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We have developed a modular pipeline (Figure 1) for analysis of metagenomic Taxonomic data could be used to split patients into disease and healthy groups

sequence data. The pipeline is undergoing validation using read data from a recent (Figure 4). IS r——
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Figure 4. Principal component analysis of genus-level data generated from MetaPhlAn 2.0
outputs. After removal of three outliers from the liver-cirrhosis group, patients could be separated

based on health status. (L) Scores plot; (R) loadings plot.
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Figure 1. IMP: Imperial Metagenomics Pipeline. TrimGalore was used to quality trim data. Reads were filtered into
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human, viral, parasite, fungi, plant and bacterial/archaeal ‘bins’ using BWA [2] to map the reads against reference
Figure 5. Assignment of

reads from samples to
(a) plant, (b) fungal or
(c) parasite genomes. It
is notable that several
samples have no fungal
DNA associated with
them.

genomes, including the human genome, all available viral, protozoan and helminth, and plant genomes, and a

g

selection of gut-associated fungi chosen based on the availability of whole genomes of species listed by [3]. Reads

Proportion (%) plant reads associated with different taxa
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not assigned to any of the aforementioned groups were assumed to be of archaeal/bacterial origin. For the
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archaeal/bacterial data, taxonomic affiliations and abundance data were determined using MetaPhlAn 2.0 [4].

B Sorghum bicolor
O Triticum aestivum

B Physcomitrella patens Subsp.
B Populus trichocarpa

@ Prunus persica

B Selaginella moellendorffii

[ Setaria italica

O Solanum lycopersicum

O Solanum tuberosum

O Cyanidioschyzon merolae strain 10D @ Oryza glaberrima

B Glycine max B Oryza glumaepatula

B Hordeum vulgare @ Oryza meridionalis

B Medicago truncatula 8 Oryza nivara

B Musa acuminata O Oryza punctata

O Oryza barthii B Oryza sativa Indica Group

O Oryza brachyantha B Oryza sativa Japonica Group

B Aegilops tauschii

O Amborella trichopoda

B Arabidopsis lyrata

B Arabidopsis thaliana

B Brachypodium distachyon
@ Brassica rapa

B Chlamydomonas reinhardtii

=gt = N H
00 1 HH B
i H H H o O
] | - ul il
[l u H
]
u
1 H
[l
H
- i

IR ER P I RN LR T RARB IR RAR TN RAARARAA IS VTIOI VO BE0DINBUBA - BeU0IBBUBO L Fi R A PP PR R aRUs  FEPO TN NP RABRINRAGRB RARAANRGRAR  §SVIINNIIN-B:003I00000 80U URB  Fi PR o R Pi hirsBaBadBRaiBsNGRaaNNal

20492020060 70262300000208020000¢07086260602090290008002070¢8000020269¢290299920%998999920222229542923232348348492832328328282923238383829283833328228292328582823298348338445232%923323282523529834383343

HD individuals LD individuals

B cCandida parapsilosis B Malassezia restricta CBS 7877

B Candida tropicalis MYA-3404 E Meyerozyma guilliermondii ATCC 6260
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Bacterial/archaeal reads were assembled into contigs using IDBA-UD [5] in two phases — firstly on a per-sample
basis, then using a pool of reads which remained unassembled following the first round of assembly. Putative genes

were determined using MetaGeneMark [6,7], then clustered at the protein level using UCLUST 7.0.1090 [8] to
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create a non-redundant gene catalog. Functional classification of gene clusters was carried out by searching cluster
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centroids against a database of KEGG proteins (release 2015-05-1) with USEARCH [8], and functional domains/
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pathway associations using InterProScan [9].
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Sequence data for 83 healthy controls and 98 patients were processed (Figure 2).
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Human data were not analysed further because of ethical considerations. Plant, fungal

Proportion (%) fungal reads associated with different taxa
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and parasite data are currently presented on a presence/absence basis (Figure 5), but
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the modular nature of the pipeline means analyses of these datasets can be easily
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expanded in the future. Similarly, viral data are given on a presence/absence basis but
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are not presented graphically due to the complexity of the data (3092 virus groups

60

represented across the patient samples).
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Figure 2. Representation of higher
taxa in sequence data.
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Raw read pairs Trimmed read pairs

Range 12665510 — 109952378 10447268 — 101564583

Proportion (%) reads associated with higher taxa

Median 25158585 21806931

Selection of tools for use in the pipeline was made following assessment of numerous options; for

o

Average £ SD 29985569 + 15092012 26139041 + 13597198
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example, a number of de-novo assemblers were assessed on both raw assembly statistics and a
measure of potentially chimeric contigs produced, based upon the number of genera the reads

associated with each contig originated from (Figure 6).

MetaPhlAn 2.0 was used to generate abundance data (Figure 3).

Assembler Contigs N50 (bp) Max.length Total length MetaGeneMark MetaGeneMark

(bp) (bp) predictions N50
- B Healthy Velvet (k=61) 30086 1437 158607 38070000 55829 741
L I Liver disease MetaVelvet 30646 1405 158607 38220000 56446 732
80 71 . i} (k=61,Training=Florinash)
T MetaVelvet 30646 1405 158607 38220000 56446 732
L (k=61, Training=HumanGut)
AN Figure 3. MetaPhlAn 2.0 analyses of IDBA-UD 57700 2859 250066 104300000 185774 774
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I metagenomic data from [1] using Genus contributing >5% of reads to contig
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