
Future Generation Computer Systems 166 (2025) 107628

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Automated generation of deployment descriptors for managing
microservices-based applications in the cloud to edge continuum
James DesLauriers a,∗, Jozsef Kovacs a,b, Tamas Kiss a, André Stork c, Sebastian Pena Serna d,
Amjad Ullah a,e

a Centre for Parallel Computing, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
b Institute for Computer Science and Control (SZTAKI), Hungarian Research Network (HUN-REN), Kende u. 13-17, Budapest, 1111, Hungary
c Fraunhofer Institute for Computer Graphics Research IGD, Darmstadt, 64283, Germany
d clesgo GmbH, Stuttgart, 70197, Germany
e School of Computing, Engineering & the Built Environment, Edinburgh Napier University, Edinburgh, UK

A R T I C L E I N F O

Keywords:
Cloud
Edge
IoT
Descriptors
Microservice
Orchestration
Deployment
Digital twins
Industry

A B S T R A C T

With the emergence of Internet of Things (IoT) devices collecting large amounts of data at the edges of
the network, a new generation of hyper-distributed applications is emerging, spanning cloud, fog, and edge
computing resources. The automated deployment and management of such applications requires orchestration
tools that take a deployment descriptor (e.g. Kubernetes manifest, Helm chart or TOSCA) as input, and deploy
and manage the execution of applications at run-time. While most deployment descriptors are prepared by a
single person or organisation at one specific time, there are notable scenarios where such descriptors need to
be created collaboratively by different roles or organisations, and at different times of the application’s life
cycle. An example of this scenario is the modular development of digital twins, composed of the basic building
blocks of data, model and algorithm. Each of these building blocks can be created independently from each
other, by different individuals or companies, at different times. The challenge here is to compose and build a
deployment descriptor from these individual components automatically. This paper presents a novel solution to
automate the collaborative composition and generation of deployment descriptors for distributed applications
within the cloud-to-edge continuum. The implemented solution has been prototyped in over 25 industrial use
cases within the DIGITbrain project, one of which is described in the paper as a representative example.
1. Introduction

The emergence of cloud computing, followed by the more recent
rise of Internet of Things (IoT) devices has reshaped the way data can
be collected and analysed. IoT devices collect huge amounts of data
at the edges of the network, close to the data sources. However, the
processing and storage capability of such devices is typically limited
or non-existent. As a result, captured data is sent to more powerful
computing environments for further processing, such as the cloud.
Sending all that data to the cloud, though, introduces latency that may
not be suitable in application scenarios where fast response time is
required (e.g. in some manufacturing settings where quick response to
certain machine conditions is essential to initiate changes or shut down
the operation to avoid larger losses). To overcome this limitation, edge
and fog computing have recently appeared as new paradigms, where
computing capacity is placed closer to IoT devices and data sources.

∗ Corresponding author.
E-mail address: j.deslauriers@westminster.ac.uk (J. DesLauriers).

This multi-layered setup, which includes IoT devices, potentially
distributed edge and fog computing layers, and cloud computing fa-
cilities spanning multiple cloud sites and providers, offers new oppor-
tunities to process large amounts of data, but raises the complexity
to develop, deploy and manage such applications. Data processing
applications in this cloud-to-edge computing continuum are typically
composed of a large number of interconnected microservices that need
to be deployed, executed and in some scenarios even migrated between
various layers and computing facilities.

In the last decade, several orchestration solutions have emerged
to support the automated deployment and run-time management of
microservices-based applications, first concentrating on single and
multi-clouds and more recently targeting the entire cloud-to-edge con-
tinuum. These orchestrators typically require some form of deployment
descriptor as input, detailing the application topology and the various
https://doi.org/10.1016/j.future.2024.107628
Received 13 July 2024; Received in revised form 12 October 2024; Accepted 22 N
vailable online 5 December 2024
167-739X/© 2024 The Authors. Published by Elsevier B.V. This is an open access a
ovember 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
mailto:j.deslauriers@westminster.ac.uk
https://doi.org/10.1016/j.future.2024.107628
https://doi.org/10.1016/j.future.2024.107628
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.107628&domain=pdf
http://creativecommons.org/licenses/by/4.0/

J. DesLauriers et al.

o
—
a
a
s

(
c
T
c
c
M
A
c

t
c
w

r

t
A
o
c
b
o
M
c
a
b
s
w
u

A
t

c

g
p
o

r

a

o
n
d
g
a

e
e
f
T

d
O
f

d
t

Future Generation Computer Systems 166 (2025) 107628
policies (e.g. scaling or security) that govern the deployment and run-
time operation of the application. The descriptors can be specific to
the cloud technology that is used (e.g. Amazon’s Cloud Formation
Template [1]), specific to the actual orchestrator tool (e.g. Helm Charts
r manifests in case of Kubernetes [2]), or more generic (e.g. TOSCA
 Topology and Orchestration Specification for Cloud Applications —

n OASIS standard [3]). While such deployment descriptors provide
 relatively high-level abstraction for specialised developers, some
cenarios require an even higher-level and more modular approach.

One example of such a scenario is provided by the European DIGIT-
brain project [4]. DIGITbrain develops a marketplace (called the Digital
Agora) and an associated execution platform for manufacturing SMEs
small and medium-sized enterprises) where digital twin applications
an be built and executed in the cloud-to-edge computing continuum.
he digital twins, representing the behaviour of manufacturing ma-
hines/lines (or Industrial Products, as referred to in the project) are
omposed of lower-level building blocks (or Assets), such as Data (D),
odel (M), and Algorithm (A). Each digital twin is composed of these
ssets, building a so-called DMA Tuple. Additionally, each Algorithm
an include multiple Microservices (Ms) that are independently built

and can be executed on any suitable and appropriate compute device in
he cloud-to-edge continuum. (In this article, following the DIGITbrain
onvention, names of DIGITbrain Assets (D, M, A, Ms) will always start
ith capital letters).

Two key features of the DIGITbrain concept are modularity and
eusability. For such reasons, all Assets can be built (more or less)

independently from one another, potentially by different providers,
and then composed to a DMA Tuple representing the digital twin.
At the end of this composition the DMA Tuple is described with a
complex deployment descriptor that refers to multiple Microservices,
their input and output data (typically including raw data coming from
the factory floor) and a Model file (e.g. simulation model or trained AI
model) describing the behaviour of the manufacturing machine/line.
Microservices need to be deployed on a heterogeneous and distributed
set of computing resources along the cloud to edge continuum, as
defined in the final deployment descriptor.

The specific problem in the type of scenario described above is
he authoring and composition of the deployment descriptor. Since
ssets in DIGITbrain are authored independently and put together
nly in the final phase by the person composing the DMA Tuple, the
reation of the final deployment descriptor needs to be automatic,
ased on information provided by the various Asset providers. More-
ver, Assets are usually provided by experts of different profiles. While
icroservices may be built by developers with more understanding of

ontainer technologies or even clouds or edge/fog computing, Models
re typically created by simulation or AI experts and Data is managed
y IT professionals close to the actual factory. Many of these actors may
truggle with creating the deployment descriptor directly, especially
hen considering future dependencies with other — at that stage
nknown — components of the DMA Tuple.

To overcome this problem, DIGITbrain adopts an approach where
ssets are described by a rich set of descriptive metadata provided by

he Asset developers as key/value pairs, followed by the automated
creation of the deployment descriptor during the DMA composition
phase. Asset developers need to provide key/value pairs that describe
their Assets both for the human DMA Composer and also for the
automated mechanism that will generate the deployment descriptor.
Please note, that assuring the compatibility of the various Assets when
composing a DMA Tuple is a complex task which requires the semantic
understanding of these Assets. Currently, DIGITbrain leaves it to the
human composer to understand and assess this compatibility, based on
the provided metadata. Therefore, the automated deployment descrip-
tor generation is not considering this semantic compatibility but only
concentrates on the technical creation and usability of the generated
outcome.
2
The rest of this paper describes how deployment descriptors are
generated and composed automatically from key/value metadata pro-
vided by Asset providers in DIGITbrain. The metadata is translated
and composed into a TOSCA-based Application Description Template
(ADT) [5] that is consumed by a cloud-to-edge application-level orches-
trator called MiCADO [6]. The resulting deployment descriptor (ADT)
is published in the DIGITbrain Digital Agora and can be executed by the
manufacturing company that wishes to simulate and analyse its manu-
facturing processes. While this article discusses concrete technologies,
such as a specifically defined metadata structure, TOSCA and MiCADO,
the solution itself is generic. The deployment descriptor generator,
called ADT Generator, uses a highly flexible template-based structure
that can be easily tailored or modified to other metadata formats or
desired outputs.

This paper introduces a novel concept and solution for automati-
ally composing and generating deployment descriptors for the cloud-

to-edge continuum from a rich set of metadata. According to our
knowledge, this is the first attempt to automate deployment descriptor
eneration while allowing for the collaboration of multiple actors, with
otentially different technical backgrounds. The main contributions of
ur work are as follows.

• Demonstrate a generic and flexible approach to generating valid
deployment descriptors from key–value pairs.

• Enable the composition of deployment descriptors for different
tools with a focus on interoperability.

• Support the collaborative development of microservices applica-
tions, where different actors can publish different components of
an application at different times.

The rest of this paper is structured as follows. Section 2 presents
elated work. Section 3 introduces background and related technologies

by providing a short introduction to the DIGITbrain project, its meta-
data structure and the MiCADO cloud-to-edge orchestrator. Section 4
describes the ADT Generator and explains how the deployment descrip-
tor is composed and created from the provided metadata. Section 5
presents an application example where an ADT is composed, generated
nd executed on cloud and edge computing resources. Finally, Section 6

concludes the paper and outlines future research directions.

2. Related work

Several solutions are available that enable the automatic generation
f deployment descriptors, however, none support the collaborative
ature of the kind of use case described in Section 1. This section
iscusses the various existing solutions in this space. The solutions are
rouped depending on the component or abstraction level which the
utomatic generation is initiated from.

From GUI. One approach to producing deployment descriptors is with
asy-to-use graphical interfaces that automate aspects of descriptor gen-
ration. For example, Eclipse Winery [7] is a web-based environment
or graphically modelling applications and subsequently generating
OSCA topologies and plans managing them. Similarly, TOSCA Stu-

dio [8] is a model-driven tool that allows modellers to graphically
esign cloud applications to produce TOSCA models that conform to
CCI standards. TOSCA Studio also provides a built-in orchestration

or deploying and managing applications at runtime.

From architectural models. Several research works facilitate the auto-
matic generation of deployment descriptors from different architec-
tural models. For example, Yussupov et al. [9] proposed generating
eployment descriptors from BPMN (Business Process Model and No-
ation) [10] and TOSCA to model orchestration of functions and their

automatic deployment. This solution, however, requires modellers to
produce two different models. Firstly, to produce a generic BPMN-
based model representing the function orchestrations, which could
be transformed into a provider-specific deployment descriptor model

J. DesLauriers et al.

m
a

m
t
t
t
t
g

T
a

a
t

t
e

c
t
s

m
f
o

e

o
d
o
S
w
h

s
(
s
i
a

t

t
a

u

p
p
c
p
t
b
i

a

Future Generation Computer Systems 166 (2025) 107628
(e.g., ASL model for AWS). Secondly, to produce a TOSCA model to
define a technology-agnostic function orchestration deployment model,
which can be executed (i.e., deployed and orchestrated) by any TOSCA-
compliant orchestrator. In the same realm, the authors in [11] proposed
Caml2Tosca — a tool for automated generation of the TOSCA deploy-

ent model from UML — to reduce the gap and combine the notion of
rchitecture modelling and application provisioning.

From TOSCA. The authors in [12–14] proposed solutions for the auto-
atic generation of executable management workflows from declara-

ive deployment models such as TOSCA. These solutions automatically
ransform TOSCA models into multiple executable BPMN-based plans
hat are provided as input to the orchestration engine responsible for
he provisioning and holistic management of applications in hetero-
eneous environments. TORCH [15] is the underlying orchestration

solution that converts TOSCA models into the BPMN plans.
Different to the aforementioned proposals, some solutions con-

vert TOSCA to different resource-level orchestrator-specific templates.
For example, Puccini [16] is an open-source front-end that translates

OSCA-based deployment models to a middle language called Clout
nd then Clout to an orchestrator-specific language (e.g., Kubernetes

manifests), before being piped into the specific orchestration engine
(e.g., Kubernetes CLI). The authors in [17] aim to separate appli-
cation components from their hosting containers. For this purpose,
their solution automatically generates deployable artefacts directly
from TOSCA-based specifications. The artefact in this case could be
a Docker compose file that packages both the application components
and their solution-specific elements responsible for the component-level
management. The artefact is then directly deployable using a Docker-
based orchestration engine such as Swarm or Kubernetes. Similarly,
the authors in [18] proposed TOSCA Light aiming to bridge the gap
between the standard TOSCA model and production-ready deployment
technologies such as Terraform and Kubernetes. More specifically,
TOSCA Light transforms the TOSCA model to a corresponding rep-
resentation that is compliant with the EDMM (Essential Deployment
Metamodel) [19] — a set of core deployment modelling entities that
re understandable by the vast majority of deployment automation
echnologies.

From application components. The AUTOGENIC [20] initiative aims
o decouple the development of microservices from the underlying
nvironment-specific runtime configurations. For this purpose, the AU-

TOGENIC solution automatically transforms the specific settings of mi-
roservices — provided by developers through a configuration model —
o TOSCA-based dynamic and self-configurable microservices, targeting
pecific runtime environments.

Similarly, the SWITCH workbench [21], developed within the scope
of a European research project with the same name SWITCH, provides
an abstraction interface and infrastructure environment that facilitate
the specification and management of the life-cycle of time-critical cloud
applications. The various related aspects of application life-cycle man-
agement, such as user requirement specifications, application logic, and
time-critical constraints during an application’s deployment, execution
and runtime, are handled independently by the different subsystems of
the SWITCH workbench. To achieve the required integration between
the subsystems, SWITCH uses TOSCA as the underlying modelling
language to represent the information concepts provided by the parts
of the system. The final output acts as the deployment descriptor
used by one of the subsystems responsible for infrastructure planning,
provisioning, deployment and execution of applications.

Summary. To summarise, the discussed approaches are diverse in their
specificities. However, there is a common theme, i.e. the scope is
limited to the standalone nature of a single application, where a deploy-

ent descriptor is transformed from one modelling template to another
or a specific objective. In all cases, the components involved belong to

ne application, owned or managed by a single actor. In contrast, in this

3
paper, we follow an approach for marketplace-oriented collaborative
environments, where the application and the corresponding deploy-
ment descriptors are composed by combining multiple independent
components created at different times and belonging to different own-
rs. Such an environment raises specific challenges as the description

and specification of the independent elements and components need
to have the flexibility to support composition and substitution into
different deployment descriptors at later stages of the process.

There is a scarcity of research into the collaborative authoring
f application deployment descriptors. As such, it is not possible to
irectly compare the solution presented here to others; the contribution
f this paper is in fact the enablement of that collaborative authorship.
everal earlier projects are described in the following section and the
ork herein extends and improves the approaches developed there. We
ave been able to validate the effectiveness of this solution through its

successful application in the twenty-five real life use cases that feature
in the DIGITbrain project.

3. Background technologies

3.1. DIGITbrain and previous projects

The servitization of specialised software applications has been a
key driving factor in the software industry over the last two and half
decades. This effort was especially boosted by the introduction of the
ervice models: Infrastructure as a Service (IaaS), Platform as a Service
PaaS), and Software as a Service (SaaS). One of the pioneering SaaS
olutions was Salesforce’s Customer Relationship Management (CRM)
n 1999, followed by Amazon Web Services introduction of IaaS in 2002
nd Fotango’s launch of Zimki (first public PaaS) in 2005.

The European Commission also recognised this opportunity and
started to push this topic in the research funding, especially in the man-
ufacturing industry with the initiative ‘‘ICT Innovation for Manufac-
turing SMEs’’ (I4MS). The first I4MS projects (e.g. the CloudSME [22]
and CloudFlow [23] projects) were focused on the cloudification of
engineering applications like 3D modelling or 3D simulation for specific
use cases [24]. A next batch of I4MS projects (e.g. the CloudiFac-
uring [25] project) moved from the engineering to the production

domain, aiming to support the cloudification of software application
and the connection to factory processes and data. At this point in
time, it was recognised that the resulting cloudified solutions were
oo specific to the concrete use case and that reusability was limited
nd time consuming. Hence, the DIGITbrain project proposed a novel

approached by breaking down such cloudified solutions into building
blocks or modules that can be recombined or recomposed according to
the specific needs of the individual use case, maximising the reusability
and increasing the flexibility to support different scenarios.

DIGITbrain (‘‘Digital twins bringing agility and innovation to man-
facturing SMEs by empowering a network of DIHs with an integrated

digital platform that enables Manufacturing as a Service’’) is a research
roject funded by the European Commission’s H2020 Programme. The
rimary aim of the project is to extend the traditional digital twin
oncept towards the Digital Product Brain that steers the behaviour and
erformance of an Industrial Product (mechatronic system or manufac-
uring machine) by coalescing its physical and digital dimensions and
y memorising the occurred (physical and digital) events throughout
ts entire lifecycle.

DIGITbrain provides two major advances beyond the state of the
rt of digital twins. First, it enables constructing a digital twin from its

building blocks, such as Data, Model and Algorithm, offering potential
reusability of these Assets. Second, it supports the further analysis of
events that occur during the execution of a digital twin by collecting,
memorising and analysing these events and the specific conditions in
which they occur (e.g. under what conditions in the past did a certain
temperature exceed 100 degrees). The project aims to support digital

twin developers and end-user manufacturing companies to speed up

J. DesLauriers et al. Future Generation Computer Systems 166 (2025) 107628
Fig. 1. High-level structure of DIGITbrain Metadata.
the development process by reusing already existing building blocks, to
construct and execute digital twin applications from the convenience of
a high-level graphical user interface, and to enhance, inform and accel-
erate the decision-making process with intelligence based on historical
information collected over the lifecycle of the Industrial Product. As
a result, a better understanding of Industrial Products (manufacturing
lines) can be gained, leading to faster and more flexible reconfiguration
and adaptation of manufacturing facilities, and supporting the provi-
sioning of Manufacturing as a Service where the best manufacturing
facility can be found and tailored to the specific requirements of an
industrial customer on-demand.

3.2. DIGITbrain metadata structure

The novel deployment descriptor generation process that is de-
scribed in this paper is primarily related to the composition of digital
twins from already published Assets. This composition is made possible
and supported by a rich set of metadata published and stored within
the DIGITbrain Solution. Therefore, in this section a short overview
of the DIGITbrain metadata structure is provided. This metadata is
partially used by the ADT Generator during the automated process of
generating the deployment descriptor, and it is also utilised by the
human composer who creates the DMA Tuple and assures semantic
compatibility of the utilised Assets.

The DIGITbrain metadata specification (Fig. 1 provides a high-level
overview of the metadata structure while more details can be found
in [26]) describes ten different entities. Six of these are Assets that are
published and offered (potentially on a commercial basis) by providers
and applied in DMA Tuples created and utilised by the targeted manu-
facturing end users. The common characteristics of Assets is that these
are all created potentially independently from one another, keeping
reusability and commercialisation in mind. Assets are published in
a repository and can be found, selected and utilised by digital twin
developers to create executable DMA Tuples. The six DIGITbrain Assets
are the following [27]:

Microservice (Ms): A DIGITbrain Microservice is an executable
in a containerised form, provided as an Open Container Initiative
(OCI)-compliant container in a private or public container registry. Its
configuration can be specified by a Docker-Compose file or a Kuber-
netes manifest (the appropriate configuration needs to be included in
the metadata of the Ms). Microservices could have specific computa-
tional requirements (e.g. requires a GPU or must run on an edge node)
and can also have dependencies (e.g. requires some other Microservice
to be collocated on the same virtual machine).

Algorithm (A): An Algorithm is a combination of one or more
Microservices. At least one of the Microservices of an Algorithm eval-
uates the Model, while the others can do additional tasks, for example
4
map data from data sources into the Model, provide a proxy server
or a database server, implement file transfer etc. The metadata of an
Algorithm refers to all the Microservices it is composed of.

Model (M): A Model is a description of a certain behaviour of
an Industrial Product, according to given characteristics and opera-
tion conditions. Models are consumed as input files and evaluated
by Algorithms. The creation of a Model typically requires domain
specific knowledge related to the applied modelling technique- (e.g. AI,
reduced order modelling, co-simulation etc. [28]) and the Industrial
Product. The creation of a Model could be done either by editing a
description file (e.g. YAML or XML) or processing/analysing data or
simulation results to generate, derive or deduce a behaviour description
(e.g. trained AI model or reduced-ordered model). Models are intended
to be developed independently from the Algorithms, so that a given
Model can be potentially reused by different compatible Algorithms.

Data (D): Data, typically sensor data collected from the shop floor,
are essential to digital twins. Such Data are processed by the Algo-
rithms, based on the specific behaviours described by the Models. After
processing, the output of the digital twin also needs to be reported back
to the user or stored in an appropriate format and location. Therefore,
the digital twin needs to know the location, format and specific protocol
how data can be accessed. When referring to Data as an Asset in
DIGITbrain, this refers to the actual data resource where input and
output data are stored and/or streamed from/to. Such Data Assets are
usually local to the manufacturing companies and located within the
factory. Data can also be stored in appropriate private or public cloud
resources.

MA Pair: An MA Pair is a combination of a Model and an Algorithm
that describes a specific behaviour of a specific type of Industrial
Product. Such specific types of Industrial Products are called Industrial
Product Families (IP Families). An MA Pair describes the potential
behaviour of every instance of the same IP Family. However, it does not
refer to Data Assets yet and therefore it is not specific to any instance
of that particular IP Family. As MA Pairs are relevant to many instances
of the same IP Family, these can also be considered as reusable Assets
(i.e. companies operating the same type of IP can reuse the same MA
Pair and combine it with their own specific Data to create their DMA
Tuple).

IP Family: It describes the characteristics of a specific type of
Industrial Product (a type of manufacturing machine).

Besides Assets, the DIGITbrain metadata structure also identifies
four additional entities that are required to describe digital twins in the
form of executable DMA Tuples. IP Instance characterises an instance
of an Industrial Product (a particular machine/manufacturing line).
Person and Legal Entity (see Fig. 1) refer to the individual and the
organisation associated with the registered entity (any of the six Assets,
DMA Tuple, and IP Instance), respectively. The final metadata entity is
the composed and executable DMA Tuple.

J. DesLauriers et al.

p
t

m
A
A
t
w
T
t
c
n
D
i
M

Future Generation Computer Systems 166 (2025) 107628
Table 1
Most significant metadata fields/ parameters utilised by the ADT Generator.

Field/Parameter Explanation Structure/Example

DMA /‘deployment’’ Describes a virtual machine or an edge
device where microservices must be
deployed

DMA /‘DataAssetsMapping’’ Associates microservices with their used
Data Assets

DATA /‘URI’’ Stores the location of any data object

MODEL /‘URI’’ Stores the location of any model object

ALGORITHM
/‘listOfMicroservices’’

Contains the list of ids for microservices
to be deployed

ALGORITHM
/‘deploymentMapping’’

Associates microservices to hosts to run
on

MICROSERVICE
/‘deploymentFormat’’

Selects the format of specifying
container deployment details

MICROSERVICE
/‘deploymentData’’

Definition of compose or manifest
g
c
e
r
h
r

e
i

p

C

The above metadata structure was essential when designing and im-
lementing the ADT generator. The ADT Generator specifically utilises
he technical metadata provided with the DIGITbrain Assets, and also

the metadata, especially the deployment information, from the DMA
Tuple (shaded boxes in Fig. 1 show metadata that is utilised by the
ADT Generator, while metadata from the white boxes are for the
human composer only). Therefore, it needed to be assured that all
information required for the automated generation of the deployment
descriptor is available. On the other hand, due to the template-based
implementation of the ADT Generator, only the template needs to
be modified to tailor the ADT Generator to changes in the metadata
structure or to accommodate completely different metadata. The core
of the implementation remains the same.

Table 1 summarises and provides details of the most significant
etadata fields and parameters that are utilised by the ADT Generator.
s visualised in Fig. 2, the DMA Tuple is referring to the Model, the
lgorithm and all Data Assets it is composed of. In this figure, Assets

hat are composed of other Assets are shown in rounded rectangles,
here atomic Assets are shown in rectangles. Note how the DMA
uple metadata also contains information related to the Host(s) of
he executable digital twin it represents, for example the type and
haracteristics of cloud and edge computing devices its Microservices
eed to be deployed on. In the current DIGITbrain concept, every
MA Tuple includes maximum one Model and Algorithm, but it can

nclude multiple Data Assets, clearly mapping these Data between the
icroservices of the Algorithm.
5
3.3. MiCADO cloud to edge orchestrator

The DIGITbrain Digital Agora supports a pluggable execution en-
ine for the deployment of DMA Tuples. Because DIGITbrain is con-
erned with executing application containers on cloud resources, an
xecution engine that supports both container orchestration and cloud
esource provisioning was required. This higher-level orchestrator also
ad to support deployment of containers to edge, as this was another
equirement within DIGITbrain.

For the current implementation of the DIGITbrain Solution, Mi-
CADO [29] was chosen as the primary execution engine. MiCADO
was originally developed in the European Horizon 2020 COLA (Cloud
Orchestration at the Level of Application) Project. Built on the open-
source Kubernetes orchestration platform, MiCADO started life as an
application-level cloud orchestrator, but over time it has been extended
with support for edge [6], enabling orchestration across the cloud to
dge continuum. This section will briefly describe MiCADO, insofar as
s required for the reader to appreciate its role in this work.

The MiCADO platform is a high-level orchestrator that offers a sim-
lified interface to a prepared Kubernetes cluster and a cloud resource

provisioning tool. MiCADO also adds a myriad of its own features,
from cloud-agnostic auto-scaling to additional layers of security. The
Kubernetes cluster in MiCADO is configured with sensible defaults and
add-ons that are ready to use, like the Kubernetes Dashboard and a
Prometheus-Grafana monitoring stack.

Two different cloud resource provisioning tools are available in Mi-
ADO - Hashicorp’s Terraform, and a smaller tool called Occopus [30].

These provisioning tools enable MiCADO to dynamically provision

J. DesLauriers et al. Future Generation Computer Systems 166 (2025) 107628
Fig. 2. Relationship of Assets with the DMA Tuple.
Fig. 3. Architecture of the MiCADO Cloud to Edge Orchestrator.
cloud infrastructure to host deployed applications. An internal com-
ponent called the Policy Keeper enforces user-defined scaling rules to
dynamically scale both containers and cloud resources at runtime. To
bring orchestration to the edge, MiCADO relies on KubeEdge and K3S,
two open-source CNCF incubator projects that extend the Kubernetes
cluster towards one or more edge devices.

The interface to MiCADO is the Application Description Template
(ADT) - a deployment descriptor that describes the application con-
tainers, cloud and/or edge infrastructure, and enforceable runtime
decisions related to scalability, monitoring, and security [5]. The ADT
is based on v1.x of the OASIS TOSCA (Topology and Orchestration
Specification for Cloud Applications) Specification. Because TOSCA
and the ADT are central themes in this paper, they are introduced in
Section 4.1.1 below.

The architecture of MiCADO is visualised in Fig. 3. An internal
component called the Submitter exposes a REST API and is responsible
for interpreting an ADT and communicating information to Kubernetes
and the cloud orchestrators to realise a successful deployment. The
Submitter disseminates information in the ADT to Kubernetes, the cloud
provisioner, the monitoring stack, the Policy Keeper and edge-related
components. The cloud provisioner deploys and manages cloud worker
instances, ensuring they are prepared with monitoring components and
a container runtime. Kubernetes deploys and manages containers to
these cloud workers. The Policy Keeper enforces any scaling rules, call-
ing Kubernetes or the cloud provisioner as needed to scale a resource up
or down. KubeEdge connects any edge devices to the cluster, creating
additional workers where Kubernetes can deploy containers. Finally,
the monitoring stack visualises CPU, memory and network metrics
across the cluster, plus any application-specific metrics the user may
have configured.
6
3.4. Topology and orchestration specification for cloud applications

The Open Oasis TOSCA (Topology and Orchestration Specification
for Cloud Applications) specification aims to provide a generic language
for describing applications in the cloud. It is an ideal framework to
support the automated composition of deployment descriptors. TOSCA
supports the description of all elements of a cloud application, from
containers to cloud resources, meaning that different deployment de-
scriptors could be unified into a single interface. Our justifications for
choosing the TOSCA specification, including comparisons with other
alternatives, are detailed in a previously published paper [5].

A TOSCA deployment descriptor is called a service template. The
main component of this service template is the topology template,
where the application is described. The topology consists of nodes,
each one describing one element of an application — be it a virtual
machine instance, a storage volume, a network interface, or some
software. Nodes can express capabilities and requirements to create a
rich description of the inter-relationships between all elements of the
application. Nodes also define properties and an interface that together
instruct an orchestrator what actions to take at different stages of
the application lifecycle. Policies that target one or more nodes can
further drive the runtime behaviour of the application once it has been
deployed.

TOSCA is strongly typed. Each concrete node in the topology has
a node type, and each policy has a policy type. These types can
define default relationships, properties, interfaces and more, which are
inherited by the node or policy that uses that type. A rich hierarchy
of types can be defined to help abstract away complexity or provide
re-useable structures for common components of an application.

J. DesLauriers et al.

i
f
m
P
p

p
S

s

t
T
d
(
o
m
m

c
a
A

n
s
w
t
a

r

t
p

s

o

f

A

Future Generation Computer Systems 166 (2025) 107628
A collection of type definitions is called a profile. The Simple Profile
n YAML v1.3 is the current accepted standard, providing a reference
or creating other custom profiles. Service templates will import one or
ore profiles, which are then used in the description of the application.
rofiles are often relied upon by TOSCA orchestrators because they
rovide an easy way for the orchestrator to interpret nodes and policies

that are described within a service template. MiCADO has a specific
rofile to support orchestration, which is introduced and elaborated in
ection 4.

4. Automated composition and generation of a deployment de-
criptor

Deployment descriptors contain the specific details that are required
by an orchestrator or other tool involved in managing aspects of an
application’s lifecycle. They describe one or more aspects of the appli-
cation to help realise a deployment, prepare some environment, dictate
behaviour at runtime, or some other important functionalities. When
more than one orchestration tool is required to realise the deployment
of an application — for example a container and cloud orchestrator —
then multiple deployment descriptors are needed too.

Authoring deployment descriptors is a complex task, requiring not
only intimate knowledge of the application to be deployed, but also
an understanding of each required orchestration tool, including the
language, syntax and specification of its descriptor. In a typical mi-
croservices architecture, the complexity of this task increases with the
number and requirements of microservices (containers) and cloud or
edge resources (compute, storage, networking).

A microservices architecture may consist of many different con-
tainers, but these will typically be described in a single deployment
descriptor, for example a Kubernetes manifest. Similarly, a different
single deployment descriptor might describe all of the cloud resources
hat make up the cloud infrastructure required by the application.
hese descriptors can have both intra-dependencies (e.g. one container
escribed to specifically interact with another) and inter-dependencies
e.g. one cloud resource intended to host a specific container). Because
f these complexities and constraints, composition of the set of deploy-
ent descriptors required for an application is commonly carried out
anually by the human person or team that owns that application.

4.1. Collaborative deployment descriptors

Collaborative authoring of deployment descriptors, where different
actors are specifying different aspects of the application at different
times, is not compatible with this manual, human approach. In such
ases, Microservices are single containers that are published individu-
lly and later assembled by a potentially different actor to create an
lgorithm. The Algorithm is modular, in that it is composed of many

potential reusable Microservices. The configuration of a cloud resource,
again by a different actor, can take place long after a set of Microser-
vices has been composed into an Algorithm. Based on our reading of
the current state of the art, the collaborative authorship of deployment
descriptors at different times and by different individuals was a novel
problem, and so it necessitated a novel approach. A solution was
eeded that would automate the process of creating one deployment de-
criptor that expressed the overall structure of an application, but that
as itself composed of existing descriptions of application components

hat could be orchestrated by different lower-level tools (Kubernetes
nd Occopus).

This section describes the concepts and technologies adopted to
ealise the automated composition and generation of deployment de-

scriptors. The process that makes use of these concepts and technologies
begins when an actor publishes an asset by providing the key–value
metadata that describes it. The metadata for this single asset is stored,
and this process is repeated for any actor that wishes to publish an as-

set, at any time. The next step of the process begins when a (potentially

7
different) actor wishes to combine already published assets to create
heir digital twin. At this time, the actor selects the desired assets and
rovides additional metadata to describe the specific interactions in this

combination of assets.
Here, the automated generation takes over. First, the metadata that

describes the cloud or edge resources is used to populate the fields of
deployment descriptors that provisions a cloud instance or connects
to an edge device. The metadata that describes microservices is used
to populate the fields of deployment descriptors that describe the
configurations of containers, referencing external sources for data or
models according to the metadata of the other assets that were selected.
At this point there are potentially multiple deployment descriptors
aved as individual files, each describing a component of the digital

twin that is to be deployed. The metadata that describes the specific
interactions in a given set of assets populates a final deployment
descriptor that references all of the individual deployment descriptors,
with additional detail to describe any interactions or interdependencies
between microservices and cloud or edge resources. All of these files are
stored in a compressed archive format, which can be interpreted by a
cloud orchestrator to realise the deployment of the digital twin.

The rest of this section provides details of the core concepts and
technologies applied for the automated composition and generation of
deployment descriptors.

4.1.1. Application description template
The Application Description Template (ADT) [5] is the MiCADO

specific name for a TOSCA service template. It adopts a profile based
n the TOSCA Simple Profile and uses and extends many of the types

defined in the 1.x versions of the specification. The ADT profile de-
fines types for MiCADO components like Kubernetes, Terraform and
Occopus, so that on submission, the appropriate actions can be taken
to deploy and manage the different elements of the application. Nodes
in the ADT describe two broad aspects of the application: the cloud or
edge resources that make-up the compute and storage required by the
application, and the application itself, in one or more OCI-compliant
containers.

Historically, the ADT had always been authored as a single file,
in YAML as per the TOSCA Simple Profile. All the necessary applica-
tion components, such as cloud instances, edge nodes, and containers
were defined as nodes in the one file, along with any relationships
between nodes. At deployment time, that single file alone was fed
to the Submitter component within MiCADO. Where the application
description was a collaborative effort though, the definition of the
application components and relationships were provided at different
times — so potentially well before the single file would be created.
These definitions were also provided by different actors, who would
have no concept of what other components they should be defining
relationships with. Collating all of this information together on-the-fly
just before deployment would be a difficult and messy operation, and
would not reflect well the modularity and reusability the solution was
striving for.

Fortunately, TOSCA offered two key features that would permit
DIGITbrain to adopt an elegant solution of sound design. These are
described below. Please note, that while these features are widely
applied in TOSCA, they were used in a different way and for different
purposes than originally intended.

4.1.2. Cloud service archives and substitution mappings
For larger applications in TOSCA a single YAML file quickly be-

comes bloated, disorganised, and difficult to manage. Instead, such
applications can be described across multiple YAML files, where one
ile acts as the point of entry and refers to other files by importing

them. These files are then all combined into one TOSCA Cloud Service
rchive (CSAR) [31]. The CSAR is a zip-like archive providing a single,

modular interface that can be shared, stored, and submitted to a TOSCA
orchestrator. While the applications in our use case were not necessarily

J. DesLauriers et al. Future Generation Computer Systems 166 (2025) 107628
Fig. 4. Components of the DMA Tuple, with reference to their contribution to the CSAR.
large, this feature was key to our approach, because it meant that
individual components could be described in their own individual files.

Describing applications in a CSAR is made possible by another
feature of TOSCA called substitution mappings. Such mappings were
originally intended to allow for the substitution of an abstract node
with a concrete node. For example, some TOSCA might describe an
application where a web server runs on a cloud instance with some
minimum hardware. Since the exact specification of the cloud instance
is not important, it can be defined as an abstract node, with the require-
ment that it meets the minimum hardware and serves the web server.
When the time comes, a file with a concrete node describing a suitable
cloud instance can be added to the CSAR. Substitution mappings will
read the requirements on the abstract node and then orchestrate the
concrete node to realise a successful deployment.

While not the original intention of the CSAR and substitution map-
pings, these features together suited the unique requirements of collab-
orative publishing very well. Published microservices, cloud instances
and edge nodes would all be defined as concrete nodes, each within
their own individual ADT. Any relationships that were needed for the
overall application could be defined on the abstract nodes, and when
substituted, they would apply to the concrete nodes instead. Since
each ADT was a complete TOSCA-compliant file, they could each be
independently validated and reused as needed.

For DIGITbrain, this meant that when the Algorithm provider had
selected the Microservices that made up their Algorithm, and had
specified any relationships between them, the ADT describing the
overall application could be generated and added to the CSAR. This
ADT contains abstract nodes that make reference to concrete ones, and
any necessary relationships are defined between the abstract nodes.
Microservices would already have their concrete descriptions in indi-
vidual ADT files, and these could be added to the CSAR to support
substitution mappings at deployment time. When a concrete Host is
defined at the time the DMA Tuple is published, this too will be a
concrete node in an ADT file, and this too can be added to the CSAR.
This is visualised in Fig. 4, where the role of each Asset with respect
to TOSCA is shown. At some time prior to the DMA Tuple compilation,
Microservices will have been defined each as its own concrete TOSCA
node, and the Algorithm will have been defined with abstract nodes as
placeholders for the Microservice(s) and Host(s).

All of these elements of TOSCA have been adopted in DIGITbrain,
resulting in a solution that uses the CSAR to provide a unified interface,
substitution mappings to support collaborative publishing of Assets and
a MiCADO-specific profile to ensure the final descriptions are properly
orchestrated by Kubernetes and Occopus.

4.2. ADT generator architecture

The automated composition and generation of the deployment de-
scriptors in DIGITbrain is one of the key challenges described in the
8
Fig. 5. Architecture of the ADT Generator.

paper. Based on the principles and concept of descriptor generation,
a tool called the ADT Generator [32] has also been implemented to
realise the functionality as part of the infrastructure.

The main purpose of the ADT Generator is to produce MiCADO
compliant ADT descriptors based on the DIGITbrain Assets provided
as input for a given application. The ADT Generator has been designed
as a RESTful service, where the service receives the metadata for the
Assets and produces and returns an ADT that can be submitted to
MiCADO. As reflected in the architecture Fig. 5, the ADT Generator
service integrates multiple components that will be described in the
following paragraphs.

Compile module is the main component of the ADT Generator
responsible to coordinate the steps of the ADT generation and compi-
lation. It implements a workflow by invoking the necessary tools and
libraries in the appropriate order.

Jinja templates as input for the jinja2 tool as a Python package is
used to render the ADT, based on the key–value pairs of the metadata
to fill placeholder values in a skeleton template specific to each Asset.
By relying on Jinja, many changes or updates to the final output of
the ADT Generator can be achieved simply by modifying the template,
reducing the necessity for frequent changes to the codebase. Moreover,
Jinja enables the flexible replacement of the generated deployment

J. DesLauriers et al. Future Generation Computer Systems 166 (2025) 107628
Fig. 6. Internal operation of DocKubeADT.
descriptor different from TOSCA in case another standard must be
supported by the ADT Generator in the future.

DocKubeADT [33] is a Python package developed by the Univer-
sity of Westminster, which converts a Docker-Compose or Kubernetes
manifest file to a valid MiCADO ADT. Originally, it was a standalone
command line tool where the main goal was to ease the conversion
of compose and manifest files to MiCADO ADT. DocKubeADT as a
library is invoked during rendering of the Jinja template to produce
a valid container configuration for a Microservice Asset. The output of
DocKubeADT is then rendered into the generated ADT.

Puccini [16] is a TOSCA processor that makes available a tool for
packaging individual TOSCA templates into a compressed TOSCA Cloud
Service Archive (CSAR). The input to this tool is the set of individual
Assets, and the output is a CSAR, or multi-file ADT, describing the over-
all architecture of the application to be deployed by MiCADO which
contains the combination of microservices, algorithm, data, model, and
deployment.

MiCADO Parser [34] is a library and command-line interface used
inside the MiCADO platform for parsing and validating ADTs. To vali-
date the generated output of the Compile module, the
micado-parser library is invoked as a final step. This component
wraps the functionality of the OpenStack TOSCA Parser [35], extending
it with functionalities and additional validation specific to the latest
TOSCA versions used by MiCADO. The OpenStack TOSCA Parser sup-
ports v1.2 of the TOSCA Simple Profile in YAML to create an in-memory
graph of TOSCA nodes and their relationship.

REST API is the interface exposed by the ADT Generator. Because of
the independent nature of Assets, the API does not return a traditional,
single-file ADT for MiCADO. Instead, each Asset is compiled down to
a respective descriptor file that leverages TOSCA’s Substitution Map-
pings to bring together these separate pieces at deployment time. The
API contains routes for compiling metadata of the Microservice and
Algorithm Assets as well as the Deployment description, pulling values
from Data and Model metadata to complete these as required. Also,
there is a route for compiling all the incoming Assets and descriptions
into one comprehensive CSAR file describing the entire application.
The response contains the outcome of the compilation, a filename for
download, and a link to a detailed log of the compilation processes and
steps.

4.3. DockKubeADT internal operation

DocKubeADT is one of the most complex tools integrated by ADT
Generator and is considered as the heart of the ADT generation. To
understand the operation of ADT Generator, a deeper insight of the
DocKubeADT tool is necessary since containers, environment variables,
arguments, ports, volumes, policies are all converted by this tool in
several steps.

DocKubeADT is invoked by the ADT generator to translate the
container topology defined in the Microservice metadata (based on
either a Docker Compose template or Kubernetes (K8s) manifest), to
9
the format expected by the MiCADO ADT. It can be used both as a
standalone tool or a library. To use it as a tool, we simply need to
execute DocKubeADT while passing the Compose or manifest file as an
argument. It will then provide the ADT file as an output. To use it as a
library, DocKubeADT provides an API, which requires the compose or
manifest as an input. Subsequently, it generates the relevant portions of
the ADT. Since DocKubeADT is used by the ADT Generator as a library,
we provide an overview of it, in Fig. 6, from this perspective.

In DocKubeADT the main strategy is to focus on converting Kuber-
netes manifest description into an ADT. As we use manifest format as
input for producing the ADT, different formats can only be supported
(e.g. docker compose) if intermediate conversion is also performed. As
such, the conversion of Docker Compose into Kubernetes manifest is
handled by an external tool called Kompose. So, overall the Docker
Compose is converted in two steps, while manifest is directly converted
as one single step. As seen in Fig. 6, DocKubeADT has three main com-
ponents to implement this strategy: Translator API, Docker Compose
Translator and Kubernetes Manifest Translator.

Translator API is invoked during rendering of the Jinja template to
produce a valid container configuration for a Microservice Asset. The
API requires the container topology of the Microservice as an input. The
topology can be defined as a Kubernetes manifest or Docker Compose
template. When using a Kubernetes manifest format, both the single
and multi-part YAML files are accepted. Once the input is received,
depending on its format, the topology is forwarded to either the Docker
Compose or K8s manifest translator component.

Docker Compose Translator converts a Compose template to a Ku-
bernetes Manifest. This is achieved using the open-source Kompose
tool [36]. However, before invoking Kompose, the Docker Compose
data is validated. The validation process involves checking whether
multiple services are defined in the data. If multiple services are
defined, the data is not processed. That is, per invocation, only a single
service definition is allowed in the template. This aligns with the pro-
cess of defining each Microservice Asset separately in the DIGITbrain
project.

After initial validation, some important information about the vol-
umes Compose file is captured. The Kompose tool does not handle
the concept of mount propagation, which is important if two different
containers on the same host need to share a volume on the host.
The relevant information is collected from each defined volume in the
Compose file, so alterations can be made by the K8s Manifest Translator
in the next step.

Once this validation is performed and information is gathered, the
template is converted to a Kubernetes manifest and passed to the K8s
manifest translator.

K8s Manifest Translator can be invoked by either the Translator
API or the Docker Compose Translator. It expects K8s manifest and
converts them to the relevant portions of an ADT. This translation
process involves nesting each Kubernetes manifest within its own node,
using a custom TOSCA Node Type that MiCADO identifies as a raw
Kubernetes manifest during deployment and execution.

J. DesLauriers et al. Future Generation Computer Systems 166 (2025) 107628
Fig. 7. Workflow of compilation in ADT Generator.
After nodes are created, additional optional information might be
added. DIGITbrain Microservice providers have the option to add static
files, much in the same way they would by mounting a local directory in
the Docker Compose. If required by the provider, files are created at this
time as Kubernetes ConfigMaps, which are simply static files mounted
into a container at runtime. Any required volume alterations that were
identified during the Docker-Compose Translator step are also applied
at this time. When done, the output of this step is then rendered into
the ADT by the ADT Generator, which invoked DocKubeADT.

4.4. ADT generator internal operation

The ADT Generator performs a sequence of steps in order to con-
vert/compile a complete DMA Tuple consisting of Deployments,
Data/Model Assets, Algorithm and Microservices into a MiCADO ADT.
The steps to perform are implemented by several tools mentioned in
Fig. 5 and can be grouped into 6 main phases as summarised in Fig. 7.
In the following, the phases and their internal steps are introduced in
detail.

Phase 1 (preparation). During the preparation phase, the ADT
Generator splits the incoming DMA Tuple into pieces of different Assets
and logical components for further processing. For debugging purposes,
the tool saves these components into files locally. The next step is
to validate the Assets and components syntactically and semantically.
The existence of the required parameters as well as the format of the
parameters are checked to make sure no incorrect DMA Tuple has
arrived.

Phase 2 (generate deployments). The entire compilation starts
with the compilation of the deployment description(s) as it is indepen-
dent from any other Assets in the DMA Tuple in terms of conversion.
Deployment description is located as the value of ‘‘deploymentData’’
of the DMA Tuple. This parameter should contain a valid definition
of either a virtual machine or an edge device that will host/execute
Microservices as part of the DMA Tuple. In this phase, after the compi-
lation of deployment description into MiCADO compute node, the result
is saved into a deployment file.

Phase 3 (generate algorithm). The Algorithm compilation pro-
duces a node template for MiCADO ADT where the Microservices
and Deployments are listed. For Microservices, the associated resource
which will host the container is also defined by referring to a deploy-
ment node (generated in phase 2) through the ‘‘host’’ parameter. The
result is saved into the corresponding algorithm file.

Phase 4 (generate microservices). This is the most complicated
compilation phase. It iterates over the Microservice definitions and
generates a complete Microservice node definition substituted with its
referenced Data and Model Assets, with open parameter definitions
and with container definition with all the parameters such as name,
command, arguments, environment variables and so on. During the
iteration the following main steps are performed: First the referred Data
Assets are collected and their referred values are substituted in the
10
metadata description, then the same is done for the Model Assets. At
this point all references to Model and Data Asset values in the metadata
description must be resolved. The compilation terminates with error
here when an unresolved reference (to Model or Data Assets) is found,
otherwise continues with compilation of the Microservice Asset. The
result is then saved into a file to be linked by the Algorithm Asset in
Phase 3.

Phase 5 (packing). At this point all deployments (describing cloud
or edge resources), all Microservices (describing the containers) and
the Algorithm (describing the mapping between the resources and
containers) are generated and stored in TOSCA files. To pack them into
a CSAR, first the definition of the MiCADO ADT TOSCA types (referred
to by the aforementioned files) must be resolved. Due to MiCADO
ADT parsing speed considerations, this resolution is done by copying
all MiCADO type definitions into the CSAR archive. After the copy,
the CSAR zip file is created by a tool called puccini-csar and the
result is finally validated by micado-parser. Upon successful CSAR
creation and validation, the ready-to-run MiCADO ADT is available in
the working directory associated with the DMA Tuple being processed.

Phase 6 (storing). Storing the generated CSAR can be config-
ured/requested from the ADT Generator. Currently, it supports up-
loading to S3 buckets predefined in the configuration of the ADT
Generator. Both, the CSAR and the log file (generated during the phases
of compilation to keep track of the entire workflow) are uploaded to the
target bucket with appropriate naming convention and the endpoints
are returned as part of the response to the REST API invocation.

4.5. ADT generator deployment

The initial setup and deployment of the tools described above are in-
tegrated into the deployment process of the ADT Generator. The source
code and installation package are available at [32] which is a snapshot
of the ADT Generator GitHub repository. The deployment includes
micado-parser and dockubeadt as Python libraries listed as de-
pendencies, while the kompose binary and the MiCADO ADT TOSCA
types are fetched by the deployment script during the initialisation of
the ADT Generator environment. Finally, the puccini-csar tool (a
single script) is added as part of the source repository. Overall, the
deployment process is fully automated to support the easy installation
of the ADT Generator. The hardware requirements are very low, with
the ADT Generator service able to run on a 1CPU and 2 GB RAM cloud
virtual machine instance.

5. Digital twin for punching machine

Within DIGITbrain (Db), more than 25 industry case studies have
been implemented where digital twin applications were developed by
composing them from their fundamental building blocks of Data, Mod-
els, Algorithms and Microservices. In all cases, these building blocks
have been published in the DIGITbrain Solution by providing a set of

J. DesLauriers et al.

t
A
m

b

e

a

g
l

r
e
i
T
t
d

o
A
a

o
t

a

o

t

R

s
M
t
p
c

s
b
f
c
v
A
d

o

Future Generation Computer Systems 166 (2025) 107628
metadata, as introduced in Section 3.2, composed into DMA Tuples, and
hen the deployment descriptors were automatically generated by the
DT Generator. In this section, we demonstrate how these concepts and
ethods were applied to a scenario around a metal punching machine.

In this case study, a new kind of digital twin for a subset of the
ehaviour of the machine was created, namely a digital twin for the

structural behaviour of the stamp centred around a fast GPU imple-
mentation of the finite element (FE) method which achieves new levels
of runtime performance. The idea/approach behind this scenario is to
quip a punching machine with force sensors, send this information

over the network via MQTT to a numerical simulation for structural
nalysis, feed this simulation with the forces, and predict the defor-

mation of the stamp given its simulation model and the real-time data
from the shop-floor.

The aim is to achieve new kinds of adapted control of machines in
eneral and for the stamping machine in particular, in order to reduce
oads and wear of the machine by taking not just the sensor information

into account but also the effects on (parts of) the machine. The scenario
is depicted in Fig. 8. The actual simulation component in this scenario
uns close to the sensors and the data source on a GPU-equipped
dge device. In the next subsection, the numerical solver RISTRA is
ntroduced, followed by describing the setup of the corresponding DMA
uple and the steps and extensions that were required to facilitate
he scenario. Finally, the automated generation of the deployment
escriptor and the run-time results of the simulation are demonstrated.

5.1. General introduction of RISTRA

The basis for the numerical simulation of the structural behaviour
f the punching machine is RISTRA (Rapid Interactive STRuctural
nalysis) [37], a software library for fast structural analysis. Structural
nalysis is one of the most frequently used simulation domains in indus-

try when designing parts of different kinds of products, be it vehicles,
buildings, household appliances, etc. Speeding up the simulation and
ptimisation loop can contribute to finding better solutions in a shorter
ime, thus reducing time to market.

RISTRA can be integrated into existing CAD/CAE (Computer Aided
Design/Computer Aided Engineering) packages to deliver new lev-
els of performance within such applications. Benchmarking RISTRA
gainst CPU-based commercial-off-the-shelf (COTS) alternatives has

shown performance benefits of up to a factor of 100 times (two orders
f magnitude), while comparisons with GPU-based COTS indicated up

to 30 times speedup. These results have been achieved under the con-
straint of not deviating from the reference solutions by more than 1%.
RISTRA’s speed is achieved by fully leveraging the massive parallelism
of GPUs by implementing the whole finite element method completely
on GPUs. In contrast, many other systems only leverage the GPU for
some steps of the FE method, and slow memory transfers between
CPU and GPU prevent fully exploiting the benefits of GPUs. With
sufficient GPU memory, RISTRA can solve problems with more than
10 million degrees of freedom (DoF). RISTRA currently supports linear
structural analysis, tetrahedral meshes, linear, quadratic, and cubic
shape functions (TET4, TET10, TET20), linear isotropic and anisotropic
materials as well as time-dependent and modal simulation.

5.2. RISTRA as part of a DMA tuple

To support the scenario illustrated in Fig. 8 and described above,
he original implementation of RISTRA needed to be extended to

support execution on edge devices. As a starting point, RISTRA was
implemented for NVIDIA desktop GPUs using CUDA. This initial version
was able to read simulation models as files from local storage. The
simulation models consist of tetrahedral meshes, boundary conditions,
and loads. To realise the scenario, two extensions needed to be made to
RISTRA: a) a possibility to feed it with (sensor) data via an API and b)

port it to NVIDIA edge devices with GPUs, resulting in RISTRA@Edge,

11
a variant of RISTRA for GPU-enabled edge devices, in particular the
NVIDIA Jetson platform which is, to the best of our knowledge, the first
GPU-accelerated FE simulation software for embedded systems [37].
These two extensions were prerequisites for publishing and executing
RISTRA on the DIGITbrain Solution.

The next step was the creation of the simulation model by a domain
expert and uploading it to a model repository. The simulation model
was created based on the CAD model, simplifying some of the details
and defining boundary conditions and load cases. Although initial load
cases (directions of force and strength) were set, the actual amount of
force is read later from the sensor information and applied to the digital
twin. The simulation model then needs to be published in a repository
as a single zip file. Models consisting of more than one file always need
to be packaged into one zip file. The model repository is a simple file
storage where Model files can be stored and downloaded at run time
by the associated Microservices. The Db Solution does not require the
use of a specific model repository. Any file storage set up by Model
providers is appropriate, as long as it can be accessed remotely and the
associated Microservice understands the file transfer protocol that the
repository uses.

Next, the Model needs to be made known to Db Solution as a Db
Asset. In this step, metadata for the Model, consisting of a filename,
path, repository URI, along with many other optional metadata entries,
needs to be entered to describe and characterise the kind of Model (see
left-hand side of Fig. 9).

Unfortunately, RISTRA (as many other existing applications) cannot
retrieve Models from repositories by default. Instead of modifying

ISTRA, requiring access to the source code, a less intrusive solution
is to implement a dedicated Microservice to download the Model file
from the model repository. RISTRA reads input from files and to make
RISTRA independent from sources, the Model Retriever microservice is
introduced as an additional component. Model Retriever collects inputs
regardless of the source and provides input files for RISTRA. With this
solution, we have the benefit of abstracting the repository/source from
the consumer (RISTRA), thus, the consuming service does not need to
know about the details of the repository.

Additionally, if solvers shall be fed with data in real time, an API
is required. To feed RISTRA with data from the force sensors, we
decided to implement the Data Bridge Microservice. Data bridges have
the benefit of abstracting the data source from the consumer, thus the
consuming service does not need to know the details of the data source.
Instead, the Data Bridge serves its API according to a specification.

Therefore, the Algorithm consists of the three Microservices de-
cribed above: RISTRA, Model Retriever and Data Bridge. All three
icroservices need to be published in the Db Solution by providing

heir related metadata. The publishing process creates IDs for each
ublished Asset (see Fig. 9 centre). These IDs will be used when
omposing high-level Db Assets (e.g., MA Pairs) and DMA Tuples.

Once the Microservices are published, an Algorithm can be com-
posed out of them by searching the Microservices from the Digi-
tal Agora and referencing them by ID. In addition, further meta-
data (e.g., author, date, name) for the Algorithm is specified while
publishing it to DIGITbrain (see right-hand side of Fig. 9).

By now, a Model and an Algorithm have been specified (see left
ide of Fig. 10) that can be combined to represent and evaluate the
ehaviour of punching presses that are built around the same stamp—a
amily of punching presses (or an Industrial Product Family). Like the
omposition of an Algorithm, the user can find Models and Algorithms
ia the Digital Agora and reference them when creating an MA Pair.
s in the case of Algorithms, additional metadata can also be specified
uring this process.

The next step is to register/publish the data source (see the middle
f Fig. 10). The data in this specific case comes from sensors installed

on the machine and delivered via an MQTT broker. Like Models and Mi-
croservices, Data sources are published to the Db Solution by providing
a set of metadata.

J. DesLauriers et al. Future Generation Computer Systems 166 (2025) 107628
Fig. 8. Digital Twin Scenario.
Fig. 9. Publishing Db Assets - Model, Microservice and Algorithm.
Fig. 10. Creating an MA Pair, publishing a Data resource and composing the DMA Tuple.
The final step in the publication and composition workflow is the
creation of a DMA Tuple (see the right side of Fig. 10) out of previously
published DIGITbrain Assets. This step is carried out by a person acting
in the role of the DMA Composer, typically a person that belongs to
or acts on behalf of a manufacturing company, typically because of
access restrictions to data sources within the factory. The DMA Tuple
is built by referencing a Data source and the MA Pair that uses this
Data together with a Model to evaluate/predict the behaviour of the
respective manufacturing machine. Thus, DMA Tuples are connected
with certain instances of Industrial Products. One or many DMA Tuples
represent a Digital Twin for such an instance.

The above case study of a digital twin for a punching machine is
one example of the possible scenarios that the proposed approach could
be applied to. Nevertheless, the approach is general and the presented
modularisation and reusability have been successfully implemented
in other case studies, such as production optimisation, defect detec-
tion and quality control, optimisation of injection moulding processes,
monitoring and optimisation of additive manufacturing processes, co-
simulation, or life cycle analysis [38]. The proposed approach was
successfully applied to all the above scenarios, which were covering
different manufacturing sectors such as textile, automotive, rubber and
plastic products, metal products, agriculture, machinery and equip-
ment, food production, among others. This approach is also applicable
12
beyond the manufacturing industry, since the different building blocks
(i.e. Data, Model, Algorithm) could represent multiple industrial solu-
tions, making it generic for any kind of application that brings together
software experts (for the Algorithm), domain experts (for the Model) or
end users (for the Data).

5.3. Deployment

The steps described in Section 5.2, whereby metadata for each of
the required Assets is provided, happens in the Digital Agora (see
Figs. 11 and 12). Digital Agora is a web-based frontend and man-
agement framework for managing users, and their Assets, compilation
and execution of the DMA Tuples. This environment interplays with
the aforementioned ADT Generator as part of its portfolio in order to
provide executables for MiCADO.

Assets like Algorithms (in Fig. 11), which are composed of other
Assets (Microservices in this case), are configurable using a search
function that can locate previously published Assets.

In the DMA Tuple configuration (see Fig. 12), both Data and the MA
Pair (here called Behaviour) can be found using the search, while the
Host Configuration details are provided via drop-down menus and text
fields. In Fig. 13, components of the application are mapped to specific
Assets.

J. DesLauriers et al. Future Generation Computer Systems 166 (2025) 107628
Fig. 11. View of Algorithm publishing in the Digital Agora.
Fig. 12. View of DMA Tuple publishing in the Digital Agora.
Fig. 13. Assets that make up the RISTRA DMA Tuple.
With all of the metadata for RISTRA provided, a new option be-
comes available in the DMA Tuple (here called Process) configuration,
which will trigger its compilation (see Fig. 14).

Selecting this option will make a POST request to the ADT Generator
REST API and the payload will contain the complete metadata of each
Asset that is referenced within the DMA Tuple, from the MA Pair down
to the Microservice.

The ADT Generator generates the CSAR as described in
Section 4.1.2, stores it in an S3 bucket where it will be accessed at
execution time. A download link to the CSAR file, as well as the logs
13
of the generated operation are displayed after successful compilation
of the ADT.

Once the ADT has been compiled for a DMA Tuple, it is ready to
be executed. A user within the organisational structure of the DMA
composer can licence an instance of the DMA Tuple and launch it, as
seen in Fig. 15. This gets deployed to EGI resources.

When the DMA Tuple is running, the users can interact with their
application, accessing it via the endpoints configured in the Microser-
vice and Host definitions. Advanced users have the option to visit a

J. DesLauriers et al.

Fig. 14. Compilation of all Assets in a DMA Tuple in the Digital Agora.

Fig. 15. An instance of the RISTRA DMA Tuple during execution.

Fig. 16. Nodes and pods of RISTRA application deployed on DIGITbrain.

Future Generation Computer Systems 166 (2025) 107628

14

J. DesLauriers et al.

a

m
d
h
K

m
n
s
t
a
m
d
b
c
f
o

a
p
f
p
t

n
b

n
W
t

c
i

a
M
s

t
t

Future Generation Computer Systems 166 (2025) 107628
dashboard where they can inspect information about the status of their
pplication.

These users have access to Occopus and Kubernetes platform infor-
ation, as well as a selection of metrics retrieved by Prometheus and
isplayed by Grafana. The connected edge node (deployment-websim-
ost) and running pods of the RISTRA application can be seen in the
ubernetes Dashboard in Fig. 16.

6. Conclusion and future work

When different technical experts collaborate to develop complex
icroservices-based applications for cloud and edge, an approach is
eeded to support that collaboration and ensure that whatever is de-
cribed can be deployed. This paper has presented one such approach,
hat leverages important features within TOSCA to enable modularity
nd reusability throughout the entire process. The result is the auto-
ated generation of an overall application deployment descriptor that
raws on individual descriptions of application components that can
e authored by different actors at different times. These descriptions
an be validated independently and the described components can have
lexible relationships with one another when finally composed to the
verall descriptor.

Advanced control over the run-time management of the various
pplication components was not explored in this article, but TOSCA
olicies could be introduced into specific descriptors to give further
ine-grained control. This approach remains relevant as TOSCA ap-
roaches v2.0, and hopes to leverage future features of the specification
o further improve the automated generation of descriptors. Other

future work will see this approach elaborated in the Horizon Europe
Swarmchestrate project [39], where abstract Host nodes can be fulfilled
ot only by one specific concrete node, but intelligently matched to a
est choice cloud or edge resource.

Additionally, while the current solution focuses on digital twins in
the manufacturing sector only, the applicability of the approach has
already been considered in other areas, such as transport, logistics,
management of critical infrastructures or healthcare. Various funding
proposals are currently under preparation to further investigate these
possibilities.

Finally, we are considering extending the solution, supporting se-
mantic checking and decision making when composing the digital
twins. Utilising advanced AI techniques and already existing and addi-
tional metadata, a decision maker or decision support component could
advise (or even substitute) the human decision maker when combining
data, model and algorithm into a digital twin.

CRediT authorship contribution statement

James DesLauriers: Writing – review & editing, Writing – origi-
al draft, Software, Investigation, Conceptualization. Jozsef Kovacs:
riting – review & editing, Writing – original draft, Software, Concep-

ualization. Tamas Kiss: Writing – original draft, Project administra-
tion, Funding acquisition, Conceptualization. André Stork: Writing –
original draft, Project administration, Funding acquisition, Conceptual-
ization. Sebastian Pena Serna: Writing – review & editing, Software,
Project administration, Funding acquisition, Conceptualization. Amjad
Ullah: Writing – original draft, Software.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
15
Acknowledgements

This work was funded by the DIGITbrain – Digital twins bring-
ing agility and innovation to manufacturing SMEs, by empowering
 network of DIHs with an integrated digital platform that enables
anufacturing-as-a-Service – Project, No. 952071, European Commis-

ion, (EU H2020).

Data availability

Data and code related to the ADTGenerator, MiCADO, and related
echnologies are open and available under the micado-scale organisa-
ion on GitHub.

References

[1] Amazon Web Services, Amazon CloudFormation templates, 2024, https://aws.
amazon.com/cloudformation/. (Accessed: 24 May 2024).

[2] Cloud Native Computing Foundation, Kubernetes, 2024, https://kubernetes.io/.
(Accessed: 24 May 2024).

[3] OASIS, TOSCA: Topology and orchestration specification for cloud applications
v1.3, 2020, https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.
3/TOSCA-Simple-Profile-YAML-v1.3.html. (Accessed: 24 May 2024).

[4] A.C. Marosi, M. Emodi, Á. Hajnal, R. Lovas, T. Kiss, V. Poser, J. Antony,
S. Bergweiler, H. Hamzeh, J. Deslauriers, et al., Interoperable data analytics
reference architectures empowering digital-twin-aided manufacturing, Future
Internet 14 (4) (2022) 114.

[5] G. Pierantoni, T. Kiss, G. Terstyanszky, J. DesLauriers, G. Gesmier, H.-V.
Dang, Describing and processing topology and quality of service parameters of
applications in the cloud, J. Grid Comput. 18 (2020) 761–778.

[6] A. Ullah, H. Dagdeviren, R.C. Ariyattu, J. DesLauriers, T. Kiss, J. Bowden,
Micado-edge: Towards an application-level orchestrator for the cloud-to-edge
computing continuum, J. Grid Comput. 19 (4) (2021) 47.

[7] O. Kopp, T. Binz, U. Breitenbücher, F. Leymann, Winery–a modeling tool
for TOSCA-based cloud applications, in: Service-Oriented Computing: 11th In-
ternational Conference, ICSOC 2013, Berlin, Germany, December 2-5, 2013,
Proceedings 11, Springer, 2013, pp. 700–704.

[8] S. Challita, F. Korte, J. Erbel, F. Zalila, J. Grabowski, P. Merle, Model-based
cloud resource management with TOSCA and OCCI, Softw. Syst. Model. (2021)
1–23.

[9] V. Yussupov, J. Soldani, U. Breitenbücher, F. Leymann, Standards-based modeling
and deployment of serverless function orchestrations using BPMN and TOSCA,
Softw. - Pract. Exp. 52 (6) (2022) 1454–1495.

[10] M. Chinosi, A. Trombetta, BPMN: An introduction to the standard, Comput.
Stand. Interfaces 34 (1) (2012) 124–134.

[11] A. Bergmayr, U. Breitenbücher, O. Kopp, M. Wimmer, G. Kappel, F. Ley-
mann, From architecture modeling to application provisioning for the cloud by
combining UML and tosca, in: CLOSER (2), 2016, pp. 97–108.

[12] D. Calcaterra, O. Tomarchio, Automated generation of application management
workflows using tosca policies., in: CLOSER, 2022, pp. 97–108.

[13] L. Harzenetter, U. Breitenbücher, F. Leymann, K. Saatkamp, B. Weder, M.
Wurster, Automated generation of management workflows for applications based
on deployment models, in: 2019 IEEE 23rd International Enterprise Distributed
Object Computing Conference, EDOC, IEEE, 2019, pp. 216–225.

[14] D. Calcaterra, O. Tomarchio, Policy-based holistic application management with
bpmn and Tosca, SN Comput. Sci. 4 (3) (2023) 232.

[15] O. Tomarchio, D. Calcaterra, G. Di Modica, P. Mazzaglia, Torch: a Tosca-based
orchestrator of multi-cloud containerised applications, J. Grid Comput. 19 (1)
(2021) 5.

[16] Puccini: Cloud topology management and deployment tools, 2024, https://
puccini.cloud/. (Accessed: 24 May 2024).

[17] M. Bogo, J. Soldani, D. Neri, A. Brogi, Component-aware orchestration of cloud-
based enterprise applications, from TOSCA to docker and kubernetes, Softw. -
Pract. Exp. 50 (9) (2020) 1793–1821.

[18] M. Wurster, U. Breitenbücher, L. Harzenetter, F. Leymann, J. Soldani, V.
Yussupov, TOSCA light: Bridging the gap between the TOSCA specification and
production-ready deployment technologies, in: CLOSER, 2020, pp. 216–226.

[19] M. Wurster, U. Breitenbücher, M. Falkenthal, C. Krieger, F. Leymann, K.
Saatkamp, J. Soldani, The essential deployment metamodel: a systematic review
of deployment automation technologies, SICS Softw.-Intens. Cyber-Phys. Syst. 35
(2020) 63–75.

[20] S. Kehrer, W. Blochinger, AUTOGENIC: Automated generation of self-configuring
microservices, in: CLOSER, 2018, pp. 35–46.

[21] P. Štefanič, M. Cigale, A.C. Jones, L. Knight, I. Taylor, C. Istrate, G. Suciu, A.
Ulisses, V. Stankovski, S. Taherizadeh, et al., SWITCH workbench: A novel ap-
proach for the development and deployment of time-critical microservice-based
cloud-native applications, Future Gener. Comput. Syst. 99 (2019) 197–212.

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/
https://kubernetes.io/
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb4
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb4
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb4
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb4
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb4
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb4
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb4
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb5
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb5
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb5
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb5
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb5
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb6
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb6
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb6
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb6
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb6
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb7
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb7
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb7
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb7
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb7
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb7
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb7
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb8
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb8
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb8
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb8
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb8
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb9
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb9
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb9
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb9
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb9
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb10
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb10
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb10
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb11
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb11
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb11
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb11
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb11
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb12
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb12
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb12
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb13
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb13
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb13
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb13
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb13
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb13
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb13
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb14
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb14
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb14
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb15
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb15
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb15
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb15
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb15
https://puccini.cloud/
https://puccini.cloud/
https://puccini.cloud/
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb17
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb17
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb17
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb17
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb17
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb18
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb18
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb18
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb18
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb18
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb19
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb19
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb19
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb19
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb19
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb19
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb19
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb20
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb20
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb20
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb21
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb21
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb21
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb21
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb21
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb21
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb21

J. DesLauriers et al. Future Generation Computer Systems 166 (2025) 107628
[22] S.J. Taylor, T. Kiss, A. Anagnostou, G. Terstyanszky, P. Kacsuk, J. Costes,
N. Fantini, The cloudsme simulation platform and its applications: A generic
multi-cloud platform for developing and executing commercial cloud-based
simulations, Future Gener. Comput. Syst. 88 (2018) 524–539, http://dx.doi.org/
10.1016/j.future.2018.06.006.

[23] D. Weber, A. Stork, C. Stahl, A. Collado, D. T., Computational cloud services
and workflows for agile engineering, in: European Project Space on Information
and Communication Systems - EPS Barcelona, SciTePress, 2014, pp. 71–88,
http://dx.doi.org/10.5220/0006183300710088.

[24] S.J. Taylor, A. Anagnostou, T. Kiss, G. Terstyanszky, P. Kacsuk, N. Fantini,
D. Lakehal, J. Costes, Enabling cloud-based computational fluid dynamics with
a platform as a service solution, IEEE Trans. Ind. Inform. 15 (2019) 85–94,
http://dx.doi.org/10.1109/TII.2018.2849558.

[25] T. Kiss, A cloud/HPC platform and marketplace for manufacturing SMEs, in: 11th
International Workshop on Science Gateways, IWSG 2019. Ljubljana, Slovenia
12 - 14 Jun 2019, 2019, https://westminsterresearch.westminster.ac.uk/item/
qv2xy/a-cloud-hpc-platform-and-marketplace-for-manufacturing-smes.

[26] DIGITbrain Project, Digitbrain project documentation, 2024, https://digitbrain.
github.io/. (Accessed: 24 May 2024).

[27] A. Stork, et al., DIGITbrain 2nd open call - short technical description, 2024,
https://digitbrain.eu/open-calls/#overview-2OC. (Accessed: 24 May 2024).

[28] V. Zambrano, J. Mueller-Roemer, M. Sandberg, P. Talasila, D. Zanin, P.G.
Larsen, E. Loeschner, W. Thronicke, D. Pietraroia, G. Landolfi, et al., Industrial
digitalization in the industry 4.0 era: Classification, reuse and authoring of digital
models on digital twin platforms, Array 14 (2022) 100176.

[29] T. Kiss, P. Kacsuk, J. Kovacs, B. Rakoczi, A. Hajnal, A. Farkas, G. Gesmier,
G. Terstyanszky, Micado—microservice-based cloud application-level dynamic
orchestrator, Future Gener. Comput. Syst. 94 (2019) 937–946.

[30] J. Kovács, P. Kacsuk, Occopus: a multi-cloud orchestrator to deploy and manage
complex scientific infrastructures, J. Grid Comput. 16 (2018) 19–37.

[31] D.F. Leymann, CSAR - cloud service archive V0.1, 2012, https://groups.oasis-
open.org/higherlogic/ws/public/document?document_id=46057. (Accessed: 24
May 2024).

[32] J. Kovacs, J. DesLauriers, D. Kagialis, R. Arjun, H. Hamzeh, ADTGenerator, 2024,
http://dx.doi.org/10.5281/zenodo.11295968, Zenodo.

[33] J. DesLauriers, R. Arjun, DocKubeADT, 2024, http://dx.doi.org/10.5281/zenodo.
11295944, Zenodo.

[34] The MiCADO Parser Authors, Micado parser in github, 2024, https://github.com/
micado-scale/micado-parser/. (Accessed: 03 June 2024).

[35] The TOSCA Parser Authors, TOSCA parser in github, 2024, https://github.com/
openstack/tosca-parser/. (Accessed: 03 June 2024).

[36] The Kubernetes Authors, Kompose: Convert your docker compose file to
kubernetes or OpenShift, 2024, https://kompose.io/. (Accessed: 24 May 2024).

[37] N. Piatkowski, J.S. Mueller-Roemer, P. Hasse, A. Bachorek, T. Werner, P. Birnstill,
A. Morgenstern, L. Stobbe, Generative machine learning for resource-aware 5G
and IoT systems, in: 2021 IEEE International Conference on Communications
Workshops, ICC Workshops, IEEE, 2021, pp. 1–6.

[38] The DIGITbrain consortium, DIGITbrain experiments webpage, 2023, https://
www.digitbrain.eu/experiments/. (Accessed: 30 September 2024).

[39] T. Kiss, A. Ullah, G. Terstyanszky, O. Kao, S. Becker, Y. Verginadis, A. Michalas,
V. Stankovski, A. Kertesz, E. Ricci, et al., Swarmchestrate: Towards a fully
decentralised framework for orchestrating applications in the cloud-to-edge
continuum, in: International Conference on Advanced Information Networking
and Applications, Springer, 2024, pp. 89–100.

James DesLauriers is a Research Fellow with the Re-
search Centre for Parallel Computing at the University of
Westminster, and a Teaching Fellow and AI Futurist in
Education at Imperial College London. His research inter-
ests are focused on applying cloud and edge orchestration
solutions in various fields, including securing cloud-enabled
applications in healthcare, deploying digital twins to enable
Manufacturing-as-a-Service, and novel work in applications
of swarm computing.

Jozsef Kovacs is a Senior Research Fellow at the Laboratory
of Parallel and Distributed Systems (LPDS) at the Institute
for Computer Science and Control (SZTAKI), Hungarian
Research Network (HUN-REN) and part-time Senior Re-
search Fellow at Centre for Parallel Computing (CPC) at the
University of Westminster (UOW). He got his B.Sc. (1997),
M.Sc. (2001) and Ph.D. (2008) in the field of parallel
computing. His early research topics were parallel debug-
ging and checkpointing, clusters, grids and desktop grid
systems, web portals. Recently, he has been focusing on
16
cloud and container computing, especially on infrastructure
orchestration and management. He gave numerous scientific
presentations and lectures at conferences, universities and
research institutes in many places in Europe and outside.
He is a reviewer at several scientific journals and holds
positions at conferences. He is an author or co-author of
more than 80 scientific publications including, conference
papers, book chapters and journals.

Tamas Kiss is a Professor of Distributed Computing at the
School of Computer Science and Engineering, Director of
the Research Centre for Parallel Computing and Director
of Research and Knowledge Exchange at the School of
Computer Science and Engineering. He holds a Ph.D. in Dis-
tributed Computing, and M.Sc. Degrees in Mathematics and
Computer Science, and Electrical Engineering. He has been
leading national and European research projects related to
cloud to edge orchestration and enterprise applications of
cloud computing technologies, especially in the areas of
manufacturing, healthcare and scientific applications. He
has been involved in more than 20 European and UK funded
research projects as principal investigator or co-investigator.

André Stork is Head of Division at Fraunhofer Institute
for Computer Graphics Research, Darmstadt, 64283, Darm-
stadt, Germany, and an honorary professor with Technical
University Darmstadt. His major research interests include
geometry modelling and shape processing, 2-D/3-D inter-
action techniques, simulation, digital twins and scientific
visualisation. He is a member of IEEE, ACM SIGGRAPH,
Eurographics, Gesellschaft fur Informatik, and VDI. From
January 2023 until May 2024, he was Editor-in-Chief (EIC)
of IEEE Computer Graphics and Applications and now he
is member of the Advisory Board. Contact him at andre.
stork@igd.fraunhofer.de

Sebastian Pena Serna founded clesgo GmbH in 2016, a
startup facilitating the democratisation of ICT technology
for the manufacturing sector. Sebastian is a mechanical
engineer, finalising his Ph.D. at the TU Darmstadt. He
worked with ESI Group in the position of Domain Lead
Geometry and he was the deputy head of the Competence
Center "Interactive Engineering Technologies" at Fraunhofer
IGD.

Amjad Ullah is a Lecturer at the School of Computing,
Engineering and the Built Environment at Edinburgh Napier
University, Scotland, UK. He is also a research associate.
at the Centre for Parallel Computing (CPC) at the Uni-
versity of Westminster (UOW). He received his M.Sc. in
Advanced Distributed Systems degree from the University
of Leicester, UK, in 2011 and his Ph.D. in Computer
Science from the University of Stirling, UK in 2017. His
research interests include Orchestration and run-time man-
agement of applications in the cloud and the Cloud-Edge
compute continuum, Resource provisioning, management
and optimisation; Auto-scaling (Horizontal and vertical elas-
ticity); Performance-based scaling policies; Deadline-based
scaling policies to support batch-based applications in the
cloud environment; and Computational offloading in edge
computing.

http://dx.doi.org/10.1016/j.future.2018.06.006
http://dx.doi.org/10.1016/j.future.2018.06.006
http://dx.doi.org/10.1016/j.future.2018.06.006
http://dx.doi.org/10.5220/0006183300710088
http://dx.doi.org/10.1109/TII.2018.2849558
https://westminsterresearch.westminster.ac.uk/item/qv2xy/a-cloud-hpc-platform-and-marketplace-for-manufacturing-smes
https://westminsterresearch.westminster.ac.uk/item/qv2xy/a-cloud-hpc-platform-and-marketplace-for-manufacturing-smes
https://westminsterresearch.westminster.ac.uk/item/qv2xy/a-cloud-hpc-platform-and-marketplace-for-manufacturing-smes
https://digitbrain.github.io/
https://digitbrain.github.io/
https://digitbrain.github.io/
https://digitbrain.eu/open-calls/#overview-2OC
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb28
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb28
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb28
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb28
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb28
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb28
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb28
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb29
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb29
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb29
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb29
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb29
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb30
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb30
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb30
https://groups.oasis-open.org/higherlogic/ws/public/document?document_id=46057
https://groups.oasis-open.org/higherlogic/ws/public/document?document_id=46057
https://groups.oasis-open.org/higherlogic/ws/public/document?document_id=46057
http://dx.doi.org/10.5281/zenodo.11295968
http://dx.doi.org/10.5281/zenodo.11295944
http://dx.doi.org/10.5281/zenodo.11295944
http://dx.doi.org/10.5281/zenodo.11295944
https://github.com/micado-scale/micado-parser/
https://github.com/micado-scale/micado-parser/
https://github.com/micado-scale/micado-parser/
https://github.com/openstack/tosca-parser/
https://github.com/openstack/tosca-parser/
https://github.com/openstack/tosca-parser/
https://kompose.io/
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb37
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb37
https://www.digitbrain.eu/experiments/
https://www.digitbrain.eu/experiments/
https://www.digitbrain.eu/experiments/
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb39
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb39
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb39
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb39
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb39
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb39
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb39
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb39
http://refhub.elsevier.com/S0167-739X(24)00592-2/sb39
mailto:andre.stork@igd.fraunhofer.de
mailto:andre.stork@igd.fraunhofer.de

	Automated generation of deployment descriptors for managing microservices-based applications in the cloud to edge continuum
	Introduction
	Related Work
	Background Technologies
	DIGITbrain and previous projects
	DIGITbrain Metadata Structure
	MiCADO Cloud to Edge Orchestrator
	Topology and Orchestration Specification for Cloud Applications

	Automated Composition and Generation of a Deployment Descriptor
	Collaborative Deployment Descriptors
	Application Description Template
	Cloud Service Archives and Substitution Mappings

	ADT Generator Architecture
	DockKubeADT Internal Operation
	ADT Generator Internal Operation
	ADT Generator Deployment

	Digital Twin for Punching Machine
	General Introduction of RISTRA
	RISTRA as Part of a DMA Tuple
	Deployment

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

