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Abstract—This paper studies trade-offs between flight and
passenger delays and fairness when assigning delay pre-tactically
(on-ground at origin airport) due to reduced airport capacity.
The paper also defines and analyses efficiency-fairness trade-
offs. The optimisation model is based on the ground holding
problem and uses various objective functions: total delay for
flights (considering reactionary delay), total delay for passengers
(considering outbound connections), and deviation from a Ration
By Schedule solution (to get a measure of the fairness of the
solution). The scenario considered takes place at Paris Charles
de Gaulle airport, a busy European hub airport, and includes
realistic values of traffic.

I. INTRODUCTION

Airports are limited in capacity by operational con-
straints [1], [2], generating in some cases, a significant im-
balance between capacity and demand. Air Traffic Flow and
Capacity Management (ATFCM) initiatives are then imple-
mented to smooth traffic arrivals, transferring costly airborne
delay, carried out with holdings and/or path stretching, to pre-
departure on-ground delay [3].

When dealing with a slot assignment problem, a Ration by
Schedule (RBS) prioritisation of flights is the current prac-
tice [4]. The required delay is transformed into ground delay
carried out prior departure. This RBS policy is considered by
the different stakeholders to be the fairest delay assignment,
but economical optimum cannot be guaranteed and only arrival
delay is considered.

In the current operational environment, the system is op-
timised considering the flight perspective, however, different
stakeholders might experience the ATM system performances
differently. In particular, passenger centric metrics might dif-
fer from their equivalent flight-centric ones [5]. In [6], the
performance for flight and passenger delays of an extended
arrival manager was analysed in conjunction with a pre-
tactical optimisation of flights. In that work, the assignment
of slots was optimised considering either arrival delay for
flights, arrival delay for passengers, total delay for flights
(considering reactionary delay) or total delay for passengers
(considering outbound connections). Results showed that in
the scope of an E-AMAN, the distances and possible delays
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that can be assigned do not justify the application of a
more sophisticated strategy than RBS. Nevertheless, when the
scope of optimisation was enlarged to include the pre-tactical
phase, benefits were obtained by optimising the assignment of
delay instead of only considering the flight schedules. While
minimising the total delay for passengers is, as expected, the
best strategy from the passengers perspective, it leads to higher
reactionary delay for flights with respect to a flight-centric
optimisation. Whereas if focus is given to flight total delay, the
benefit per passenger remains similar and the variability with
respect to the RBS delay assignment is reduced, improving
the fairness of the solution. Optimisations carried out in [6]
focused on only one stakeholder at a time and did not include
an explicit consideration of equity. The work presented in this
paper aims at analysing the Pareto optimality when conjointly
considering flight, passengers and equity.

Section II describes the issues encountered when allocating
resources from a fairness point of view. Section III defines
the different optimisation models and objectives considered in
this paper. Section IV shows how the individual objectives are
combined in a multi-objective problem. The trade-offs between
fairness and efficiency analysed in this paper are described
in Section V. Section VI recalls the main hypothesis of the
simulation of traffic studied here. Finally, Section VII presents
the main results followed by the conclusions and further work
found in Section VIII.

II. FAIRNESS ON DELAY ASSIGNMENT

Other approaches rather than RBS could be considered
when assigning delay to flights due to capacity-demand im-
balances. Extensive research has been conducted to assign, the
required delay, in a most cost effective manner [2], [6]–[9].
As described in [10], this type of resource allocation problems
may be viewed as a utility allocation among different parties,
which will lead to fairness issue. Note that even the definition
of the stakeholders to which to the fairness is estimated can
be problematic: airlines, individual flights, passengers.

Due to the subjective nature of fairness and different possi-
ble interpretations of equity, there is no common definition of
fairness allocation. Different proposals have been done such
as maximisation of the minimum utility (max-min) (i.e., min-
max for minimisation problems) or the α− fairness scheme



as the one used in [10]. See [11], [12] for a more detailed
description of different fair metric definitions.

In [13], an airline equity metric due to flight delay is defined
as the negative logarithm of the ratio of an airline’s total flight
delay over the total GDP flight delay, divided by the ratio
of that airline’s scheduled flights in the GDP over all GDP
flights. Similarly, a passenger equity metric is defined as the
negative logarithm of the ratio of passenger delays for a given
airport category over the total GDP passenger delay, divided
by the ratio of the number of passengers from that airport
category over all passengers in the GDP. This implies that the
more passengers an airport category has, the more passenger
delay it should be assigned. In both cases, perfect equity is
represented as 0.

It is widely accepted by the ATM community that RBS
presents a fair allocation of resources as flights are not
benefited in any specific manner rather than their intended
schedule. For this reason, in [14] and [15], equity is maximised
by minimising the deviation from the RBS solution. Note that
in these cases, fairness is a flight-centric approach. In this
paper, the definition of fairness used is similar to these cases
and will be based on the RBS solution.

III. OPTIMISATION MODELS

In this study, delay assignment is optimised using a deter-
ministic ground holding problem model (GHP) based on [7].
Different optimisation functions can be used: minimisation of
total flight delay, total passenger delay or deviation from RBS.

A. Delay assignment optimisation model

A GHP model is applied to assign delay to flights. In this
model, constraints only apply at the destination to ensure
that airport capacities are maintained. For a given set of time
intervals (t = 1, 2, . . . , T ) corresponding to the actual times of
arrival, and a set of aircraft (f = 1, 2, . . . , F ) corresponding to
flights that will arrive and then depart from the studied airport,
the following inputs are defined: bt is the constrained airport
arrival capacity at time interval t and STA(f) (scheduled time
of arrival) is the earliest time interval at which aircraft f is
scheduled to arrive at the constrained destination airport. To
prevent a flight from getting assigned a slot earlier than the
earliest time it could arrive, the time intervals start at STA(f)
for each f . The decision variables are defined as:

xft = 1 if aircraft f is assigned to arrive at time interval t
0 otherwise

the deterministic ground holding problem can then be formu-
lated as

min
∑
f

∑
t

cftxft (1)

subject to
∑
f

xft ≤ bt, for all t (2)∑
t

xft = 1, for all f (3)
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Fig. 1. Turnaround and delay diagram

where cft is the cost of assigning aircraft f to arrive at time t.
Note that Equation (2) corresponds to the capacity constraint
applied at each time interval t, whereas Equation (3) imposes
the fact that a flight must arrive exactly once. More details on
this general GHP model can be found for example in [7].

B. Objective functions

As shown in [5] and [6], the delay and cost experienced by
passengers differ from the ones obtained with flight-centred
metrics. These differences are partially due to passenger
missed connections. For this reason, optimisation functions
considering passenger and flight delays are considered in this
paper. Finally, deviation with respect to RBS is also modelled.

The objective functions considered here are:
• Total flight delay (DFlight): the total delay per flight, in-

cluding the reactionary delay, is minimised. Reactionary
delay is defined as the difference between the Actual
Time of Departure (ATD) and the subsequent Scheduled
Time of Departure (STD). As seen on Figure 1b, it
is equivalent to calculate it as the difference between
the Actual Arrival Time (ATA), which is our variable
t, and the latest time of arrival (LTA) that would not
generate delay in the subsequent departure flight of the
same aircraft. As shown on Figure 1a, LTA is calculated
as follows: LTA(f) = STD(f) − MTT (f), where
MTT (f) is the minimum turnaround time needed for
aircraft f ; details of how to obtain these data are found
in [6]. Note that in this case, delay is only propagated
if the time between STD(f) and LTA(f) is lower than
MTT (f), which is a conservative approach as in reality,
the turnaround might take longer than MTT (f).
Finally, this objective function is defined as the sum of
the arrival delay plus the reactionary delay multiplied
by a factor 1.8, corresponding to the extra delay that
this reactionary delay will further generate. As reported
by [16], in 2014, the ratio of reactionary to primary delay



was 0.80, which means that, on average, every minute of
primary delay resulted in some additional 0.80 minutes
of reactionary delay. Thus, in this model the total delay
per flight is minimised:

DFlight =
∑
f

∑
t

[(t−STA(f))+1.8(t−LTA(f))]xft,

(4)
• Total PAX delay (DPAX ): in this objective function, the

total delay per passenger to minimise is expressed as:

DPAX =
∑
f

∑
t

[PAXarr(f)(t− STA(f))

+ PAXconnecPropagDelay(f, t)

+ PAXdep(f)(t− LTA(f))]xft, (5)

where PAXdep(f) is the number of departure passengers
assigned to flight f , and PAXconnecPropagDelay(f, t)
the propagation delay for each flight, taking into account
the number of passengers connecting on the inbound
flights and the waiting time at the hub, if the connections
are missed, until another flight to their final destination
is available. This is a probabilistic model that does not
represent individual passenger itineraries. See [6] for
more details on this parameter.

• Total deviation from RBS (DRBS): Similar to [14] and
[15], equity is defined in this paper as the total deviation
of delay experienced by flights with respect to the RBS
solution. Therefore, the deviation with RBS is minimised
when minimising:

DRBS =
∑
f

∑
t

|t−RBS(f)|xft (6)

being RBS(f) the arrival time of flight f in a RBS
environment.

IV. MULTI-OBJECTIVE OPTIMISATION

Three objective functions are considered in this paper:
flight delay, passengers delay and flight deviation with respect
to RBS. The optimisation problem can then be defined as
a multi-objective optimisation, which can be described as
a single optimisation function that is the weighted sum of
the individual objectives, noted Fi(x) :

∑k
i=1 wiFi(x) [17].

Therefore, for our problem, we have:

Obj(α, β, γ) = αDRBS + βDPAX + γDFlight (7)

When considering well-understood preferences, paired com-
parison methods can be used to define the value of the different
weights and unrestricted positive weights should be used [17].
However, as our goal is to present the Pareto solutions for a
posteriori articulation of preferences, we consider a convex
combination of functions, which implies that

∑k
n=1 wn = 1

and in our case that α+ β + γ = 1 and 0 ≤ α, β, γ ≤ 1.
Note that:

• α is an indication of the preference of fairness, i.e.,
reduction of difference from the RBS solution.

• β indicates the relevance of passenger delay in the
optimisation,

• γ indicates the relevance of flight delay in the optimisa-
tion

Finally, we want to compute the different Pareto solutions
to provide an a posteriori articulation of preferences; but
a systematic variation of weights does not necessarily en-
sures an even distribution of Pareto optimal points and an
accurate complete representation of the Pareto optimal set
[18]. One way to improve this consists in using an objective
function transformation method, being the upper-lower-bound
approach the most robust one [19]. With this method, instead
of using Fi(x), the objectives are transformed as:

F trans
i =

Fi(x)− F 0
i

Fmax
i − F 0

i

(8)

with F 0
i =min{Fi(x)|x ∈ X} (being X the feasible design

space of the problem) and Fmax
i =max{Fi(x)}. This ap-

proach, referred to as normalisation, generally leads to F trans
i

ranging between zero and one, depending on the accuracy
and method with which Fmax

i and F 0
i are determined. As

described in [19], the best approach, and the one used here,
is to select Fmax

i as the Pareto maximum by defining Fmax
i

such that Fmax
i = max1≤j≤kFi(x

∗
j ), where x∗j is the point

that minimises the jth objective function.
In our case the transformation will be:

Obj(α, β, γ) = α
DRBS −D0

RBS

Dmax
RBS −D0

RBS

+β
DPAX −D0

PAX

Dmax
PAX −D0

PAX

+ γ
DFlight −D0

Flight

Dmax
Flight −D0

Flight

(9)

V. FAIRNESS VS. EFFICIENCY TRADE-OFF

The trade-off between fairness (or equity) and efficiency
has been studied by several researchers in the past years. For
example, Bertsimas et al. aim to balance efficiency and fairness
in the context of resource allocation [10]. They identify the
notion of α-fairness, which allows the decision maker to trade
off efficiency for fairness by means of a single parameter. In
[10], they introduce the concept of price of fairness as the
efficiency loss due to the increment of fairness and price of
efficiency as the fairness loss due to the increment in efficiency
in the system. We define similar concepts in this study.

A. Price of fairness

First, we introduce the concept of efficiency as the minimi-
sation of the delay for flights and passengers. We define:

• ObjPAX(α, β, γ) the value of the total delay of passen-
gers for any given value of α, β and γ, which corresponds
to the DPAX term of Equation (7). Its optimum value is
obtained for β = 1, and is noted OptPAX ,

• ObjFlight(α, β, γ) the value of the total delay of flights
for any given value of α, β and γ, which corresponds



to the DFlight term of Equation (7). Its optimum value
OptFlight is obtained for γ = 1.

Following the approach defined in [10] we define the price
of fairness for flights and for passengers as the percentage of
efficiency loss due to the consideration in the optimisation of
fairness, i.e., of the DRBS by increasing the value of α:

POFFlight(α, β, γ) =
OptFlight −ObjFlight(α, β, γ)

OptFlight
(10)

POFPAX(α, β, γ) =
OptPAX −ObjPAX(α, β, γ)

OptPAX
(11)

Note that, the best outcomes possible for passengers (β = 1,
which implies α = 0, γ = 0) and for flights (γ = 1, which
implies α = 0 and β = 0) correspond to a respective zero
price of fairness.

B. Price of efficiency

We now define ObjFair(α, β, γ) as the value of the devia-
tion from RBS for all flights for any given value of α, β and
γ; its optimum value OptFair = 0 is obtained for α = 1. This
corresponds to the DRBS term of Equation (7).

The fairness metric we adopt in this work is the deviation
from OptFair. It is minimum for the α-fair allocation cor-
responding to α = 1, and maximum for α = 0. As more
emphasis is put on fairness (e.g., by selecting a higher value
of α), the maximum deviation from RBS is likely to decrease.
The fairness gain is now the difference between the fairness
metric evaluated at α = 1 and the general fairness metric.
Following [10], we then call the fairness loss relative to the
minimum value of the fairness metric as the price of efficiency,
but normalised it with respect to its maximum value (since its
minimum value is zero), that is:

POE(α, β, γ) =
|OptFair| − |ObjFair(α, β, γ)|

|Max(ObjFair)|
(12)

VI. PROBLEM DESCRIPTION

The demand at Paris CDG airport on September 12th,
2014 has been considered for the simulations; it was a busy
Friday without any major disruption. The morning traffic,
between 5.00 GMT and 11.00 GMT, is analysed. For the
traffic scheduled, data from EUROCONTROL Demand Data
Repository 2 (DDR2) [20] have been used. All details of the
problem simulated here can be found in [6]; next comes a
summary of the main hypothesis.

During the 6 hours of study, the total number of aircraft
scheduled to arrive at CDG is 285. Considering the demand
data and historic regulations at CDG, an ATFM regulation
between 6.00 GMT and 8.00 GMT is modelled. A nominal
capacity of 80 arrivals per hour is considered when no regula-
tion is applied, and the regulated capacity is set to 40, which
is a possible value of capacity during regulated periods at
CGC as shown in the DDR2 dataset [20]. For this pre-tactical
optimisation, slot windows of 15 minutes are considered, i.e.,
20 (nominal) or 10 (regulated) aircraft every 15 minutes.

For each flight, the type of aircraft has been considered and
the number of passengers in each flight has been estimated

TABLE I
PARETO MAX AND MIN OF EACH PARAMETER IN [MIN]

UTOPIA POINT PARETO MAXIMUM

ObjFair ObjFlight ObjPAX

α = 1 0 3774.8 589102
β = 1 2601 3788.4 239594
γ = 1 2057 2553.4 446760

as a function of the maximum capacity of the aircraft. A
triangular distribution has been used to allocate passengers
between 60 and 95% of the maximum capacity, with the peak
of the distribution at 85%, which is considered as the target
average load factor.

As mentioned in Section III-B, the propagation of passenger
delay, due to missed connections at the hub, has been modelled
by simulating the number of connecting passengers on inbound
flights and the waiting time at the hub, if the connections
are missed, until another flight to their final destination is
available. These data are based on the statistical analysis
of a day of itineraries at the hub from individual passen-
gers’ itineraries developed in SESAR WP-E ComplexityCost
project [21], [22]. The obtained data correspond to the pa-
rameter PAXconnecPropagDelay(f, t) in Equation (5). This
passenger allocation process leads to a total of 39, 820 arrival
passengers, from which 8, 620 are connecting to following
flights (21.6% of arrival passengers) and a total of 39, 671
departure passengers, during the 6-hour study. Note thus that
here, all passenger information needed for the optimisation
process is considered to be available.

Finally, to model the reactionary delay, scheduled
turnaround times and minimum times required to do the
turnaround process have been computed for each flight based
on statistic data at CDG for different types of aircraft.

VII. RESULTS

We calculate the Pareto optimal points needed for compu-
tation of the Pareto maximum points required in Equation (9).
These optimal points are defined as the points that minimise
each objective, that is, α = 1 for ObjFair, β = 1 for ObjPAX

and γ = 1 for ObjFlight.
The lightly shaded boxes in Table I indicate the maximum

value of an objective, when this objective is evaluated at each
of the three points, i.e., the Pareto maximum. The darker boxes
indicate the minimum of each function, i.e., the utopia point.

A. Flight and passenger trade-off

We first study the trade-off between PAX and flight delays
when no fairness is considered (α = 0). Figure 2 confirms that
if no optimisation of passenger delay is done (i.e. γ = 1), the
minimum value for the flight delay would be 2553min. By
reducing the value of γ and introducing some optimisation of
passenger delay (increasing β), the flight delay is first very
flat: you can decrease ObjPAX from 446 760min to around
320 000min (around 28% of decrease) at hardly any cost
for Objflight (increase under 2%). After this point, further
reducing passenger delay comes at high cost for flight delay.
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Fig. 3. Minimising flight delay minimising deviation from RBS (β = 0)

B. Fairness trade-off

Next, we study the trade-off between fairness and delay
minimisation (flights and passengers). Figure 3 shows that the
minimum flight total delay is once again located at 2553min
for γ = 1. If some fairness is introduced by increasing the
value of α, deviation from the RBS solution can decrease from
2057min to 1384min (33% decrease) at a cost of increasing
the flight delay by less than 4%.

When looking at the trade-off between fairness and minimis-
ing passenger delay, Figure 4 shows that increasing fairness
costs more at passenger level than at flight level. Decreasing
the deviation with RBS from 2601min to 1796min (31%
decrease) implies a 11% increase of passenger delay. This may
be explained by the fact that fairness is a flight-centric metric.

Figure 5 now shows trade-offs when all parameters α, β and
γ vary. As previously commented, it is possible to improve the
fairness, reducing the deviation to RBS solution until around
1500min, at a relatively low cost for flight and even passenger
delays. From that value on, the contours of RBS deviation get
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Fig. 5. Contour of RBS deviation [min]. Black cross corresponds to the zero
value of DRBS . Red circle corresponds to the utopia point.

more separated, implying much higher delay for improvement
of fairness. The utopia point, corresponding to all objectives
reaching their minimum value at the same point, and the case
where RBS is only performed (maximum fairnesss) are also
represented. See also how the trade-off between passenger and
flight total delay is relativelly flat, indicating that it is possible
to improve one with relatively small impact on the other (e.g.
improving passenger delay from 450 000min of delay to less
than 350 000min without impacting flight delay (being close
to the utopia point), while maintaining a deviation from RBS
of 2000min).

C. Price of fairness

Figure 6 presents the evolution of price of fairness for flights
(POFFlight) as a function of α, for different values of β
(β represents the importance given to passenger total delay).
Recall that γ can then be computed using α+β+γ = 1. This
representation allows decision makers to quantify the impact
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Fig. 6. Price of fairness for Flights as a function of α (reference value of 0
is obtained for α = 0 and β = 0, OptFlight = 2553.4min)

of including fairness on flight delay performance, for different
considerations of passenger total delay.

First, we focus on the case β = 0, i.e., the optimisation does
not consider passenger delay as part of the objective function,
and only optimises total flight delay and deviation with respect
to RBS. This allows values of α between 0 and 1, with γ =
1 − α. For α = 0, a maximum POFFlight is achieved and
equal to 0, i.e., there is no loss on flight delay efficiency. As
α increases, the POFFlight decreases. However, the graph
allows us to see that the evolution is very flat, pointing to
the fact that we can gain in fairness (using higher α) with
relatively small loss in efficiency (total flight delays). When
α reaches a value close to 0.6, the POFFlight ≈ −0.1, i.e.,
there is an increment in 10% of the total flight delay. The
cost of increasing fairness from that point on is very high,
rapidly reducing the performance of total flight delay. To see
how much fairness is gained by increasing α, we will then
have to check the price of efficiency in Section VII-D.

When increasing β up to 0.6, the flight performances are
initially not affected (for low α), but then they degrade faster at
lower values of α. For example, with β = 0.6, the performance
of flight total delay already starts decreasing fast for α ≥ 0.2,
when that point was only reached at α ≥ 0.6 for β = 0. This
is consistent with the fact that with β = 0.6 and α = 0.2,
γ is already set at only 0.2 and hence the low importance of
total flight delay on the optimisation. Finally, in the extreme
case of β = 1, only total passenger delay is optimised and
therefore, the maximum value of α and γ that can be used is
zero. This leads to the smallest POFFlight, which is close to
50% lower than the best performance possible.

Figure 7 shows the price of fairness (POFPAX ) from a
passenger total delay perspective. In this case, as expected, a
lower value of β leads to lower performance as more focus
is given to flights. Note also, that compared to POFFlight,
passenger performances are more significantly affected by
the selected value of β: the performance from a passenger
perspective can deteriorate up to nearly 150%, while for
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Fig. 7. Price of fairness for PAX as a function of α (reference value of 0 is
obtained for α = 0 and β = 1, OptPAX = 239 594min)

flights, the total delay would only increase up to around an
extra 50% with respect to the best optimisation for flight.
This means that greater savings can be done for passengers,
but also, that they are more susceptible to experience worse
performances. We could expect this, since fairness maintains
flights close to their RBS, which is centred on minimising
flight arrival delay.

As shown in Figure 7, for α = 0, all values of β > 0
show an initial reduction of performance. Increment in α
does not impact the passenger performance significantly (flat
POFPAX ) until a point when performance is clearly further
reduced. These points occur at similar values of α as with
POFFlight, which indicates that a reduction of flight delay
might lead to a reduction of passenger delay. Since the
POFPAX captures the reduction on passenger delay perfor-
mance and the fairness is defined based on flights, in some
cases, for high values of β, an increment in α might lead to
slightly better performances. Note also that, in general, the
evolution of POFPAX as a function of α shows more noise
than in the flight metric case (POFFlight).

D. Price of efficiency

In the previous section, we have discussed how changes in
fairness in the objective function impact the performance, i.e.
the amount of delay that is obtained. The price of efficiency
now helps the decision maker to understand the impact of α
in the fairness of the solution. Remember that as defined in
Equation (12), the POE has been defined as the ratio of the
deviation of the fairness obtained by the optimisation, with
respect to the optimum value of fairness, and the maximum
deviation from fairness that can be expected (i.e. with α = 0).
With this definition, POE = 0 means that the solution
provides a deviation of zero with respect to RBS while
POE = −1 indicates the maximum deviation possible.

Figure 8 shows that this worst performance is obtained when
α = 0 and β = 1 and the optimisation is only focusing
on total passenger delay. From then, when α increases, the
deviation from RBS decreases and POE increases. Note how



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

P
O

E

 = 0

 = 0,2

 = 0.4

 = 0.6

 = 0.8

 = 1

Fig. 8. POE as a function of α (reference value of −1 is obtained for
α = 0 and β = 1, Max|ObjFair| = 2601min, recall that OptFair = 0 is
obtained for α = 1)
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Fig. 9. POF for Flights vs POF for PAX
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Fig. 10. POE vs POF for flights

the evolution of POE as a function of α is very similar for
all possible β ≥ 0.6. They start with a POE ≈ −0.8 and
increase to POE ≈ −0.4 for α ≤ α ≤ 0.5. For α ≥ 0.5 the
deviation of POE decreases rapidly. This indicates, that the
deviation with respect to RBS is initially relatively large but
get reduced quickly once α ≥ 0.5.

E. Discussion of results

In the previous sections, the POF for flights and passengers
and the POE have been presented. However, when a decision
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Fig. 11. POE vs POF for PAX

maker needs to select the parameters for the optimisation, i.e.,
selecting the weights of α, β and γ, the trade-off between these
three parameters needs to be considered at the same time.

Figure 9 represents the trade-off between POFFlight and
POFPAX . See how when β is low, higher importance is given
to the flights and therefore worse performances are obtained
for passengers. Also note how, in general, the majority of
solutions provide a better POFFlight than POFPAX (only
solutions where β ≥ 0.6 provide lower performance for
POFFlight). This shows once again how sensible passenger
delay is to the selection of parameters in the optimisation.
Also, the fact that fairness has been defined with respect to
a flight-centric metric might improve the robustness of flight
performances as α changes. A modeller could choose β ≈ 0.6
and α ≈ 0.3 to obtain a similar reduction on performance for
flights and passengers delays. Note that however, this implies
a reduction of approximately 20% of both performances.
Figure 9 also shows that for β ≤ 0.4, different α can improve
the passenger and the flight performance at the same time.

As mentioned before, Figure 9 describes the impact of the
optimisation parameters on the performance, but in order to
quantify the impact on fairness we need to refer to Figures 10
and 11. These figures show trade-offs between gain in fairness
(POE) and gain in efficiency (POF ) for flights and passen-
gers respectively. Figure 10 shows that for most solutions,
POE ≤ POFFlight. As for α ≤ 0.5, we can obtain gains
in fairness with limited impact on flight delay performance.
It is interesting to notice how if the system is optimised for
flight, values of POE ≤ −0.5 are reached very quickly. This
confirms was what observed in Figure 5: getting close to RBS
solution comes at a high price to the performances of delay.
Figure 10 shows that for values of β < 0.6, the trade-off
between price of efficiency and price of fairness justifies a
small reduction of efficiency (less than 10%) for a significant
gain in fairness (reduction from 80% to 50%).

Finally, when looking at the trade-off between POFPAX

and POE for the specific case studied here, we can observe
that for α ≤ 0.5 is it possible to increase the value of
POE, i.e. getting solutions closer to RBS, with small impact
on passenger total delay performance. However, see again
how passenger are more sensible to the optimisation, as it



is possible to find solutions where the reduction of POE is
lower than the reduction of performance in passenger (e.g., all
solutions when β = 0). Also, as with flights, when α ≥ 0.5 the
performance of delay decreases much faster for passengers.

The different figures show that β ≤ 0.2 reduces the
performance of passengers significantly and that for α ≤ 0.5
the gain in performance is very small at a high price of
fairness, that is, increasing α over 0.5 leads to significant
reduction of performances for both flights and passengers.

With this analysis, it is clear that a solution with α ≥ 0.5
represents a high cost on performance. Therefore, a mod-
eller wanting to balance the different objectives could select
α ≤ 0.5. When only looking at the performance of flights and
passengers, values of β = 0.6 and α = 0.3, leading to γ = 0.1
seem reasonable. This decreases delay performance of around
20% for flights and passengers with respect to their optimum,
but leads to a deviation from RBS of 60% with respect to
the highest possible deviation. To improve fairness, one could
select a higher value of α. For example, with α = 0.4 and
β = 0.4, the reduction of flight total delay performance is less
than 10% and the deviation from RBS improves to 50%, but
at the expenses of reducing the performance of passengers by
approximately 35%.

VIII. CONCLUSIONS AND FURTHER WORK

In this paper, arrival delay due to ATFM regulations has
been assigned as the optimisation of a multi-objective problem
considering total delay for flights (including further reac-
tionary delay), total delay for passengers (considering potential
missed connections) and fairness in the assignment of delay
from a flight perspective (estimated as the deviation with
respect to RBS). A trade-off analysis is presented for these
metrics allowing an a posteriori articulation of preferences.

In order to help decision makers on the selection of the
parameters for the optimiser, price of fairness, relative loss
of efficiency for flights and passengers due to increase in
fairness, and price of efficiency, relative loss of fairness
due to increase of efficiency, have been presented. Results
show the importance of considering the different stakeholders
when optimising the system. Significant improvements can
be achieved for one stakeholder (e.g. passenger total delay)
without significantly reducing the performance of another.
This however, leads to changes on the fairness of solution
by diverging more from RBS.

A modeller trying to optimise the system needs to consider
the three objectives at the same time, for this reason, future
work could consider how to present these trade-offs in a
simplified manner. Note that the reduction on performance
due to the inclusion of fairness has been computed, but we
could have also defined the variation of performance for one
stakeholder (flight or passenger) as a function of the other.
These concepts can be explored as part of future work. Also,
here fairness has been defined as the total deviation from
RBS, but information on how this deviation is distributed
among flights or airlines could be considered and studied too.
Additional airports and regulations should also be modelled

to analyse the trade-offs between flight and passenger delay
and fairness in a more general manner. Finally, collabora-
tive mechanisms to obtain the required information for the
optimisation process (passengers number, connection times,
etc.) should be considered in order to facilitate the model
operational implementation.
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