code.

To run MadCity as a Grid Service, the user has to create
an XML-based Legacy Code Interface Description File
(LCID) [14] that specifies the legacy code to be run, the
job manager to be used, maximum/minimum number of
job/processes and parameters required by the legacy code.
The LCID file is added to the list of available legacy codes
in the front-end layer. After adding the LCID file of the
MadCity traffic simulator to the list of available Grid
Services any Grid client, who has the required
authorisation, can select and run the traffic simulator.

The performance results generated by the parallel version
of MadCity traffic simulator as Grid Service in GEMLCA
environment are given in Figure 4. The performance results
are similar to performance results produced by the
cluster-based version of the MadCity traffic simulator [15].

Performance Results

0

50

100

150

200

250

300

350

400

0 50000 100000 150000 200000 250000 300000

Number of Cars

T
im

e
in

 S
ec

on
ds

1 node

4 nodes

8 nodes

16 nodes

Figure 4. Simulation Results

Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing (Euromicro-PDP’05)
1066-6192/05 $ 20.00 IEEE

8. Conclusions

GEMLCA environment was created to make existing
legacy code applications available as OGSI Grid Services.
The GEMLCA environment offers a set of OGSI
compliant interfaces in order to create, run and manage
Grid services that offer all the legacy code application
functionality without changing the legacy code. GELMCA
adds a software layer to existing Grid middleware like GT3
and provides an integrated Grid execution lifecycle
environment for end users, such as chemists,
meteorologists, etc.

GEMLCA security measures are based on GT3 GSI
model. GEMLCA security offers single sign-on capability
for submitting jobs, uploading input data and downloading
output data using credential delegation and user’s Grid
certificate.

The parallel version of the MadCity traffic simulator was
used as a legacy code application in the GEMLCA
environment in order to test the architecture. It was proved
that running the simulator as a Grid service did not require
any re-engineering, only an XML based description file has
to be created.

References

[1] D. Kuebler, andW. Eibach, Adapting lega cy applications as
Web services, IBM Developer Works.

[2] Y. Huang et al., Wrapping Legacy Codes for Grid-Based
Applications, Proceedings of the 17th International Parallel
and Distributed Processing Symposium, workshop on Java for
HPC), 22-26 April 2003, Nice, France. ISBN 0-7695-1926-1

[3] T. Bodhuin, and M. Tortorella, Using Grid Technologies for
Web-enabling Legacy Systems, Proceedings of the Software
Technology and Engineering Practice (STEP), Software
Analysis and Maintenance: Practices, Tools, Interoperability
workshop September 19-21, 2003, Amsterdam, The
Netherlands.

[4] B. Balis, M. Bubak, and M. Wegiel, A Framework for
Migration from Legacy Software to Grid Services, Cracow
Grid Workshop ’03, Cracow, Poland, December 2003.

[5] S Tuecke etal: Open Grid Services Infrastructure (OGSI)
Version 1.0, June 2003
http://www.globus.org/research/papers/Final_OGSI_
Specification_V1.0.pdf

[6] The Globus Toolkit 3 Programmer's Tutorial
http://www.casa-sotomayor.net/gt3-tutorial/Grid Security
ESSC, October 2002

[7] D. Thain, T. Tannenbaum, and M. Livny, ”Condor and the
Grid”, in Fran Berman, Anthony J.G. Hey, Geoffrey Fox,
editors, Grid Computing: Making The Global Infrastructure a
Reality, John Wiley, 2003

[8] T. Delaittre, et al. Publishing and Executing Parallel Legacy
Code Using an OGSI Grid Service, February 2004. Conf.
Proc. of the 2004 International Conference on Computational
Science and its Applications, Technical Session on Grid
Computing, May 2004, Assisi, Italy, Applications. Editors: A.
Lagana et al. LNCS 3044, pp. 10-19,

[9] GT3 Grid Security Infrastructure Overview,
http://www-unix.globus.org/security/gt3-security-
overview.doc

[10] Writing Secure Grid Services Using Globus Toolkit 3.0,
October 2003
http://www.06.ibm.com/developerworks/grid/library/
gr-secserv.html?Open&ca=daw-gc-dr

[11] GT3 Developers and Administrators Tutorial: Security ,
2002 http://www.globusworld.org/globusworld-pre-8-5-03/
globusworld_web/gt3/Session-7-GT3-Security.pdf

[12] MadCity Traffic Simulator
http://www.cpc.wmin.ac.uk/madcity/madcity_
report.doc

[13] P-GRADE User’s Manual
http://www.lpds.sztaki.hu/projects/p_grade/manual/manual_
frame.html

[14] T. Delaitre, A. Goyeneche, P. Kacsuk, T. Kiss,
G.Z.Terstyanszky and S.C. Winter, GEMLCA: Grid
Execution Management for Legacy Code Architecture
Design, Conf. Proc. of the 30th EUROMICRO conference,
Special Session on Advances in Web Computing, August,
2004, Rennes, France, pp. 477-483

[15] A Gourgoulis, G. Terstyanszky, P Kacsuk, S C Winter,
Creating Scalable Traffic Simulation on Clusters.
PDP2004 Conf. Proceedings of the 12th EuroMicro
Conference on Parallel and Distributed and Network-Based
Processing, La Coruna, Spain 11-13th February, 2004,

Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing (Euromicro-PDP’05)
1066-6192/05 $ 20.00 IEEE

