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José Garcı́a Rodrı́guez4

Department of Computer Technology and Computation, University of Alicante,
Apdo. 99. 03080 Alicante, Spain,

jgarcia@dtic.ua.es

Abstract

This paper presents a robust approach to nonrigid mod-
elling and tracking. The contour of the object is described
by an active growing neural gas (A-GNG) network which
allows the model to re-deform locally. The approach is
novel in that the nodes of the network are described by their
geometrical position, the underlying local feature structure
of the image, and the distance vector between the modal im-
age and any successive images. A second contribution is the
correspondence of the nodes which is measured through the
calculation of the topographic product, a topology preserv-
ing objective function which quantifies the neighbourhood
preservation before and after the mapping. As a result, we
can achieve the automatic modelling and tracking of objects
without using any annotated training sets. Experimental re-
sults have shown the superiority of our proposed method
over the original growing neural gas (GNG) network.

1. Introduction

The need for nonrigid shape modelling and tracking oc-
curs in many real world applications. Tasks like regis-
tering human brain MRI images in brain mapping, track-
ing objects in motion, smooth key frame matching in dig-
ital animation and 3D morphing in virtual reality applica-
tions, all require a robust model not prone to noise that can
solve for correct correspondences between a set of shapes.
However, because of the complexity of non-rigid transfor-
mation/mapping, most methods simplify the task and ei-
ther equally space the point sets along the shape [3] or
group the points into higher level structures such as lines,
curves or surfaces and parameterise the points along these
attributes [15, 14, 4]. An optimal transformation/mapping

such as estimating the mean, the covariance or the proba-
bility distribution between rigid or non-rigid objects is then
achieved. The accuracy of the mapping is assessed by min-
imising an objective function either over a pair of shapes or
along the shape space [11, 7]. The more global the objective
function is the better the quality of the built model.

An alternative method to the equally and one-to-one or
many-to-one correspondences is to bypass the correspon-
dence problem. With this method the shapes are modeled
either linearly by solving a linear optimisation problem such
as the least-square problem or nonlinearly by configuring
correspondences in non-linear manifolds. The correspon-
dence problem is modeled either as a probability density es-
timation problem or as an unsupervised classification prob-
lem. In the former the probability distributions can be Dirac
Delta functions represented as isotropic or oriented Gaus-
sian mixtures [16, 5] and in the latter vectors of a network
with or without topological constrains [13]. The objective
of unsupervised classification is: given a high dimensional
data distribution find a topological structure that best de-
fines the topology of the original distribution.

In this paper the nonrigid tracking and unsupervised
model generation, is addressed as a topology learning prob-
lem [9, 1]. The contour of the object is described by adding
an active step to the GNG network which allows the model
to re-deform locally, and update its position. The Active-
GNG takes into consideration not only the geometrical po-
sition of the nodes (landmark points) but also the underlying
local feature structure of the image, and the distance vector
between the modal image and any successive images. To
measure the quality of our model we use the topographic
product, our objective function, which quantifies the neigh-
bourhood preservation of the map by computing the dis-
tance between neighbouring nodes in both the input and the
latent space. The advantage of this representation is that the

978-1-4244-1631-8/07/$25.00 ©2007 IEEE

Authorized licensed use limited to: University of Westminster. Downloaded on June 8, 2009 at 06:20 from IEEE Xplore.  Restrictions apply.



similarity of a pair of nodes before and after the mapping
can be calculated. These features (e.g. topographic prod-
uct, local grey-level and distance vector) of Active-GNG
allow us to automatically model and track in an unsuper-
vised manner 2D hand gestures in a sequence of k frames.
The algorithm is computationally inexpensive, can handle
multiple open/closed boundaries and can easily be extend
to 3D.

The remaining of the paper is organised as follows. Sec-
tion 2 describes how we extract landmark points by intro-
ducing the main parts of the GNG algorithm. Section 3 in-
troduces the Active step of the GNG algorithm and shows
how these modifications can be used in local searching and
tracking of the landmark points. Section 4 introduces the
topographic product, our objective function to quantify the
neighbourhood preservation. A set of experimental results
are presented in Section 5, before we conclude in Section 6.

2. Landmark Points and Topology Map

One way of selecting landmark points along the contour
of shapes is to use a topographic mapping where a low di-
mensional map is fitted to the high dimensional manifold of
the contour, whilst preserving the topographic structure of
the data. A common way to achieve this is by using self-
organised networks where input patterns are projected onto
a network of nodes such that similar patterns are projected
onto nodes adjacent in the network and vice versa. As a re-
sult of this mapping a representation of the input patterns is
achieved that in postprocessing stages allows one to exploit
the similarity relations of the input patterns.

For the automatic extraction and correspondence of
landmark points we use the GNG network introduced by
Fritzke [8]. GNG allows us to extract in an autonomous way
the contour of any object as a set of edges that belong to a
single polygon and form a topology preserving map (Fig-
ure 1). The evaluation of the correspondences is performed
by using the topographic product. Since we want the net-
work to converge either globally or locally, we introduce
an active step to the network which allows the network to
re-deform only where differences between successive im-
ages exist. Due to the characteristics of the network such
as topology preservation, adaptability and growth, and au-
tonomous operation, the Active GNG is used to track hands
in a sequence of k frames while keeping correct correspon-
dences between successive frames. In addition the Active
GNG can be used for the unsupervised generation of mod-
els from a set of object instances.

2.1. Growing Neural Gas (GNG)

In this subsection, we review GNG and highlight the
main parts of the algorithm as used in this work. In GNG,
nodes in the network compete for determining the set of

A B

Figure 1. Examples of the two most common topologies. Image
A represents the topology preserving map (TPM ) of a triangu-
lar grid while image B the topology of a line. In both cases the
TPM = 〈N, A〉 is defined by a set of nodes N and a set of edges
A that connect them.

nodes with the highest similarity to the input distribution
R [9]. In our case the input distribution is a finite set of
all the points along the contour of a shape. The highest
similarity reflects which node together with its topological
neighbours are nearest to the input sample point wi which
is the signal generated by the network. The n-dimensional
input signals wi are randomly generated from a finite input
distribution:

~W = {w1, ......, wm},∀wi ∈ R (1)

The nodes move towards the input distribution by adapting
their position to the input’s geometry (Figure 2). During
the learning process local error measures are gathered to
determine where to insert new nodes. New nodes are in-
serted near the node with the highest accumulated error. At
each adaptation step a connection between the winner and
its topological neighbours is created as dictated by the com-
petitive hebbian learning method. This is continued until
an ending condition is fulfilled, as for example evaluation
of the optimal network topology based on the topographic
product [10].

The network is specified as:

• A set N of cluster centres known as nodes. Each node
c ∈ N has its associated reference vector yc ∈ R. The
reference vectors can be regarded as positions in the
input space of their corresponding nodes. GivenN ref-
erence vectors {~yc}Nc=1 ⊆ R drawn from the random
vector ~W , we want to find a mapping G : R −→ R℘
and its inverse F : R℘ −→ R such that ∀c = 1, ..., N ,

f(~x) = E ~W |g( ~W ){ ~W |g( ~W ) = ~x},∀x ∈ N ⊆ R℘
(2)

g( ~W ) = arg min
µ∈{~xc}N

c=1

‖ ~W − f(µ)‖ (3)

where {~xc}Nc=1 ⊆ R℘ are the reduced reference vec-
tors drawn from the random vector ~W , E is the distance
operator and g( ~W ) is the projection operator. Equa-
tions (2) and (3) show that while the forward mapping
G is approximated as a projection operator, the reverse
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mapping F is nonparametric and depends on the un-
known latent variable ~x. In order to compute f(x)
the GNG algorithm evaluates (2) and (3) in an itera-
tive manner. ℘ denotes the dimensionality of the la-
tent space. In this work, current experiments include
topologies of a line which is the contour of the object
(℘ = 1) and triangular grid which is the topology pre-
serving graph (℘ = 2).

w

w

Figure 2. Every sample point w on the target space is defined as
the best matching of all nodes x projecting within a topological
neighbourhood of w. For example, the best matching node de-
noted by the largest arrow, moves towards the sample point while
its topological neighbors adjust their position.

• A set A of edges (connections) between pair of nodes.
These connections are not weighted and its purpose is
to define the topological structure. The edges are deter-
mined using the competitive hebbian learning method.
The updating rule of the algorithm is expressed as:

∆~xs1 = εx(wi−~xs1),∆~xi = εn(wi−~xi) (∀i ∈ Ns1)
(4)

where εx and εn represent the constant learning rates
for the winner node ~xs1 and its topological neighbours
~xi. Ns1 is the set of direct topological neighbours of
s1. An edge aging scheme is used to remove con-
nections that are invalid due to the activation of the
node during the adaptation process. Thus, the network
topology is modified by removing edges not being re-
freshed by a time interval αmax and subsequently by
removing the nodes connected to these edges.

A complete description of the algorithm can be found
in [8].

3. Active Growing Neural Gas (A-GNG)
When using shape or feature information or combina-

tion of the two to track nonrigid objects in video sequences,
the most effective models are either ’snakes’ introduced by
Kass et al. [12] or Point Distribution Models (PDMs), Ac-
tive Shape Models (ASMs) or Active Appearance Models
(AAMs) introduced by Cootes and Taylor [6]. In the case
of snakes, the deformation of the model to an unseen image
is achieved by means of energy minimisation. The snake
converges when all the forces achieve an equilibrium state.

This dynamic behaviour of the model to minimise its energy
function makes the snake active. The drawbacks with this
method are:

• The snake has no a priori knowledge of the domain
which means it can deform to match any contour. This
attribute is not desirable if we want to keep the speci-
ficity of the model which means that the model should
deform only in ways characteristic of the class of ob-
jects it represents.

• The active step is performed globally even if parts of
the snake have already converged. There is no mech-
anism in the model to re-deform locally and minimise
its energy function only at desirable image properties.

In PDMs, the deformation of the model to an unseen im-
age is specific since a priori knowledge such as expected
size, shape and appearance is encoded in the model from a
training set of correctly annotated images. The ASMs and
AAMs have proven to be very powerful tools for interpret-
ing new images. However, as with the snakes the deforma-
tion of the model adheres only to global shape transforma-
tions.

Since we want the network to converge either globally
or locally, we introduce here a nonparametric approach to
modelling the objects which makes it ideally suited for
learning in dynamic environments. Our model is a modifi-
cation to the GNG network introduced by Fritzke [8], called
Active Growing Neural Gas (A-GNG) that has the character-
istics of a snake, no a priori knowledge of the domain and
global properties, but is extended in three ways:

1. The correspondence of the nodes is performed locally,
so the model re-deforms only where differences in
the input space between successive images exist (Fig-
ure 3). Therefore, the active step is performed locally
in contrast to the global properties applied to the image
by the snake.

2. The mean vector of the map and of any successive im-
age is calculated and the nodes update their position
based on this mean difference. By doing this the map
first updates its position into the successive image and
then examines a region of the image around each node
to determine a better displacement of the node.

3. In order to improve efficiency, we restrict the nodes to
their corresponding place by adding a second dimen-
sion to the network with information about the local
feature structure of the image (Figure 4).

Figure 3 and 4 show the local adaptation of the network
and the best matching node denoted by the distance and the
underlying feature structure.

The main steps of the A-GNG algorithm are as follows:
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Figure 3. Example of 2D local adaptation of the network. Signals
are generated only to the new input distribution, Image (b), and
the winner node and its direct topological neighbours update their
positions, Image (c).

Figure 4. The upper part of Image a shows the convergence of the
algorithm to a local minimum. The top node with its direct neigh-
bours can never be winners. The lower part of Image a shows the
fold-over that will occur after a number of iterations. Not only
point correspondences are lost but also topology relations are vi-
olated. To overcome this problem for each node we compute a
2k + 1 dimensional feature vector which encapsulates grey-level
information. Thus, the node with the best feature vector times dis-
tance measure will be the winner node. Image b shows the feature
vector 2k + 1 added to each node.

1. Start with a modal image and run the original GNG
algorithm.

2. For every node sample k neighbourhood pixels. Thus,
we have 2k + 1 grey-level values which can be put in
a vector ~gi.

~gi = [g1, ....., g2k+1]T (5)

The total shape then is given as:

Sm = ~gTi ∗ ~x (6)

where ~x is a 2n {xi, yi} node vector and ~gi is a 2k+ 1
local feature vector.

3. Given N number of nodes calculate the mean node ~xc
of the modal image, where

~xc =
1
N

N∑
i=1

~xi (7)

4. Calculate the image difference between the modal im-
age and any other successive image. Let A and B
be two sets of elements in R representing the modal

and the successive image respectively. The Minkowski
subtraction of B from A is defined as:

A−B =
⋂
b∈B

Ab (8)

where the elements b are the pixel coordinates of the
successive image.

5. Let C = A − B be the new input distribution of the
network.

6. Randomly generate input signalswi toC and calculate
as in step 3 the mean signal wi.

7. Calculate the distance vector of the two means and
swift the nodes towards C. For each successive image
we calculate its deviation from the mean, d~xi where

d~xi = ~xi − ~xc (9)

8. Randomly generate input signals wi to C and find the
winner node xs1 and its direct topological neighbours
xi.

9. Update the position of the nodes by moving them to-
wards the current signal by the weighted factors εx,
and εn same as in GNG.

10. Remove the used signal wi from the input distribution.

11. Repeat iterations 3− 10 until the system converges.

The parameters used in all simulations are: W = 3000,
N = 150, εx = 0.1, εn = 0.005, αmax = 125, k = 5.

4. Topographic Product
In order to establish correspondence of nodes between

successive frames or object instances we use a topology
preservation measurement whose attributes derive from
nonlinear dynamics. The topographic product P introduced
by Bauer and Pawelzik [2] is our objective function which
quantifies the neighbourhood preservation of the map by
computing the Euclidean distance between neighbouring
nodes, in both the input and the latent space. A mapping
preserves neighbourhood relations if and only if nearby
points in the input space remain close in the latent space.
In other words, there is no violation to the topology of the
network.

The neighbourhood relationship between each pair of
nodes in the latent space ℘ and its associative reference vec-
tors in the input space d is given by:

P1(c, k) = [
k∏
l=1

d℘(c, n℘l (c))
d℘(c, ndl (c))

]1/l (10)
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P2(c, k) = [
k∏
l=1

dd(~xc, ~xn℘
l

(c))

dd(~xc, ~xnd
l
(c))

]1/l (11)

where c is a node, ~xc is its reference vector, ndl is the l-th
closest neighbour to c in the input space d according to a
distance dd and n℘l is the l-th nearest node to c in the latent
space ℘ according to a distance d℘. Combining (10) and
(11) a measure of the topological relationship between the
node c and its k closest nodes is obtained:

P3(c, k) = [
k∏
l=1

dd(~xc, ~xn℘
l

(c))

dd(~xc, ~xnd
l
(c))
·
d℘(c, n℘l (c))
d℘(c, ndl (c))

]1/2k (12)

To extend this measure to all the nodes of the network
and all the possible neighbourhood orders, the topographic
product P is defined as:

P =
1

N(N − 1)

N∑
c=1

N−1∑
k=1

log(P3(c, k)) (13)

Figure 5 shows an example of a well preserved line topol-
ogy mapping between two successive frames, where the
network has grown sufficiently to reflect the dimensional-
ity of the input distribution. As the input distribution moves
the topological relations are updated and correct correspon-
dences are established. A violation of the topology occurs

Figure 5. Neighbourhood relations are perfectly preserved since
nearby points in the input space remain close to the nearby nodes
in the latent space. The mapping is indicated by the lines.

in Figure 6(a) since the distance relations of the data points
do not correlate with that of the reference vectors in the
network. Figure 6(b) shows the ideal correlation if cor-
rect correspondences have been previously established. The
problem with the topographic product in cases like in Fig-
ure 6(a) is its limitation to take into account the structure of
the input distribution since the map of the data points and
the reference vectors is one-to-one. In order to overcome
this problem where neighbourhood relations are based only
on distance measures and not on topological relations, e.g.
common borders of Voronoi cells, in every iteration step we
update the position of the map towards the image according
to the mean vector.

5. Experiments
We demonstrate the performance of our system on a se-

quence of hand gestures. In order to address the limitations

Figure 6. A set of nodes with their reference vectors ~x1, ~x2, up to
~x21. As the input distribution moves and the network re-adapts,
the distance relations between the data points and the reference
vectors are violated (Image a). In the new adaptation the nearest
neighbour of ~x1 with its topological neighbours is not ~x1 but ~x21.
Image b shows correct correspondences if topological information
such as closest Voronoi regions and not only metric information
has been used.

of the existing GNG, and how these have been improved
with the A-GNG, we use a combination of artificial and real
data sets. In the following experiments we see the superior-
ity of A-GNG against: a) the methodology of active snake
model that adheres only to global shape transformations and
b) GNG which has only global properties and cannot pre-
serve correspondences when used for tracking. In order
to use a clean edge map that serves as the distribution for
the algorithm, we have performed the gestures in front of
uniform backgrounds avoiding cluttered backgrounds with
changes in the illumination. In the following experiments,
the parameters in the A-GNG are as follows: W = 3000,
N = 150, εx = 0.1, εn = 0.005, αmax = 125, k = 5. Fig-
ure 7 and 8 show the tracking of a hand gesture using the
A-GNG tracker, and how it outperforms the GNG tracker
used in Figure 9.

Figure 7(a) shows the initial A-GNG position. The con-
tour of the first image was extracted using the original GNG
and the adaptation of the network at every 10th frame is
done with the A-GNG. Images (b) to (i) show the tracking

d

b

Figure 7. Tracking a gesture. The images correspond from left
to right and from top to bottom to every 10th frame of a 90 frame
sequence. In each image the red points indicate the nodes and their
adaptation after 4 iterations.
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of the nodes to a sequence of 90 frames. Our tracker is able
to track the fingers and updates the topology of the network
every 4 iterations. Figure 8 indicates another tracking exam-
ple to a sequence of 45 frames. Figure 8(a) shows the initial
position of A-GNG. Images (b) and (c) show the adaptation
after 1 iteration to a very subtle movement. Images (d), (f )
and (h) show the updated position of the network to a more
jumping distribution and how the network re-adapts again
after 1 iteration.

Figure 8. Tracking a hand. The images correspond from left to
right and from top to bottom to every 5th frame of a 45 frame
sequence.

Figure 9 shows a tracking example using the original
GNG. Image (a) shows the initial GNG position and images
(b) to (i) show the GNG tracker to a sequence of 120 frames.
With the GNG tracker we see that the network is quite far
from the real boundaries of the hand and the network is not
converging. The top nodes will never be winners and the
network collapses to local minima.

Figure 10 is an example of local adaptation of the net-
work between a bump model and a square and how cor-
respondences are improved using the A-GNG compared to
original GNG. Image (a) and (b) show the map of the bump
model and its superposition to the new image. Image (c)
shows the mapping of the GNG based only on distance mea-
sures. The network fails to converge since the top nodes
can never be winners. The network converges to a local
minimum and after a number of iterations a fold-over to the
network will occur. Image (d) and (e) show how the con-
vergence is improved by calculating the mean vector of the
map and the new image, and then updating the position of
the original map according to this difference. The corre-
spondence is improved but still it will take a number of it-
erations before the top nodes converge unless feature infor-
mation is incorporated in every node. Figure 11 indicates
how feature information can add efficiency to the conver-
gence. Image (a) and (b) show the map and the movement

a b c

d e f

g h i

Figure 9. Tracking a gesture. The images correspond from left to
right and from top to bottom to every 10th frame of a 120 frame
sequence. In each image the red points indicate the nodes and their
adaptation after 12 iterations. The GNG tracker is quite far form
the hand boundaries and the nodes collapse to local minimum.

Figure 10. Local convergence using the A-GNG. c shows the map
adaptation using the GNG algorithm. d and e show the adaptation
using the A-GNG algorithm.

of the finger. Image (c) shows the GNG adaptation and the
violation of the map based only on distance measures while
Image (d) and (e) show the correct correspondences based
on the mean and the feature information added to the net-
work.

Figure 11. Convergence with and without the active steps of the
GNG algorithm.

Table 1 shows the topographic product between input
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Topographic Product finger model bump model
original map 0.049377 0.016662

A-GNG 0.043116 0.036559
GNG -0.303199 -0.540280

Table 1. Measuring neighbourhood preservation by calculating the
map difference between neighbouring nodes, in both the input and
the latent space and between successive frames.

and latent space for both the bump and the finger model,
and between any successive frames using the GNG and the
A-GNG. The topographic product P ≈ 0 indicates an ap-
proximate match while P < 0 and P > 0 correspond to
a too high and a too low match. The first row indicates a
match between the input space and the latent space for both
the finger and the bump model. The mapping is preserved
since nearby points in the input space remain close in the
latent space by computing the Euclidean distance between
neighbouring nodes. The second and third rows of table 1
show that A-GNG outperforms GNG and correct correspon-
dences are established only when the map is close enough
to the new input distribution.

6. Conclusions
We have introduced a new nonrigid tracking and unsu-

pervised modelling approach based on a model similar to
snake, but with both global and local properties of the im-
age domain. Due to the number of features A-GNG uses,
the topological relations are preserved and nodes correspon-
dences are retained between tracked configurations. The
proposed approach is robust to object transformations, and
can prevent fold-overs of the network. No background mod-
elling is required. The model is learned automatically by
tracking the nodes and evaluating their position over a se-
quence of k frames. No training set is required and the
user interaction is only necessary at initialisation. The al-
gorithm is computationally inexpensive, it can handle mul-
tiple open/closed boundaries, and it can easily be extend to
3D. Our method suffers from some limitations that we are
trying to overcome in our future work:

• Our current system uses only absolute grey-level val-
ues, because of that if the feature match is below a par-
ticular threshold no updates to the position of the nodes
is performed, so the network stays inactive.

• A clean edge map is required to serve as the distribu-
tion for the algorithm.

Currently we are extending our model by approximating a
probability measure on the nodes based on previous and
current position, colour information and neighbourhood re-
lations so that A-GNG can be tested on more cluttered back-
grounds.
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