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MURMURATIONS OF DIRICHLET CHARACTERS

KYU-HWAN LEE⋆, THOMAS OLIVER, AND ALEXEY POZDNYAKOV

Abstract. We calculate murmuration densities for two families of Dirichlet characters. The first family
contains complex Dirichlet characters normalized by their Gauss sums. Integrating the first density over a

geometric interval yields a murmuration function compatible with experimental observations. The second
family contains real Dirichlet characters weighted by a smooth function with compact support. We show

that the second density exhibits a universality property analogous to Zubrilina’s density for holomorphic

newforms, and it interpolates the phase transition in the the 1-level density for a symplectic family of
L-functions.

1. Introduction

Following a programme of machine learning in arithmetic [HLO1, HLO2, HLO3], a striking oscillation in
the average value of Frobenius traces for certain families of elliptic curves was observed in [HLOP]. This
oscillation was termed a murmuration. In the original work, the average was taken over elliptic curves E/Q
with conductor in certain intervals. Similar averages for other arithmetic families, including higher weight
modular forms and higher genus curves, will be explored in [HLOPS].

After the initial observation, three important ideas emerged based on contributions of J. Ellenberg, A.
Sutherland, J. Bober, and P. Sarnak. Firstly, on Ellenberg’s suggestion, Sutherland studied murmurations
attached not only to newforms with rational coefficients, but, moreover, Galois orbits of those with coefficients
in number fields. Secondly, Bober proposed a so-called local average, which eliminated the role played by
the interval from the original construction. Thirdly, Sarnak introduced a notion of murmuration density,
which involved additional averaging over primes and weighting by smooth functions of compact support
[S23i]. To motivate his construction, Sarnak articulated the relationship between murmurations and the
1-level densities for families of L-functions (see [S23ii]). All three ideas informed the important work of
N. Zubrilina, in which a murmuration density for holomorphic newforms was calculated [Z23]. In this
paper we calculate murmuration densities for two families of Dirichlet characters, both of which come from
averaging characters over primes in short intervals (see Examples 2.3 and 2.4).

The first murmuration density we compute involves odd (resp. even) complex Dirichlet characters χ
normalized by their Gauss sums τ(χ). By way of justification, note that χ(p)/τ(χ) is the Fourier coefficient
of χ when expanded in terms of additive characters (see, e.g., [IK04, equation (3.12)]), and so this is a
natural analogue of the modular form case. Integrating the murmuration density over a given geometric
interval yields the average value of χ(p)/τ(χ) over odd (resp. even) Dirichlet characters with conductor
in that interval, which is a scale invariant oscillation comparable with the murmuration first observed for
elliptic curves (see Figure 5). More precisely, we let D+(N) (resp. D−(N)) denote the set of primitive even
(resp. odd) Dirichlet characters mod N . For x ∈ R>0, denote by ⌈x⌉p the smallest prime that is bigger than
or equal to x. For c ∈ R>1, δ ∈ (0, 1), and y ∈ R>0, define

P±(y,X, c) =
logX

X

∑
N∈[X,cX]
N prime

∑
χ∈D±(N)

χ(⌈yX⌉p)
τ(χ)

,(1.1)

P̃±(y,X, δ) =
logX

Xδ

∑
N∈[X,X+Xδ]

N prime

∑
χ∈D±(N)

χ(⌈yX⌉p)
τ(χ)

.(1.2)
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We plot instances of the functions P±(y,X, c) and P̃±(y,X, δ) in Figure 1. The factors log(X)/X and
log(X)/Xδ are connected to the number of primes in the respective intervals. In the case of equation (1.2),
we work conditional on the Riemann hypothesis, which guarantees that the interval [X,X + Xδ] contains
primes provided that δ > 1

2 . Our first theorem is stated as follows:

Theorem 1.1. Fix y ∈ R>0. If c ∈ R>1, then

(1.3) lim
X→∞

P±(y,X, c) =

{∫ c

1
cos
(
2πy
x

)
dx, if +,

−i
∫ c

1
sin
(
2πy
x

)
dx, if −,

and, assuming the Riemann hypothesis, if δ ∈ ( 12 , 1), then

(1.4) lim
X→∞

P̃±(y,X, δ) =

{
cos(2πy), if +,

−i sin(2πy), if −.

The proof of Theorem 1.1 uses the prime number theorem, and the relationship between additive and

multiplicative characters. The fit for P±(y,X, c) and P̃±(y,X, δ) given by Theorem 1.1 is depicted in Figure 1,
in which we have used the relatively small value X = 210. For small values of X, the fit given by Theorem 1.1
is far from perfect. Upon closer inspection, the proof of Theorem 1.1 indicates that equation (1.4) may be
reformulated to incorporate certain composite conductors, and this yields a better fit even for relatively small
values of X (cf. Figure 6). We specify this reformulation in Section 6, and furthermore establish variants of
Theorem 1.1 for arbitrary conductors (in which case we no longer need to assume the Riemann hypothesis).

The second murmuration density we compute is the more challenging case of real Dirichlet characters. In
this case, the average value of the Fourier coefficients for those with conductor in a geometric interval yields
a noisy image (see Figure 4). To counteract this, we use techniques originally developed by Katz–Sarnak
and refined by Soundararajan [S00]. For d ∈ Z, we use the notation χd =

(
d
·
)
. We also let G be the set of

odd squarefree integers. If d ∈ G and d > 0 (resp. d < 0), then χ8d is an even (resp. odd) primitive real
character of conductor 8d. For a smooth Schwartz function Φ ≥ 0 with compact support, define

(1.5) MΦ(y,X, δ) =
logX

X1+δ

∑
p∈[yX,yX+Xδ]

p prime

∑
d∈G

Φ

(
d

X

)
χ8d(p)

√
p.

Notice that one can isolate even (resp. odd) characters in this sum by choosing Φ to have compact support
in R>0 (resp. R<0). In Figure 2, we plot equation (1.5) for two choices of Φ.

Theorem 1.2. Fix y ∈ R>0. If δ ∈ ( 34 , 1) and Φ ≥ 0 is a smooth Schwartz function with compact support,
then, assuming the Generalized Riemann hypothesis, we have

(1.6) MΦ(y, δ) := lim
X→∞

MΦ(y,X, δ) =
1

2

∞∑
a=1

(a,2)=1

µ(a)

a2

∞∑
m=1

(−1)mΦ̃

(
m2

2a2y

)
,

where

(1.7) Φ̃(ξ) =

∫ ∞

−∞
(cos(2πξx) + sin(2πξx)) Φ(x)dx.

We note that, in Figure 2, and the related Figures 5 and 8, we use the value δ = 2
3 , which is smaller than

the minimal δ included in Theorem 1.2. These figures offer some evidence that Theorem 1.2 may remain
valid for such values of δ. Furthermore, although the smoothness of Φ is crucial in enabling the analytic
tools used in the proof, we expect Theorem 1.2 to hold for weight functions with a sharp cut-off as well (we
refer to Figure 3 for numerical support of this claim). We remark that a murmuration density for a family
of real Dirichlet characters was first computed by Rubinstein and Sarnak in [S23ii, equation (13)], although
their formulation and evaluation is different to ours in places. Rubinstein and Sarnak also noted that the
murmuration density interpolates the phase transition for the 1-level density of a symplectic family, which
emerges from our analysis in the following form.
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Corollary 1.3. Let Φ ≥ 0 be a Schwartz function with compact support and let δ ∈ ( 34 , 1). Assuming the
Generalized Riemann hypothesis, we have

(1.8) lim
y→0+

MΦ(y, δ) = 0, and lim
y→∞

MΦ(y, δ) = − 2

π2
Φ̃(0),

where MΦ(y, δ) is defined in equation (1.6).

We present a proof of Corollary 1.3 in Section 5, in which we use the same techniques as Rubinstein and
Sarnak. A similar phenomenon for real character sums was previously observed in [CFS], which studied the
asymptotics for double sums of the form ∑

m≤X
m odd

∑
n≤Y
n odd

(m
n

)
.

In [CFS], the authors study the case that X ∼ Y , which yields a function exhibiting murmuration-like
properties, including scale-invariance and non-differentiablity. The analysis presented in [CFS] is different
from that presented here.

The proof of Theorem 1.2 involves identities for the Möbius function, the Polya–Vinogradov inequality for
sums over primes, and Poisson summation as in [S00, Lemma 2.6]. The transform in equation (1.7) was used

in [S00, Section 2.4]. Unfolding this transform and applying the identity cos(x) + sin(x) =
√
2 cos(x− π/4)

to equation (1.7) we conclude that

lim
X→∞

MΦ(y,X, δ) =
1

2

∞∑
a=1

(a,2)=1

µ(a)

a2

∞∑
m=1

(−1)m
∫ ∞

−∞

(
cos

(
πm2x

a2y

)
+ sin

(
πm2x

a2y

))
Φ(x)dx

=

∫ ∞

−∞
Φ(x)

√
2

2

∞∑
a=1

(a,2)=1

µ(a)

a2

∞∑
m=1

(−1)m cos

(
πm2x

a2y
− π

4

) dx.

(1.9)

In other words, conditional on the Generalized Riemann hypothesis, we exhibit a distribution M such that,
for every smooth Schwartz Φ ≥ 0 with compact support and every δ ∈ ( 34 , 1), we have

(1.10) lim
X→∞

MΦ(y,X, δ) =

∫ ∞

−∞
Φ(t)M(y/t)dt.

Consequently, using Sarnak’s terminology, the distribution M in equation (1.10) is the Zubrilina density
for the family

{(
8d
·
)
: d ∈ G

}
[S23ii]. Using the same techniques, we calculate the Zubrilina density for{(

d
·
)
: d ∈ G

}
in Section 6.2 and deduce the analogue of Corollary 1.3. Given Figure 3, it is not immediately

clear whether or notMΦ(y,X, δ) exhibits infinitely many sign changes near y = 0. Zubrilina has shown that,
in the setting of modular forms, the analogous function has only finitely many sign changes.

We conclude this introduction with a summary of the sequel. Section 2 contains the relevant background
material on Dirichlet characters. In Section 3, we prove Theorem 1.1. In Section 4, we prove Theorem 1.2.
In Section 5, we prove Corollary 1.3. In Section 6, we state and prove the aforementioned variations on
Theorems 1.1 and 1.2 (both of which concern averaging over an alternative set of conductors).

Acknowledgements. The authors are grateful to Yang-Hui He and Andrew Sutherland for preliminary
conversations connected to the themes of this paper, to Kumar Murty for helpful comments on an early
draft, to Peter Sarnak for suggesting the use of Poisson summation and several insightful discussions, to
Philip Holdridge for their useful comments on an earlier draft, to Kannan Soundararajan for drawing the
authors’ attention to [CFS], and to the anonymous referees for recommending that we expand an earlier
draft to include the family of real Dirichlet characters and for facilitating several improvements with their
careful reading and detailed comments.
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Figure 1. (Top) P±(y, 2
10, 2) for y ∈ [0, 10] with + in blue and (the imaginary part of) − in

red. (Bottom) P̃±(y, 2002, 0.51) for y ∈ [0, 2] with + in blue and (the imaginary part of) −
in red. The solid curves (in yellow and green) represent the limits given by Theorem 1.1. The
discontinuity around y = 1 will be explained in Remark 3.1.

2. Background

2.1. Asymptotics of double averages. For m ∈ Z>0, a Dirichlet character mod m is a completely
multiplicative function χ : Z → C which is periodic with period m and satisfies χ(a) = 0 if and only if
gcd(a,m) > 1. The Gauss sum of a Dirichlet character χ mod m is defined by

τ(χ) =

m∑
b=1

χ(b)e2πib/m.

We denote by χ0 the principal Dirichlet character mod m, which satisfies χ0(a) = 1 for (a,m) = 1 by
definition. We say that a Dirichlet character χ is even (resp. odd) if χ(−1) = 1 (resp. χ(−1) = −1). The
conductor of a Dirichlet character χ is the minimal positive integer N such that χ is a Dirichlet character
mod N . We say that a Dirichlet character χ is primitive if its modulus and conductor are equal. We let
D+(N) (resp. D−(N)) denote the set of primitive even (resp. odd) Dirichlet characters mod N . A Dirichlet
character is said to be quadratic if its values are real. We denote by Q±(N) the subset of D±(N) consisting

of quadratic characters. Note that, for even (resp. odd) characters χ ∈ Q±(N), we have τ(χ) =
√
N (resp.

i
√
N).

Example 2.1. Quadratic characters provide the simplest analogue to the murmurations of elliptic curves
over Q discovered in [HLOP]. Furthermore, using quadratic reciprocity, one may relate sums of quadratic
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Figure 2. Let
Φ+(x) = 1(1,2)(x) exp

(
−1

1−4(x−1.5)2

)
,

Φ−(x) = 1(−2,−1)(x) exp
(

−1
1−4(−x−1.5)2

)
.

We plot MΦ±(y, 2
19, 23 ) for y ∈ [0, 2] with + in blue (resp. − in red). We also plot the right

hand side of equation (1.6) in green (resp. orange).

Figure 3. Let Φ+(x) = 1(1,2)(x) and Φ−(x) = 1(−2,−1)(x). We plot MΦ+(y, 2
19, 23 ) (resp.

MΦ−(y, 2
19, 23 )) in blue (resp. red). We also plot the right hand side of equation (1.6) in green

(resp. orange).

Dirichlet characters to Chebyshev’s bias (cf. [RS94]). In Figure 4, we plot the sum of χ(p)/τ(χ) over⋃2X−1
N=X Q±(N) for X = 217.

In this paper, we consider two variations of the sum considered in Figure 4. The first, and simplest,
variation is to involve (Galois orbits of) complex characters in the average. The second, more challenging,
variation is to work only with real characters but to incorporate a smooth weight function with compact
support and to take the average over the primes in a short interval.
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Figure 4. Plot of
∑

N∈[X,2X)

∑
χ∈Q±(N) χ(p)/τ(χ), for X = 217 and 2 ≤ p < 4X with + in

blue and (the imaginary part of) − in red.

Example 2.2. In Figure 5, we plot the sum of χ(p)/τ(χ) over χ ∈
⋃2X−1

N=X D±(N), for X = 210, normalized
by (cf. [J73]):

(2.1)
1

X
∼ 3

√
3

π2
√

#D±(X)

We note that including the non-real characters and normalizing in this way yields a much less noisy image
than in Figure 4. We will observe a similar effect with modular forms in a forthcoming work [HLOPS].

Figure 5. Plot of 1
X

∑
N∈[X,2X)

∑
χ∈D±(N) χ(p)/τ(χ) for X = 210 for primes p such that

2 ≤ p ≤ 10X, with + in blue and (the imaginary part of) − in red.

Example 2.3. The function P̃±(y,X, δ) in equation (1.2) comes from the following average:

(2.2)

∑
N∈[X,X+Xδ]

N prime

∑
χ∈D±(N) χ(⌈yX⌉p)/τ(χ)∑

N∈[X,X+Xδ]
N prime

1
,

where y ∈ R>0 and δ ∈ ( 12 , 1). Indeed, assuming the Riemann hypothesis and applying the prime number
theorem, we deduce

(2.3) lim
X→∞

[
#
{
N ∈ [X,X +Xδ] : N prime

}
· log(X)

Xδ

]
= 1.
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It follows that the function in equation (2.2) is asymptotic to P̃±(y,X, δ). There is a similar interpretation
for the equation P±(y,X, c) in equation (1.1).

Example 2.4. The function MΦ(y,X, δ) in equation (1.5) comes from the following double average:

(2.4) DΦ(y,X, δ) =

∑
p∈[yX,yX+Xδ]

p prime

∑
d∈G Φ(d/X)χ8d(p)

√
p∑

d∈G Φ(d/X)∑
p∈[yX,yX+Xδ]

p prime

1
,

where y ∈ R>0, δ ∈ ( 34 , 1), Φ is a smooth function of compact support, G denotes the set of odd squarefree

integers, and χd denotes the Kronecker symbol
(
d
·
)
. Assuming the Riemann hypothesis and applying the

prime number theorem, we deduce

(2.5) lim
X→∞

[
#
{
p ∈ [yX, yX +Xδ] : p prime

}
· log(X)

Xδ

]
= 1.

It follows that DΦ(y,X, δ) is asymptotic to

(2.6)
logX

Xδ

∑
p∈[yX,yX+Xδ]

p prime

∑
d∈G Φ(d/X)χ8d(p)

√
p∑

d∈G Φ(d/X)
.

To simplify the denominator in equation (2.6), we note that the natural density of G is shown to be 4/π2 in
[J10]. Using the fact that Φ is Schwartz, an equidistribution argument for (d/X)d∈G implies that

(2.7) lim
X→∞

1

X

∑
d∈G

Φ(d/X) =
4

π2

∫ ∞

−∞
Φ(τ)dτ <∞.

Therefore, to understand asymptotics of DΦ(y,X, δ), it suffices to analyse the limit of MΦ(y,X, δ).

2.2. Lemmas for Theorem 1.1. We begin with the following Lemma on Gauss sums.

Lemma 2.5. Let N be a positive integer. If p is a prime such that (p,N) = 1, then

cos

(
2πp

N

)
=

−1

ϕ(N)
+

1

ϕ(N)

∑
χ mod N

χ ̸=χ0, χ(−1)=1

τ(χ)χ(p),(2.8)

sin

(
2πp

N

)
=

−i
ϕ(N)

∑
χ mod N
χ(−1)=−1

τ(χ)χ(p).(2.9)

Proof. This follows from [IK04, (3.11)]. □

If N is prime, then every non-trivial Dirichlet character mod N is primitive and hence

(2.10) D+(N) = {χ mod N : χ ̸= χ0, χ(−1) = 1}, D−(N) = {χ mod N : χ(−1) = −1} (N prime).

Lemma 2.6. If p and N are two distinct primes, then∑
χ∈D+(N)

χ(p)

τ(χ)
=

(
N − 1

N

)
cos

(
2πp

N

)
+

1

N
,(2.11)

∑
χ∈D−(N)

χ(p)

τ(χ)
= −i

(
N − 1

N

)
sin

(
2πp

N

)
.(2.12)

Proof. For χ ∈ D±(N), recall

(2.13)
1

τ(χ)
=
χ(−1)

N
τ(χ),
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(see, for example, [B98, Exercise 1.1.1]). Since ϵ := χ(−1) is constant on χ ∈ D±(N), summing equa-
tion (2.13) over χ ∈ D±(N) yields ∑

χ∈D±(N)

χ(p)

τ(χ)
=

ϵ

N

∑
χ∈D±(N)

τ(χ)χ(p).(2.14)

Since N is prime and (p,N) = 1, Lemma 2.5 implies

cos

(
2πp

N

)
=

−1

N − 1
+

1

N − 1

∑
χ mod N

χ ̸=χ0,χ(−1)=1

τ(χ)χ(p),(2.15)

sin

(
2πp

N

)
=

−i
N − 1

∑
χ mod N
χ(−1)=−1

τ(χ)χ(p).(2.16)

The result now follows from equations (2.10), (2.14), (2.15) and (2.16). □

Lemma 2.7. For a ∈ R>0 and b ∈ (0, 1], we have

(2.17) lim
X→∞

logX

Xb

∑
N∈[X,X+aXb]

1

N
= 0.

Proof. Since a, b,N are all positive, we have

lim
X→∞

logX

Xb

∑
N∈[X,X+aXb]

1

N
≤ lim

X→∞

logX

Xb

∑
0<N≤(a+1)X

1

N
= lim

X→∞
O

(
logX log((a+ 1)X)

Xb

)
= 0.

□

Lemma 2.8. For y ∈ R>0, if N ≥ X, we have

(2.18) lim
X→∞

⌈yX⌉p − yX

N
= 0.

Proof. For any x ∈ R>0, we have ⌈x⌉p − x < xθ for some constant θ < 1 (see, e.g., [BHP]). Subsequently,
we deduce that

lim
X→∞

⌈yX⌉p − yX

N
≤ lim

X→∞

⌈yX⌉p − yX

X
= 0.

□

Lemma 2.9. Fix η ∈ R>0 and δ ∈ ( 12 , 1). If f : R → C is continuous, then, assuming the Riemann
hypothesis, we have

(2.19) lim
X→∞

logX

Xδ

∑
p∈[ηX,ηX+Xδ]

p prime

f
( p
X

)
= f(η)

Proof. Since we have p/X → η as X → ∞ for p ∈ [ηX, ηX +Xδ], we know that, for all ϵ′ > 0, there exists
X0 such that X > X0 implies |p/X − η| < ϵ′. Since f is continuous, for all ϵ > 0 there exists ϵ′ > 0 such
that |p/X − η| < ϵ′ implies |f(p/X)− f(η)| < ϵ. Thus, for X sufficiently large, we have:∣∣∣∣∣∣∣∣

∑
p∈[ηX,ηX+Xδ]

p prime

f
( p
X

)
− f(η)

∑
p∈[ηX,ηX+Xδ]

p prime

1

∣∣∣∣∣∣∣∣ ≤
∑

p∈[ηX,ηX+Xδ]
p prime

∣∣∣f ( p
X

)
− f(η)

∣∣∣ < ϵ
∑

p∈[ηX,ηX+Xδ]
p prime

1.(2.20)

Multiplying equation (2.20) by logX/Xδ, and using equation (2.5), we deduce that:

(2.21)

∣∣∣∣∣∣∣∣ limX→∞

logX

Xδ

∑
p∈[ηX,ηX+Xδ]

p prime

f
( p
X

)
− f(η)

∣∣∣∣∣∣∣∣ < ϵ.
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Since ϵ > 0 is arbitrary, we deduce equation (2.19). □

2.3. Lemmas for Theorem 1.2. We begin with the following manifestation of the Polya–Vinogradov
inequality.

Lemma 2.10. Let y ∈ R>0, and let d ∈ Z be such that χd is non-principal. If δ ∈ ( 12 , 1) then assuming the
Generalized Riemann hypothesis, for any ϵ > 0, as X → ∞, we have

(2.22)

∣∣∣∣∣∣∣∣
∑

p∈[yX,yX+Xδ]
p prime

χd(p)

∣∣∣∣∣∣∣∣≪ (yX)
1
2+ϵ.

Proof. This follows from [GS07, equation (5.1)]. □

Following [S00, Section (2.2)], for an integer k and a prime number p, we define

(2.23) Gk(p) =

(
1− i

2
+

(
−1

p

)
1 + i

2

) ∑
b mod p

(
b

p

)
e2πibk/p,

and

(2.24) τk(p) =
∑

b mod p

(
b

p

)
e2πibk/p,

so that

(2.25) τk(p) =

(
1 + i

2
+

(
−1

p

)
1− i

2

)
Gk(p).

Moreover, using the notation from Section 2.2, we have τ1(p) = τ
((

·
p

))
. For a smooth Schwartz function

Φ, we let Φ̃ be as in equation (1.7). At various points in what follows, we will use the fact that, if Φ is

Schwartz, then Φ̃ is Schwartz. We will also use the notation Φ̂ to denote the usual Fourier transform, that is

Φ̂(ξ) =

∫ ∞

−∞
Φ(x)e−2πixξdx.

Note that

(2.26) τk(p)Φ̂

(
kX

αa2p

)
+ τ−k(p)Φ̂

(
−kX
αa2p

)
= Gk(p)Φ̃

(
kX

αa2p

)
+G−k(p)Φ̃

(
−kX
αa2p

)
.

Since Gk(p) =
(

−1
p

)
G−k(p) and τ0(p) = G0(p) = 0, equation (2.25) implies:

(2.27)
X

αa2p

∑
k∈Z

τk(p)Φ̂

(
kX

αa2p

)
=

X

αa2p

∑
k∈Z

Gk(p)Φ̃

(
kX

αa2p

)
.

For completeness, we prove the following form of [S00, Lemma 2.6].

Lemma 2.11. Let Φ ≥ 0 be a smooth function with compact support and let β = supx∈R{|x| : Φ(x) > 0}.
For a prime number p, and any A ∈ (0,

√
βX], we have

(2.28)
1

X

∑
d∈Z

(d,2)=1

( ∑
a2||d|
a≤A

µ(a)
)
Φ

(
d

X

)(
d

p

)
√
p =

1

2

(
2

p

) ∑
0<a≤A
(a,2p)=1

µ(a)

a2

∑
k∈Z

(−1)k
(
k

p

)
Φ̃

(
kX

2a2p

)
.

Proof. By switching the order of summation and using
(

da2

p

)
=
(

d
p

)(
a
p

)2
, we deduce that:

(2.29)
∑
d∈Z

(d,2)=1

( ∑
a2||d|
a≤A

µ(a)
)
Φ

(
d

X

)(
d

p

)
=

∑
a≤A

(a,2p)=1

µ(a)
∑
d∈Z

(d,2)=1

Φ

(
da2

X

)(
d

p

)
.
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We observe that

(2.30)
∑
d∈Z

(d,2)=1

Φ

(
da2

X

)(
d

p

)
=
∑
d∈Z

Φ

(
da2

X

)(
d

p

)
−
(
2

p

)∑
d∈Z

Φ

(
2da2

X

)(
d

p

)
,

and, for α ∈ {1, 2}, we write

(2.31)
∑
d∈Z

(
d

p

)
Φ

(
αda2

X

)
=

∑
b mod p

(
b

p

)∑
d∈Z

Φ

(
αa2(pd+ b)

X

)
.

Poisson summation implies that∑
d∈Z

Φ

(
αa2(pd+ b)

X

)
=
∑
k∈Z

∫ ∞

−∞
Φ

(
αa2(pξ + b)

X

)
e (−ξk) dξ

=
X

αa2p

∑
k∈Z

∫ ∞

−∞
Φ(u)e

(
kb

p
− kXu

αa2p

)
du

=
X

αa2p

∑
k∈Z

e

(
kb

p

)∫ ∞

−∞
Φ(u)e

(
−kXu
αa2p

)
du

=
X

αa2p

∑
k∈Z

e

(
kb

p

)
Φ̂

(
kX

αa2p

)
.

(2.32)

Multiplying equation (2.32) by
(

b
p

)
, summing over b mod p, and switching the order of summation, we get∑

b mod p

(
b

p

)∑
d∈Z

Φ

(
αa2(pd+ b)

X

)
=

X

αa2p

∑
k∈Z

∑
b mod p

(
b

p

)
e

(
kb

p

)
Φ̂

(
kX

αa2p

)

=
X

αa2p

∑
k∈Z

τk(p)Φ̂

(
kX

αa2p

)
.

(2.33)

Combining equations (2.27), (2.30) and (2.33), and using Gk(p) =
(

2
p

)
G2k(p), we deduce

(2.34)
∑
d∈Z

(d,2)=1

Φ

(
da2

X

)(
d

p

)
=

X

2a2p

(
2

p

)∑
k∈Z

(−1)kGk(p)Φ̃

(
kX

2a2p

)
.

Since Gk(p) =
(

k
p

)√
p, equation (2.28) follows from equations (2.29) and (2.34). □

Lemma 2.12. Let Φ be a Schwartz function. For any α > 1, as X → ∞, we have

(2.35)
∑
m∈N

Φ (Xm) ≪ X−α.

Proof. Since Φ is Schwartz, as X → ∞, we have Φ(X) ≪ X−α. We deduce that:

(2.36)
∑
m∈N

Φ(Xm) ≪
∑
m∈N

(Xm)−α = X−α
∑
m∈N

m−α ≪ X−α.

□

3. Proof of Theorem 1.1

Proof of equation (1.3). We will prove the case of P+(y,X, c), and simply note that the case of P−(y,X, c)
is similar. For p ̸= N , equation (2.11) implies

(3.1) lim
X→∞

P+(y,X, c) = lim
X→∞

logX

X

∑
N∈[X,cX]
N prime

[(
N − 1

N

)
cos

(
2π⌈yX⌉p

N

)
+

1

N

]
.

10



With a = c− 1 and b = 1 in (2.17), we have

(3.2) lim
X→∞

logX

X

∑
N∈[X,cX]

1

N
= 0.

Substituting equations (2.18) and (3.2) into equation (3.1) gives:

(3.3) lim
X→∞

P+(y,X, c) = lim
X→∞

logX

X

∑
N∈[X,cX]
N prime

cos

(
2πyX

N

)
.

We relate the sum on the right hand side of equation (3.3) to an integral using the following equidistribution
argument. For each X, consider the set S = {N ∈ [X, cX] : N prime}. If n = #S, then, according to the
prime number theorem, we have

(3.4) n ∼
(

cX

log(cX)
− X

logX

)
∼ (c− 1)X

logX
.

Consider the sequence T = (Ni/X)ni=1 where Ni ∈ S for i ∈ {1, . . . , n}. Any subinterval [α, β] ⊂ (1, c)
contains the following proportion of elements in T :

π(βX)− π(αX)

n
∼ βX/ log(βX)− αX/ log(αX)

(c− 1)X/ log(X)
∼ β − α

c− 1
.

In other words, the sequence T = (Ni/X)ni=1 approaches equidistributed on (1, c). Using equations (3.3)
and (3.4), and applying equidistribution of the sequence T on (1, c), we conclude using Riemann sums that:

(3.5) lim
X→∞

P+(y,X, c) = lim
X→∞
n→∞

c− 1

n

n∑
i=1

cos

(
2πyX

Ni

)
=

∫ c

1

cos

(
2πy

x

)
dx.

□

Remark 3.1. The discontinuity around y = 1 in the bottom image from Figure 1 is explained by the fact
that equation (3.1) requires p ̸= N . In fact, when p = N , the quantity χ(⌈yX⌉p)/τ(χ) vanishes. This
discrepancy does not affect the limit.

Proof of equation (1.4). Recall that we assume the Riemann hypothesis. We will prove the case of P̃+(y,X, c),

and simply note that the case of P̃−(y,X, δ) is similar. Equation (2.11) implies that

(3.6) P̃+(y,X, δ) =
logX

Xδ

∑
N∈[X,X+Xδ]

N prime

[(
N − 1

N

)
cos

(
2π⌈yX⌉p

N

)
+

1

N

]
.

With a = 1 and b = δ in (2.17), we obtain

(3.7) lim
X→∞

logX

Xδ

∑
N∈[X,X+Xδ]

1

N
= 0.

Applying equations (2.18) and (3.7) to equation (3.6), we deduce

(3.8) lim
X→∞

P̃+(y,X, δ) = lim
X→∞

logX

Xδ

∑
N∈[X,X+Xδ]

N prime

cos

(
2πyX

N

)
.

Now it follows from Lemma 2.9 that

(3.9) lim
X→∞

logX

Xδ

∑
N∈[X,X+Xδ]

N prime

cos

(
2πyX

N

)
= cos(2πy).

□
11



4. Proof of Theorem 1.2

For d ∈ Z<0, we define µ(d) = µ(|d|). Let G be as in Section 1 and note that d ∈ G if and only if (d, 2) = 1
and µ2(d) = 1. Subsequently, for y, δ, and Φ as in Theorem 1.2, we may rewrite equation (1.5) as follows:

(4.1) MΦ(y,X, δ) =
logX

X1+δ

∑
p∈[yX,yX+Xδ]

p prime

∑
d∈Z

(d,2)=1

µ2(d)Φ

(
d

X

)
χ8d(p)

√
p.

According to [IK04, equation (1.33)], we have µ2(d) =
∑

a2|d
a>0

µ(a), and so:

(4.2)
∑
d∈Z

(d,2)=1

µ2(d)Φ

(
d

X

)
χ8d(p)

√
p =

∑
d∈Z

(d,2)=1

(∑
a2|d
a>0

µ(a)
)
Φ

(
d

X

)
χ8d(p)

√
p.

Since Φ has compact support, we may define β = supx∈R{|x| : Φ(x) > 0} < ∞. Combining equation (4.1)
and equation (4.2), for A ∈ (0,

√
βX], we may write MΦ(y,X, δ) =MΦ,A(y,X, δ) +RΦ,A(y,X, δ), where:

MΦ,A(y,X, δ) =
logX

X1+δ

∑
p∈[yX,yX+Xδ]

p prime

∑
d∈Z

(d,2)=1

( ∑
a2|d

0<a≤A

µ(a)
)
Φ

(
d

X

)
χ8d(p)

√
p,(4.3)

RΦ,A(y,X, δ) =
logX

X1+δ

∑
p∈[yX,yX+Xδ]

p prime

∑
d∈Z

(d,2)=1

(∑
a2|d
a>A

µ(a)
)
Φ

(
d

X

)
χ8d(p)

√
p.(4.4)

To complete the proof, we will show that RΦ,A(y,X, δ) vanishes as X → ∞, and use [S00, Lemma 2.6] in
the form of Lemma 2.11 to analyse the asymptotic behaviour of MΦ,A(y,X, δ).

4.1. Analysis of RΦ,A(y,X, δ). Given d ∈ Z, for any ϵ > 0, we have

(4.5)

∣∣∣∣∣∣∣∣
∑
a2|d
a>A

µ(a)

∣∣∣∣∣∣∣∣≪
∑
k|d

1 ≪ |d|ϵ.

Since the innermost sum in equation (4.4) is empty unless d = a2b where a > A, and Φ(d/X) = 0 unless
|d| < βX, switching the order of summation in equation (4.4) and applying equation (4.5) shows that

(4.6) |RΦ,A(y,X, δ)| ≪
logX

X
1
2+δ−2ϵ

∑
a∈(A,

√
βX]

∑
|b|≤ βX

a2

Φ

(
a2b

X

) ∣∣∣∣∣∣∣∣
∑

p∈[yX,yX+Xδ]
p prime

χ8d(p)

√
p

X

∣∣∣∣∣∣∣∣ ,
where the outer sums are over a, b ∈ Z satisfying the specified bounds. Using Abel’s summation formula
([A76, Theorem 4.2]), we get

(4.7)
∑

p∈[yX,yX+Xδ]
p prime

χ8d(p)

√
p

X
=

√
t

X
ψ8d(t)

∣∣∣yX+Xδ

t=yX
−
∫ yX+Xδ

yX

ψ8d(t)

2
√
tX

dt,

where we set ψk(t) :=
∑

3≤p≤t
p prime

(
k
p

)
. For t ∈ [yX, yX+Xδ], we have |1/

√
t| ≤ (yX)−

1
2 and, by Lemma 2.10,

|ψk(t)| ≪ (yX)
1
2+ϵ. Consequently, we see that |ψ8d(t)/

√
tX| ≪ yϵXϵ− 1

2 . Taking the absolute value of both
sides of equation (4.7), and recalling δ < 1, we deduce

(4.8)

∣∣∣∣∣∣∣∣
∑

p∈[yX,yX+Xδ]
p prime

χ8d(p)

√
p

X

∣∣∣∣∣∣∣∣≪ y1+ϵX
1
2+ϵ + yϵXδ− 1

2+ϵ ≪ y1+ϵX
1
2+ϵ.
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Applying equation (4.8) to equation (4.6), we infer that:

(4.9) |RΦ,A(y,X, δ)| ≪
y1+ϵ logX

Xδ−3ϵ

∑
a∈(A,

√
βX]

∑
|b|≤ βX

a2

Φ

(
a2b

X

)
.

Since Φ is Schwartz, we have Φ(a2b/X) ≤ supx∈R Φ(x) <∞, and so

(4.10)
∑

a∈(A,
√
βX]

∑
|b|≤ βX

a2

Φ

(
a2b

X

)
≪

∑
a∈(A,

√
βX]

∑
|b|≤ βX

a2

1 ≪ X
∑

a∈(A,
√
βX]

1

a2
≤ X

∫ ∞

A

da

a2
=
X

A
.

Combining equations (4.9) and (4.10), we conclude that

(4.11) |RΦ,A(y,X, δ)| ≪
y1+ϵX1+3ϵ−δ

A
logX ≪ y1+ϵX1+4ϵ−δ

A
.

In what follows, we will refine our choice of ϵ and A. These refinements are made not only to show that
RΦ,A(y,X, δ) vanishes in the limit, but moreover to find an asymptotic formula for MΦ,A(y,X, δ) in the

sequel. Recall from the discussion above equation (4.3) that, by construction, we have A ≪ X
1
2 . For the

asymptotic formula, we will require the stronger assumption that A ≪ X
1
4 . Since δ > 3/4 is fixed, we may

choose 0 < ϵ < (δ − 3/4)/5 and A = X1+5ϵ−δ ≪ X
1
4 ≪ X

1
2 . With these choices, equation (4.11) implies

that:

(4.12) |RΦ,A(y,X, δ)| ≪ y1+ϵX−ϵ.

Using equation (4.12), and the fact that MΦ(y,X, δ) =MΦ,A(y,X, δ) +RΦ,A(y,X, δ), we obtain

(4.13) lim
X→∞

MΦ(y,X, δ) = lim
X→∞

MΦ,A(y,X, δ).

4.2. Analysis of MΦ,A(y,X, δ). Recalling that χ8d(p) =
(

8d
p

)
and applying Lemma 2.11, we deduce

(4.14) MΦ,A(y,X, δ) =
logX

Xδ

∑
p∈[yX,yX+Xδ]

p prime

1

2

(
16

p

) ∑
(a,2p)=1
0<a≤A

µ(a)

a2

∑
k∈Z

(−1)k
(
k

p

)
Φ̃

(
kX

2a2p

)
.

Since the k = 0 term in equation (4.14) is identically zero, and
(

16
p

)
=
(

4
p

)2
= 1 for odd primes p, we have

(4.15) MΦ,A(y,X, δ) =
logX

Xδ

∑
p∈[yX,yX+Xδ]

p prime

1

2

∑
(a,2p)=1
0<a≤A

µ(a)

a2

∑
k∈Z
k ̸=0

(−1)k
(
k

p

)
Φ̃

(
kX

2a2p

)
,

for X sufficiently large (so that yX > 2). Since 0 < a ≤ A ≪ X
1
2 ≪ p, we have (a, 2p) = 1 if and only if

(a, 2) = 1. Therefore, for large X, we can switch the order of summation in equation (4.15) to get

(4.16) MΦ,A(y,X, δ) =
1

2

∑
(a,2)=1
0<a≤A

µ(a)

a2

∑
k∈Z
k ̸=0

(−1)k
logX

Xδ

∑
p∈[yX,yX+Xδ]

p prime

(
k

p

)
Φ̃

(
kX

2a2p

)
.

We handle the sum over non-zero integers k in equation (4.16) in two stages. In the first stage, we break it
into sums over k square (written k = □) and k non-square (written k ̸= □). In the second stage, we show
that the sum over k ̸= □ exhibits cancellation, and consequently we identify the sum over k = □ as the main
contribution. To bound the sum over k ̸= □, we introduce ϵ′ > 0 and break the sum further into sums over
k small (|k| < a2Xϵ′) and k big (|k| ≥ a2Xϵ′). The small k are handled by equation (4.18), which will be

deduced in the next paragraph, and the big k are handled by the rapid decay of Φ̃.
Assume k ̸= □, so that

(
k
·
)
is a non-principal character. Using Abel’s summation formula, we have

(4.17)
∑

p∈[yX,yX+Xδ]
p prime

(
k

p

)
Φ̃

(
kX

2a2p

)
= Φ̃

(
kX

2a2t

)
ψk(t)

∣∣∣yX+Xδ

t=yX
−
∫ yX+Xδ

yX

d

dt

(
Φ̃

(
kX

2a2t

))
ψk(t)dt,
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where we set ψk(t) =
∑

3≤p≤t
p prime

(
k
p

)
as before. Since Φ̃ is bounded, applying Lemma 2.10 to equation (4.17),

for ϵ′ > 0 and a ≥ 1, we deduce

(4.18)
∑

p∈[yX,yX+Xδ]
p prime

(
k

p

)
Φ̃

(
kX

2a2p

)
≪ (yX)

1
2+ϵ′

(
1 +

∫ ∞

0

∣∣∣Φ̃′(u)
∣∣∣ du) (k ̸= □).

Now, summing over k ̸= □ with |k| < a2Xϵ′ , we observe:

(4.19)
∑
k∈Z

|k|<a2Xϵ′

k ̸=□

(−1)k
logX

Xδ

∑
p∈[yX,yX+Xδ]

p prime

(
k

p

)
Φ̃

(
kX

2a2p

)
≪ y

1
2+ϵ′a2 logX

Xδ− 1
2−2ϵ′

.

On the other hand, summing over k ̸= □ with |k| ≥ a2Xϵ′ and a ≥ 1, we obtain∣∣∣∣∣∣∣∣∣∣∣
∑
k∈Z

|k|≥a2Xϵ′

k ̸=□

(−1)k
logX

Xδ

∑
p∈[yX,yX+Xδ]

p prime

(
k

p

)
Φ̃

(
kX

2a2p

)
∣∣∣∣∣∣∣∣∣∣∣
≪

∑
k∈Z

|k|≥a2Xϵ′

k ̸=□

∣∣∣∣Φ̃( k

2a2y

)∣∣∣∣ ,(4.20)

where we use
∣∣∣(−1)k

(
k
p

)∣∣∣ ≤ 1 and apply Lemma 2.9. Since Φ̃ is Schwartz, and x 7→ |x|−α is even for all

α > 1, we have

(4.21)
∑
k∈Z

|k|≥a2Xϵ′

k ̸=□

∣∣∣∣Φ̃( k

2a2y

)∣∣∣∣≪ 2

∫ ∞

a2Xϵ′−1

(
u

2a2y

)−α

du≪ a2yαXϵ′(1−α).

Combining equation (4.19) with equations (4.20) and (4.21), we deduce:∣∣∣∣∣∣∣∣
∑
k∈Z
k ̸=□

(−1)k
logX

Xδ

∑
p∈[yX,yX+Xδ]

p prime

(
k

p

)
Φ̃

(
kX

2a2p

)∣∣∣∣∣∣∣∣≪
a2y

1
2+ϵ′ logX

Xδ− 1
2−2ϵ′

+ a2yαXϵ′(1−α).(4.22)

Summing equation (4.22) over odd a ≤ A, we see that:

(4.23)

∣∣∣∣∣∣∣∣
∑

(a,2)=1
0<a≤A

µ(a)

a2

∑
k∈Z
k ̸=□

(−1)k
logX

Xδ

∑
p∈[yX,yX+Xδ]

p prime

(
k

p

)
Φ̃

(
kX

2a2p

)∣∣∣∣∣∣∣∣≪ A

(
y

1
2+ϵ′ logX

Xδ− 1
2−2ϵ′

+ yαXϵ′(1−α)

)
.

Recall from the discussion preceding equation (4.12) that we have chosen A ≪ X
1
4 . Combining this bound

for A with equations (4.15) and (4.23), we conclude:

MΦ,A(y,X, δ) =
logX

Xδ

∑
p∈[yX,yX+Xδ]

p prime

1

2

∑
0<a≤A
(a,2)=1

µ(a)

a2

∑
k∈Z
k=□

(−1)k
(
k

p

)
Φ̃

(
kX

2a2p

)

+O

(
y

1
2+ϵ′ logX

Xδ− 3
4−2ϵ′

+ yαX
1
4+ϵ′(1−α)

)
.

(4.24)

Since δ > 3/4, we may choose 0 < ϵ′ < δ/2− 3/8 and α > 1 + (4ϵ′)−1 > 1. With these choices, we see that
the error term in equation (4.24) vanishes in the limit as X → ∞, and hence:

(4.25) lim
X→∞

MΦ,A(y,X, δ) = lim
X→∞

logX

Xδ

∑
p∈[yX,yX+Xδ]

p prime

1

2

∑
0<a≤A
(a,2)=1

µ(a)

a2

∑
k∈Z
k=□

(−1)k
(
k

p

)
Φ̃

(
kX

2a2p

)
.
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Considering the innermost sum in equation (4.25), we note that:

(4.26)
∑
k∈Z
k=□

(−1)k
(
k

p

)
Φ̃

(
kX

2a2p

)
=

∞∑
m=1

(−1)m
(
m2

p

)
Φ̃

(
m2X

2a2p

)
=

∞∑
m=1

(m,p)=1

(−1)mΦ̃

(
m2X

2a2p

)
.

Combining equations (4.25) and (4.26), we deduce

(4.27) lim
X→∞

MΦ,A(y,X, δ) = lim
X→∞

logX

Xδ

∑
p∈[yX,yX+Xδ]

p prime

1

2

∑
0<a≤A
(a,2)=1

µ(a)

a2

∞∑
m=1

(m,p)=1

(−1)mΦ̃

(
m2X

2a2p

)
.

To analyse the sum over m coprime to p in (4.27), we will eventually apply Poisson summation. Prior to
that, we will first quantify the error created when we extend the domain of summation to all m > 0. Since

{m ∈ N : (p,m) > 1} = {pm : m ∈ N} and Φ̃ is Schwartz, Lemma 2.12 implies that, for all κ > 1, we have:

(4.28)

∞∑
m=1

(p,m)>1

(−1)mΦ̃

(
m2X

2a2p

)
≤

∞∑
m=1

∣∣∣∣Φ̃(pm2X

2a2

)∣∣∣∣≪ (
pX

2a2

)−κ

.

Since a ≤ A ≪
√
X ∼

√
p/y, we have pX/a2 ≫ yX. Combining these bounds with equation (4.28), we

deduce

(4.29)
∑

0<a≤A
(a,2)=1

µ(a)

a2

∞∑
m=1

(p,m)>1

(−1)mΦ̃

(
m2X

2a2p

)
≪ (yX)−κ

∑
0<a≤A
(a,2)=1

1

a2
≪ (yX)−κ.

Equation (4.29) implies that

(4.30)
∑

0<a≤A
(a,2)=1

µ(a)

a2

∞∑
m=1

(m,p)=1

(−1)mΦ̃

(
m2X

2a2p

)
=

∑
0<a≤A
(a,2)=1

µ(a)

a2

∞∑
m=1

(−1)mΦ̃

(
m2X

2a2p

)
+O

(
(yX)−κ

)
.

Applying equation (4.30) to equation (4.26) and combining the result with (4.25), we deduce:

(4.31) lim
X→∞

MΦ,A(y,X, δ) = lim
X→∞

logX

Xδ

∑
p∈[yX,yX+Xδ]

p prime

1

2

∑
0<a≤A
(a,2)=1

µ(a)

a2

∞∑
m=1

(−1)mΦ̃

(
m2X

2a2p

)
.

To analyse the inner sum on the right hand side of equation (4.31), we observe that

(4.32)

∞∑
m=1

(−1)mΦ̃

(
m2X

2a2p

)
=

1

2

∑
m∈Z

(−1)mΦ̃

(
m2X

2a2p

)
− 1

2
Φ̃(0).

Poisson summation implies that∑
m∈Z

(−1)mΦ̃

(
m2X

2a2p

)
=
∑
m∈Z

cos (πm) Φ̃

(
m2X

2a2p

)
=
∑
v∈Z

∫ ∞

−∞
Φ̃

(
u2X

2a2p

)
cos (πu) e(−uv)du

= a

√
2p

X

∑
v∈Z

∫ ∞

−∞
Φ̃
(
w2
)
cos

(
πwa

√
2p

X

)
e

(
−wav

√
2p

X

)
dw

= a

√
2p

X

(
Ĥa(0) + 2

∞∑
v=1

Ĥa

(
av

√
2p

X

))
,

(4.33)
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where Ha(w) := Φ̃(w2) cos(πwa
√
2p/X). For the final equality in equation (4.33), we use the fact that Ĥ

is even. To proceed, let H(w) := Φ̃(w2) and Ca(w) := cos(πwa
√
2p/X) so Ha(w) = H(w)Ca(w). Since the

Fourier transform of a product is the convolution of the Fourier transforms, we have:

Ĥa(w) = (Ĥ ⋆ Ĉa)(w)

=
1

2

∫ ∞

−∞
Ĥ(t)

(
δ

(
w − t− a

√
p

2X

)
+ δ

(
w − t+ a

√
p

2X

))
dt

=
1

2

(
Ĥ

(
w + a

√
p

2X

)
+ Ĥ

(
w − a

√
p

2X

))
.

(4.34)

Since Ĥ is even, equation (4.34) implies:

Ĥa(0) + 2

∞∑
v=1

Ĥa

(
av

√
2p

X

)
= Ĥ

(
a

√
p

2X

)
+

∞∑
v=1

Ĥ

(
a

√
p

2X
(2v + 1)

)
+ Ĥ

(
a

√
p

2X
(2v − 1)

)

= 2

∞∑
v=1

(v,2)=1

Ĥ

(
av

√
p

2X

)
.

(4.35)

Substituting (4.35) into equation (4.33), we get:∑
m∈Z

(−1)mΦ̃

(
m2X

2a2p

)
= 2a

√
2p

X

∞∑
v=1

(v,2)=1

Ĥ

(
av

√
p

2X

)
.(4.36)

Combining equations (4.32) and (4.36), we deduce:
∞∑

m=1

(−1)mΦ̃

(
m2X

2a2p

)
= −1

2
Φ̃(0) + a

√
2p

X

∞∑
v=1

(v,2)=1

Ĥ

(
av

√
p

2X

)
.(4.37)

Noting that

(4.38)
∑

0<a≤A
(a,2)=1

µ(a)

a2
=
∏
p>2

(
1− 1

p2

)
+ o(1) =

8

π2
+ o(1),

as X → ∞ (hence A = X1+5ϵ−δ → ∞), equation (4.37) implies:∑
0<a≤A
(a,2)=1

µ(a)

a2

∞∑
m=1

(−1)mΦ̃

(
m2X

2a2p

)
= − 4

π2
Φ̃(0) +

√
2p

X

∑
0<a≤A
(a,2)=1

µ(a)

a

∞∑
v=1

(v,2)=1

Ĥ

(
av

√
p

2X

)
+ o(1).

(4.39)

Since Ĥ is Schwartz, the double sum in the right hand side of equation (4.39) converges, and we conclude
that the sum on the left hand side converges to a smooth function of p/X ∼ y as X → ∞ (hence A =
X1+5ϵ−δ → ∞). Noting the appearance of this sum in equation (4.31), we may apply Lemma 2.9 to deduce:

lim
X→∞

MΦ,A(y,X, δ) =
1

2

∞∑
a=1

(a,2)=1

µ(a)

a2

∞∑
m=1

(−1)mΦ̃

(
m2

2a2y

)
.(4.40)

Combining equations (4.13) and (4.40), we conclude the proof of Theorem 1.2.

5. 1-level density

In [C23, Section 4], murmurations of Kronecker symbols are considered from the perspective of L-function
zeros via the explicit formula. Furthermore, Rubinstein–Sarnak observed that the murmuration density for
Kronecker symbols in Theorem 1.2, when properly normalized, interpolates the transition in the 1-level
densities for a symplectic family of L-functions [S23ii]. We recover the observation of Rubinstein–Sarnak in
Corollary 1.3, in which the left (resp. right) limit corresponds to the case that p = yX is much smaller (resp.
larger) than X.
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Proof of Corollary 1.3. We maintain the notation from Corollary 1.3. Combining equations (1.6) and (4.39)
with y = p/X, we observe that

MΦ(y, δ) = − 2

π2
Φ̃(0) +

√
y

2

∞∑
a=1

(a,2)=1

µ(a)

a

∞∑
v=1

(v,2)=1

Ĥ

(
av

√
y

2

)

= − 2

π2
Φ̃(0) +

√
y

2

∞∑
n=1

(n,2)=1

 ∑
a|n

(a,2)=1

µ(a)

a

 Ĥ

(
n

√
y

2

)
.

(5.1)

For even n, define bn = 0, and, for odd n, define

(5.2) bn =
∑
a|n

(a,2)=1

µ(a)

a
.

In particular, we have b1 = 1. Since, for p prime and m > 1, we have µ(pm) = 0, we observe that, for k ≥ 1,

(5.3) bpk =

{
0, p = 2,

1− 1
p , p > 2.

If B(s) =
∑∞

n=1 bnn
−s, then equation (5.3) implies that, for Re(s) > 1,

B(s) =
∏
p>2

(
1 +

(
1− 1

p

) ∞∑
k=1

p−ks

)
=
∏
p>2

(
1 +

(1− 1/p)p−s

1− p−s

)
=
∏
p>2

1− p−s−1

1− p−s

=
1− 2−s

1− 2−s−1

ζ(s)

ζ(s+ 1)
.

(5.4)

Equation (5.4) implies that B(s) has meromorphic continuation to Re(s) > 0 with a simple pole at s = 1
and

(5.5) Ress=1B(s) = lim
s→1

(s− 1)
1− 2−s

1− 2−s−1

ζ(s)

ζ(s+ 1)
=

2

3

1

ζ(2)
=

4

π2
.

Consequently, we observe that the following function is meromorphic on Re(s) > 0 with a simple pole at
s = 1:

(5.6)

∫ ∞

0

( ∞∑
n=1

bnĤ(nx)

)
xs
dx

x
=

∫ ∞

0

( ∞∑
n=1

bnn
−sĤ(u)

)
us
du

u
= B(s)

∫ ∞

0

Ĥ(u)us
du

u
.

Furthermore, equation (5.5) implies that:

(5.7) Ress=1

(
B(s)

∫ ∞

0

Ĥ(u)us
du

u

)
=

4

π2

∫ ∞

0

Ĥ(u)du =
2

π2
H(0) =

2

π2
Φ̃(0),

where we have used Fourier inversion, and the facts that Ĥ is even and H(0) = Φ̃(0). We observe that, for
η ∈ (0, 12 ) and 1− η ≤ Re(s) ≤ 1 + η, the Riemann hypothesis implies that, for all ϵ > 0, we have

(5.8) |B(s)| =
∣∣∣∣ 1− 2−s

1− 2−s−1

ζ(s)

ζ(s+ 1)

∣∣∣∣≪ ∣∣∣∣ ζ(s)

ζ(s+ 1)

∣∣∣∣≪ |s|ϵ,

as |s| → ∞ (see [T87, Theorem 14.2]). Likewise, for 1 − η ≤ Re(s) ≤ 1 + η and r ∈ Z≥1, we may apply

applying integration by parts r times, and note that Ĥ(r) is a bounded function of rapid decay, to deduce:

(5.9)

∣∣∣∣∫ ∞

0

Ĥ(u)us
du

u

∣∣∣∣ = ∣∣∣∣ (−1)r(s− 1)!

(s+ r − 1)!

∫ ∞

0

Ĥ(r)(u)us+r du

u

∣∣∣∣ ≤ |s|−r

∫ ∞

0

∣∣∣Ĥ(r)(u)
∣∣∣ur+ηdu≪ |s|−r,
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as |s| → ∞. Therefore we may apply Mellin inversion, the residue theorem, and equation (5.7) to equa-
tion (5.6) to obtain

(5.10)

∞∑
n=1

bnĤ(xn) ∼ Ress=1

(
B(s)

∫ ∞

0

Ĥ(u)us
du

u
x−s

)
=

2Φ̃(0)

π2x

as x→ 0+. Combining equations (5.2) and (5.10), we deduce that

(5.11)

√
y

2

∞∑
n=1

(n,2)=1

 ∑
a|n

(a,2)=1

µ(a)

a

 Ĥ

(
n

√
y

2

)
∼
√
y

2

2Φ̃(0)

π2
√
y/2

=
2

π2
Φ̃(0)

as y → 0+. Combining equation (5.1) with equation (5.11), we conclude that

(5.12) lim
y→0+

MΦ(y, δ) = − 2

π2
Φ̃(0) +

2

π2
Φ̃(0) = 0.

For the limit as y → ∞, we again use equation (4.39) with p/X = y, and note that, since Ĥ is Schwartz, for
all α > 1, Lemma 2.12 implies that

(5.13)

∣∣∣∣∣∣∣
√
2y

∞∑
a=1

(a,2)=1

µ(a)

a

∞∑
v=1

Ĥ

(√
y

2
av

)∣∣∣∣∣∣∣≪
∞∑
a=1

(a,2)=1

√
y

a

(√
y

2
a

)−α

≪ y
1−α
2

∞∑
a=1

(a,2)=1

1

aα+1
≪ y

1−α
2 .

Combining equations (5.1) and (5.13) we conclude that

(5.14) lim
y→∞

MΦ(y, δ) = lim
y→∞

1

2

(
−4Φ̃(0)

π2
+O

(
y

1−α
2

))
= − 2

π2
Φ̃(0).

□

6. Supplementary results

6.1. Including composite conductors in Theorem 1.1.

6.1.1. Preliminaries. Note that by [IK04, equation (3.7)], the set D±(N) is empty if and only if N ≡ 2 mod 4.
For δ ∈ (0, 1), y ∈ R>0, and c ∈ R>1, we will analyse functions connected to the following:

Q±(y,X, c) =
1

X

∑
N∈[X,cX]
N ̸≡2 mod 4

∑
χ∈D±(N)

χ(⌈yX⌉p)
τ(χ)

,(6.1)

Q̃±(y,X, δ) =
1

Xδ

∑
N∈[X,X+Xδ]
N ̸≡2 mod 4

∑
χ∈D±(N)

χ(⌈yX⌉p)
τ(χ)

.(6.2)

For an integer N > 1 and a prime number p coprime to N , Lemma 2.5 implies:∑
χ mod N

χ̸=χ0, χ(−1)=1

τ(χ)χ(p) = 1 + ϕ(N) cos

(
2πp

N

)
,(6.3)

∑
χ mod N
χ(−1)=−1

τ(χ)χ(p) = iϕ(N) sin

(
2πp

N

)
.(6.4)

We introduce the sets

(6.5) I±(N) = {χ mod N : χ imprimitive, χ ̸= χ0, χ(−1) = ±1},
18



so that equations (6.3) and (6.4) may be rewritten as follows:

(6.6)
∑

χ∈D+(N)

τ(χ)χ(p) = 1 + ϕ(N) cos

(
2πp

N

)
−

∑
χ∈I+(N)

τ(χ)χ(p),

(6.7)
∑

χ∈D−(N)

τ(χ)χ(p) = iϕ(N) sin

(
2πp

N

)
−

∑
χ∈I−(N)

τ(χ)χ(p).

Applying equation (2.13) to equations (6.6) and (6.7), we deduce

(6.8)
∑

χ∈D+(N)

χ(p)

τ(χ)
=

1

N
+
ϕ(N)

N
cos

(
2πp

N

)
− 1

N

∑
χ∈I+(N)

τ(χ)χ(p),

(6.9)
∑

χ∈D−(N)

χ(p)

τ(χ)
=

−iϕ(N)

N
sin

(
2πp

N

)
+

1

N

∑
χ∈I−(N)

τ(χ)χ(p).

In order to recreate the proof of Theorem 1.1 for composite conductors, equations (6.8) and (6.9) suggest
that we need to analyse sums of imprimitive characters. The following lemma will be useful for that purpose.

Lemma 6.1. If an imprimitive character χ mod N is induced by the primitive character χ1 mod N1, then,
we have

(6.10) τ(χ) = µ

(
N

N1

)
χ1

(
N

N1

)
G (χ1) ,

where µ(n) is the Möbius function as before.

Proof. [IK04, Lemma 3.1]. □

Inspired by equations (6.8) and (6.9), we introduce the following functions:

(6.11) E±(y,X, c) =
1

X

∑
N∈[X,cX]
N ̸≡2 mod 4

1

N

∑
I±(N)

τ(χ)χ(⌈yX⌉p),

(6.12) Ẽ±(y,X, δ) =
1

Xδ

∑
N∈[X,X+Xδ]
N ̸≡2 mod 4

1

N

∑
I±(N)

τ(χ)χ(⌈yX⌉p).

One sees that it is natural to investigate:

(6.13) T±(y,X, c) = Q±(y,X, c)± E±(y,X, c),

(6.14) T̃±(y,X, δ) = Q̃±(y,X, δ)± Ẽ±(y,X, δ).

Remark 6.2. Figure 6 (resp. Figure 7) suggest that |T±(y,X, c)| and |Q±(y,X, c)| (resp. |T̃±(y,X, c)|
and |Q̃±(y,X, δ)|) are significantly larger than |E±(y,X, δ)| (resp. |Ẽ±(y,X, δ)|). Since there is a canonical
bijection between Dirichlet characters mod N and primitive Dirichlet characters with conductor dividing N ,

E±(y,X, δ) (resp. Ẽ±(y,X, δ)) reduces to a sum over primitive characters with conductor dividing N . Using
Lemma 6.1, we see that this introduces a Möbius factor. Consequently, we expect that this term is smaller
due to additional cancellation.

Another complexity arising from equations (6.8) and (6.9) is the need to understand murmuration-type
limits for ϕ(N)/N , for which the following lemma will be useful.

Lemma 6.3. If a ∈ R>0 and b ∈ (0, 1], then

(6.15) lim
X→∞

1

aXb

∑
N∈[X,X+aXb]
N ̸≡2 mod 4

ϕ(N)

N
=

5

π2
.
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Proof. It is known that

(6.16)
∑

0<N≤X
N∈Z

ϕ(N)

N
=

6

π2
X +O

(
(logX)2/3(log logX)4/3

)
,

from which it follows that

(6.17) lim
X→∞

1

X

∑
0<N≤X
N∈Z

ϕ(N)

N
=

6

π2

(cf. [IK04, equation (1.74)]). Similarly, according to [N75], we have that

(6.18) lim
X→∞

1

X

∑
0<N≤X
N∈Z

ϕ(2N + 1)

2N + 1
=

8

π2
.

Using equation (6.18) and the identity ϕ(4N + 2) = ϕ(2N + 1), we compute:

(6.19) lim
X→∞

1

X

∑
0<N≤X

N≡2 mod 4

ϕ(N)

N
= lim

X→∞

1

4X

∑
0<N≤X
N∈Z

ϕ(4N + 2)

4N + 2
=

1

8
lim

X→∞

1

X

∑
0<N≤X
N∈Z

ϕ(2N + 1)

2N + 1
=

1

π2
.

Subtracting equation (6.19) from equation (6.17), and noting the error term in equation (6.16), we conclude

(6.20) lim
X→∞

1

X

∑
0<N≤X

N ̸≡2 mod 4

ϕ(N)

N
=

5

π2
.

Equation (6.20) implies that

(6.21)
∑

0<N≤X
N ̸≡2 mod 4

ϕ(N)

N
∼

∑
0<N≤X
N∈Z

5

π2
,

from which equation (6.15) follows. □

6.1.2. Geometric Intervals. In this subsection, we will prove the following theorem, which is visualised in
Figure 6.

Theorem 6.4. If c ∈ R>1 and y ∈ R>0, then

(6.22) lim
X→∞

T±(y,X, c) =

{
5
π2

∫ c

1
cos
(
2πy
x

)
dx, if +,

−i 5
π2

∫ c

1
sin
(
2πy
x

)
dx, if − .

Proof. We will prove the case of T+(y,X, c), and simply note that T−(y,X, c) is similar. Applying equa-
tions (2.17), (6.1), and (6.11) to equation (6.8), we deduce

lim
X→∞

T+(y,X, δ) = lim
X→∞

1

X

∑
N∈[X,cX]
N ̸≡2 mod 4

ϕ(N)

N
cos

(
2πyX

N

)
− lim

X→∞
E+(y,X, δ)

= lim
X→∞

1

X

n∑
i=1

∑
N∈Ii

N ̸≡2 mod 4

ϕ(N)

N
cos

(
2πyX

N

)
− lim

X→∞
E+(y,X, δ),

(6.23)

where, for each X, we put n =
⌈√

X
⌉
and, for i ∈ {1, . . . , n}, we write

(6.24) Ii =

[
X +

i− 1

n
(c− 1)X,X +

i

n
(c− 1)X

)
.

Fix γ ∈ (0, 1] and, for each X, choose i = ⌈γn⌉ ∈ {1, . . . , n}. We have

(6.25) lim
X→∞

i− 1

n
= lim

X→∞

i

n
= γ.
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Figure 6. Plot of T±(y, 1024, 2) for 0 ≤ y ≤ 10 with + in blue and (the imaginary part of) −
in red. We also show 5

π2

∫ 2

1
cos
(
2πy
x

)
dx in green and − 5

π2

∫ 2

1
sin
(
2πy
x

)
dx in orange.

For N ∈ Ii, equation (6.25) implies that

(6.26)
1

1 + γ(c− 1)
= lim

X→∞

X

X + i(c− 1)X/n
≤ lim

X→∞

X

N
≤ lim

X→∞

X

X + (i− 1)(c− 1)X/n
=

1

1 + γ(c− 1)
.

Combining equations (6.13), (6.23), and (6.26), we deduce

(6.27) lim
X→∞

T+(y,X, δ) = lim
X→∞

c− 1√
X

n∑
i=1

cos

(
2πy

1 + γ(c− 1)

)
1

(c− 1)
√
X

∑
N∈Ii

N ̸≡2 mod 4

ϕ(N)

N
.

Using Lemma 6.3 and equation (6.27), we are led to

(6.28) lim
X→∞

T+(y,X, δ) = lim
n→∞

c− 1

n

n∑
i=1

5

π2
cos

(
2πy

1 + i(c− 1)/n

)
.

Now equation (6.22) follows upon recognising equation (6.28) as a Riemann sum. □

6.1.3. Short intervals. We first prove the following theorem, which is visualised in Figure 7.

Theorem 6.5. If δ ∈ (0, 1) and y ∈ R>0, then

(6.29) lim
X→∞

T̃±(y,X, δ) =

{
5
π2 cos(2πy), if +,

−i 5
π2 sin(2πy), if −.

Proof. We will prove the case of T̃+(y,X, δ) and simply note that T̃−(y,X, δ) is similar. Mimicking the proof
of equation (1.4) leads to

(6.30) lim
X→∞

T̃+(y,X, δ) = lim
X→∞

cos(2πy)

Xδ

∑
N∈[X,X+Xδ]
N ̸≡2 mod 4

ϕ(N)

N
.

In light of equation (6.30), the result follows from Lemma 6.3. □

We next obtain an extension of equation (1.4) by considering a set of special conductors specified as
follows. Let S denote the set of positive integers that are not congruent to 2 mod 4 and are either prime or
squarefull1. By equation (6.10), this is precisely the set S of integers such that, if N ∈ S, then

(6.31)
∑

I±(N)

τ(χ)χ(p) = 0, (N ∈ S).

1A positive integer is squarefull if all its prime factors exponents are at least 2.
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Figure 7. Plot of T̃±(y, 2002, 0.51) for 0 ≤ y ≤ 2 with + in blue and (imaginary part of) −
in red. We also show 5

π2 cos(2πy) in green and 5
π2 sin(2πy) in orange.

Using equations (2.17) and (6.31), we deduce that, for N ∈ S, equation (6.8) reduces to

(6.32)
∑

χ∈D±(N)

χ(p)

τ(χ)
=
ϕ(N)

N
cos

(
2πp

N

)
, (N ∈ S).

Now define

(6.33) f(X) =
∑
N≤X
N∈S

ϕ(N)

N
,

and consider

(6.34) Q̃S
±(y,X, δ) =

1

f(X +Xδ)− f(X)

∑
N∈[X,X+Xδ]

N∈S

∑
χ∈D±(N)

χ(⌈yX⌉p)
τ(χ)

.

This leads to the following corollary.

Corollary 6.6. Under the Riemann hypothesis, if δ ∈ ( 12 , 1) and y ∈ R>0, then

(6.35) lim
X→∞

Q̃S
±(y,X, δ) =

{
cos(2πy), if +,

−i sin(2πy), if −.

Proof. We prove the case of Q̃S
+(y,X, δ) and simply note that Q̃S

−(y,X, δ) is similar. Using equation (6.32)
and mimicking the proof of equation (1.4) yields

(6.36) lim
X→∞

Q̃S
+(y,X, δ) = lim

X→∞

cos(2πy)

f(X +Xδ)− f(X)

∑
N∈[X,X+Xδ]

N∈S

ϕ(N)

N
,

from which the result follows by equation (6.33). □
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6.2. Zubrilina density for
(
d
·
)
. Using the techniques from Section 4, we may investigate the following

variation of equation (1.5). Assuming that yX > 2, we have:

M†
Φ(y,X, δ) =

logX

X1+δ

∑
p∈[yX,yX+Xδ]

p prime

 ∑
d∈G

d≡1 mod 4

Φ

(
d

X

)
χd(p) +

∑
d∈G

d≡3 mod 4

Φ

(
d

X

)
χ4d(p)

√
p

=
logX

X1+δ

∑
p∈[yX,yX+Xδ]

p prime

∑
d∈G

Φ

(
d

X

)(
d

p

)
√
p.

(6.37)

We note that M†
Φ(y,X, δ) involves

(
d
·
)
, whereas MΦ(y,X, δ) involves

(
8d
·
)
. For plots of the function

M†
Φ(y,X, δ), see Figure 8. In this section, we calculate the following limit which yields Zubrilina density

Figure 8. Let
Φ+(x) = 1(1,2)(x) exp(

−1
1−4(x−1.5)2 ), Φ−(x) = 1(−2,−1)(x) exp(

−1
1−4(−x−1.5)2 ).

We plot M†
Φ±

(y, 219, 2/3) for y ∈ [0, 2] with + in blue (resp. − in red), and the right hand side

of equation (6.38) in green (resp. orange).

associated to M†
Φ(y,X, δ):

Corollary 6.7. Fix y ∈ R>0. If δ ∈ ( 34 , 1) and Φ ≥ 0 is a smooth Schwartz function with compact support,
then, assuming the Generalized Riemann hypothesis, we have

(6.38) M†
Φ(y, δ) := lim

X→∞
M†

Φ(y,X, δ) =
1

2

∞∑
a=1

(a,2)=1

µ(a)

a2

∞∑
m=1

Φ̃

(
m2

a2y

)
.

Proof. Applying Lemma 2.11 to equation (6.37), we get

(6.39) M†
Φ,A(y,X, δ) =

logX

Xδ

∑
p∈[yX,yX+Xδ]

p prime

∑
0<a≤A
(a,2p)=1

µ(a)

2a2

∑
k∈Z

(−1)k
(
2k

p

)
Φ̃

(
kX

2a2p

)
.

Following the argument in Section 4.2, we observe that terms corresponding to 2k ̸= □ vanish in equa-
tion (6.39). On the other hand, if 2k = □, then writing k = 2m2 yields

(6.40)
∑
k∈Z
2k=□

(−1)k
(
2k

p

)
Φ̃

(
kX

2a2p

)
=

∞∑
m=1

(−1)2m
2

(
2m

p

)2

Φ̃

(
m2X

a2p

)
=

∞∑
m=1

(2m,p)=1

Φ̃

(
m2X

a2p

)
.
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Comparing equation (6.40) with equation (4.25), we notice the following simplification to what remains of
the argument from Section 4.2. Namely, we do not need to introduce Ha(w) since (−1)m is missing in the

final expression of equation (6.40). In fact, it is enough to use H(w) = Φ̃(w2). With this modification, we
finish the proof by mimicking Section 4.2. □

Unfolding the function Φ̃, we may recover the analogue of equation (1.9) for M†
Φ(y,X, δ). Subsequently,

one may compute the Zubrilina density for the family
{(

d
·
)
: d ∈ G

}
. Following the proof in Section 5, we

also obtain the following analogue of Corollary 1.3.

Corollary 6.8. Let Φ be a Schwartz function with compact support and let δ ∈ ( 34 , 1). Assuming the
Generalized Riemann hypothesis, we have

(6.41) lim
y→0+

M†
Φ(y, δ) = 0, and lim

y→∞
M†

Φ(y, δ) = − 2

π2
Φ̃(0),

where M†
Φ(y, δ) is defined in (6.38).

Proof. Recall from the proof of Corollary 6.7 that, when modifying the argument from Section 4.2, we do
not need to introduce Ha(w). In particular, we see that the equation corresponding to equation (5.1) is
given by

(6.42) M†
Φ(y, δ) = − 2

π2
Φ̃(0) +

√
y

2

∞∑
n=1

 ∑
a|n

(a,2)=1

µ(a)

a

 Ĥ (n
√
y) .

For all n ∈ Z≥1, set

b†n =
∑
a|n

(a,2)=1

µ(a)

a
.

In particular, we have b†
2k

= 1. We also set B†(s) =
∑∞

n=1 b
†
nn

−s, so that Ress=1B
†(s) = 8/π2. Using the

same argument as in Section 5, we find:

(6.43)

√
y

2

∞∑
n=1

 ∑
a|n

(a,2)=1

µ(a)

a

 Ĥ(n
√
y) ∼

√
y

2

4Φ̃(0)

π2√y
=

2

π2
Φ̃(0),

and we deduce the limit as y → 0+. The limit as y → ∞ follows from Lemma 2.12 as before. □
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