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a b s t r a c t

Previous research on the prediction of fiscal aggregates has shown evidence that simple
autoregressive models often provide better forecasts of fiscal variables than multivari-
ate specifications. We argue that the multivariate models considered by previous studies
are small-scale, probably burdened by overparameterization, and not robust to structural
changes. Bayesian Vector Autoregressions (BVARs), on the other hand, allow the informa-
tion contained in a large data set to be summarized efficiently, and can also allow for time
variation in both the coefficients and the volatilities. In this paper we explore the perfor-
mance of BVARs with constant and drifting coefficients for forecasting key fiscal variables
such as government revenues, expenditures, and interest payments on the outstanding
debt. We focus on both point and density forecasting, as assessments of a country’s fis-
cal stability and overall credit risk should typically be based on the specification of a whole
probability distribution for the future state of the economy. Using data from the US and the
largest European countries, we show that both the adoption of a large system and the in-
troduction of time variation help in forecasting, with the former playing a relatively more
important role in point forecasting, and the latter being more important for density fore-
casting.

© 2014 The Authors. Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

The forecasting of future developments in fiscal vari-
ables has been of increasing importance in recent years, es-
pecially since the latest financial and Euro-area sovereign
debt crisis. Fiscal positions affect the credit risk and the
sovereign cost of borrowing. Following the latest de-
velopments in the international debt markets, it is ap-
parent that markets take economic fundamentals into
account seriously, and penalize countries heavily for fiscal
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imbalances (von Hagen, Schuknecht, & Wolswijk, 2011).
Arghyrou and Kontonikas (2012) claim that there has been
a significant shift in market behavior since 2007, from
a convergence-based pricing model to a fundamentals-
based pricing model, meaning that forecasting fundamen-
tal macroeconomic variables has become more important.

A number of institutions produce forecasts of the
macroeconomic variables that provide important feedback
for their policies. For example, central banks need to iden-
tify the impact of fiscal policies on fundamentals and infla-
tion in order to conduct monetary policy. OECD and IMF
use forecasts to determine whether they need to inter-
vene, and to provide recommendations to individual coun-
tries about the sustainability of their fiscal and monetary
policies. National research institutes and rating agencies,
which have to assess the default risk entailed in the debt
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securities issued by governments, use forecasts to express
their own views on the fiscal and monetary policies fol-
lowed by national authorities.

Forecasts are also of increasing importance in the de-
termination of budgetary goals. For instance, if high eco-
nomic growth is forecasted, a government would expect
a higher level of structural revenues, and can budget a
higher discretionary expenditure. However, official growth
forecasts for the Euro-area have been systematically over-
optimistic (see Artis & Marcellino, 2001; Jonung & Larch,
2006; Strauch, Hallerberg, & von Hagen, 2004), while the
evidence for the US is mixed (Leal, Pérez, Tujula, & Vidal,
2008). Optimistic forecasts from official authorities may
have played an important role in the excessive deficits
which have been observed in several Euro countries (Jo-
nung & Larch, 2006). Possible reasons for the observed bias
may be that governments and official authoritiesmay have
non-symmetric loss functions, or that significant economic
variables have been omitted from the estimated models.
Another type of error may also be introduced via miscal-
culated fiscal variables, the estimation of which is based
on economic variables such as the output gap and GDP
volatility (Cassidy, Kamlet, & Nagin, 1989; Feenberg, Gen-
try, Gilroy, & Rosen, 1989; Leal et al., 2008; Melander, Sis-
manidis, & Grenouilleau, 2007).

Favero andMarcellino (2005) provide a comprehensive
study on the forecasting of fiscal variables using a wide
range of econometric models. In particular, they consider
univariate autoregressive and moving average models,
vector autoregressions (VARs), and small-scale semistruc-
tural models, and compare them with institutional fore-
casts made by the OECD. Their results show that simple
time series univariate methods work well and are able
to deliver unbiased forecasts, or slightly upward-biased
forecasts for the debt–GDP dynamics, whereas the OECD
forecasts are typically biased. The fact that univariatemod-
els work better thanmultivariate ones is puzzling, because
economic theorywould suggest that fiscal variables should
be tightly intertwined, and therefore, in theory, models
based on a system of macroeconomic variables, such as
VARs, should produce better forecasts than simple univari-
ate specifications.

Favero andMarcellino (2005) suggest that these results
are due mostly to the short sample available with respect
to the number of coefficients to be estimated (overparame-
terization), the robustness of simple methods to structural
breaks, and the difficulty of modelling the joint behaviors
of several variables in a period of substantial institutional
and economic change.

In this paper, we consider using econometric models
that can deal with these problems efficiently. The mod-
els that we consider allow the information contained in
a large data set to be used without incurring the overpa-
rameterization problem, and can allow for time variation
in the coefficients and the volatilities, a characteristic
which makes them robust to structural changes, regard-
less of whether such changes happen smoothly or abruptly
(breaks). We show that once overparameterization and
structural change have been dealtwith appropriately,mul-
tivariate models do provide a better description of the
macroeconomy than univariate specifications, and the use

of a large panel of macroeconomic data does provide im-
provements in terms of forecast accuracy.

A key aspect in the forecasting of macroeconomic vari-
ables is the assessment of the overall uncertainty that ex-
ists around point forecasts. This aspect seems particularly
relevant for fiscal variables, as assessments of fiscal stabil-
ity and of the overall credit and default risk of a country
should typically be based on the specification of a complete
probability distribution for the future state of the economy.

Accordingly, the second contribution of this paper is to
focus on forecasting the whole predictive distribution of
fiscal variables, rather than limiting the interest to point
forecasts only. Our empirical results show that the use of
models that allow for drifting coefficients and volatility
does provide a better characterization of the uncertainty
in the economy, which translates into substantial gains
in density forecasts with respect to simpler specifications
with constant coefficients and volatilities.

To deal with the problem of overparameterization,
we consider the use of Bayesian Vector Autoregressions
(BVARs). BVARs have a long history in forecasting, stimu-
lated by their effectiveness, as documented in the seminal
studies of Doan, Litterman, and Sims (1984) and Litterman
(1986). In recent years, thesemodels seem tohave been be-
ing used even more systematically for policy analysis and
the forecasting of macroeconomic variables. Starting from
the paper of Banbura, Giannone, and Reichlin (2010), the
benefits of using BVARs formacroeconomic forecasting us-
ing large data-sets have been documented in several recent
papers (e.g., Carriero, Clark, & Marcellino, 2013a; Carriero,
Kapetanios, &Marcellino, 2011; Koop, 2013). The goodper-
formance of BVARs is not limited to large data sets with
large numbers of parameters to be estimated: Litterman
(1986) has shown that in average-sized models with up to
six variables, forecasts of BVARs without judgemental ad-
justments are at least as good and competitive as the best
commercially available forecasts.

To account for the possibility that the data generating
processes of fiscal variables have experienced changes in
behavior over time, we estimate time-varying parameter
Bayesian vector autoregressions (TVP-BVARs). We allow
for both the autoregressive coefficients and the variance
of the errors varying over time. The TVP-BVAR model has
also been used in other studies such as that of D’Agostino,
Gambetti, and Giannone (2013), who find that it outper-
forms other methods such as a fixed coefficient VAR and a
time varying AR for the forecasting of US unemployment,
inflation and short term interest rates. Clark (2011) finds
similar results for a model featuring only time variation in
volatility.

We explore the performances of BVARs with constant
and drifting coefficients in forecasting key fiscal variables
such as government revenues, expenditures, and interest
payments on the outstanding debt. We focus on forecast-
ing fiscal variables for the US and the three largest E.U.
economies, namely the UK, France, and Germany. These
European countries were all involved in the European
sovereign debt crisis either directly or indirectly, and they
still face enormous fiscal constraints with relevant eco-
nomic implications. The inclusion of European countries
that were affected by the recent sovereign debt crisis more
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directly, such as Italy, Spain, and Greece, would be desir-
able; however, the data available for these countries are
either too short or too unreliable to allow the estimation
of time varying parameter specifications, and therefore we
have not included them in the comparison.

We obtain two main results from our empirical analy-
sis. First, we find that all BVAR specifications (with fixed or
time-varying coefficients) outperform simple autoregres-
sive forecasts overall, while the forecasts produced by a
classical VAR do not. This confirms that classical VARs are
likely to be burdened by overparameterization, but that,
once overparameterization has been dealt with, the use
of additional explanatory variables does help in forecast-
ing fiscal variables, andmultivariatemodels should be pre-
ferred to univariate specifications. Second, we find that
both the adoption of a large system and the introduction of
time variation help in forecasting, with the former playing
a relatively more important role in point forecasting, and
the latter being more important for density forecasting.

The paper is structured as follows: Section 2 describes
the two main Bayesian models with constant and time-
varying coefficients. Section 3 describes the data set and
the forecasting scheme. Section 4 provides the results
of our empirical application. Section 5 concludes. Two
appendices provide details on the BVAR and TVP-BVAR
models.

2. Models

Vector autoregressions (VARs) have beenusedwidely in
macroeconomics to study the interactions between fiscal
policy and other macroeconomic variables (see e.g. Blan-
chard & Perotti, 2002, for the US; and Marcellino, 2006,
for the largest countries in the Euro area). The advantage
of VARs lies in their rather general representation, which
does not require any restrictions to be imposed on the pa-
rameters, thus enabling themodels to capture complex re-
lationships among variables.

However, the large numbers of parameters that need to
be estimated reduce the degrees of freedom, leading to less
accurate estimates, a situation that is usually referred to
as the ‘‘curse of dimensionality’’. Moreover, classical VARs
do not allow for drifts in coefficients and volatilities, while
several recent studies, such as those of Carriero, Clark, and
Marcellino (2012), Clark (2011), Cogley and Sargent (2005),
D’Agostino et al. (2013), Koop and Korobilis (2013), and
Primiceri (2005), have emphasized that the inclusion of
drifting coefficients and volatility is key for understanding
the dynamics of macroeconomic variables, as well as for
forecasting.

A Bayesian vector autoregression (BVAR) is a VAR with
coefficients that are random variables on which the re-
searcher can impose some a priori information. The con-
tent of such prior information can be based on both
judgment and a pre-sample of data. The precision of such
prior information can vary from very high to very loose, a
choice which is left entirely up to the researcher.

Without entering into philosophical disputes about the
Bayesian and classical approaches to econometrics, we
think that it is worth stressing here that BVARs can be
interpreted simply as a selection device. Consider the first

equation of a large VAR: there are many regressors, and
the researcher needs to solve the trade-off between using
as much information as possible, and the loss in degrees
of freedom that comes from having too many parameters
to estimate. The researcher can follow the simple method
of having a set of variables, adding one variable at a time,
testing for its significance, and then accepting or rejecting
it. Implicitly, what this procedure does is select the
regressors on the basis of how much valuable information
they contain. Information is valuable if it is able to increase
the likelihood of the model significantly. However, in this
case, the order in which the various candidate variables
are considered for inclusion in themodel can influence the
outcome crucially.

The Bayesian approach works similarly, in the sense
that it also weights each coefficient in the model relative
to the contribution that the regressor to which that coeffi-
cient is attached makes to the likelihood of the model. The
coefficient attached to a given candidate regressor is set to
some prior value (for example 0), and only if the informa-
tion contained in the data is valuable enough to influence
the likelihood will the posterior mean of the coefficient be
far from its prior value. More precisely, rather than acting
as a selection device which either includes or excludes a
regressor, the BVAR includes all of the regressors, but as-
signs a different weight to each of them. The weight in-
creaseswith the informational content of a given regressor,
i.e. the higher its contribution to the likelihood, the higher
its weight.

Moreover, BVARs can accommodate time variation in
the coefficients easily. As BVAR coefficients are random
variables, it is natural to model them as stochastic pro-
cesses and treat them as unobserved variables which can
be filtered out easily using an MCMC algorithm.

In what follows, we describe the two models we use
in this paper, namely the constant coefficient BVAR with
natural conjugate prior, and the time varying parameters
BVAR (TVP-BVAR).

2.1. BVARs with constant coefficients (BVARs)

We use a standard BVAR with a Normal-Inverted
Wishart (N-IW) natural conjugate prior. Given N different
variables grouped in the vector yt = (y1t y2t . . . yNt)′,
we consider the following vector autoregression (VAR):

yt = Φc + Φ1yt−1 + Φ2yt−2 + · · · + Φpyt−p + Σ1/2εt;

εt ∼ i.i.d. N(0, IN), (1)

where t = 1, . . . , T . Each equation has M = Np + 1
regressors. By grouping the coefficient matrices in the
N × M matrix Φ = [Φc Φ1 . . . Φp] and defining xt =

(1 y′

t−1 . . . y′
t−p)

′ as a vector containing an intercept and p
lags of yt , the VAR in Eq. (1) can be written as:

yt = Φxt + εt .

Considering all data points t = 1, . . . , T gives:

Y = XΦ + E,

where Y = [y1, . . . , yT ]′, X = [x1, . . . , xT ]′, and E =

[ε1, . . . , εT ]
′ are, respectively, T × N , T × M and T × N

matrices.



328 A. Carriero et al. / International Journal of Forecasting 31 (2015) 325–348

For the VAR coefficients and error variances, we use the
conjugate N-IW prior:

Φ|Σ ∼ N(Φ0, Σ ⊗ Ω0), Σ ∼ IW (S0, v0).

As the N-IW prior is conjugate, the conditional posterior
distribution of this model is also N-IW (Zellner, 1971):

Φ|Σ, Y ∼ N(Φ̄, Σ ⊗ Ω̄), Σ |Y ∼ IW (S̄, v̄), (2)

where Φ̄ = Ω̄(Ω−1
0 Φ0 + X ′Y ), Ω̄−1

= Ω−1
0 + X ′X , v̄ =

v0+T , and S̄ = S0+Y ′Y+Φ ′

0Ω
−1
0 Φ0−Φ̄ ′Ω̄−1Φ̄ . In the case

of the natural conjugate N-IW prior, themarginal posterior
distribution ofΦ is matricvariate-t with expected value Φ̄ .

In our baseline specification, we impose the prior
expectation and variance of the coefficient matrices to be:

E[Φ(ij)
k ] =


Φ∗ if i = j, k = 1
0 otherwise,

Var[Φ(ij)
k ] = θ

1
k2

σ 2
i /σ 2

j , k = 1, . . . , p, (3)

where Φ
(ij)
k denotes the element in position (i, j) in the

matrix Φk, and where the covariances among the coeffi-
cients in Φk are zero. As will be discussed in Section 3.1,
all series are transformed to stationarity before estimation
is performed, so we set Φ∗

= 0.1 The shrinkage param-
eter θ measures the tightness of the prior: when θ → 0,
the prior is imposed exactly and the data do not influence
the estimates, while as θ → ∞, the prior becomes loose
and the prior information does not influence the estimates,
which will approach the standard OLS estimates. We will
discuss the choice of this parameter in detail below. The
factor σ 2

i /σ 2
j is a scaling parameter which accounts for the

different scale and variability of the data. To set the scale
parameters σ 2

i , we follow common practice (see e.g. Lit-
terman, 1986; Sims & Zha, 1998) and set them equal to the
variance of the residuals from a univariate autoregressive
model for the variables.

The prior specification is completed by choosing v0 and
S0 so that the prior expectation of Σ is equal to a fixed
diagonal residual variance E[Σ] = diag(σ 2

1 , . . . , σ 2
N). In

particular, following Kadiyala and Karlsson (1997), we set
the diagonal elements of S0 to s0ii = (v0 − N − 1)σ 2

i and
v0 = N + 2.

The prior described above is similar to that proposed
by Sims and Zha (1998), with the subtle difference that,
in the original implementation, the prior is elicited on the
coefficients of the structural representation of the VAR
rather than on the reduced form. This prior has been
used widely in the literature, see e.g. Leeper, Sims, and
Zha (1996), Robertson and Tallman (1999), Waggoner and
Zha (1999), and Zha (1998), and more recently Giannone,
Lenza, and Primiceri (2012).

To make the prior operational, one needs to choose
the value of the hyperparameter θ , which controls the

1 In the traditional implementation with data in levels, Φ∗ is set to one
to reflect the idea that the variables in the VAR follow univariate random
walks. The specification Φ∗

= 0 on the differenced data is equivalent,
as it again reflects the belief that the levels of the data follow univariate
random walks.

tightness of the prior.We follow Carriero et al. (2013a) and
choose θ at each point by maximizing the marginal data
density of the model:2

θ∗

t = argmax
θ

ln p(Y ). (4)

The marginal data density can be obtained by integrating
out all of the coefficients in the model. Defining Θ as the
set of all coefficients in the model, we have:

p(Y ) =


p(Y |Θ)p(Θ)dΘ.

Under the N-IW prior, the density p(Y ) can be computed
in closed form, and is given in Appendix A. We optimize
over a discrete grid θ ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
1, 10}.3 The marginal likelihood is also used to select the
lag length p of the system:

p∗
= argmax

p
ln p(Y ), (5)

where we optimize over the grid p = 1, 2, . . . , 12.
Under the standard N-IWprior described above, the full

distribution of the 1-step ahead forecasts is given by:

y′

T+1|x
′

T+1 ∼ MT (x′

T+1Φ̄, (x′

T+1Ω̄xT+1 + 1)−1, S, v).

Multi-step-ahead forecasts obtained by iteration are not
available in closed form, but can be simulated using a MC
algorithmwhichdraws a sequence of (Σ, Φ)using Eq. (2),4
with shocks εt+1, . . . , εt+h, and computes the implied path
of ŷ(j)

t+h at each draw j. We form point forecasts as means of
the draws of simulated forecasts.

2.2. BVARs with time varying coefficients (TVP-BVARs)

We use the specification of D’Agostino et al. (2013):

yt = Φc,t + Φ1,tyt−1 + Φ2,tyt−2 + · · ·

+ Φp,tyt−p + Σ
1/2
t εt; εt ∼ i.i.d. N(0, IN), (6)

where yt denotes the variables in the VAR. Note that Eq.
(6) is more general than Eq. (1), as it allows for variation

2 Giannone et al. (2012) propose a similar strategy for forecasting a
macroeconomic dataset. While our strategy implicitly assumes a flat
prior on a discrete set of possible values for θ , their strategy assumes a
proper (albeit uninformative) prior on a continuum of values. A second
alternative would be to calibrate θ so that the average in-sample fit for
the fiscal variables is the same as in the univariate model we use as a
benchmark (described in Section 3.3). This latter strategy was used by
Banbura et al. (2010), and can be treated as a robustness check.
3 It turns out that the value of the tightness does not change

substantially over time. For example, with US data, the optimal θ is equal
to 0.4 for most of the sample, with only a few exceptions towards the end
of the sample, where it sometimes decreases to 0.3.
4 Drawing a sequence of Φ can be computationally demanding in

general, but in this specific case the matricvariate structure of the N-
IW prior ensures the existence of a factorization that speeds up the
computations considerably. Indeed, letting V be a M × N matrix drawn
from a matricvariate standard normal distribution, we can draw the
matrix Φ as follows:

Φ = Φ̄ + chol(Ω̄) × V × chol(Σ)′.

This can speed up the computations considerably, because the two
Cholesky decompositions chol(Ω̄) and chol(Σ) require only M3

+ N3

operations.
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in the coefficients (Φ·,t ) and in the volatilities (Σ1/2
t ). The

VAR coefficients Φt = {Φc,t , Φj,t} evolve as random walks

Φt = Φt−1 + ηt .

Following Cogley and Sargent (2005), the covariance ma-
trix of the innovations vt = Σ

1/2
t εt is factored as:

VAR (vt) ≡ Σt = A−1
t Ht(A−1

t )′.

The time-varying matrices Ht and At are defined as:

Ht =

h1,t 0 0 0
0 h2,t 0 0
0 0 . . . 0
0 0 0 hN,t

 ;

At =

 1 0 0 0
α2,1,t 1 0 0
. . . . . . 1 0

αN,1,t . . . αN,N−1,t 1

 ,

(7)

with the hi,t evolving as geometric random walks:

ln hi,t = ln hi,t−1 + ν̃t . (8)

Following Primiceri (2005), we postulate the non-zero and
non-one elements of the matrix At to evolve as driftless
random walks,

αt = αt−1 + τt ,

and we assume the vector [v′
t , η

′
t , τ

′
t , ν̃

′
t ]

′ to be distributed
as an i.i.d. multivariate normal with mean 0 and variance
V :

V =

Σt 0 0 0
0 Q 0 0
0 0 S 0
0 0 0 G

 ,

where G is a diagonal matrix with diagonal elements
σ 2
1 , . . . , σ 2

N .
The prior distributions and the conditional posteriors

are described in Appendix B. We point out two aspects
here. First, the prior for Q is set using a pre-sample of T0
quarters. In particular, let QOLS denote the OLS estimate
of the coefficient covariance matrix using the training
sample. The prior distribution for Q is assumed to be
InverseWishart, with the scalematrix given by Q̄ = QOLS×

T0 × k, where the scalar k = 3.5× 10−4, as per Cogley and
Sargent (2005). The prior degrees of freedom are set equal
to T0, i.e., the length of the training sample.

The model can be estimated using a Gibbs sampling
algorithm,which is described inmore detail in Appendix B.
Following Cogley and Sargent (2005), we require the VAR
coefficients to be stable at each point in time, and achieve
this via rejection sampling. Note that finding stable draws
of the VAR coefficients for large systems can be very
time-consuming, and the problem is magnified in our
application because themodel is estimated recursively.We
therefore limit our consideration to systems with at most
four variables.

The lag length is set to two for the US and the UK,
reflecting convention in previous TVP-BVAR studies for
these countries (see Cogley & Sargent, 2005, for the US,
and Cogley, Morozov, & Sargent, 2005, for the UK). For the

remaining countries, the lag length is set to one, because
the time series available are severely limited.5

For the production of forecasts, we follow D’Agostino
et al. (2013) and fix the future values of the time-varying
matrix Φt at its estimated value. In particular, given the
value of the coefficient matrix Φt at time t , the forecasts
are produced by using Eq. (6) in periods t + 1, . . . , t + h,
where the right-hand side variables are either the actual
data (when available for a particular forecast horizon) or
the forecasts produced for the previous period. The volatil-
ities hi,t are instead simulated forward using Eq. (8). We
form point forecasts as means of the draws of simulated
forecasts.

Finally, in order to ascertain the roles of the time varia-
tion in the coefficients and in the volatilities separately, we
will consider a special case of this model in which the vari-
ation in the conditional mean parameters Φt is removed,
so that these parameters are constant (Φt = Φ), while the
volatility matrix Σ

1/2
t still changes over time. This model

is in between the TVP-BVAR and the BVAR, because with
respect to the former it does not feature change in the con-
ditional mean parameters, while with respect to the lat-
ter it does feature variation in the volatilities. We label this
model SV-BVAR, where SV stands for stochastic volatility.

3. Empirical application

3.1. Data

We use the above forecasting methods to forecast fiscal
aggregates of four large economies: the US, the UK, France,
and Germany. The sample is at a quarterly frequency, and
its length is different for each country, mainly because
of data availability. The data for the US span the period
from 1969:Q1 to 2010:Q4. For the UK, the time span is
1972:Q1–2010:Q4. For France and Germany, the data run
from 1991:Q2 to 2010:Q4 and from 1991:Q1 to 2010:Q3,
respectively. As the sample sizes for France and Germany
are particularly small, we anticipate here that a good deal
of caution will be needed in interpreting the results for
these two countries, especially with regard to the time-
varying coefficient specifications.6

For each country, we consider three fiscal and six
additional macroeconomic variables which we use to
forecast the fiscal variables. The set of fiscal variables con-
tains government expenditure, interest payments on pub-
lic debt, and tax revenues. All of these variables are taken

5 There are two obstacles to increasing the number of lags in the TVP
specifications. First, an overly rich dynamic specificationwould encounter
serious computational issues when drawing the vector of coefficients,
because the dimension of the parameter vectorwould imply an extremely
high percentage of draws in which at least some roots lie outside the unit
circle. This is a problem that has notoriously affected TVP-VARs in general,
and is very difficult to circumvent; see for example the discussions by
Koop (2013) and Koop and Korobilis (2013). The second problem is
specific to our application, and in particular to the fact that some of the
countries in our exercise have very short data sets in the time series
dimension.While this is not a problem for the constant coefficient BVARs,
it is problematic for the TVP-VARs.
6 Note that the first 40 (20) observations are used as a training sample

when estimating the TVP-VAR for the US and the UK (Germany and
France).
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Table 1
Variable transformations.

Variable, xi,t Transformation, yi,t

Government expenditures, ratio to GDP yi,t = ∆ log(xi,t )
Tax revenues, ratio to GDP yi,t = ∆ log(xi,t )
Interest payments on public debt, ratio to GDP yi,t = ∆ log(xi,t )
GDP growth yi,t = xi,t
Short term interest rate yi,t = ∆(xi,t )
Long term interest rate yi,t = ∆(xi,t )
Inflation yi,t = xi,t
Consumption yi,t = ∆ log(xi,t )
Industrial production yi,t = ∆ log(xi,t )

Data for the US are taken from the FRED database (Federal Reserve Bank of St. Louis), data for the European
countries are taken from Eurostat, Bloomberg and Bundesbank.

as ratios to GDP. We do not include the deficit (either pri-
mary or with interest) in the analysis, as, broadly speaking,
it is a linear combination of the three fiscal variables we
consider, and therefore its inclusion might cause issues of
collinearity. A similar argument applies to the level of pub-
lic debt, as such a variable would need to be included in its
first difference in order to achieve stationarity, and the re-
sulting variable would be highly collinear with the deficit.

It is worth noting that, for Germany and France, the
Stability and Growth pact and the Fiscal Compact impose
constraints on some fiscal ratios. This is an interesting
fact that could potentially be taken into account in the
models and used to forecast fiscal ratios better. However,
these constraints were violated on some occasions, so it is
not clear how binding they are. Moreover, fiscal forecasts
are typically used by institutions (such as the OECD
and the IMF) to assess whether they need to intervene
and to provide recommendations to individual countries
about the sustainability of their fiscal policies. Due to
these considerations, having a model which can produce
forecasts that violate such constraints is desirable.

The remaining macroeconomic variables are GDP
growth, consumption, inflation, industrial production, and
short and long term interest rates. We proxy short term
rates by taking three-month yields on Treasury Bills, and
long term rates by ten-year yields on government bonds.
The GDP is the gross domestic product at market prices.
To account for inflation, we use a price index with base
year 2000. For industrial production (IP), we have used an
index with base year 2000, and all industries are included.
Consumption is the final consumption expenditure as a
ratio to GDP.

Some of the information contained in the IP and the
consumption expenditure might be reflected in the GDP
already. However, there is a rationale for using some dis-
aggregation in the data. For example, IP provides specific
information on the production of goods, while changes
in consumption might reflect the fact that consumers are
(usually correctly) reflecting their forecasts of aweakening
or strengthening job market (e.g. Breeden, 2012). Several
papers have provided evidence that a certain level of dis-
aggregate information can provide additional gains in fore-
casting, even at a quarterly frequency, see e.g. Marcellino,
Stock, and Watson (2006) and Stock and Watson (2002).

We did not include unemployment in the pool of
regressors because this variable had substantial differences
in definition, construction and length between countries.

Moreover, it is typically considered to be a lagging variable
with respect to the cycle, which is likely to make it less
useful as a forecasting tool.7

We have used a number of data sources. All data for the
US economy come from thedatabase of the Federal Reserve
Bank of St. Louis. Most fiscal and other macroeconomic
data for the European countries are from Eurostat. Quar-
terly data for three-month Treasury bills and ten-year gov-
ernment bonds with constant maturity for Germany and
France are collected from Bloomberg. The time series for
industrial production and final consumption expenditure
for Germany come from the Bundesbank.

All variables are seasonally adjusted when necessary.
All of the models are estimated after transforming the
variables as necessary to obtain stationarity. However,
the forecasting results we provide are based instead on
the original variables.8 The transformations used on each
variable are listed in Table 1.

3.2. Forecasting exercise

The forecasting exercise is performed in pseudo real
time, i.e., we never use information which is not available
at the time the forecast is made, but do use final vintage
data. For all models, we use a recursive estimation scheme.
For example, for the US, the initial estimation window
ranges from 1969:Q1 to 1989:Q1, which includes 20 years
(i.e., 80 quarterly data-points). Forecasts up to four steps
ahead are produced to cover the period 1989:Q2 to
1990:Q1. Then, the estimation window is augmented with
an additional data-point, becoming 1969:Q1 to 1989:Q2,
and forecasts up to 1991:Q2 are produced. This scheme
continues until the last estimation window, which is
1969:Q1 to 2009:Q4, and yields forecasts for the period
2010:Q1 to 2010:Q4. The forecast evaluation window is
therefore from 1989:Q2 to 2010:Q4. For the remaining
countries, the forecast evaluation windows are: 1992:Q2
to 2010:Q4 for the UK, 2001:Q3 to 2010:Q4 for France, and
2001:Q2 to 2010:Q3 for Germany.

7 The lagging nature of unemployment is particularly marked for the
European countries in a sample that includes the recent crisis.
8 This means that we produce the forecasts of the transformed variable

and then get the forecast of the original variable by inverting the
transformation.
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3.3. Forecast evaluation

We evaluate both point and density forecasts of the
models examined. As a benchmark model, we will use the
following Bayesian autoregressive model (BAR):

y(i)
t = φc + φ1y

(i)
t−1 + · · · + φpy

(i)
t−p +


σ 2
i ε

(i)
t ;

εt ∼ i.i.d. N(0, 1). (9)

Favero and Marcellino (2005) provide evidence that
univariate models such as the BAR can produce very good
point forecasts of fiscal variables for several European
countries.

Note that the model in Eq. (9) can be obtained as a
special case of the BVAR in Eq. (1), just by setting the
number of variables to N = 1. Therefore, the estimation of
the benchmark model and the production of the forecasts
proceed precisely as in the BVAR. In particular, we specify
the same prior mean and variances as in the BVAR, and
the resulting posteriors are the univariate versions of Eq.
(2). Similarly, we choose the overall tightness and lag-
length via the marginal likelihood using Eqs. (4) and (5)
respectively. Finally, the forecasts are produced using an
MCalgorithmwhichdraws a sequence ofσi, φc, φ1, . . . , φp
(using the univariate versions of Eq. (2)) and the shocks
ε

(i)
t+1, . . . , ε

(i)
t+h, and computes the implied path of ŷ(j)

t+h at
each draw j. Point forecasts are computed as means of
the draws of simulated forecasts. For robustness, we also
computed results for a classical autoregressive model with
the lag length selected via the BIC; the results were similar
to those obtained with the BAR, and therefore we do not
provide them here, to save space.

Typically, stochastic volatility improves density fore-
casts, and hence it is helpful to include as a benchmark a
version of the BAR inwhich the volatilities are drifting. This
model can also be obtained as a special case of one of our
more general models, the TVP-BVAR in Eq. (6), simply by
setting N = 1 and removing the variation in the condi-
tional mean coefficients Φt . The model is:

y(i)
t = φc + φ1y

(i)
t−1 + · · · + φpy

(i)
t−p +


σ 2
i,tε

(i)
t ;

εt ∼ i.i.d. N(0, 1) (10)

ln σ 2
i,t = ln σ 2

i,t + ut; ut ∼ i.i.d. N(0, ω2
i ). (11)

Estimates and forecasts for this model are produced using
the same algorithm as the TVP-BVAR, modified appropri-
ately to take into account the constancy of the coefficients
Φt and the univariate dimension of the problem. We label
the benchmark model in Eqs. (10)–(11) the SV-BAR.

Finally, to provide a general indication of the overall
forecastability of the series under analysis, we also add
to the pool of models a simple random walk no-change
forecast, which we label RW. Such a forecast is obtained
by simulating forward the equation y(i)

t = y(i)
t−1 +


σ 2
i ε

(i)
t .

The coefficient σi is estimated using the sample variance
of y(i)

t − y(i)
t−1, and forecasts are obtained by drawing

the shocks ε
(i)
t+1, . . . , ε

(i)
t+h and multiplying them by the

estimated


σ 2
i .

3.3.1. Point forecasts
For point forecasts, we evaluate our results in terms

of the root mean squared forecast error (RMSFE) for a
given model. Let ŷ(i)

t+h(M) denote the forecast of the ith
variable y(i)

t+h made by model M . The RMSFE of model M
in forecasting the ith variable at horizon h is:

RMSFEM
i,h =


1
P

 
ŷ(i)
t+h(M) − y(i)

t+h

2
,

where the sum is computed over all P forecasts produced.
Results are reported in terms of the relative RMSFE
(RelRMSFE) between the model and the benchmark:

RelRMSFEM
i,h =

RMSFEM
i,h

RMSFEBAR(p∗)
i,h

. (12)

A RelRMSFE below one signals that model M outperforms
the benchmark.

To provide a rough gauge as to whether the RelRMSFE
ratios are significantly different from one, we use the
Diebold andMariano (1995) t-statistic for equalMSFEs, ap-
plied to the forecast of each model relative to the bench-
mark. Our use of the Diebold–Mariano test with forecasts
that are sometimes nested is a deliberate choice. Monte
Carlo evidence from Clark andMcCracken (2013) indicates
that, with nested models, the Diebold–Mariano test can be
viewed as a somewhat conservative (conservative in the
sense of tending to have a size that is modestly below the
nominal size) test for equal accuracy in a finite sample, rel-
ative to normal critical values. Since our proposed model
can be viewed as nesting the benchmarks we are using for
comparison,we treat the tests as one-sided, and only reject
the benchmark in favor of the null (i.e., we do not consider
rejections of the alternative model in favor of the bench-
mark). The underlying p-values are based on t-statistics
computed with a serial correlation-robust variance, using
a rectangular kernel, h − 1 lags, and the small-sample ad-
justment of Harvey, Leybourne, and Newbold (1997).

Finally, to provide an overall measure of the forecasta-
bility of the models, we have also considered the mean ab-
solute percentage error (MAPE):

MAPEM
i,h =

1
P

  ŷ
(i)
t+h(M) − y(i)

t+h

y(i)
t+h

 ,
where the sum is computed over all the P forecasts pro-
duced. To avoid cluttering up the tables, we only comment
on the values of the MAPE achieved by some selected fore-
casting models.

3.3.2. Density forecasts
The overall calibration of the density forecasts can be

measured using the average of log predictive likelihoods
(density scores henceforth), motivated and described by,
e.g., Geweke andAmisano (2010). FormodelMi, the h-step-
ahead score is defined as:

SCOREM
i,h =

1
P


log p(y(i)

t+h|y
(t),M),
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where the sum is computed over all the P forecasts
produced, y(i)

t+h denotes the observed outcome for the data
in period t + h, and y(t) denotes the history of data up to
period t (the sample used to estimate the model and form
the prediction for period t + h). The predictive density p(·)
is obtained by univariate kernel estimation based on the
MCMC output. Again, we compare this model against the
BAR(p∗) benchmark given by Eq. (9). In this case, the SCORE
is a gain function, and in logarithmic scale, and therefore
we consider its differences:

∆ SCOREM
i,h = SCOREM

i,h − SCOREBAR(p∗)
i,h . (13)

In the tables, we present results for 100 × ∆SCORE, and
therefore, for example, a value of 5 in the tables indicates
that model M outperforms the benchmark by about 5% in
density forecasting.

To provide a rough gauge of the statistical significance
of differences in density scores, we use the Amisano and
Giacomini (2007) t-test of equal means, applied to the log
score for each model relative to the benchmark random
forecast. We view the tests merely as a rough gauge be-
cause, with nested models, the asymptotic validity of the
Amisano and Giacomini (2007) test requires that, as fore-
casting moves forward in time, the models be estimated
with a rolling, rather than expanding, sample of data. As
was the case for the point forecasts, we treat the tests as
one-sided, and the t-statistics are computed with a se-
rial correlation-robust variance, using a rectangular kernel,
h−1 lags, and the small-sample adjustment of Harvey et al.
(1997).

4. Results

We organize the discussion of our results around two
main questions. First, we address the issue of the role
of multivariate information in forecasting fiscal variables.
We find that the use of a multivariate model does help,
provided that shrinkage is imposed in order to reduce the
parameter uncertainty. Second,we address the role of time
variation in the coefficients and volatilities for forecasting.
Our results indicate that time variation is particularly
useful when producing density forecasts of fiscal variables.

4.1. The role of multivariate information

To assess the role of multivariate information in fore-
casting fiscal variables, we consider the BVARs estimated
on the complete cross section of the nine variables under
analysis and compare them with those of two alternative
univariate models, the BAR benchmark and a RW forecast.
The results of this comparison are shown in Tables 2 and
3. Specifically, Table 2 contains results for a point fore-
cast evaluation and reports the RelRMSFE, as described by
Eq. (12), while Table 3 contains results for a density fore-
cast evaluation and reports the ∆SCORE, as described by
Eq. (13). In both cases, these loss functions are computed
against the benchmark BAR model described in Eq. (9).

Both tables are divided into four panels, reporting
the results for the four countries under analysis. The

best forecasting model for each variable-forecast horizon
combination is highlighted in bold. The cases in which a
model outperforms the BAR benchmark are highlighted in
green. Finally, the symbols *, ** and *** denote rejection of
the null of equal forecast accuracy at the 10%, 5% and 1%
confidence levels.

We first focus on point forecasts, displayed in Table 2.
Several conclusions can be drawn.

First, the large BVAR with constant coefficients outper-
forms the BAR benchmark in most instances. In particular,
the BVAR produces the best point forecasts for all three fis-
cal variables when considering US data, with large and of-
ten significant gains. The gains against the BAR can go up to
18%, with the MAPE at the 4-quarter-ahead horizon being
2.24% for expenditures, 2.39% for revenues, and 6.48% for
interest payments.

The BVAR outperforms the univariate benchmark for
two fiscal variables out of three when considering data
from Germany and France. The gains relative to the BAR
can reach 28% for Germany and 12% for France. For France,
the MAPEs produced by the BVAR at the 4-quarter-ahead
horizon are 1.72% for expenditures, 1.37% for revenues,
and 7.27% for interest payments. For Germany, the MAPEs
produced by the BVAR at the 4-quarter-ahead horizon for
the three fiscal variables are 3.52%, 2.11%, and 8.33%.

On the other hand, the results for the UK show that
the BVAR outperforms the benchmark for expenditures,
but is outperformed in forecasting the remaining two
fiscal variables. The MAPEs produced by the BVAR at the
4-quarter-ahead horizon for the three fiscal variables are
2.50%, 2.60%, and 10.93%.

When comparing the performance with that of the
simple RW model, the BVAR provides a better forecasting
performance overall, outperforming the RW for all fiscal
variables with US data, and for expenditure and revenues
for the remaining countries. However, theRWdoes provide
a competitive forecast of interest payments. It is worth
noting that the RW no-change forecast can be thought of
as the limit to which the BVAR converges as the shrinkage
parameter approaches 0, meaning that using a tighter
prior on the BVAR might improve the forecasts of interest
payments.

Finally, looking also at the remaining variables in the
system, the performance of the BVAR is generally superior
to those of the BAR and RW in forecasting inflation and
GDP growth, but is inferior when forecasting interest rates.
The finding that a univariate specification seems to work
better for interest rates is in line with several results in
the literature, see e.g. Banbura et al. (2010), Carriero et al.
(2013a), and Giannone et al. (2012).

We now turn our attention to density forecasts, dis-
played in Table 3.

As with point forecasts, the density forecasts provided
by the BVAR with US data are the best overall, with large
and often significant gains relative to the two alternative
univariate specifications. The BVAR also produces the best
density forecasts of expenditure for the UK, Germany
and France, while it is generally outperformed by the
BAR model in density forecasting for the remaining fiscal
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Table 2
Point forecast evaluation of BVAR vs the benchmark.

variables. As we shall see below, the BVAR performance for
density forecasting improves dramatically following the
inclusion of drifting parameters and volatilities.

Looking also at the remaining variables in the system,
the BVAR generally provides the best density forecasts,

outperforming both the BAR benchmark and the RW
benchmark for most variables, and for inflation and GDP
growth in particular (the latter with the exception of the
UK). It is worth noting that the RW density forecasts
are poor overall, due mainly to the fact that the RW
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Table 3
Density forecast evaluation of BVAR vs the benchmark.

specification leads to predictive densities that are too
spread out, especially at long horizons.

To summarize, our results show that the use of a large
information set does help in forecasting fiscal variables.
However, it should be noted that the mere use of a

large information set is not sufficient, as some degree
of shrinkage is also needed, to avoid the problem of
overparameterization. To stress this point better, we have
also considered repeating the forecasting exercise using
a classical VAR. We obtained this model by imposing a
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Table 4
Point forecast evaluation of VAR vs the benchmark.

very loose prior on the BVAR, while the lag length was still
chosen by maximizing the marginal likelihood.

The results for point forecasts9 are displayed in Table 4,
and show that the forecasts from a VARwith nine variables
are systematically considerably inferior to forecasts based
on a univariate specification, a result that is in line with
the findings of Favero andMarcellino (2005). As our results
from Tables 2 and 3 make clear, this is due, not to the fact
that the larger data set does not contain any valuable in-
formation, but rather to the fact that the overparameter-
ization inherent in the standard VAR framework makes it
difficult to use such information.

4.2. The role of time variation in coefficients and volatilities

We now turn our attention to the role of time variation
in the conditional mean coefficients and error volatilities.
Tables 5a–8 provide the results of a forecasting exercise

9 We did not compute density forecasts for the classical VAR because
the overall parameter uncertainty in thismodel is so large that, in practice,
a simulation of the whole predictive distribution is not feasible, due to
the extremely high percentage of draws that fall in the nonstationary
region, thus implying an explosive behaviour for the simulated paths of
the variables. This difficulty per sewarns against using largeVARswithout
imposing some shrinkage on their parameters.

based on the TVP-BVAR described in Eq. (6) for the US, the
UK, Germany, and France, respectively.

In the interest of space, we omit from these tables the
results for the various alternative variables that are used as
the fourth variable in the various TVP-BVAR specifications.
However, the results for these variables broadly follow the
same pattern as the fiscal variables, and are available upon
request.

Each of the four tables is divided into two parts, (a)
and (b), which show the results for the point and density
forecasts respectively. Each of these parts is divided into
four panels. Panel A contains the results based on the
constant coefficients BVAR. These are the same figures as
appear in Tables 2 and 3, and are included here to facilitate
comparisons across models. Panel B contains the results
obtained using the SV-BAR benchmark in Eq. (10), which
is especially informative for density forecasting.

Panel C contains results from the TVP-BVARs. This
panel contains the results of four-dimensional TVP-BVARs,
where the three fiscal variables are always included
in the model, and the fourth variable changes across
specifications. Finally, Panel D contains the results from
a version of the TVP-BVAR model where the variation in
the conditional mean parameters Φt has been shut down,
and only the volatility matrix Σ

1/2
t changes over time. We

label this model SV-BVAR, where SV stands for stochastic
volatility.
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Table 5a
Point forecast evaluation, US data.

In the tables, a green shade on a given variable-forecast
horizon combination signals that the model improves on
the BAR benchmark. The best model for each variable-
forecast horizon combination is highlighted in bold.

4.2.1. Results for the US

Tables 5a and 5b show the results for the US, for
point and density forecasts respectively. Focusing first on
point forecasts, the TVP-BVAR models provide good point
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Table 5b
Density forecast evaluation, US data.

forecasts for revenues, systematically outperforming the
BAR benchmark, while only some specifications provide
gains for the other two fiscal variables. For expenditures,
themodelwith industrial production outperforms the BAR,
while the TVP-BVAR is outperformed by the benchmark

overall for interest payments. On the other hand, BVAR
based on the larger information set systematically pro-
duces good forecasts for all three fiscal variables, outper-
forming the benchmark in all but one case (forecasts of
expenditures four quarters ahead). The BVAR produces the
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best point forecasts overall, with the exception of rev-
enues, which are predicted slightly better by the the TVP-
BVAR with the 3-month rate as the fourth variable. These
results indicate that, for point forecasts, the use of a large
information set is of more importance than the modelling
of time variation in the coefficients and volatilities, and
that the use of a large BVAR should be preferred to the use
of smaller systems with time-varying coefficients.

Turning to density forecasts, both the BVAR and the
TVP-BVARs improve on the BAR benchmark in most
cases. The TVP-BVARs outperform the BVAR in density
forecasting, producing systematically higher scores for
revenues and interest payments, and often higher scores
for expenditures. Both models improve on the univariate
SV-BAR benchmark, showing that the joint modelling of
macroeconomic variables improves the density forecasts.

By comparing the results in Panel C with those in
Panel D, we can assess the relative contributions of time
variation in the coefficients and in the volatilities to the
improvement in density forecasts. The TVP-BVARs provide
better forecasts than the SV-BVARs in 23 cases out of 24
for expenditures, in 15 cases out of 24 for revenues, and in
12 cases out of 24 for interest payments. Therefore, the use
of time variation in both the coefficients and the volatilities
does help in the density forecasting of fiscal variables,more
so than does variation in the volatilities alone. Note this
is not necessarily the case for point forecasts, where the
results are mixed, with the TVP-BVARs providing better
results for expenditures, the SV-BVARs being better for
interest payments, and the two models providing similar
forecasts for revenues.

To summarise, the results for the US show that the use
of a large information set improves the point forecasts,
while the use of time variation in both coefficients and
volatilities can improve the density forecasts.

4.2.2. Results for the UK
Tables 6a and 6b show results for the UK, for point and

density forecasts respectively. Focusing first on point fore-
casts, the TVP-BVARs do not provide good point forecasts
of the fiscal variables, and none of the TVP-BVAR specifi-
cations are able to outperform either the benchmarks or
the large BVAR. This confirms the finding that the use of a
large information set helps relatively more in point fore-
casting than the use of a model with variation in the coef-
ficients. However, the evidence in favour of a multivariate
model over a univariate model is somewhat less strong for
the UK than for the US. The best point forecasts for the UK
are obtained by the BVAR (for expenditures), the univari-
ate SV-BAR (for interest payments), and the univariate BAR
benchmark (for revenues).

Turning to density forecasts, as with the US data,
both the BVAR and the TVP-BVARs improve on the BAR
benchmark in most cases. In particular, the TVP-BVARs
produce the best density forecasts of interest payments
overall. Most of the TVP-BVAR specifications also produce
good forecasts of revenues, but even better forecasts
for this variable are produced by the SV-BAR. The poor
performance of the TVP-BVARs for the density forecasting
of expenditures at long horizons is driven by the poor

performances of these models in producing good point
forecasts for this variable.

By comparing the results in Panel C with those in
Panel D, we can assess the relative contributions of time
variation in the coefficients and in the volatilities to the
improvement in density forecasts. The TVP-BVARs provide
better forecasts than the SV-BVARs in 20 cases out of 24 for
expenditures, in all 24 cases for revenues, and in 17 cases
out of 24 for interest payments. Therefore, the usefulness
of time variation in both the conditional mean coefficients
and the volatilities (rather than in the volatilities alone) is
even stronger using UK data.

To summarise, the results for theUKprovideweaker ev-
idence in favour of the use of multivariate models, but the
result that, among themultivariate specifications, the large
BVAR outperforms the TVP-BVARs in point forecasting still
holds. Moreover, as was the case with the US data, we find
that modelling the time variation in both the coefficients
and the volatilities improves the density forecasts.

4.2.3. Results for Germany and France
Wenow turn to the results for Germany and France. It is

important to stress that caution is needed when interpret-
ing the results for these countries, as the data-set available
includes only about 20 years of quarterly data (from 1991
to the end of 2010). This caveat is particularly important
for the time-varying specifications, as the sample is further
reduced in this case, because the first five years of data are
used as a training sample.

Tables 7a and 7b show the results for Germany, for
point and density forecasts respectively. Focusing first
on the point forecasts, the BVAR based on the larger
information set systematically produces good forecasts,
beating the BAR benchmark for two out of the three fiscal
variables, expenditures and revenues. No model is able
to beat the BAR benchmark for interest payments. The
BVAR is the bestmodel overall in forecasting expenditures,
but the univariate SV-BAR produces the best forecasts for
revenues. The TVP-BVARs, on the other hand, are never
able to outperform the benchmark for point forecasting.
This latter result is probably due to the limited size of the
sample used, which is too small to provide good estimates
of time-varying specifications.

Turning to density forecasts, the TVP-BVAR models
perform well overall for forecasting revenues and interest
payments, as does the BVAR for forecasting expenditures.
By comparing the results contained in Panel C with those
in Panel D, it is clear that the use of time variation in
the conditional mean coefficients helps. In particular, the
TVP-BVARs provide better forecasts than the SV-BVARs in
20 cases out of 24 for expenditures, in all 24 cases for
revenues, and in 17 cases out of 24 for interest payments.
Therefore, as with the US and UK data, the use of time
variation in both the conditional mean coefficients and
the volatilities does improve the density forecasts of fiscal
variables, relative to variation in the volatilities alone.

Tables 8a and 8b show the results for France, for point
and density forecasts respectively. Focusing first on point
forecasts, the BVAR based on the larger information set
systematically produces good forecasts for all three fiscal
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Table 6a
Point forecast evaluation, UK data.

variables, outperforming the benchmark and the univari-
ate BAR-SV in all but two cases, namely the forecasts of
revenues at three and four quarters ahead. On the other
hand, the TVP-BVAR models are never able to outperform
the benchmark. In general, the models with time variation

do not perform well for point forecasting: also, among the
univariate specifications, the SV-BAR is outperformed sys-
tematically by the constant coefficient BAR. Aswas the case
with the German data, this result is probably due to the
limited size of the sample used.
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Table 6b
Density forecast evaluation, UK data.

Turning to density forecasts, there is no clear rank-
ing across models. Either the BVAR or the TVP-BVARs
improve over the BAR benchmark for expenditures and
interest payments, while for revenues no model can beat
the univariate BAR benchmark. By comparing the results

contained in Panel C with those in Panel D, it is clear that
the use of time variation in the conditional mean coeffi-
cients helps. In particular, the TVP-BVARs provide better
forecasts than the SV-BVARs in 8 cases out of 24 for ex-
penditures, in 20 cases out of 24 for revenues, and in 22
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Table 7a
Point forecast evaluation, Germany.

cases out of 24 for interest payments. This confirms the
results found using the data for the US, the UK, and Ger-
many, namely that the use of time variation in both the
coefficients and the volatilities does help in the density

forecasting of fiscal variables, more so than the use of time
varying volatilities only.

To summarise, the results for Germany and France
broadly confirm the pattern found using the US and UK
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Table 7b
Density forecast evaluation, Germany.

data. The use of a large information set improves the
point forecasts, while the use of time variation in both
coefficients and volatilities improves the density fore-
casts. However, we did find that the time-varying spec-
ifications have worse point forecasting performances for

France and Germany than for the US and the UK, proba-
bly due to the short length of the estimation sample. We
therefore suggest the use of a constant coefficients spec-
ification whenever sufficiently long time series are not
available.
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Table 8a
Point forecast evaluation, France.

4.3. Results during recessions

Given the recent economic turmoil in the countries
under consideration, it is interesting to consider how

our forecasting models perform during recessions. We
therefore re-calculate the forecast comparison statistics
over the recession periods that occur during the forecast
sample. The recession dates for the US are obtained from
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Table 8b
Density forecast evaluation, France.

the NBER, while OECD recession estimates are used for the
remaining countries. For the sake of brevity, we merely
summarise the key results in this section, and will make
the detailed tables available on request.

4.3.1. BVARs
The performances of the point forecasts of fiscal vari-

ables from BVARs over recession periods are similar to the
full sample results for all countries. However, there is some
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evidence that the density forecasts for some variables are
more accurate during recessions. For example, for the US
and France, the relative score for government expendi-
tures and revenues calculated over recessions is larger than
the full sample estimates. Similar results can be observed
for the density forecasts of expenditures and interest pay-
ments for the UK and expenditures for Germany.

4.3.2. TVP-BVARs and SV-BVARs
As in the case of the constant coefficient VARs, there

is little evidence to suggest that the point forecasts
from TVP-BVARs and SV-BVARs improve substantially
over recession periods, with the estimated relative root
mean squared errors being similar to those obtained using
the full forecast period. In contrast, the improvement
in the accuracy of density forecasts from these models
over the benchmark model displays a substantial increase
during recession periods. The magnitude of this increase
is generally much larger than that observed for the fixed
coefficient BVAR. For the US, this improvement occurs for
all fiscal variables, and is largest for interest payments.
Similarly, for the UK and France, the estimated∆SCORE for
interest payments is much larger during recession periods.
Finally, forGermany, the∆SCORE for expenditures is larger
during recession periods. Note that these improvements
in ∆SCORE are of similar magnitudes across the TVP-
BVARs and the SV-BVARs. This suggests that the stochastic
volatility plays a key role during recessions, possibly
reflecting the impact of heightened economic uncertainty
during these periods.

4.4. Discussion

We have provided a large set of results for both point
and density forecasts, and while we have found several
differences across countries and variables, four main mes-
sages can be taken home from our forecasting exercise.
First, we found that the use of multivariate models (VARs)
helps in forecasting, in contrast to the conclusions of
Favero and Marcellino (2005). This is due to the fact that
using Bayesian shrinkage allows the problem of overpa-
rameterization to be reduced drastically. Second, we found
that the use of a large information set generally helps, and
rarely harms, the point forecasting of fiscal variables. This
is in line with several contributions in the literature that
have pointed towards the use of larger systems for point
forecasting (Banbura et al., 2010; Carriero et al., 2013a;
Koop, 2013). Third, we found that the use of drifting coeffi-
cients and volatilities does improve the density forecasts
of fiscal variables, even though these models generally
produce worse point forecasts than larger specifications
with constant coefficients. This suggests that a largemodel
with time variation in both the volatilities and coefficients
would be the best, but unfortunately such models present
serious computational burdens in estimation.10 Therefore,

10 Carriero et al. (2012) and Koop and Korobilis (2013) have each
suggested a way around this problem, involving, respectively, the
assumption of a factor structure for the drifting volatilities, and the use
of an approximation based on forgetting factors.

as a rule of thumb, practitioners should use richer spec-
ifications with constant coefficients and volatilities when
the main interest is in point forecasting, and time-varying
specifications when the main interest is in density fore-
casting. Finally, we found that modelling the time vari-
ation in both the volatilities and the conditional mean
coefficients helps more than only modelling the variation
in the volatilities, a result which was robust across differ-
ent data-sets and is in contrast to other studies that have
focused on different target variables (e.g., Carriero, Clark, &
Marcellino, 2013b, who focus on nowcasting GDP growth).
The time variation in volatilities is particularly useful dur-
ing recession periods.

5. Conclusions

Previous research (e.g., Favero & Marcellino, 2005) has
shown evidence that simple autoregressive models often
provide better forecasts of fiscal variables than vector
autoregressions. This result is counter-intuitive, because
economic theory suggests that fiscal variables should be
tightly intertwined, and therefore individual time series
should contain useful information about the others.

In this paper we explore the possibility that the VARs
considered by previous studies were too small in scale,
were probably burdened with overparameterization, and
did not feature time variation in the coefficients and
volatilities. We estimate several specifications of Bayesian
VARs which instead allow the information contained
in a large data set to be summarized efficiently, avoid
the overparameterization problem, and allow for time
variation in both the coefficients and the volatilities.

A second contribution of this paper is to focus on fore-
casting thewhole predictive distribution of fiscal variables,
rather than limiting the interest to point forecasts only.
This aspect seems particularly relevant for fiscal variables,
as assessments of fiscal stability and of the overall credit
and default risk of a country should typically be based on
the specification of a whole probability distribution for the
future state of the economy.

Using data from Germany, France, the UK, and the
US, we explore the performances of BVARs with constant
and drifting coefficients for forecasting key fiscal variables
such as government revenues, expenditure, and interest
payments on the outstanding debt. We find that: (i) once
overparameterization has been dealt with, the use of ad-
ditional explanatory variables helps in the forecasting of
fiscal variables, and multivariate models outperform uni-
variate specifications in forecasting; (ii) both the adoption
of a large system and the introduction of time variation
help in forecasting, with the former being more important
for point forecasting and the latter for density forecasting;
and (iii) the use of drifting coefficients in both the condi-
tional mean parameters and the volatilities provides fur-
ther help for forecasting relative to models featuring time
variation only in the volatilities.
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Appendix A. Marginal likelihood

In order to choose the hyperparameter θ , we maximize
the marginal data density p(Y ) with respect to such a
parameter (and therefore, the data density, when seen
as a function of θ , is also referred to as the marginal
likelihood of θ ). Under the naturally conjugate prior used
in this paper, the distributions p(Φ, Σ |Y ), p(Y |Φ, Σ),
and p(Φ, Σ) are fully known (including the integrating
constants), and therefore p(Y ) can be obtained simply by
inverting the Bayes formula:

pθ (Y ) =
p(Y |Φ, Σ)pθ (Φ, Σ)

pθ (Φ, Σ |Y )
. (14)

We insert the subscript θ to emphasize the fact that
these distributions are conditional on θ (because such a
parameter rescales the prior variance matrix Ω0, see Eq.
(3)). The distributions appearing in Eq. (14) are either
matricvariate-t or matricvariate-normal (see e.g. Kadiyala
& Karlsson, 1997). Moreover, the kernels of the numerator
and the denominator of Eq. (14) coincide. It follows that
pθ (Y ) is given by the products and ratios of the integrating
constants of pθ (Φ, Σ |Y ), p(Y |Φ, Σ), and pθ (Φ, Σ). Such
integrating constants are all available and can be plugged
into Eq. (14), which, after some algebra, yields:

p(Y ) = π−
TN
2 × |Ω0|

−
N
2 × |Ω̄|

N
2 × |S0|

v0
2 × |S̄|−

v0+T
2

×

N
i=1

Γ (
v0+T+1−i

2 )

Γ (
v0+1−i

2 )
,

where Γ (·) is the univariate gamma function. Noting that
|Ω0||Ω̄

−1
| = |Ω0||X ′X +Ω−1

0 | = |XΩ0X ′
+ I|, the expres-

sion above resembles the definition of the p.d.f. of amatric-
variate t (Dickey, 1967), and coincides with that reported
by Carriero et al. (2013a) and Giannone et al. (2012).

Appendix B. MCMC algorithm for the TVP model

Consider the general time-varying VAR model:

yt = Φc,t + Φ1,tyt−1 + Φ2,tyt−2 + · · ·

+ Φp,tyt−p + Σ
1/2
t εt; εt ∼ i.i.d. N(0, IN)

with:

Φt = Φt−1 + ηt , Var(ηt) = Q
Var (vt) ≡ Σt = A−1

t Ht(A−1
t )′,

where the structures of At and Ht are described in Eq. (7).

B.1. Prior distributions and starting values

The prior for the VAR coefficients (i.e., the initial
conditions) is assumed to be normal with mean φ0 and

variance v0. As in the fixed coefficient BVAR, the priormean
equals 0. The prior variance is set using Eq. (3) with the
hyperparameter θ = 0.2.11 Let T0 denote the length of a
training sample. For the US, T0 = 40, while T0 = 20 for the
UK and Germany. Let v̂ols denote the OLS estimate of the
VAR covariance matrix estimated on the training sample.
The prior for the diagonal elements of the VAR covariance
matrix (see Eq. (7)) is defined as ln h0 ∼ N(lnµ0, I3),
where µ0 are the diagonal elements of the Cholesky
decomposition of v̂ols. The prior for the off-diagonal
elements At is A0 ∼ N


âols, V


âols


where âols are the off-

diagonal elements of v̂ols, with each rowbeing scaled by the
corresponding element on the diagonal.V


âols


is assumed

to be diagonal with the elements set equal to 10 times the
absolute value of the corresponding element of âols.

Let QOLS denote the OLS estimate of the coefficient co-
variance matrix using the training sample. Its prior dis-
tribution is assumed to be Inverse Wishart, with a scale
matrix given by Q̄ = QOLS × T0 × k, where the scalar
k = 3.5 × 10−4, as per Cogley and Sargent (2005). The
prior degrees of freedom are set equal to T0, the length of
the training sample.

The prior distribution for the blocks of S is inverse
Wishart: Si,0 ∼ IW (S̄i, pi), where i = 1, . . . , 4 indexes the
blocks of S. S̄i is calibrated using âols. Specifically, S̄i is a di-
agonal matrix with the relevant elements of âols multiplied
by 10−3. Following Cogley and Sargent (2005), we postu-
late an inverse-gamma distribution for the elements of G,
σ 2
i ∼ IG


10−4/2, 1/2


.

B.2. Simulating the posterior distributions

The MCMC algorithm is composed of the following
steps.We use 20,000 iterations and discard the first 19,000
as a burn-in period.

B.2.1. Drawing the VAR coefficients
The distribution of the time-varying VAR coefficientsΦt

conditional on all other parameters and hyperparameters
is linear and Gaussian: Φt |Xi,t , Ξ ∼ N


ΦT |T , PT |T


and

Φt |Φt+1,Xi,t , Ξ ∼ N

Φt|t+1,φt+1 , Pt|t+1,φt+1


, where t =

T − 1, . . . , 1, Ξ denotes a vector that holds all of the other
VAR parameters, and where ΦT |T = E


ΦT |Xi,t , Ξ


, PT |T =

Cov

ΦT |Xi,t , Ξ


, Φt|t+1,φt+1 = E


Φt |Xi,t , Ξ , Φt+1


and

Pt|t+1,Ft+1 = Cov

Φt |Xi,t , Ξ , Φt+1


. As was shown by

Carter and Kohn (1994), the simulation proceeds by first
using the Kalman filter to draw ΦT |T and PT |T , and then
proceeding backwards in time using Φt|t+1 = Φt|t +

Pt|tP−1
t+1|t (Φt+1 − Φt) and Φt|t+1 = Φt|t − Pt|tP−1

t+1|tPt|t .

B.2.2. Drawing the elements of Ht
Following Cogley and Sargent (2005), the diagonal

elements of the VAR covariance matrix are sampled

11 Unlike in the case of the fixed coefficient VAR, a closed form
for the marginal likelihood is not available for the TVP-VAR, and
MCMC methods are required. Given that the TVP model is estimated
recursively, computing and maximising the marginal likelihood for each
recursion entails an extremely high computational burden.
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using the Metropolis Hastings algorithm of Jacquier, Pol-
son, and Rossi (1994). Given a draw for Φt , the VAR model
can be written as A′

tvt = ut , where vt = yt − Σ
p
l=1Φl,t

yt−l and Var (ut) = Ht . Jacquier et al. (1994) note that, con-
ditional on other VAR parameters, the distribution hit , i =

1, . . . , 3, is given by f (hit |hit−1, hit+1, uit) = f (uit |hit) ×

f (hit |hit−1) × f (hit+1|hit) = h−0.5
it exp


−u2it
2hit


× h−1

it

exp


−(ln hit−µ)2

2σhi


, where µ and σhi denote the mean and

variance of the log-normal density h−1
it exp


−(ln hit−µ)2

2σhi


.

Jacquier et al. (1994) suggest using h−1
it exp


−(ln hit−µ)2

2σhi


as the candidate generating density, with the acceptance
probability defined as the ratio of the conditional likeli-

hood h−0.5
it exp


−u2it
2hit


at the old and new draws. This al-

gorithm is applied at each period in the sample.

B.2.3. Drawing the elements of At

Given a draw for Φt , the VAR model can be written as
A′
tvt = ut , where vt = yt − Σ

p
l=1Φl,tyt−l and Var (ut) =

Ht . This is a system of equations with time-varying co-
efficients, and, given a block diagonal form for Var(τt),
the standard methods for state space models described by
Carter and Kohn (1994) can be applied.

B.2.4. Drawing the hyperparameters
Conditional on yt , Φt , Ht , and At , the innovations to Φt ,

Ht , and At are observable, which allows us to draw the
hyperparameters – the elements of Q , S, and σ 2

i – from
their respective distributions.
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