
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Abstractions of Abstractions: Metadata to Infrastructure-as-Code

Deslauriers, J., Kovacs, J. and Kiss, T.

This is a copy of the author’s accepted version of a paper subsequently published in the 

proceedings of FIST 2022 - 1st International Workshop on the Foundations of 

Infrastructure Specification and Testing, In conjunction with the 19TH IEEE International 

Conference on Software Architecture (ICSA 2022). On-line 12 - 15 Mar 2022 IEEE. 

The final published version will be available online at:

https://doi.org/10.1109/icsa-c54293.2022.00051

© 2022 IEEE . Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works.

The WestminsterResearch online digital archive at the University of Westminster aims to 

make the research output of the University available to a wider audience. Copyright and 

Moral Rights remain with the authors and/or copyright owners.

https://doi.org/10.1109/icsa-c54293.2022.00051


Abstractions of Abstractions:
Metadata to Infrastructure-as-Code

James DesLauriers
Centre for Parallel Computing

University of Westminster
London, UK

j.deslauriers@westminster.ac.uk

Jozsef Kovacs
UoW, London, UK

j.kovacs@westminster.ac.uk
ELKH SZTAKI, Budapest, HU

jozsef.kovacs@sztaki.hu

Tamas Kiss
Centre for Parallel Computing

University of Westminster
London, UK

t.kiss@westminster.ac.uk

Abstract—To support cloud newcomers and empower them
with the full suite of benefits afforded by the DevOps toolkit,
we propose a solution for generating infrastructure-as-code from
metadata. Key-value pairs will describe the containers, volumes,
configurations and virtual machines that make up a complex
microservices architecture. This metadata will be first compiled
down to an intermediate template based on the OASIS TOSCA
Specification. There, it will be processed by a deployment and
execution engine called MiCADO, which will further compile rel-
evant sections of the template into the respective infrastructure-
as-code for tools like Kubernetes, Terraform and Ansible. An
implementation of the solution is currently being developed for a
European project investigating Manufacturing-as-a-Service and
Digital Twins, with the hopes of providing an approachable
interface for users who are new to the unfamiliar environment
of the cloud.

Index Terms—infrastructure-as-code, devops, TOSCA, cloud,
orchestration

I. OVERVIEW

As once cloud-hesitant industries move to adopt cloud
computing, the technical teams from these eager companies
will do all they can to ensure a soft landing among the clouds.
Inexperienced teams, however, will face a steep learning curve
as they make the initial transition to cloud - there are cloud
consoles and portals to navigate, virtual machines to provision
and configure, and applications to containerise and orchestrate.
With the advent of infrastructure-as-code (IaC), it became
possible to do nearly all of this in a programmatic way, with
just a few lines of a code-like language. This empowered
experts in the related field of DevOps, but at the same time
introduced its own steep learning curve for newcomers. First
time cloud users not only had to understand the basic concepts
behind configuration management and virtualisation, but now
had to learn a flurry of new file formats, syntaxes and APIs.

This paper addresses the technical complexities of cloud
adoption, especially as they relate to new-to-cloud industries
and their ability to benefit from the tools and IaC that are
available in the DevOps toolkit. The proposed approach aims
to flatten the learning curve of tools such as Terraform1,
Kubernetes2, Ansible3 and Docker4 by generating their re-

1Terraform. https://terraform.io
2Kubernetes. https://kubernetes.io
3Ansible. https://ansible.com
4Docker. https://docker.io

spective IaC from metadata. Users provide this metadata as
specific key-value pairs that describe a complex microservices
architecture made up of containers, volumes, the required
cloud resources and any interrelationships in-between. This
metadata will be automatically compiled down to an interme-
diate language, which is based on the OASIS TOSCA (Topol-
ogy and Orchestration Specification for Cloud Applications)
Specification5 and known as an Application Description Tem-
plate (ADT). These ADTs are compatible with an automated
deployment engine called MiCADO [1], which will perform
its own compilation down to valid IaC for components like
Terraform, Kubernetes and Ansible.

In recent years, cloud adoption by Manufacturing SMEs
has been accelerating at quite a pace. Efforts to provide an
interface to the cloud for Manufacturing have been ongoing
in several projects that the University of Westminster has
participated in, and these have resulted in several implemen-
tations of Manufacturing-as-a-Service. The aim behind these
projects has been to provide a system that takes advantage
of the latest advances in cloud technology, while offering an
interface that demands little knowledge of the cloud from its
users. The latest Horzion 2020 project in Manufacturing-as-
a-Service for Westminster is DIGITbrain [2], which aims to
extend the platform developed during an earlier project called
CloudiFacturing [3]. DIGITbrain will enable Manufacturing
companies with little technical knowledge of the cloud to reap
all the benefits that cloud computing has to offer.

Providers in DIGITbrain will describe Manufacturing-
specific software using metadata, building out complex algo-
rithms made up of different microservices. These microser-
vices serve as building blocks that can be combined to realise
a specific functionality or computation. End-users can then
select individual microservices or algorithms and pair them
with their own model, data and cloud resources. The project
envisages that providers in DIGITbrain will require only a
working knowledge of containers and that end-users need not
even understand the concept of cloud.

5OASIS TOSCA. https://www.oasis-open.org/committees/tosca/

https://terraform.io
https://kubernetes.io
https://ansible.com
https://docker.io
https://www.oasis-open.org/committees/tosca/


II. MICADO

MiCADO is the engine that deploys and executes applica-
tions in the DIGITbrain platform. MiCADO brings together
DevOps tools such as Ansible, Kubernetes and Terraform to
support the deployment, auto-scaling and runtime manage-
ment of complex microservices architectures. MiCADO was
initially developed in the Horizon 2020 Project COLA [4] and
has since featured in several other European projects where it
severed a variety of use cases as a deployment and execution
engine.

MiCADO features a container orchestrator for deploying
containers across a cluster of nodes. In early versions, this
was Docker Swarm, but MiCADO later adopted Kubernetes
for this purpose. Two cloud orchestrators are supported in
MiCADO for provisioning the worker nodes for the cluster
- Terraform and Occopus [5]. Both public and private clouds
are supported, including OpenStack, Azure, AWS, Google
and Oracle. In the latest version, MiCADO uses Kubernetes
to orchestrate containers described by Kubernetes manifests
and Terraform and Occopus to provision virtual machines
described by Terraform plans and Occopus descriptor files,
respectively.

MiCADO supports automated horizontal scaling at both
container and virtual machine level. An open-source compo-
nent called PolicyKeeper [6] was developed during COLA to
facilitate this two-level scaling. PolicyKeeper enables users to
develop custom scaling logic for their containers and virtual
machines. It supports querying Prometheus6 metrics from the
cluster with which the user can define scaling rules using a
simple Python7 script. This script is continuously evaluated at
runtime, and the user-defined rules trigger scaling actions in
the relevant orchestrators.

A last component, the Security Policy Manager, improves
various aspects of cluster security in MiCADO. This includes
support for hardened infrastructure and application level se-
crets, secure inter-node communications over an IPSec tunnel
and a container image integrity verification tool. A secure
WebUI integrating Prometheus, Grafana8 and the Kubernetes
Dashboard supports users with monitoring the cluster and their
application.

The interface to MiCADO is the Application Description
Template (ADT) [7] - a domain-specific language based on
the OASIS TOSCA specification. Users of MiCADO author an
ADT, which describes a complex application made up of con-
tainers, volumes and configurations, virtual machines to host
those containers, and optional policies for scaling, monitoring
and security. MiCADO uses the OpenStack TOSCA Parser9

to parse the ADT and uses a pluggable set of compilation
adapters to compile specific sections of the template down
to their respective IaC. The section describing the application
is compiled down to a set of Kubernetes manifests, which

6Prometheus. https://prometheus.io
7Python. https://www.python.org/
8Grafana. https://grafana.com
9OpenStack TOSCAParser. https://github.com/openstack/tosca-parser

may include Deployments, Services, ConfigMaps or other
Kubernetes workloads. The virtual machine descriptions are
compiled down to either Terraform plans or Occopus descrip-
tor files, as desired by the ADT author. Policy descriptions
are compiled down to a domain-specific language understood
by the PolicyKeeper and API calls for the Security Policy
Manager.

To realise the deployment of the described application,
MiCADO triggers the execution of the generated IaC by
invoking the binary or REST service provided by each of
the underlying tools. For Kubernetes and Terraform these are
the kubectl and terraform command-line tools, and for
Occopus and the custom developed policy components these
are REST services. Once deployed, MiCADO manages the
application at runtime for the entirety of its lifecycle, enforcing
any policies and terminating the application and infrastructure
when requested.

III. GENERATING IAC IN DIGITBRAIN

DIGITbrain aims to empower SMEs in the manufacturing
industry with access to digital twins in the cloud. Digital twins
- virtual representations of real-life systems - can support the
optimisation of all stages of a system’s life cycle by collecting
real-time data and applying machine learning techniques to
make cost-saving predictions. Digital twins in DIGITbrain are
implemented as collections of microservices called algorithms.
Algorithms are paired with a model and connected to a data
source before being deployed to cloud and edge infrastructure
to perform the necessary computations for optimisation and
prediction. To encourage re-usability, assets in DIGITbrain
are independent of one another and act as building blocks.
Users can combine these building blocks just before execution
time to realise some specific functionality relevant to their
manufacturing line.

MiCADO was selected as the execution engine that would
deploy these various assets of DIGITbrain. It can provision
cloud resources, deploy the microservices of the algorithm as
containers, fetch the necessary model and make the connection
to the required data stream. The resources, containers and
interconnections would all be described in a single MiCADO
ADT, which a user of DIGITbrain could submit to MiCADO
at any time to deploy the digital twin.

However, this would mean that providers of the various
assets of DIGITbrain - microservice, algorithm, model, data
and cloud resources - would require some knowledge of
MiCADO, which by association required some knowledge of
its underlying tools and supported cloud middleware. This
idea was incompatible with the DIGITbrain concept, so an
alternative solution was investigated, based around describing
assets with metadata. For each asset, a set of metadata was pro-
posed that described it in sufficient detail to programmatically
generate the portion of IaC that would enable its deployment.

At the microservice and algorithm level, metadata describes
the microservices involved and how they should be config-
ured. This configuration data is supported in a variety of
common container configuration formats. Docker-Compose, a

https://prometheus.io
https://www.python.org/
https://grafana.com
https://github.com/openstack/tosca-parser


docker run command, a Kubernetes manifest or a Helm
chart are the various formats that the platform supports as
input for a container configuration.

For the data and model assets, this metadata describes the
location of the asset (URL) or in the case of a stream, details
on how to connect to it (protocol, URI, credentials). Further
metadata describes how these assets can be used by specific
microservices in the algorithm.

Metadata for cloud resources describes the number and
configuration details of the virtual machines and edge devices
that are required by the digital twin. The DIGITbrain platform
connects to the cloud via the CloudBroker10 platform, which
supports a variety of cloud middleware and enables billing
and usage statistics. The metadata for a desired virtual ma-
chine consists of the CloudBroker UUIDs that specify cloud
middleware, region, instance type, firewall settings and SSH
key pairings.

Given metadata for a complete set of DIGITbrain assets,
the next step is to generate the IaC that MiCADO can use to
facilitate the deployment of the described digital twin. For this
task, a new DIGITbrain component called the ADTGenerator
was designed and implemented. The ADTGenerator is a REST
service that takes as input a complete set of DIGITbrain
metadata and returns a valid, ready-to-deploy MiCADO ADT.

Because of the independent nature of assets, the ADT-
Generator does not produce a classic, single-file ADT for
MiCADO. Instead, each asset is compiled down to a respective
descriptor file based on a subset of the ADT. When a user is
ready to combine microservices into an algorithm and pair it
with data, model and cloud resources, a multi-file ADT will
be generated that leverages TOSCA’s substitution mappings11

to link together the individual descriptor files and describe
the overall architecture of the application to be deployed
by MiCADO. MiCADO then parses this multi-file ADT and
deploys the digital twin to the cloud.

IV. CONCLUSION

Generating complete and valid IaC from metadata is not
without its challenges or restrictions. Kubernetes manifests and
Terraform plans both overlay incredibly detailed APIs and it
would be impossible to capture the full functionality of either
via a flat map of key-value pairings. The implementation de-
scribed above works well because there are certain constraints
imposed by the DIGITbrain platform. Neither providers nor
users of DIGITbrain are required or expected to have a deep
knowledge of Kubernetes, Terraform or any other DevOps
tool, so the solution can take on some responsibility for mak-
ing architectural choices on their behalf. For example, DIG-
ITbrain microservices compile to Kubernetes Deployments,
container mounts compile to Kubernetes HostPath volumes,
and virtual machines descriptions rely directly on UUIDs
instead of using Terraform’s Data Sources search.

We envisage supporting more flexibility in the future and
expect this solution to grow and develop over the course of

10CloudBroker. http://cloudbroker.com/
11TOSCA Specification v1.3

the DIGITbrain project to support the diverse experiments that
will join the project over its lifetime. We imagine re-using this
solution for future projects where the target applications would
benefit greatly from cloud deployment, but whose users are not
cloud savvy.

ACKNOWLEDGMENT

This work was funded by the DIGITbrain - Digital twins
bringing agility and innovation to manufacturing SMEs, by
empowering a network of DIHs with an integrated digital
platform that enables Manufacturing as a Service, project, No.
952071, European Commission (EU H2020).

AVAILABILITY OF DATA

MiCADO is open-source. You can find all of the vari-
ous MiCADO components under the micado-scale or-
ganisation in GitHub, with the deployment specification lo-
cated at the following URL: https://github.com/micado-scale/
ansible-micado. The DIGITbrain work, with examples and
an under-development implementation of the compile and
generate functions mentioned in this paper can be found in the
UoW-CPC/ADTGenerator repository, or at the following
URL: https://github.com/UoW-CPC/ADTGenerator.

REFERENCES

[1] T. Kiss, P. Kacsuk, J. Kovács, B. Rakoczi, A. Hajnal, A. Farkas, G.
Gesmier, and G. Terstyanszky “MiCADO—Microservice-based Cloud
Application-level Dynamic Orchestrator,” Futur. Gener. Comput. Syst.,
Volume 94, May 2019, Pages 937-946

[2] ”DIGITbrain European Project”, [Online]. Available:
https://digitbrain.eu/ [Accessed: 17-December-2021].

[3] T. Kiss, “A Cloud/HPC Platform and Marketplace for Manufacturing
SMEs, 11th International Workshop on Science Gateways, IWSG 2019.
Ljubljana, Slovenia 12 - 14 Jun 2019.

[4] COLA - Cloud orchestration at the level of application, H2020
EU Project (2020). Available: https://project-cola.eu/ [Accessed: 17-
December-2021].

[5] Kovács, J., Kacsuk, P.: Occopus: a multi-cloud orchestrator to deploy and
manage complex scientific infrastructures. Journal of Grid Computing
16(1), 19–37 (2018)

[6] Kovács, J., 2019. Supporting programmable autoscaling rules for con-
tainers and virtual machines on clouds. Journal of Grid Computing,
17(4), pp.813-829.

[7] Pierantoni, G., Kiss, T., Terstyanszky, G., DesLauriers, J., Gesmier, G.,
Dang, H.-V.: Describing and processing topology and quality of service
parameters of applications in the cloud. Journal of Grid Computing,
1–18 (2020)

http://cloudbroker.com/
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.html
https://github.com/micado-scale/ansible-micado
https://github.com/micado-scale/ansible-micado
https://github.com/UoW-CPC/ADTGenerator

