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ABSTRACT 
 
Melanocortin peptides are endogenously produced peptides originating from the post-

translational processing of the pro-opiomelanocortin hormone (POMC), exerting their 

effect by binding to class A G-protein-coupled 7 transmembrane domain receptors, 

positively coupled to adenylate cyclase. To date five melanocortin receptors have been 

identified and termed MC1 to MC5. MC1 and MC3 have previously been proposed to exert 

anti-inflammatory effects by modulating the host inflammatory response. The expression 

and the functional activity of both receptors was identified and confirmed in the C-20/A4 

chondrocyte cell-line, isolated primary bovine and in situ bovine articular chondrocytes.  

Pro-inflammatory cytokines including IL-1β, IL-6, IL-8, TNF-α, produced by activated 

articular chondrocytes significantly up-regulate matrix metalloproteinases (MMPs) gene 

expression, and inhibit the chondrocyte’s compensatory synthesis pathways required to 

restore the integrity of the degraded extracellular matrix (ECM). Human C-20/A4 and 

primary bovine articular chondrocytes were found to produce CC and CXC chemokines, 

which induced the release of matrix degrading enzymes and activated cell apoptotic 

pathways. TNF-α significantly up-regulated the expression of pro-inflammatory cytokines 

and chemokines IL-1β, IL-6, IL-8, MCP-1 and MMP1 and 13 from C-20/A4 cell line and 

freshly isolated primary bovine articular chondrocytes.  An effect attenuated in the 

presence of α-MSH and D[TRP]8-γ-MSH. The MC3/4 antagonist SHU9119 blocked the 

effects of D[TRP]8-γ-MSH but not α-MSH.  

TNF-α (60.0 pg/ml) stimulation caused ~30% cell death and was partially, but 

significantly inhibited by treatment of the cells with the melanocortin peptides. The anti-

inflammatory and chondroprotective effect of melanocortin peptides were then tested on 

in situ bovine articular chondrocytes, injured by a single blunt impact delivered by a drop 

tower. The mechanical injury caused significant cell death and up-regulation of the pro-

inflammatory cytokines IL-6 and IL-8, which were significantly reduced on pre-treatment 

of cartilage explants with melanocortin peptides.  

Modulation of pro-inflammatory pathways and inflammation-modulated cartilage 

destruction with subsequent chondrocyte apoptosis appears to be logical development in 

the potential medical therapy of OA. The small molecular weight of melanocortin 

peptides should facilitate the absorption from the GI tract and the movement to the 

cartilage matrix, which together with creative drug delivery methods might potentially 

prove to be potent therapeutic agents in the future.  
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1.1 Cartilage. 

Mammalian cartilage is a complex and developmentally critical tissue that has 

been historically defined as a vertebrate tissue component of the skeletal system, 

fundamentally different in structure and function from bone tissue. It functions as 

an internal cellular support tissue and is composed of fibrous proteins and 

mucopolysaccharides (Cole and Hall, 2004). Three different types of cartilage 

exist in mammals; each differing in the arrangement and proportion of 

extracellular fibrous (collagen) or non-fibrous (proteoglycans) macromolecules 

within the extracellular matrix (ECM), in the distribution and morphology of the 

only resident cell type – the chondrocyte, and their anatomical location and 

functions within the body (Hall, 1998).  

Hyaline cartilage, also wildly known as articular cartilage, is the most studied 

cartilaginous tissue. It is particularly important due to its function in development, 

as it lays down the scaffold for the future development of most of the key bones 

within the body, and due to its preservation at the joint interfaces, where it 

creates a smooth surface for frictionless joint movement. It is also the primary 

tissue affected by arthritic pathologies (Hollander et al., 2010). 

In hyaline cartilage, the proportion of collagen to proteoglycans, is such that 

under polarized light microscope the tissue appears glassy, with translucent blue-

white appearance in early age, turning pale and opaque with aging (Van der 

Korst et al., 1968, Hall, 1998). Articular cartilage constitutes the temporary 

embryonic skeleton, before its replacement with bone. It can also be found in the 

epiphyseal plates between the diaphysis and epiphysis of growing long bones, 

where it is responsible for the longitudinal growth of the bone (Martel-Pelletier 

and Pelletier, 2010). In adults, this type of cartilage is present in the articulating 

surfaces of articular joints, in the wall of the large respiratory passages, such as 

the nose, larynx, trachea, bronchus, and at the ventral ends of the ribs that move 

with the sternum. The tissue is avascular, alymphatic and aneural and populated 

only by chondrocytes, which are responsible for the synthesis, exportation and 

degradation of ECM components – proteoglycan, fibrous collagen (type I, type II, 

and small amounts of types VI, IX and XI) and other proteins. The surface areas 

of the articular cartilage can withstand tensile forces arising from joint movement 
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but its principle adaptation is to withstand compressive forces (Martel-Pelletier 

and Pelletier, 2010). 

Fibrocartilage, or white fibrocartilage, is another type of cartilage found mainly in 

the invertebrate disks of the spine, the attachment of some ligaments to the 

bones, in the pubic symphysis, but also in knee, jaw and healing bones 

(Benjamin and Evans, 1990, Benjamin and Ralphs, 1998). Its main function is to 

withstand compression forces. Fibrocartilage is a very dense connective tissue, 

composed mainly from collagen type I (Eyre and Muir, 1975), relatively little 

proteoglycan (Gillard et al., 1979, Koob and Vogel, 1987) and some elastic 

material (Buckwalter et al., 1976). It develops by metaplasia from pre-cartilage, 

hyaline cartilage and particularly from fibrous tissue, and these features precede 

the appearance of cartilage cells (Benjamin and Evans, 1990).  

The third type of cartilage is the elastic cartilage, or yellow fibrocartilage. Elastic 

cartilage is composed of elastic fibres as well as collagens and proteoglycans 

and is mainly found in the auricle of the ears, in the Eustachian tubes and 

epiglottis. It is described as rubber-like, highly and reversibly deformable. Elastic 

cartilage chondrocytes highly resemble those in hyaline cartilage, but these 

synthesize elastin in addition to the other matrix components (Hall, 1998). 

1.1.1 Articular Cartilage – structure and function.  

The mechanical resistance and flexibility of cartilage occurs because of the four 

components of the extracellular matrix and their properties – proteoglycans, 

collagen, interstitial fluid and chondrocytes. Proteoglycans are proteins 

composed of highly negatively charged glycosaminoglycans (GAGs), covalently 

attached through O-glycosidic bond at their reducing ends to the core protein, 

commonly chondroitin sulphate (CS) or keratan sulphate (KS) (Jackson et al., 

1991). Aggrecan, one of the largest proteoglycans and the major one in articular 

cartilage, is a large chondroitin sulphate proteoglycan composed of a large 

number of GAG monomers and represents the bulk of the proteoglycans in 

cartilage (Watanabe et al., 1998). It interacts with the hyaluronan and other link 

proteins to form macromolecular complexes, trapped by the collagen network 

and gives cartilage its capacity to resist compression through hydration (Jackson 
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et al., 1991). Decorin, biglycan and fibromodulin, are smaller proteoglycans, rich 

in leucine, representing around 20-25% of all proteoglycans in cartilage, and are 

associated with the proteoglycans and the ‘ground substance’ – the main 

components of which are large carbohydrates and other proteins (Hardingham 

and Fosang, 1992). A central component of the proteoglycan aggregates is 

hyaluronan, which is a non-sulphated glycosaminoglycan and is present in 

relatively small amounts in cartilage. It is, however, an important component of 

the matrix, as CD44, expressed on the chondrocytes cell surface, bind to 

hyaluronan, thus embedding the chondrocyte within the extracellular matrix 

(Figure 1.1). 

Collagen fibres are the principle component of connective tissues and are 

composed of bundles of fibrils, which are made of stacked molecules of helical 

polypeptide chains. Fourteen different types of collagens exist, which vary both in 

size and in configuration (Eyre, 2004). Articular cartilage is mainly composed of a 

unique type of collagen, type II, which is structurally characterised by the 

aggregation of large fibrillar homotrimer complexes, with three identical α-chains 

peptides (formed by the repeating tri-peptide sequence Gly-x-y) each adopting 

left-handed helical conformation (Hall, 1998) with the three chains twisted 

together in a right-handed helix. Collagen type II in cartilage forms a 3D fibrillar 

network of rope-like molecular aggregates, which together with the proteoglycans 

is essential for maintaining the tissue volume, shape and tensile strength (Eyre et 

al., 1992) . Collagen II represents >95% of all the collagens present in the 

cartilage. Other collagens found in cartilage include type I, type IX, type X, which 

play an essential role in the matrix organization. Collagen type IX is a non-fibril, 

highly glycosilated collagen that covalently links to type II collagen fibrils, thereby 

helping in the interweaving and cross-linking of the collagen fibrils and trapping 

the hydrated proteoglycans. Collagen type IX is additionally regarded as a 

proteoglycan due to a CS chain attached and is thought to provide lateral 

strength and flexibility (Hall, 1998).  
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Figure 1.1 Articular cartilage zones and zonal orientation of collagen type II fibrils. 

A simplified diagram of a perpendicular section of articular cartilage and underlying 

bone, showing the heterogeneity of the cartilage matrix. Arcades of collagen bundles 

originating in the calcified zone and binding the non-calcified cartilage are extending 

towards the articular surface and then curving back down. In sequence from the articular 

surface to the subchondral bone, the collagen bundles are tangential, radial and 

perpendicular. The collagen fibres are continuous with those in the calcified 

layer of cartilage but not with underlying subchondral bone. The morphology of 

the collagen-fibril network influences the local stresses and strains in the 

articular cartilage. 

 

The organisation and distribution of ECM macromolecules and chondrocytes 

differs significantly within the tissue and can be separated into four distinct 

regions. The first region located at the articular surface of the cartilage is the 

superficial zone. It is composed of thin, tangential, tight collagen fibrils, mainly 
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parallel to tangential stress and is associated with low concentration of aggrecan 

and high concentrations of decorin. The middle zone contains thick radially, 

randomly oriented, looser bundles of collagen, whilst the deep zone (also called 

radial zone) contains perpendicularly oriented collagen fibrils and the calcified 

cartilage zone (located between the deep zone and the subchondral bone) 

serves as a mechanical buffer (Muir et al., 1970, Wilson et al., 2004). It has been 

observed that the cell density progressively decreases from the superficial zone 

to the deep zone, whereas relative to collagen, cell volume and the proteoglycan 

content increase.  

Within cartilage, there are not only topographical variations in the quantity of 

proteoglycan, but also the type, thus contributing to the physical properties of the 

matrix. The GAG side chains of proteoglycans are sulphated and responsible for 

a fixed negative charge density, which binds mainly sodium, but also other 

mobile cations (Lesperance et al., 1992). This process, together with the quality 

and quantity of the collagen network is deterministic for the osmotic pressure of 

the extracellular fluid around chondrocytes. Extracellular osmolarity in healthy 

articular cartilage ranges between 350 and 480 mOsm.kg-1 H2O, hereafter 

termed ‘mOsm’ (Maroudas, 1976) and is highly dynamic, in response to changes 

in matrix hydration (Urban, 1994). During osteoarthritis, the collagen matrix 

degrades and the concentration of GAG diminishes in a disease progression-

dependent way, leading to decreased osmolarity to between 280-350 mOsm 

(Maroudas, 1976, Bush and Hall, 2001a, Bush and Hall, 2005).  

The proteoglycan molecules (3–10 % of tissue on wet weight basis) are highly 

negatively charged with sulphate, SO4
2– and carboxyl (COO–) functional groups, 

which, together with the positively charged cations drawn from the synovial fluid, 

cause the osmotic pressure in the matrix to increase and consequently leads to 

water inhibition and tissue inflation. However, within the cartilage, the expansion 

of the proteoglycans is limited by the tension of the collagen matrix (15 – 30 % of 

tissue on wet weight basis), which restricts proteoglycans hydration to only 20 % 

of their actual capacity, and thus creates swelling pressure within the cartilage, 

contributing to its compressibility (Hall, 1998). When cartilage is loaded, during 

normal daily activities, water is extruded and the PGs are further compressed, 

but upon removal of the load (resting) water is imbibed in the tissue, together with 
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essential nutrients, until the swelling pressure of the aggrecan is balanced again 

by the tensile force of the collagen matrix. The interstitial fluid (65 – 80 % of the 

tissue) is what forms the aqueous environment in which the chondrocytes reside. 

It supplies the cells with substrates, nutrients and matrix biosynthesis precursors, 

and also allows for metabolic by-products to be eliminated from the tissue.  

1.1.2  Chondrocytes. 

Connective tissues are highly active living tissues with capacity to support and 

resist mechanical forces, crucial for the musculoskeletal system. The cells of 

connective tissues continually produce and maintain appropriate macromolecules 

that give the tissue its required mechanical properties. This occurs by 

synchronised equilibrium of anabolism and catabolism of those macromolecules 

(Gardner, 1992).  

Chondrocytes are present at a very low density of ~ 1-5 % of the adult cartilage 

tissue, with approximately 1.0 x 103 cells per mm3 (human femoral head), and 

depending on the location, little or no cell division (Hall, 1998). Although the role 

of the chondrocytes has historically been marginalized because they do not play 

a direct mechanical role, they are the only existing units capable of producing, 

repairing or degrading the matrix. Additionally, chondrocytes ‘sense’ physical 

changes in their environment and this determines matrix metabolism and 

ultimately the mechanical characteristics of the tissue, the osmotic composition of 

the interstitial fluid, cell-matrix interactions and the rate of diffusion of substances 

between the synovial fluid and the interstitial fluid. 

Chondrocytes in cartilage are heterogeneous, and this is related to the 

topography within different zones of the tissue (Stockwell and Meachim, 1973, 

Hall, 1998). In addition chondrocytes can exist as single units or in groups of up 

to six cells. Differences in the morphology of zonal chondrocytes can be easily 

observed. Chondrocytes from the superficial zone occur singly or in pairs, are 

small (8–15 µm in diameter), sparsely distributed and ellipsoid in morphology. In 

the middle zone, chondrocytes are oval-shaped approximately 15–25 µm in 

diameter and are arranged radially, singularly or in pairs (Stockwell, 1971, Hall et 

al., 1996, Hall, 1998). Chondrocytes become more oval in the deep zone, where 



 

 
 
 

33 

they are found in small groups or short columns of about 3–5 cells (Hall, 1998, 

Hall et al., 1996). 

Early studies have identified that the matrix immediately surrounding the 

chondrocyte in hyaline cartilage is different and more specialised than the 

intercellular/interterritorial matrix, which led to the identification of a primary 

functional and metabolic unit termed ‘chondron’ (Poole et al., 1992). The 

chondron consists of one or several chondrocytes, the pericellular, or “lacunar” 

matrix, which is rich in proteoglycans and possibly hyaluronic acid, relatively no 

collagens, and the pericellular rib, which includes types VI, II and IX collagen 

(Figure 1.2). It has been hypothesized that the microenvironment, surrounding 

the chondrocytes within their chondrons, serves to protect the chondrocytes by 

dampening the physicochemical, osmotic and mechanical changes that happen 

during dynamic loading (Poole et al., 1992). Continuous with the pericellular 

matrix is the territorial matrix, which is composed of basket-like network of cross-

linked collagen fibrils, forming a capsule around the chondron, which the 

chondrocyte contacts through numerous cytoplasmic processes, rich in 

microfilaments. The pericellular collagens diverge and converge at the superficial 

pole of the chondron capsule, forming a pericellular channel between the interior 

of the chondron and the intercellular matrix. It has been suggested that, during 

compressive pressure to tissue, these “pericellular channels” underline a 

mechanism for the chondrocytes to sense changes in the osmotic pressure and 

therefore regulate matrix metabolism (Hall et al., 1996).   
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Figure 1.2 High power phase contrast confocal micrograph of articular hyaline 

cartilage excised from adult (18-24 months old) bovine ‘knee’ joint.  

Articular cartilage has a complex internal structure. Composed of four poorly demarcated 

zones, the most superficial, uppermost zone forms the gliding surface and is in contact 

with the synovial cavity of the joint. Small elliptical chondrocytes are oriented parallel to 

the surface; chondrocytes in deeper zones are larger, more rounded, and arranged in 

vertical columns. The term chondron encompasses the chondrocyte and its pericellular 

and territorial matrix. Image was taken using Leica TCS SP2, x630 magnification.  
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1.2 Arthritides. 

1.2.1 Rheumatoid Arthritis (RA). 

Rheumatoid arthritis is a complex systemic, inflammatory pathology, primarily 

affecting the joints, with cardiovascular problems being causal to 40% of the 

morbidity associated with this pathology. RA is one of the most common of the 

arthritides, affecting middle-aged males and females, with a marked female bias 

(approx. 2.5 times; (Lee and Weinblatt, 2001) as well as children (in the case of 

juvenile variant). Rheumatoid arthritis has acute or insidious onset, and typically, 

but not exclusively, affects the joints in a symmetrical manner the radiocarpal and 

metacarpophalangeal, proximal interphalangeal joints of the hands and feet and 

occasionally large joints (Lee and Weinblatt, 2001). Cardinal features of RA are 

early morning stiffness and pain, which can last for more than 1 h, joint swelling 

and deformity, synovial thickening, reduced range of motion of the affected joint 

and systemic features including flu-like symptoms, fatigue, fever, depression and 

weight loss (Lee and Weinblatt, 2001). 

The exact pathology of RA is still not understood, but it is generally accepted to 

be a disease of autoimmune origin, resulting in a continual immunological 

reaction, mostly directed against joint tissues, but may also have manifestations 

as a more systemic syndrome involving a variety of organs (formation of 

rheumatoid nodules in skin, salivary inflammation, pulmonary fibrosis, pericardial 

inflammation, myocarditis, mononeuritis, anemia, thrombocytosis, vasculitis (Lee 

and Weinblatt, 2001). Characteristic findings in RA joints include synovial 

inflammation with an accumulation of inflammatory cells, increased synovial 

levels of pro-inflammatory cytokines, and the formation of a characteristic area of 

granulation tissue known as a pannus, which is formed from both synovial cells 

and the cellular infiltrate, and appears to contribute to the destruction of the 

underlying cartilage (Lee and Weinblatt, 2001). 

Quantitative analyses have shown that a wide variety of pro-inflammatory 

cytokines are present in inflamed synovial tissue and are produced in moderate 

to high concentrations in RA. Tumor necrosis factor (TNF)-α and Interleukin (IL)-

1β are both present in high concentrations in affected synovial fluid and synovial 
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tissue (Chu et al., 1991, Wood et al., 1992, Lee and Weinblatt, 2001), where they 

act as potent stimulators of proliferation, matrix metalloproteinase expression, up-

regulation and release of pro-inflammatory cytokines and prostaglandin 

production (Lee and Weinblatt, 2001). Previous studies have identified IL-1β as 

the main mediator for the initiation of the proteolysis in rheumatoid arthritis and in 

other inflammatory joint diseases (Dayer et al., 1979, Mizel et al., 1981, Krane, 

1982, Baracos et al., 1983, Wood et al., 1992). The enhanced secretion of 

collagenases and prostaglandin E2 (PGE2), by synovial cells, is considered a 

factor for the degenerative progression that is clinically observed. TNF-α, a 

potent stimulator of collagenase and PGE2 production in synovial cells (Choi et 

al., 2009, Chu et al., 1991, Kunisch et al., 2009), is also implicated in the disease 

progression with production in far larger quantities than IL-1β under some 

circumstances in vivo.  

Whilst RA is generally classified as an autoimmune disease, the mechanisms 

involved and the significance of auto-antibodies routinely detected in RA patients, 

remain uncertain. The main auto-antibodies, detected in roughly 70–80 % of RA 

patients (Avouac et al., 2006), are rheumatoid factor (RF) and anti-cyclic 

citrulinated peptide (anti-CCP), antibodies directed against the fragment 

crystallizable (Fc) region of IgG antibodies and proteins containing citrulline (a 

modified form of the amino acid arginine), respectively (van Venrooij et al., 2008, 

van Venrooij and Zendman, 2008, Getting et al., 2009). It is suggested that these 

antibodies may be involved in RA via the formation of immune complexes, which 

together with their target antigens result in complement activation, the release of 

other pro-inflammatory mediators from the synovium, and leukocyte recruitment 

and infiltration into the joint space (Lee and Weinblatt, 2001, Brennan and 

McInnes, 2008, van Venrooij and Pruijn, 2008). 

1.2.2 Metabolic Arthritis/Gouty Arthritis. 

Gouty arthritis is a chronic joint disease caused by the deposition of monosodium 

urate monohydrate (MSU) crystals in the joints (McCarty et al., 1966, McGill and 

Dieppe, 1991, Chilappa et al., 2010). It is an inflammatory arthritis that 

predominantly affects middle-aged/older individuals, with incidence significantly 

higher in men than in pre-menopausal women (Getting and Perretti, 2001). Gouty 
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arthritis can occur in any synovial joint, but mainly manifests as a monoarthritic 

attack in the smaller joints, particularly the metatarsophalangeal joint, with clinical 

manifestation of symptoms including erythema, edema of the affected joints and 

severe pain (McGill and Dieppe, 1991). Gouty arthritis occurs predominantly as a 

consequence of hyperuricaemia (increased levels of plasma urate; a product of 

purine metabolism), although other factors including joint trauma and local 

temperature may be additionally involved (Heuckenkamp et al., 1982, Fokter and 

Repse-Fokter, 2010). When plasma solubility of urate is exceeded, MSU crystals 

deposit in a range of soft tissues and joints, resulting in gouty arthritis. 

The mechanisms of urate-induced inflammation are not completely understood. 

Gouty arthritis seems to be initiated primarily by an innate immune response, 

particularly due to the intense infiltration of blood-borne neutrophils and 

monocytes into the joint space (Terkeltaub et al., 1991a,b; Villiger et al., 1992), 

resulting from the elevated secretion of pro-inflammatory mediators, such as IL-

1β, IL-6, IL-8, TNF-α and thus the increased expression of endothelial cell 

adhesion molecules (di Giovine et al., 1991, Villiger et al., 1992). Recent work 

has shown that toll-like receptors TLR2 and TLR4, present on phagocytes and 

other cells contained in the joint environment, recognize the MSU crystals, which 

upon binding to the receptors, induce generation of these pro-inflammatory 

intermediaries, thereby providing a possible mechanism for disease instigation 

and progression (Cronstein and Terkeltaub, 2006).   

1.2.3 Osteoarthritis (OA).  

Osteoarthritis is a slowly progressive, degenerative, multifactorial disease 

characterized by gradual degradation and loss of articular cartilage, and resulting 

in loss of joint mobility and pain (Goldring, 2000a, Aigner and Stove, 2003, 

Goldring and Goldring, 2007). OA has been classified as a late-onset, complex 

disease, which affects over 100 million individuals all over the world (Iliopoulos et 

al., 2008). It is the most common of the arthritides, and is largely a disease of the 

elderly and middle aged. In theory, OA can affect any synovial joint in the body, 

but OA lesions are typically localized to the weight-bearing regions of the larger 

joints (the hip, knee and spine), and later in those of the hand (Buckwalter and 

Mankin, 1997).  
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The exact pathogenesis of osteoarthritis is not fully understood with obesity, age, 

abnormal joint loading and sport injuries all being risk factors (De Bri et al., 1998), 

but OA is more than just the result of “wear and tear” (Aigner et al., 2004b). 

Abnormal joint loading causes changes in physiology of the chondrocyte, which 

mediate the biosynthesis of ECM macromoledules. It is now generally accepted 

that the articular chondrocytes play an important role in the initiation and 

progression of OA (Goldring, 2000b).  

It is not yet known what is the exact role of the chondrocyte in the initiation and 

progression of osteoarthritis, due to the complexity of the disease process and its 

high localization of focal lesions. Dieppe, 1994 hypothesized that the initiation 

and the progression of osteoarthritis within individual joints, and even the disease 

distribution between the joints, may be ascertained by the specific balance 

between local and systemic factors (Dieppe and Kirwan, 1994). In the cases 

where, for example, excessive mechanical loads cause micro-damage to 

cartilage, chondrocytes might not be involved directly. The injury might initiate a 

sequence of cartilage ECM damage, before the obvious changes to chondrocyte 

physiology are detected. It has been observed that there are focal defects (peak 

loading location) in osteoarthritis of the hip and knee, suggesting that in some 

cases mechanical factors are not only an important risk factor for the 

development of changes to chondrocyte physiology, but also a key disease 

initiation factor. Additionally, normal ‘wear and tear’ has been considered a 

significant risk factor for the development of the disease; however, the fact that 

the increase in middle zone tissue hydration is the first detectable change, and 

without any change to the collagen content, this must be resulting from 

weakening of the collagen network (Stockwell, 1991, Gardner, 1992). These 

changes vary significantly from the processes taking place during aging, whereby 

cartilage loses hydration and becomes ‘dry’. If the effect of the physio-chemical 

environment of the chondrocytes on their physiology is considered, it is possible 

to hypothesize that a group of susceptible chondrocytes, with changes to their 

physiology, start a sequence of events leading to the production of mechanically 

compromised matrix and predisposing cartilage to damage and degradation (Hall 

et al., 1996). 
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However, other factors are also implicated in this intricate disease process. OA is 

generally regarded as primarily non-inflammatory arthropathy. Nonetheless, 

elevation of pro-inflammatory cytokines in the cartilage of many OA patients has 

been detected (Westacott and Sharif, 1996, Fernandes et al., 2002) and local 

inflammation has been observed in animal models of the disease (Goldring, 

2000a, Rai et al., 2008). Elevated levels of pro-inflammatory cytokines induce the 

expression and secretion of cartilage-degrading proteases by chondrocytes, 

leading to the degradation of cartilage ECM (Shlopov et al., 2000, Fernandes et 

al., 2002).  

Additionally, chondrocyte apoptosis and senescence are processes that can also 

lead to impaired ECM synthesis (Kim et al., 2000, Aigner et al., 2004a, Roach et 

al., 2004, Kim and Blanco, 2007). Generally, a variety of chemical stimuli appear 

to promote chondrocyte apoptosis by elevating pro-inflammatory cytokines, nitric 

oxide (NO), and Fas ligand (FasL) production and release.   
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1.2.3.1 Etiology and Epidemiology of OA. 

Osteoarthritis, the most prevalent musculoskeletal system disorder throughout 

the world, is believed to be a consequence of mechanical and biological events 

that destabilize the normal link of matrix synthesis and degradation within 

articular cartilage. OA is exceptionally common, particularly among people over 

40 years of age (Guccione, 1997). It represents a major cause of morbidity, 

disability and social isolation, especially where the hip and knee are involved, as 

this can lead directly to reduced mobility (Ettinger and Afable, 1994). 

Radiographic changes of joints occur in the majority of people by the age of 65 

and are present in more that 80 % of people over 75 years old (Arden and Nevitt, 

2006). OA is a disease affecting joint cartilage and the subchondral bone. Its 

earliest pathologic manifestation is the degradation of cartilage, which when 

extensive, is visible on radiographs as a narrowing of joint space. Consequent 

changes in the bone include eburnation of underlying bone, osteophyte formation 

and sometimes formation of cysts on the subchondral bone (Martel-Pelletier et 

al., 1999). Additionally, there are radiographically visible lateral ostheophytes, 

before any changes in the joint space can be detected. The disorder leads to 

significant increase in morbidity, especially in the elderly (Guccione, 1997), whilst 

osteoarthritis of the knee and hip have the highest social cost and most 

associated disability (Bergstrom et al., 1986).  

Knee OA is very common and frequently symptomatic illness, often associated 

with disability, whereas hip OA is slightly less prevalent with symptoms, which 

are often more severe and more frequent. Knee osteoarthritis prevalence 

increases with age (Lawrence et al., 1966, Hernborg and Nilsson, 1973, 

Bergstrom et al., 1986, Felson et al., 1987) from negligible in those aged 25 – 

34% to 20 – 40 % prevalence in people aged >70 years. The prevalence is 

higher in males than in females up to approximately 45 years old, after which the 

reverse is true, probably due to the inhibitory effect of estrogen on matrix 

metalloproteinases (MMPs) production and activation (Claassen et al., 2010).  

Population-based radiographic prevalence England surveys were performed for 

hip OA and found that radiographic OA increases with age in subjects aged 55-

74 years, with 16% of men and 6% of women affected. However, other studies of 

Caucasian populations in Switzerland and Israel have reported equal rates in 
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older men and women and lower rates (ranging from 4-7 %) in general as 

compared to the studies in England (Lawrence and Zinn, 1970, Zinn, 1970, 

Danielsson et al., 1984). It has been found that race plays an important role in 

the incurrence of OA, with Afro-Caribbean, Chinese and Asian showing much 

lower rates of hip OA than Caucasian (for a review see: (Allen, 2010, Allen et al., 

2010).  

There are a number of possible causes for the increase of disease prevalence 

with age including metabolic changes occurring with ageing, which are not 

parallel to biochemical changes, but may render cartilage more susceptible to 

fatigue fractures (Claassen et al., 2011).  However, there are other risk factors 

that have been found to correlate with the incidence of OA.  Population based 

studies have found an association between obesity and radiographic OA of the 

hands, feet and knee (Denisov et al., 2010), but clinical studies evaluating this 

relation have not been consistent. Animal studies on rodents have demonstrated 

that major joint injury causes OA, whereby OA is actually induced by controlled 

tears of meniscus and cruciate ligament (Troyer, 1982). Such damage is often 

associated with damage to articular cartilage, the primary lesion of OA and 

changes in biomechanics, with the latter causing increased shear stress on local 

areas of articular cartilage. Job occupation can also influence the rate of OA 

incidence, with repetitive use of particular joints appearing to be a major risk 

factor for osteoarthritis especially of the hands (McCarthy et al., 1994, Rossignol 

et al., 2005, Fontana et al., 2007, Ding et al., 2010). This has also been identified 

within the knee (Dahaghin et al., 2009, Reid et al., 2010, McWilliams et al., 2011) 

and hip (Rossignol et al., 2005, Franklin et al., 2010), although the specific 

physical activity that causes it is not well understood. Other studies have 

identified other possible risk factors for osteoarthritis, such as diabetes, 

hypertension, cardiovascular disease, peripheral vascular disease, congestive 
heart failure, which have also been suggested to play a role in the initiation of 

osteoarthritis of knees, hips, hands and spines of patients  (Felson et al., 2000, 

Solomon, 2001, Marks and Allegrante, 2002b, Marks and Allegrante, 2002a, 

Singh et al., 2002, Bray, 2004, Parada-Turska and Majdan, 2005). There is still, 

however, the need for new work exploring factors associated with the initiation of 

osteoarthritis. 
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1.2.3.2 Molecular mechanisms involved in cartilage degradation. 

Often the different forms of arthritis are divided into inflammatory and non-

inflammatory, where inflammatory indicates cellular inflammation resulting from 

the infiltration of various activated leukocytes into the joint and mediating 

cartilage destruction. Even though osteoarthritis has been usually referred to as a 

non-inflammatory pathology, due to the lack of infiltrating inflammatory cells in 

early stages of the disease, there is mounting body of evidence indicating that 

cartilage degradation is largely the result of chondrocyte-borne inflammation at a 

molecular level (Goldring, 2000b, Pelletier et al., 2001b, Attur et al., 2002). 

Abnormal mechanical forces appear to ‘awaken’ adult chondrocytes from a state 

of low metabolic activity and stimulate the production of a host of pro-

inflammatory mediators. These include pro-inflammatory cytokines and 

chemokines, such as IL-1β, IL-6, IL-8, IL-17, IL-18, monocyte chemoatractant 

protein 1 (MCP1) and reactive oxygen species (ROS; such as superoxide, 

hydrogen peroxide [H2O2] and peroxynitrite).  These together with lipid-derived 

inflammatory stimuli (including prostaglandins and leukotrienes) serve to increase 

the catabolic activity of chondrocytes (Shlopov et al., 2000, Hardy et al., 2002, 

Fernandes et al., 2002, Gosset et al., 2010). The result is an increase in the 

release of matrix metalloproteinases (MMPs) and aggrecanases, which can 

directly degrade the cartilage matrix. It has been proposed that, at least in part, 

the damage of the cartilage matrix might be an attempt of the chondrocytes to 

remove and replace the damaged matrix (Shlopov et al., 2000, Hardy et al., 

2002, Fernandes et al., 2002, Gosset et al., 2010). 

1.2.3.2.1 Cytokines. 

In addition to age-related and biomechanical changes in the function of 

chondrocytes, inflammation, and the following deregulation of cytokine synthesis 

are major contributors to the misbalanced rate of anabolism and catabolism 

(Fernandes et al., 2002, Goldring and Berenbaum, 2004). Recently, in vivo and 

in vitro studies have demonstrated the involvement and the effects of pro-

inflammatory cytokines, and particularly IL-1β and TNF-α, in the destruction of 

articular cartilage during osteoarthritis (Fraser et al., 2003, Goldring and 

Berenbaum, 2004, Kobayashi et al., 2005).  
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IL-1β, also known as catabolin, is a small, 17 kDa, cytokine protein encoded by 

the IL1B gene in humans (Auron et al., 1985, March et al., 1985). IL-1β, a 

member of the interleukin 1 cytokine family, is proteolytically activated by 

caspase 1 and has important functions in the inflammatory response. It is 

involved in various cellular activities, such as cell proliferation, differentiation and 

apoptosis (Oppenheim et al., 1989, Friedlander et al., 1996, Beasley and 

Cooper, 1999)  

TNF-α, or cachexin, is a cytokine implicated in systemic inflammation, with 

particular relevance to acute phase reaction stimulation. It is a 17kDa protein, 

encoded by TNFA gene, with a primary role in the regulation of immune cells as 

a potent inducer of inflammation and apoptosis. Two receptors that recognize 

TNF-α have been identified and termed TNFR1 (TNF receptor type 1; p55/60) 

and TNFR2 (TNF receptor 2; p75/80), with TNFR1 being expressed by most 

tissues and TNFR2 being mainly expressed on the cells of the immune system 

(Locksley et al., 2001, Hehlgans and Pfeffer, 2005). Interestingly, the density of 

TNFR1 has been shown to be significantly greater in chondrocytes isolated from 

OA lesions compared to those isolated from areas not affected by the disease 

(Westacott et al., 1994), thereby proposing an important role for this cytokine in 

the progression of OA.  

Upon binding to TNFR1, TNF-α, causes a conformation change in the receptors, 

which leads to the activation of the death domain (DD), enabling the adaptor 

protein (TNF-α receptor type 1 – associated death domain; TRADD) to bind to 

DD, and thus initiating a series of phosphorylation events. One group of proteins 

that mediate these phosphorylation events is the mitogen-activated protein 

kinase group, or MAPK-group (Garrington and Johnson, 1999), which is a serine-

threonine kinase family that consists of the c-Jun N-terminal kinases (ERKs) and 

the p38 MAPK-activated protein kinases, downstream of pro-inflammatory 

cytokines, osmotic stress, or apoptotic signals (Lin et al., 1995, Aizawa et al., 

2001). The stimuli first activate MAPK kinase kinases or MAPKKKs, which in turn 

phosphorylate and activate the MAPKK, kinase that then activates MAPK. 

MAPKK and MAPK then translocate into the nucleus of the respective cell, where 

they phosphorylate important transcription factors, including activating protein 1 
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(AP-1; a member of the c-Jun family) which is especially involved in MMP13 

transcription activation (Lim and Kim, 2011).  

TNF-α and IL-1β are strong activators of the NF-κB signalling pathway in 

chondrocytes. First, TRADD recruits TNF-α receptor associated factor-2 (TRAF2) 

and RIP (receptor interacting serine-threonine protein kinase). TRAF2 in turn 

recruits the multi-component protein kinase IKK, enabling RIP-induced activation 

of it. The inhibitory IκBα is phosphorylated by IKK, which causes its subsequent 

degradation and ultimately the release and translocation of NF-κB into the 

nucleus, thereby activating a vast array of pro-inflammatory and catabolic genes 

(Liu-Bryan and Terkeltaub, 2010). However, it remains controversial whether 

inflammatory cytokines are primary or secondary regulators of articular cartilage 

degradation in osteoarthritis. Regardless, it has been shown that physiological 

loading of cartilage may protect against cartilage degradation by inhibiting the 

degradation of IKKβ activity in the canonical NF-κB transcriptional activation 

(Dossumbekova et al., 2007).  

TNF-α and IL-1β together with a large number of other cytokines and growth 

factors trans-activate MMP promoters by convergence of AP-1 and ETS (E 

twenty six) through activation of p38, JNK and PKC signalling (Figure 1.3) 

(Iwamoto et al., 1990, Ahmed et al., 2003, Tower et al., 2003, Muddasani et al., 

2007, Im et al., 2007, Sampieri et al., 2008, Lim and Kim, 2011). The induction of 

MMP13 promoter activity by IL-1β in chondrocytes has been shown to require 

one or more of the ETS sites and interaction between factors such as RUNX2 

and AP-1 (cFos/cJun), which subsequently interact directly with the MMP13 

promoter (Mengshol et al., 2001; Selvamurugan et al., 2004). Interestingly, PGE2, 

an activator of both AP-1 and Fos-dependent promoters via PKA and PKC 

signalling pathways has been shown to dose-dependently inhibit the expression 

of MMP13, thereby suggesting a crosstalk between signalling pathways with 

adjacent transcriptional control elements and opposing effects on MMP13 

transcriptional control (Li et al., 2004) 
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Figure 1.3 IL-1β  and TNF-α  molecular mechanism of action.  

IL1R binds IL-1β but requires the IL1R accessory protein (IL-1RAcP) to transduce a signal. IL-1β 

binding causes activation of two kinases, IRAK-1 and IRAK-4, associated with the IL1R complex. 

IRAK-1 (IL1R Associated Kinase) activates and recruits TRAF6 to the IL1R complex. TRAF6 

activates two pathways, one leading to NF-κB activation and another leading to c-jun activation. 

The TRAF associated protein ECSIT leads to c-Jun activation through the MAPK/JNK signalling 

system. TRAF6 also signals through the TAB1/TAK1 kinases to activate NIK, which 

phosphorylates IKK therefore triggers the degradation of IκB, and activation of NF-κB (Baud and 

Karin, 1999). TRAF2 (has been implicated in the activation of two distinct pathways that leads to 

the activation of Activation Protein-1 (AP-1) via the JNК, MEKK, p38 and together with RIP, NF-

κB activation via the NIK (NF-κB Inducing Kinase). TNF-α activates MAPKs: ERK1 and ERK2 

(Baud et al., 1999) 
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Other cytokines gaining increasing attention include IL-6, a potent pleiotropic 

cytokine, expressed by human chondrocytes in vitro and in vivo (Bender et al., 

1990, Wang et al., 2010a,b), which has been suggested to play an important role 

in pathogenesis of osteoarthritis. It is thought to elicit both pro-inflammatory and 

anti-inflammatory effects in cartilage (Bender et al., 1990, Goldring, 2000a) 

through binding to IL-6 receptor (IL-6R), a two-subunit type I cytokine receptor. 

The IL-6 receptor alpha subunit (IL6Rα) contains the ligand-binding domain and 

IL-6 signal transducer component (gp130, also called CD130), which is shared by 

other cytokines from the IL-6 family (IL-11, IL-27, cilliary neurotropic factor 

[CNTF], cardiotropin [CT-1], CT-like cytokine [CLC], leukaemia inhibitory factor 

[LIF], oncostatin M; (Kishimoto et al., 1995). Binding of IL-6 to its receptor 

initiates a signal transduction cascade that activates JAK1/STAT3 (Signal 

Transducer and Activator of Transcription) and extracellular signal-regulated 

kinases (ERK)-1/2 pathways (Heinrich et al., 1998, Heinrich et al., 2003, Fischer 

and Hilfiker-Kleiner, 2007). The activated JAK1 phosphorylates STAT3, which 

dimerises and translocates into the nucleus, where it activates the transcription of 

STAT3 response elements (Hirano et al., 2000). IL-6 can be directly induced by 

TNF-α and IL-1β, although IL-6 on its own has been shown to directly augment 

the expression of MMP1 and MMP13 (Shlopov et al., 2000) 

CXCL8, or IL-8 is a leucocyte chemotactic activating cytokine (chemokine), a 

member of the CXC chemokine family, encoded by the IL8 gene, with a primary 

function in angiogenesis, chemoattraction and activation of neutrophils (Modi et 

al., 1990, Harada et al., 1994a, Belperio et al., 2000). Various cell types produce 

IL-8 upon stimulation, as it is one of the major mediators of the inflammatory 

response (Akahoshi et al., 1994, Harada et al., 1994 a,b).  

Chondrocytes have not only been found to express IL8, but the TNF-α-induced 

activation of NF-κB in chondrocytes also contributes to increased IL-8 protein 

production (Facchini et al., 2005). In fact, chondrocytes are a rich source of IL-8 

and its synthesis is up-regulated in arthritic pathologies and by increased 

inflammatory cytokines levels (Borzi et al., 1999, Pulsatelli et al., 1999). The role 

of chemokines as second step mediators of local inflammation has gained 

increasing evidence (Baggiolini, 1998, Luster, 1998), whereby chondrocytes 

release IL-8 upon stimulation with IL-1β, TNF-α and LPS (Van Damme et al., 
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1990, Lotz et al., 1992, Recklies and Golds, 1992). Mian and colleagues have 

demonstrated that IL-8 is involved in NF-κB activation and the over-expression of 

MMP2 and MMP9 and that targeting of this cytokine with anti-IL-8 antibody leads 

to down-regulation of these proteases (Mian et al., 2003). That suggests that IL-8 
can promote increase in matrix metalloproteinases expression, angiogenesis and 
neutrophil-mediated inflammation in the affected joint (Lotz et al., 1992, Strieter et 
al., 1992, Hu et al., 1993, Norrby, 1996), leading to further cartilage destruction, 
and makes it an interesting target for drug intervention. 

1.2.3.2.2 Nitric oxide and Cyclooxygenase. 

Among other inflammatory mediators found to be involved in the pathological 

process of OA is nitric oxide (NO).  It has been shown that osteoarthritic cartilage 

secretes large quantities of NO and ROS in addition to high levels of 

nitrite/nitrates, detected in serum and synovial fluid of arthritis patients (Karan et 

al., 2003). This process might be caused by the increased expression of 

inducible nitric oxide synthase, or iNOS (Martel-Pelletier and Pelletier, 2010).  

Two iso-forms of cyclooxygenase (COX), COX-1 and COX-2, catalyse the rate-

limiting step in the biochemical conversion of arachidonic acid to prostaglandins 

and thromboxane A2 (TXA2) (Smith et al., 1996). COX-1 is a constitutively 

expressed protein that is thought to produce basal concentrations of 

prostaglandins and TxA2 necessary for normal physiologic functions in many 

tissues. Moreover, COX-dependent production of prostaglandin E2 (PGE2) occurs 

in many tissues through closely regulated and synchronized activities of 

cytoplasmic phospholipase A2 (cPLA2), COX, and PGE synthase (PGES, for 

review, see refs: (Murakami et al., 2000). COX enzymes catalyze the formation of 

prostaglandin H2 (PGH2) from arachidonic acid, followed by the isomerisation of 

PGH2 to PGE2 by PGES. COX-2, PGES, and their major pro-inflammatory 

product, PGE2, have been shown to be induced by pro-inflammatory cytokines 

(Murakami et al., 2000, Vane and Botting, 1998a).  

Aberrant expression of COX-2 protein in articular cartilage concurs with 

significant increase in the levels of PGE2, an indication of osteoarthritis (Amin et 

al., 1997), leading to increased chondrocyte apoptosis (Notoya et al., 2000, 
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Pelletier et al., 2001a, Goldring and Berenbaum, 2004). The major 

prostaglandins synthesized by chondrocytes are PGE2 and PGD2. Although 

some studies have suggested that PGE2 has anabolic effects at low 

concentrations (DiBattista et al., 1996) and that it can suppress MMP13 and 

MMP1-mediated catabolism (Tchetina et al., 2007), higher concentrations of this 

prostaglandin, such as those reached during inflammation lead to severe 

cartilage erosion and chondrocyte apoptosis (Amin et al., 1997, Attur et al., 

2008). Zhu and collagues show that exogenously added PGD2 diminishes T/C-

28a2 chondrocyte cell line viability (Zhu et al., 2010).  

In addition to regulating metalloproteinases, pro-inflammatory cytokines such as 

IL-1β and TNF-α have been shown to suppress the expression of COL2A1 by 

chondrocytes in vitro (Reginato et al., 1993, Goldring et al., 1994 a,b). In 

contrast, increased anabolic activity of chondrocytes has been observed in 

osteoarthritic cartilage, possibly due to the cytokine-induced PGE2 formation, 

which up-regulates COL2A1 transcription (Goldring et al., 1994b, Miyamoto et al., 

2003).  

1.2.3.2.3 Anti-inflammatory cytokines and proteins.  

In addition to the above mentioned pro-inflammatory cytokines, human 

chondrocytes have been shown to produce both IL-10 as well as the IL-10 

receptor (IL10R) with significantly higher levels in osteoarthritic chondrocytes 

compared to normal chondrocytes (Iannone et al., 2001). IL-10 is a pleiotropic 

cytokine with important immuno-regulatory functions, whose actions influence 

activities of many of the cell types in the immune system. IL-10 has potent anti-

inflammatory properties, repressing the expression of inflammatory cytokines 

such as TNF-α, IL-6 and IL-1β by activated cells. IL-10 receptor (IL10R) is a 

complex of tetramers consisting of two ligand-binding subunits (IL10R1) and two 

accessory signalling subunits (IL10R2). Upon binding of IL-10 to the extracellular 

domain of IL10R1, JAK1 and Tyrosine Kinase-2 (TYK2), which are constitutively 

associated with both IL10R1 and IL10R2, respectively, are activated by 

phosphorylation (Riley et al., 1999). These kinases then phosphorylate specific 

tyrosine residues on the intracellular domain of IL10R1, which when 

phosphorylated, serve as temporary docking sites for STAT3. STAT3 is then 
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phosphorylated by JAK1 and translocates to the nucleus, where it binds with high 

affinity to SBE (STAT-Binding Elements) in the promoters of various IL-10 

responsive genes (Riley et al., 1999). IL-10 has also been reported to interfere 

with the activation of p38/MAPK pathway, thus inhibiting the activation of NF-κB. 

Direct stimulation of OA chondrocytes with IL-10 has been shown to inhibit the 

TNF-α-dependent activation of osteoarthritic chondrocytes and therefore to 

down-regulate the expression of MMP1 and MMP13 (Shlopov et al., 2000). 

Interestingly, IL-10 (Lee and Chau, 2002) induces heme oxygenase-1 (HO-1), 

which is expressed and functionally active in chondrocytes from OA cartilage 

(Fernandez et al., 2003). HO-1 is implicated in the protection against tissue injury 

and is modulated by cytokines such as IL-1β and TNF- α, the latter of which 

down-regulate HO-1(Fernandez et al., 2003). 

HO-1 expression can be strongly induced at transcription level in most tissues by 

various stress factors including heavy metal, heat shock, ultra violet radiation, 

endotoxin, hypoxia, hyperoxia, ischemia, hydrogen peroxide, pro-inflammatory 

cytokines (i.e. IL-1β, TNF-α), NO, cellular glutathione storage depletion and high 

levels of its substrate heme (Wagener et al., 2003). Contained within the 

promoter region of HO-1 are the oxidative stress-responsive transcription factor 

NF-E2-related factor 2 (Nrf2), NF-κB, AP-1, AP-2 and CREB. Alternatively, HO-1 

can be negatively regulated by agents such as scavengers of ROS due to their 

ability to reduce oxidative stress within the body (Lautier et al., 1992). Primarily, 

HO-1 induction prevents cellular damage and tissue injury by removing excess 

free heme within the body. In addition, heme acts as a prosthetic group for the 

activity of inflammatory enzymes including iNOS and COX-2 (Willis, 1999) and is 

involved in the generation of ROS and RNS that causes cellular stress (Jeney et 

al., 2002).  

1.2.3.2.4  Matrix metalloproteinases in OA. 

Proteinases are involved in essential steps of cartilage and bone homeostasis. 

Normal cartilage ECM is in a state of dynamic equilibrium, with a balance 

between anabolism and catabolism, brought about by the balance between the 

proteinases that degrade the cartilage and their inhibitors. It is believed that a 

disturbance of this balance in favour of catabolism, leads to the pathological 
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degradation of cartilage ECM observed in osteoarthritis (Kevorkian et al., 2004). 

MMPs are induced by TNF-α, IL-1β, which in combination with IL-6, IL-8, 

oncostatin M, and other pro-inflammatory mediators, synergistically enhance 

MMPs production in vitro, ex vivo and in vivo (Shlopov et al., 2000, Hui et al., 

2003, Hall et al., 2003, Cawston et al., 2003). 

MMPs are responsible for the enzymatic cleavage of peptide bonds (Turk, 2006, 

Lah et al., 2006) for the completion of many biological processes, such as 

digestion, blood coagulation, immune functions, development, apoptosis and 

processing of precursors needed for collagen synthesis (Dickinson, 2002). 

Proteases selectively hydrolyse a peptide bond in the polypeptide chains of the 

target protein and are subdivided into two main groups depending on the location 

of the preferred peptide bond – endopeptidases and exopeptidases. 

Exopeptidases are subdivided into aminopeptidases or carboxypeptidases – 

peptidases that cleave substrate molecules at the amino-terminal or the carboxy-

terminal position, respectively (Barrett, 1980, Cawston and Wilson, 2006). 

Endopeptidases cleave in the middle of the target polypeptide chain and can be 

subdivided into groups depending on the chemical group involved in the process 

of catalysis – aspartic-, threonine- and cysteine-proteinases (intracellular, 

functioning at acid pH), or serine- and metallo- proteinases (extracellular, act at 

neutral pH; Figure 1.4)(Cawston and Wilson, 2006).  

Degradation of the components of ECM is accomplished by a family of more than 

26 zinc-containing endopeptidases termed matrix metalloproteinases (MMPs), 

which are either secreted into the extracellular space, or attached to the plasma 

membrane of the respective cell (Visse and Nagase, 2003). They share 

homologous amino acid sequences, contain conserved domains related to their 

specific substrate preference, and allow recognition of other proteins (Visse and 

Nagase, 2003). As a family, MMPs can degrade nearly all of the cartilage ECM 

components, although each individual member is specialized in cleaving specific 

molecules.  
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Figure 1.4 Summary of proteases. 

In general, MMPs are composed of three distinct domains (Rannou et al., 2006): 

a pre-domain, needed for enzyme maturation and secretion from the cell; pro-

domain, required for the maintenance of the enzyme in inactive state; and the 

catalytic domain, which contains a zinc atom and performs the hydrolysis of the 

peptide bond. MMPs are categorized into at least five main groups, according to 

their substrates, cellular localization and primary structure: collagenases, 

gelatinases, stromelysins and membrane bound (MT)-MMPs (Table 1.1; Figure 

1.4). MMPs are tightly controlled at several levels – transcriptional control, pro-

enzyme activation, and inhibition of active enzymes by endogenous inhibitors 

(Chakraborti et al., 2003). At transcriptional level, MMPs gene expression is 

regulated by pro-inflammatory cytokines and growth factors. After binding to their 

specific receptors, these stimuli activate an intracellular cascade of events, 

leading to the activation of AP-1 transcription factors and that leads to the up-

regulation of MMPs expression (Martel-Pelletier et al., 2001).  
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Table 1.1 Groups of MMPs.  
Group MMPs 
 

Collagenases 

 

MMP1 (collagenase-1)*, MMP8 (collagenase-2), 

MMP13 (collagenase-3)*, MMP18 (collagenase-4) 

 

Gelatinases 

 

MMP2 (gelatinase A, MMP9 (gelatinase B) 

 

Stromelysins 

 

MMP3 (stromelysin-1)*, MMP10 (stromelysin-2) 

MMP11 (stromelysin-3) 

 

 

Matrilysins 

 

 

MMP7, MMP26 

 

 

MT-MMPs 

 

MMP14 (MT1-MMP), MMP15 (MT2-MMP), 

MMP16 (MT3-MMP), MMP17 (MT4-MMP), 

MMP24 (MT5-MMP), MMP25 (MT6-MMP). 

 

MMPs, matrix metalloproteinases; MT, membrane type. 

*Proteases studied in the present study. 

Another mechanism of regulation is the secretion of pro-enzymes MMPs. The 

proteinases are secreted in inactive form, and require the removal of the pro-

domain by MT1-, MT2-, MT5-MMP, plasmin, uPA (urokinase) for activation 

(Chakraborti et al., 2003). Upon removal of the pro-domain, MMPs become 

transiently unstable and undergo conformational change, involving a dissociation 

of a cysteine residue from the zinc atom in the catalytic domain, thereby 

exposing the active site and allowing for trans-auto activation of the MMP 

(Chakraborti et al., 2003). 

Most cells in the body express MMPs, even though some proteases are 

associated with a particular cell type. For example the principle substrate for 

MMP2, or gelatinase A and MMP9, or gelatinase B is the type IV collagen. 

MMP3, also called stromelysin activates MMP1, or collagenase-1, and is able to 

cleave a broad range of matrix proteins (Vincenti et al., 1996). Both MMP1 and 

MMP3 are amongst the most ubiquitously expressed collagenases, unlike 
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MMP13, or collagenase-3, which is expressed primarily by cartilage and bone 

during development and by the chondrocytes in OA (Borden and Heller, 1997, 

Mengshol et al., 2000, Martel-Pelletier et al., 2001, Kevorkian et al., 2004).  

The only mammalian interstitial proteases that can specifically cut triple-helical 

interstitial collagens (type and type II) at natural pH are collagenases (Gadher et 

al., 1990, Kevorkian et al., 2004), which cleave at a single locus three quarters 

from the N-terminus, leading to the unwinding of the α-chains. The major 

collagenases able to perform this enzymatic reaction (MMP1, MMP8 and 

MMP13) were found elevated in OA cartilage compared to normal tissue (Reboul 

et al., 1996; Martel-Pelletier et al., 2000). The specific role of MMP8, however, in 

OA progression remains to be investigated.  

IL-1β and TNF-α are thought to be the most important cytokines relevant to 

osteoarthritis, with increased levels in OA chondrocytes (Tetlow et al., 2001). 

They are thought to down-regulate anabolic genes such as aggrecan and type II 

collagen, as well as to directly up-regulate the expression of MMP1, MMP3 and 

MMP13 (Shlopov et al., 1997, Bau et al., 2002). MMP13 specifically hydrolyses 

type II collagen more rapidly and efficiently than MMP1 and MMP8 (Mitchell et 

al., 1996). Chondrocytes obtained from cartilage adjacent to OA lesions 

expressed high levels of both MMP1 and MMP13 (Shlopov et al., 1997).   

Kevorkian and colleagues conducted the expression profiling of MMPs in 

cartilage samples obtained from the hips and knees of normal and OA patients 

(Kevorkian et al., 2004). Examination of collagenases showed that MMP8 

expression was undetected thus suggesting that it is unlikely to play a role in 

cartilage destruction. MMP9 and MMP2, however, are significantly over-

expressed in OA cartilage. The inducible MMP9 is thought to have a secondary 

role, since it contributes to cleaving collagen fibres only after the chains of the 

triple helix have been already cleaved by the interstitial collagenases (Stetler-

Stevenson et al., 1997). In contrast MMP2 and MMP14 (MT1-MMP) are both 

constitutively expressed and minimally regulated.  

MMP13 expression is highly increased in OA, consistent with the belief that it is 

the predominant protease in osteoarthritis (Kevorkian et al., 2004). Interestingly, 

MMP1 expression decreased in cartilage samples from patients with hip OA, but 
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was found to be highly increased in osteoarthritic knee cartilage, suggesting that 

the regulation of this collagenase may differ between joints. A dramatic decrease 

in MMP3 in diseased knee cartilage has also been found, and therefore a 

maintenance function of this protease, which is dysregulated in OA, is suggested 

(Kevorkian et al., 2004; Bau et al., 2002).  

1.2.3.2.5 Chondrocyte apoptosis and OA. 

Apoptosis, or programmed cell death, is a normal process during which an 

orchestrated sequence of events leads to cell death, primarily executed by 

enzymes called caspases (Kerr et al., 1972). Apoptosis is critical not only during 

development and tissue homeostasis, but also in the pathogenesis of a variety of 

diseases. Recent studies have revealed that apoptosis is associated with the 

onset and development of OA (Blanco et al., 1998, Kim et al., 2000, Sharif et al., 

2004, Musumeci et al., 2011), whereby the proportion of apoptotic cells in OA is 

greater compared to that in healthy cartilage (Aigner et al., 2001). The 

expression of several caspases, such as caspase-3 and caspase-8, has been 

found to be increased in human osteoarthritic cartilage and in animal models of 

the disease (Sharif et al., 2004, Robertson et al., 2006)  

Caspases are a unique family of cysteine-aspartic proteases (Alnemri et al., 

1996), which are triggered in early stages of apoptosis and are responsible for 

the activation of most of the events leading to cell death, by cleaving more than a 

dozen protein kinases, including focal adhesion kinases (FAK), Protein Kinases B 

& C (PKB & PKC), Raf1 and Lamins. The latter make up the inner lining of the 

nucleus, and their destruction leads to disintegration of the nuclear lamina, and 

shrinkage of the nucleus (Kerr et al., 1972) 

Apoptosis can be triggered by intrinsic stimuli such as DNA damage, or by 

extrinsic stimuli such as cytokines. One of the major cytokines, produced by 

variety of cells in response to infection or multitude of inflammatory stimulants is 

TNF-α. Activation of its receptor, TNFR1, a member of a family of death 

receptors is involved in the initiation of apoptosis. It is suggested that the TNFR1 

is a preassembled trimer, located on the plasma membrane, the cytoplasmic 

domain of each subunit of which contains a segment of about 70 amino acids 

called “death domain” (DD). Death domains of TNF-α receptor specifically self-
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associate to induce cell death, by either activating AP-1 and NF-κB (Figure 1.5), 

or inducing apoptosis. Binding of TNF-α to its receptor causes a conformational 

change in the death domain, which initiates the recruitment of a number of 

proteins as indicated in Figure 1.5, two pro-caspases join the protein complex 

and undergo proteolytic cleavage that yields active caspase-8. Caspase-8 is 

called an initiator caspase, because it instigates the apoptotic process by 

activating effector caspases, such as caspase-3, directly involved in carrying out 

apoptosis (Le et al., 2002). 
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Figure 1.5 Molecular mechanism of caspase-driven programmed cell death.  

Initially, TRADD (TNFR-Associated Death Domain) protein, binds to TNFR1. Then, 

TRADD recruits FADD (Fas-Associated Death Domain), RAIDD (RIP-Associated ICH-

1/CED-3-homologous protein with a Death Domain), MADD (MAPK Activating Death 

Domain) and RIP (Receptor-Interacting Protein). Binding of TRADD and FADD to 

TNFR1 leads to the recruitment, oligomerization, and activation of Caspase-8 

Activated Caspase8 subsequently initiates a proteolytic cascade that includes effector 

Caspases (Caspases 3, 6, 7) and ultimately induces apoptosis. 
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1.2.4 Current therapies for the treatment of OA. 

A vast array of novel therapies have been developed over the last decade or so 

for the treatment of arthritic pathologies, especially RA, which now sit alongside 

the more traditional approaches that include methotrexate, non-steroidal anti-

inflammatory drugs (NSAIDs), and glucocorticoids (for review, see: Getting et al., 

2009). The most widely used therapies for OA are physiotherapy; non-selective 

COX-1/2 inhibitors such as ibuprofen, naproxen, usually prescribed with protein 

pump inhibitors such as omeprazole, to alleviate GI side-effects; COX-2 selective 

inhibitors, or ‘coxibs’ are another choice of therapy, usually given with low dose 

aspirin, to prevent CV side-effects, and a proton pump inhibitor. A third choice of 

therapy is glucocorticoids, prednisone being the drug of choice, administered via 

intra-articular (i. a.) injection. 

1.2.4.1 Non-steroidal anti-inflammatory drugs (NSAIDs).  

NSAIDs form an important class of drugs, the therapeutic applications of which 

have spanned several centuries. The ability of NSAIDs to treat fever and 

inflammation dates back about 3500 years ago to the time when Hippocrates 

prescribed an extract from willow bark. In the 17th century, the active ingredient of 

the bark salicin was discovered, in 1860, the German Kolbe company started 

producing salicylic acid for the first time and in 1899, Bayer started mass 

production of Acetylsalicylic acid, or as we know it aspirin (Vane, 2000). The 

mechanism of action of drugs like aspirin and Indomethacin was revealed by 

Professor Sir John Vane ~ 40 years ago (Vane, 1971). 

The primary effect of NSAIDs is pain relief, but they also exhibit anti-pyretic and 

anti-inflammatory effects (Vane, 1971) but do not modify the underlying causes 

of chronic diseases, and these drugs are thus prescribed for symptomatic relief 

only. The success of the NSAIDs in treating inflammatory disorders such as RA 

and OA was due to its inhibitory effects on the enzyme cyclooxygenase (COX) 

(Vane and Botting, 1998b) NSAIDs inhibit prostaglandin synthesis, which can 

lead to gastro intestinal (GI) toxicity, limiting its use in chronic inflammatory 

conditions such as OA (Tamblyn et al., 1997). Seminal work by Prof. Sir John 

Vane, Prof. Roderick J. Flower and colleagues led to the identification of two iso-
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forms of COX enzyme – COX-1 and COX-2 (Flower and Vane, 1972). The 

traditional NSAIDs, prescribed for the treatment of joint pain and inflammation, 

are known to bring about their anti-inflammatory effects by non-selective 

inhibition of COX activity. However, during inflammation, expression of COX-1 

levels do not change, whilst COX-2 levels are significantly up-regulated (Rao and 

Knaus, 2008), leading to increased production of pro-inflammatory 

prostaglandins. COX-1 on other hand does not appear to be associated with 

inflammation, but is highly expressed in the GI tract (Kargman et al., 1996), 

where it is involved in the production of cytoprotective PGE2 and PGI2, thereby 

reducing gastric acid secretion (by the parietal cells in the stomach), up-

regulating mucosal blood flow and initiating production of viscous protective 

mucus. This explains the adverse effect of the traditional NSAIDS (Lazzaroni and 

Bianchi Porro, 2004). COX-1 isoform is also widely expressed in platelets, where 

they are responsible for the formation of pro-aggregatory thromboxane A2 (TxA2). 

These adverse effects led to the development of selective COX-2 inhibitors to 

bring about a more targeted and specific anti-inflammatory effect (Lazzaroni and 

Bianchi Porro, 2004). However, post-marketing pharmacovigilance of selective 

COX-2 inhibitors including celecoxib and rofecoxib (VIOXX), highlighted an ~5 

fold increase in myocardial infarction (Mukherjee et al., 2001), explained by the 

effect of the selective COX-2 inhibitors on PGI2 production. PGI2 is a vasodilator 

and a potent inhibitor of platelet aggregation (McAdam et al., 1999), which was 

significantly attenuated by the selective COX-2 inhibitors. Although selective 

COX-2 inhibition has no effect on TxA2 production, they tip the natural balance 

between the TxA2 and PGI2 production, thus leading to an increased risk of 

thrombotic cardiovascular event as demonstrated more recently (Cannon et al., 

2006). Studies showed that selective inhibition, knock down or mutagenesis of 

COX-2, or deletion of the receptor for PGI2, accelerated thrombogenesis and 

elevated blood pressure in mice, an effect found to be attenuated by COX-1 

knock-down (Cheng et al., 2006). Discoveries like this led to the withdrawal of the 

very selective COX-2 inhibitor rofecoxib from the market in September 2004, just 

5 years after it was introduced.  
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1.2.4.2 Glucocorticoids. 

Glucocorticoids are endogenously produced hormones implicated in carbohydrate 

and protein metabolism and exert a potent regulatory effect on inflammation, innate 

and acquired immune response (Auphan et al., 1995). Additionally, they are potent 

anti-inflammatory drugs inhibiting the synthesis of pro-inflammatory cytokines, 

interleukins and iNOS, and the production of PGE2 by inhibiting the transcription of 

COX-2.  

Glucocorticoid receptor is a member of the family of nuclear receptors, which upon 

binding to their cognate ligands, migrate to the nucleus and act as positive or 

negative gene transcription regulators (Schacke et al., 2004)(Figure 1.6). In the case 

of positive regulation they trans-activate glucocorticoid response elements (GREs) 

that are located on the promoter region of the responsive genes (Beato et al., 1995, 

Mangelsdorf et al., 1995, Kastner et al., 1995).  Glucocorticoid receptors are able to 

negatively regulate transcriptional activation of certain genes in two descriptive 

mechanisms, one of which is referred to as trans-repression. Trans-repression 

involves repression of transcription factor AP-1, thus inhibiting its dissociation from 

the promoter (Konig et al., 1992). Another mechanism of action of glucocorticoid 

receptors is the repression of the NF-κB transcription factor family by physically 

associating with p65 subunit (Mukaida et al., 1994, Ray and Prefontaine, 1994, 

Caldenhoven et al., 1995) In addition, in most cell types excluding endothelial cells, 

the glucocorticoid receptors trans-activates the IκBα gene transcription, thus leading 

to prevention of NF-κB translocation in the nucleus (Auphan et al., 1995, Scheinman 

et al., 1995, Brostjan et al., 1996).  

Glucocorticoids are effective anti-inflammatory therapies; however side effects, 

including suppression of the immune response, healing impairment and gastric 

ulceration, can limit their use (Schacke et al., 2002). When used as anti-inflammatory 

agents, glucocorticoids also influence water and electrolyte balance, leading to 

Cushing’s syndrome, easy bruising, and redistribution of the fat in the abdominal 

region. Additionally, glucocorticoid drugs influence bone density by Ca2+ regulation 

and phosphate metabolism (Guaydier-Souquieres et al., 1996). While these adverse 

effects are not a problem in short-term oral therapy, or more localized application of 

the drugs (such as i.a. injections or topical ointments), they severely limit the long-

term use of glucocorticoids in chronic diseases such as RA and OA.  
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Figure 1.6 Glucocorticoids mechanism of action.  
Glucocorticoid receptors are maintained in an inactive oligomeric complex by regulatory proteins 
such as HSP90 (Heat Shock Protein 90 kD), which after dimerizing bind to HSP70, FKBP52 and 
p23 phosphoprotein, all of which form the GR inhibitory complex. Upon binding to its 
glucocorticoid ligand in the cytoplasm, the inhibitory complex dissociates, induces conformational 
change that exposes the nuclear localization signal of the GR, which then translocates to the 
nucleus (Pelaia et al., 2003). There, the GR negatively regulate (trans-repress) gene transcription 
via physical interactions with transcription factors, activated by various pro-inflammatory stimuli 
(cytokines, etc.) such as the components of AP-1 – c-Jun and c-Fos, and the p65 domain of NF-
κB (Schoneveld et al., 2004, Davies et al., 2005). Other mechanisms by which glucocorticoids 
NF-κB-mediated activation of pro-inflammatory genes are by reducing the levels of 
phosphorylation of the carboxy-terminal domain of RNA Polymerase II, which is essential for the 
recruitment of this enzyme to the promoter region and by increasing the transcription and 
synthesis of IκB, thus causing NF-κB retention into the cytoplasm. The glucocorticoid family are 
also suggested to negatively regulate the MAPK family (JNK, ERK1, ERK2 and p38), therefore 
exerting their anti-inflammatory effects (Li et al., 2003).  
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1.2.4.3 Biologicals. 

TNF-α is a primary pro-inflammatory cytokine detected in the synovium and 

plasma of RA patients and OA cartilage, and is known to be able to activate an 

array of pro-inflammatory cytokines, including IL-1β, IL-6, IL-8 and MCP-1. Anti-

inflammatory therapy with monoclonal antibodies (mAbs) directed against TNF-α 

has emerged in the 1990’s as a major advancement in the treatment of various 

immune-mediated diseases such as RA, ankylosing spondylitis, psoriatic arthritis 

and Crohn's disease. A huge boost to anti-inflammatory therapy developments 

has been the launch of the protein-based injectable etanercept (Enbrel®), and 

anti-TNF antibodies infliximab (Remicade®), adalimumab (Humira®) (Palladino 

et al., 2003, Wong et al., 2008), also referred to as ‘biologicals’. These anti-TNF 

monoclonal antibodies exert their beneficial effects by scavenging the pro-

inflammatory cytokine TNF-α.  

Infliximab is a chimeric monoclonal anti-TNF-α antibody, which binds to soluble 

and membrane-bound TNF-α, but not to TNF-β, and is able to effectively regulate 

and mediate inflammatory processes involved in a number of different 

inflammatory diseases such as RA, Crohns disease, and ulcerative colitis 

(Bingham, 2008, Haveran et al., 2011). Other anti-cytokine drugs available on the 

market are etanercept – a TNF receptor covalently linked to the Fc chain of IgG 

molecule, and anakinra – an IL-1 antagonist. Infliximab, adalimumab and 

etanercept inhibit the effect of TNF-α by binding to it, although etanercept can 

additionally bind to lymphotoxin-α. This can be of interest in the treatment of 

juvenile arthritis, due to lymphotoxin-α production by inflamed tissues 

(Heiligenhaus et al., 2011, Sevcic et al., 2011). 

Even though a beneficial effect has been assigned to these drugs in the clinical 

management of chronic arthritis and other inflammatory diseases, biologicals 

lead to a marked increase in opportunistic infections including tuberculosis (TB) 

with a 3-4-fold higher risk in patients taking infliximab compared to etanercept 

(Dixon et al., 2010). In part, this could be due to latent TB and so routine 

screening of individuals prior to commencing therapy is necessary. A recent 

review by Wallis identified that TNF antibodies pose a greater risk than soluble 

TNF-α receptor antagonists (Wallis, 2009). A good example is Infliximab, which 



 

 
 
 

62 

when used for prolonged period of time to treat inflammatory disease such as 

inflammatory bowel disease and Crohn disease causes psoriasis, urinary tract 

infections, nausea, rashes, decreased white and red cell count and platelet 

count, vasculitis, and development of lymphoma (Lee et al., 2007, Ko et al., 

2009, Fiorino et al., 2009). A number of cytokine antagonists are in development 

for treatment of RA, including those that target IL-6 (tocilizumab; approved for 

use in Japan), IL-15, and RANKL, as well as kinase inhibitors, including those 

that inhibit JAK-3 and SyK (Bingham, 2008). Although some patients respond 

well to these agents, development of novel therapies is essential should patients 

become refractory to current therapies.  

1.2.4.4 Endogenous novel therapeutics 

Annexin 1 is a member of the annexin superfamily of calcium and phospholipid 

binding proteins (Gerke and Moss, 2002, Perretti and Gavins, 2003). Due to its 

up-regulation by glucocorticoids, Annexin 1 has been suggested to function as a 

cellular mediator of the anti-inflammatory effects of glucocorticoids (Roviezzo et 

al., 2002). Cytokines such as IL-1β, TNF-α and IL-6 have been shown to 

augment Annexin 1 expression (Perretti and Gavins, 2003). A variety of functions 

have been attributed to this peptide, including inhibition of cell proliferation 

(Croxtall and Flower, 1992), anti-migratory and anti-inflammatory effects (Flower 

and Rothwell, 1994, Philip et al., 1997, Gerke and Moss, 2002, Perretti et al., 

2002), cell differentiation regulation, and membrane trafficking (Diakonova et al., 

1997, Traverso et al., 1999). The anti-inflammatory properties of Annexin 1 have 

been already demonstrated in animal models of RA and myocardial infarction 

(Perretti et al., 1993, Yang et al., 1999, La et al., 2001) 

The potential involvement of Annexin 1 in human conditions has been best 

described in RA, where the endogenous peptide inhibits experimental arthritis in 

animal models, and upon treatment with anti-annexin-1 antibody, the disease 

progression exacerbates severely and prevents glucocorticoid drug-mediated 

anti-inflammatory effects (e.g. dexamethasone) and up-regulates PGE2 and TNF-

α production by the synovium (Yang et al., 1997). These data suggested that 

advocating administration of annexin-1 derivatives, or non-glucocorticoid 



 

 
 
 

63 

manipulation of endogenous annexin-1 expression, may prove a beneficial 

treatment approach in arthritis and other inflammatory diseases. 

In concordance with the increasing interest in investigating the properties of 

endogenous anti-inflammatory mediators, the family of galectins is progressively 

examined for their immuno-regulatory and anti-inflammatory properties. Galectins 

(type of lectins, which bind to β-galactosidase), of which 14 mammalian subtypes 

have been identified, are wildly distributed in animals and possess a variety of 

functions, including inhibition of chronic inflammation (Dumic et al., 2006, Norling 

et al., 2009). 

Interest has been directed towards Galectin-1, -3 and -9, as these have been 

identified as important players in modulation of both acute and chronic 

inflammatory diseases (Norling et al., 2009). Galectin-1 exhibited anti-

inflammatory and immunosuppressive properties in a range of models of 

inflammatory disorders including colitis (Santucci et al., 2003), arthritis 

(Rabinovich et al., 1999) and diabetes (Perone et al., 2006). Galectin-3 is found 

in various epithelial cells and cartilage, as well as inflammatory cells such as 

macrophages, suggesting a role in inflammation (Henderson and Sethi, 2009). 

Increased expression of Galectin-3 and -9 have been detected in synovium of 

rheumatoid arthritis patients and to a lesser extent in osteoarthritic synovium 

(Ohshima et al., 2003, Seki et al., 2007), whereas Galectin-1 expression is down-

regulated in synovium from patients with juvenile idiopathic arthritis (Harjacek et 

al., 2001). Galectin-3 has been implicated in a variety of processes such as heart 

failure, fibrogenesis, tissue repair, inflammation, cancer and stroke (van 

Kimmenade et al., 2006, Yan et al., 2009a, Yan et al., 2009b, Liu et al., 2009, de 

Boer et al., 2009). 

Another class of endogenously produced peptides, with anti-inflammatory and 

immunosuppressive efficiencies are the melanocortin peptides (including α-MSH) 

found to be efficacious in experimental models of allergic inflammation (Grabbe 

et al., 1996, Luger et al., 2000), chronic inflammation (Ceriani et al., 1994), 

systemic inflammation (Delgado Hernandez et al., 1999), inflammatory bowel 

disease, brain inflammation (Rajora et al., 1997a,b) and autoimmune 

uveoretinitis (Taylor and Namba, 2001). A mechanistic approach has been 

identified for α-MSH binding to a family of Rhodopsin-like seven-transmembrane 
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G-protein coupled receptors, whose activation leads to increase in cyclic 

adenosine monophosphate (cAMP), thereby preventing NF-κB activation via 

preservation of IκBα protein and resulting in the reduction of production and 

synthesis of pro-inflammatory cytokines (Catania et al., 2004).  

1.3 Melanocortin system. 

The “melanophore stimulants” were discovered about 90 years ago during 

surgical ablation experiments by Hogben and Winten (Hogben and Winton, 

1922), in which the pituitary gland has been shown to be implicated in the 

change of skin colour of amphibian. This led to the recognition of pars intermedia 

as the origin of biological principle. In the 1950s an isolated frog skin assay was 

developed, which led to the extraction, molecular characterisation and sequence 

determination of melanocyte-stimulating hormones (MSHs; melanotropins) 

(Shizume et al., 1954). 

Melanocortins are ancient peptides which can be traced back over 700 million 

years and are derived from the pro-opiomelanocortin (POMC) gene (Heinig et al., 

1995). The melanocortin system has been shown to play numerous roles 

including melanogenesis, energy homeostasis regulation and modulation of 

inflammatory pathways, obesity, cardiovascular and sexual health (Wikberg et 

al., 2000). The discovery of anti-inflammatory and immuno-modulatory functions 

has led to a renewed interest in alpha-melanocyte stimulating hormone (α-MSH), 

which along with its related peptides and their cognate receptors are responsible 

for the transmission of these effects and might present potential treatment 

options for inflammatory diseases (Getting, 2002, Catania et al., 2004).  

The isolation and sequence determination of adrenocorticotrophic hormone 

(ACTH), β-lipotropin and γ-lipotropin demonstrated that the sequence for α-MSH 

was formed following proteolytic cleavage of ACTH (Nakanishi et al., 1979). 

These findings led to the hypothesis that the longer peptides might be serving as 

a precursor for the shorter proteins (Nakanishi et al., 1979). In 1979 and after 

deducing the whole amino acid sequence of the POMC peptide from its cDNA, 

Nakanishi and colleagues reported that it contains an unknown MSH-like peptide 

sequence, and identified a region bearing homology with α-MSH and β-MSH 

within the N-terminal fragment in a core heptapeptide (Nakanishi et al., 1979). 
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Due to the region separation by a dibasic amino acid cleavage sites, they 

predicted that the intervening peptide will be a secretory product and termed it γ-

MSH, due to the high homology to α-MSH and β-MSH. In the last 30 years 

POMC-derived molecules from many different species were analysed and their 

genes sequenced. It has been confirmed that POMC gene is expressed in many 

different tissues and the bioactive peptides, resulting from its post-translational 

processing, function as not only neuro-peptide regulators in the brain, but also in 

the periphery (D'Agostino and Diano, 2010). 

1.3.1 Pro-opiomelanocortin (POMC) protein. 

The POMC gene is 241 amino acids in humans (Takahashi et al., 1981), and 209 

in mouse (Uhler and Herbert, 1983) and rat (Drouin and Goodman, 1980). POMC 

is actively transcribed in several tissues, including the hypothalamus, pituitary 

and periphery including the immune system, lungs, spleen, melanocytes and the 

gastrointestinal tract (Wikberg et al., 2000). POMC is functionally inert, but 

undergoes extensive and tissue-specific post-translational modification in order 

to generate the range of smaller and biologically active peptides mentioned 

earlier (Rafin-Sanson et al., 2003; Figure 1.7).POMC is comprised of three 

domains: the N-terminus region, which contains γ-MSH (melanocyte stimulating 

hormone); the central highly conserved ACTH1-39 sequence with α-MSH at its N-

terminus; and the C- terminal β-lipotropin, which can be cleaved to generate β-

endorphin (Castro and Morrison, 1997). Many hormones and neurotransmitters 

are synthesized as large pro-hormones, which require cleavage in order to 

release biologically active fragments. Within the ACTH1-13 sequence and the 

endorphin system, the cleavage sites are usually located between two pairs of 

basic amino acid residues (-KK-, -RK-, -RR-, -KR-). There are seven members of 

the pro-hormone convertases (PC) family including PC1/3, PC2, furin/PACE, 

PACE4, PC4, PC5/6, and PC7/SPC7/LPC/PC8 (von Eggelkraut-Gottanka and 

Beck-Sickinger, 2004) and the range of processing enzymes expressed in 

particular tissue, defines the repertoire of POMC-derived products. Thus, PC1 

cleaves POMC into ACTH1-39 and β-lipotropin, together with low concentrations of 

β-endorphin, whilst PC2 cleaves POMC into β-endorphin and β-MSH (Figure 

1.7), but not ACTH (Benjannet et al., 1991).  
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Figure 1.7 Bioactive peptides formed following the post-translational processing 

of POMC.  
POMC in mammals is composed of 3 exons, of which exons 2 and 3 are translated into 
protein. Prohormone convertases 1 and 2 (PC1/2) break the parent POMC peptide into 
successively smaller peptides by cleavage at paired dibasic amino acid residues 
consisting of lysine (K) and/or arginine (R). Cleavage of pro-ACTH by PC1 gives rise to 
N-POC and joining peptide (JP). The final products are generated in a tissue specific 
manner by PC2, for example α-MSH and ACTH. They also involve additional enzymatic 
post-translational modifications, such as in the formation of mature α-MSH - removal of 
basic amino acid residues by the C-terminal by carboxypeptidases (CPE), amidation by 
α-amidating mono-oxygenase (PAM) and finally acetylation of α-MSH by n-
acetyltransferase (N-AT). The final products include the melanocortins (MSHs and 
ACTH), β-endorphin and corticotrophin-like intermediate peptide (CLIP). There are 
intermediate peptides whose biological function remains unclear, such as β-lipotrophin 
and γ-lipotrophins.  All melanocortin peptides contain the common amino acid motif 
sequence, with ACTH and α-MSH also having in common the tripeptide KPV, which has 
been shown to antagonize IL-1β effect (highlighted in red).  
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1.3.2 Melanocortin receptors: Binding and distribution. 

Melanocortin peptides exert their biological effects by binding to the smallest 

family of membrane bound guanine nucleotide-binding protein-coupled receptors 

(GPCRs). These are composed of seven transmembrane spanning α-helices 

connected by three intracellular and three extracellular loops and short 

extracellular N-terminus and short intracellular C-terminus (Catania et al., 2004). 

All melanocortin receptors possess two highly conserved cysteine residues in 

their C-terminus that form covalent disulphide bonds and therefore stabilize the 

receptor structure. 

The melanocortin receptor (MC) family consists of five members that have been 

cloned and termed MC1 to MC5. Each receptor is positively coupled to adenylate 

cyclase; with activation leading to cAMP accumulation following ligation by the 

common, core tetrapeptide sequence His-Phe-Arg-Trp (HFRW; Wikberg et al., 

2000; Getting, 2006). Even though α-MSH has equal affinity to MC3 and MC4, it 

has been shown to be somewhat specific to MC1 (Schioth et al., 1996, 2005; 

Siegrist and Eberle, 1995). Conversely, β-MSH, γ3-MSH and ACTH have been 

shown to have the highest affinity for MC4 (Schioth et al., 1996, Harrold et al., 

2003), MC3 (Gantz et al., 1993a) and MC2 (Getting, 2006) respectively.  

MCs are expressed in a multitude of tissues (Catania et al., 2004) with varying 

levels of sequence homology between different receptors. For example, there is 

38 % similarity between MC2 and MC4 and 60 % between MC4 and MC5. In 

addition to elevations in cAMP, α-MSH can down-regulate NF-κB activation by 

preventing phosphorylation and degradation of IκB and thus cytokine synthesis 

(Figure 1.8) (Kelly et al., 2006). Increases in intracellular calcium and secondary 

activation of inositol tri-phosphate have also been proposed as potential 

mechanisms of action (Wikberg et al., 2000). In addition, PKC and/or PKA 

recognition sites have been identified on the melanocortin receptors, suggesting 

that MCs may act as activators of these signaling pathways (Chhajlani and 

Wikberg, 1992). A number of natural and synthetic melanocortin peptides have 

been isolated and shown to bind to the five MCs with different efficacies.  
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1.3.2.1 Melanocortin 1 Receptor (MC1). 

MC1, a 317-amino-acid protein cloned in 1992 (Chhajlani and Wikberg, 1992, 

Mountjoy et al., 1994), is an intronless gene, located on chromosome 16q24.3. It 

has a multitude of functions including pigmentation, antipyresis and anti-

inflammatory, due to its expression peripherally on melanocytes (Chhajlani and 

Wikberg, 1992; Mountjoy et al., 1992), monocytes (Bhardwaj et al., 1997), 

neutrophils (Catania et al., 1996), endothelial cells (Hartmeyer et al., 1997), 

fibroblasts (Hill et al., 2006), mast cells (Adachi et al., 1999), lymphocytes 

(Neumann Andersen et al., 2001) and macrophages (Star et al., 1995) and within 

the central nervous system (Xia et al., 1995). A recent publication has unveiled 

that human chondrocytes express MC1 (Grassel et al., 2009). The receptor is 

activated by a number of endogenous peptides, with α-MSH being the most 

active followed by ACTH1-39, with β-MSH and γ-MSH causing weak activation 

(Getting, 2006). Truncated peptides ACTH4-10 and ACTH1-10 do not activate MC1, 

suggesting that both the amino and carboxyl-terminal ends of α-MSH (ACTH1-13) 

are important for full biological activation (Tatro, 1996).  The relative affinity of 

melanocortin peptides for MC1 is shown in Table 1.2 bellow. Grässel and 

colleagues detected not only MC1 expression in articular chondrocytes in vitro, 

and in articular cartilage in situ, but they also found transcripts for MC2, MC5 and 

PCs, and confirmed these receptors were successfully translated into functionally 

active proteins, which upon activation modulate various pro-inflammatory 

cytokines, collagens and MMPs (Grässel et al., 2009)   

1.3.2.2 Melanocortin 2 Receptor/ACTH receptor (MC2). 

MC2 is an intronless gene, located on chromosome 18p11.2 and is translated into 

a 297-amino-acid long receptor (homo sapiens). It is unique among the other 

melanocortin receptors, as it is activated only by ACTH1-39, with no biological 

efficacy attributed to other melanocortin peptides (Getting, 2006). It has been 

detected in the adrenal cortex with expression within the zona fasciculata and the 

zone glomerulosa, the sites responsible for the synthesis and release of 

glucocorticoids and mineralcorticoids respectively (Mountjoy et al., 1992, Gantz 

and Fong, 2003) therefore it is essential for steroidogenesis. This receptor was 

also reported to be expressed in skin (Slominski et al., 1996) and in murine 
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adipocytes (mus musculus) (Boston and Cone, 1996) with a role in lipolysis when 

activated by ACTH (Boston, 1999). Mutations in this receptor are associated with 

the rare autosomal recessive disorder Familial Glucocorticoid Deficiency type 1, 

also known as hereditary unresponsiveness to ACTH (Clark et al., 1993). 

1.3.2.3 Melanocortin 3 receptor (MC3). 

MC3 is an intronless gene located on chromosome 20q13.2-q13.3 and its 

translation results in a protein, composed of 361 amino acids (homo sapiens) 

and 323 (mus musculus). MC3 is expressed in the periphery and CNS (Gantz et 

al., 1993a), with ACTH1-39, α, β and γ-MSH all equally potent in activating the 

receptor (Table 1.2).  

In contrast to MC1 the truncated peptides ACTH4-10 and ACTH1-10 are fully active 

at MC3 (Gantz et al., 1993c), suggesting that the core region HFRW is enough for 

activation. Expression was originally detected in the brain, placenta and the gut 

(Gantz et al., 1993a) but unlike the MC1 and MC2, no expression was detected in 

melanocytes or adrenal cortex (Gantz et al., 1993a). γ-MSH fails to induce an 

increase in circulating corticosterone, thereby it has been postulated that 

activation at MC3 does not stimulate the hypothalamic-pituitary-adrenal (HPA) 

axis (Getting et al., 1999). Significant MC3 expression has been reported within 

the hypothalamus and the limbic system, as well as the septum, hippocampus, 

thalamus and the midbrain (Roselli-Rehfuss et al., 1993). This pattern of 

expression has prompted the search of a central function played by MC3 which 

appeared to be energy metabolism (Butler and Cone, 2003). Receptor 

expression has also been detected in the heart (Guarini et al., 2002, Getting et 

al., 2004), where it has been demonstrated to mediate myocardial protection 

(Getting et al., 2004) and in peritoneal (Getting et al., 1999, 2001) and knee joint 

MØ (Getting et al., 2002) whereby modulating immune response to inflammation 

(Getting, 2002). The latter is suggested following the observation that activation 

of MC3 leads to an initial reduction in pro-inflammatory cytokines and 

chemokines, followed by the induction of anti-inflammatory mediators at later 

time points (Lam et al., 2005).  
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1.3.2.4 Melanocortin 4 receptor (MC4). 

Human MC4 is located on chromosome 18q22 and is composed of 332 amino 

acids with certain similarities to peptides that activate the MC1 (Table 1.2). 

Expression appears to be restricted to the CNS since detailed studies of various 

peripheral organs have failed to detect this receptor subtype (Gantz et al., 1993b, 

Chhajlani, 1996). MC4 is more widely distributed than MC3 within the CNS, being 

found in the cortex, thalamus, hypothalamus, brain stem and the spinal cord 

(Mountjoy et al., 1994).  The fact that PRO
12 of ACTH1-39, shared by α-MSH, is 

not present in ACTH4-10 or γ-MSH suggests that this amino acid residue could be 

critical for the binding of MC4 (Gantz et al., 1993b). Physiologically, MC4 

activation has been implicated in sexual dysfunction (Gantz and Fong, 2003), 

energy homeostasis, control of appetite (Butler and Cone, 2003) where the latter 

are of high interest within the pharmaceutical industry, due to the high demand 

for treatments of obesity.  

1.3.2.5 Melanocortin 5 receptor (MC5). 

MC5 was the last MC to be cloned (Gantz et al., 1994) and is located on 

chromosome 18p11.2, containing 325 amino acids (homo sapiens and mus 

musculus), with most potent agonists being α-MSH and ACTH1-39. Truncated 

peptides ACTH1-10 and ACTH4-13 have been found to provoke full activation of the 

receptor, although the effectiveness was considerably poorer when compared 

with α-MSH (Gantz et al., 1994). MC5 is widely expressed in peripheral tissues – 

liver, lung, thymus, testis, ovary, mammary glands, fat cells, bone marrow, skin, 

skeletal muscle, stomach and the duodenum (Gantz et al., 1994, Chhajlani, 

1996). mRNA expression has also been detected in the olfactory bulb, substantia 

nigra and striatum of the rat CNS (Griffon et al., 1994). In addition, the expression 

of MC5 has been reported in B-lymphocytes (Buggy, 1998) and T lymphocytes 

(Taylor and Namba, 2001), a fact that demonstrates a potential role in immuno-

modulation. Other hypotheses on its physiological participation includes: 

sebaceous secretion, water repulsion, thermal regulation and exocrine gland 

control (Chen et al., 1997). However, the exact role of MC5 within the body needs 

to be further investigated. 
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1.3.3 Melanocortin peptides. 

α-MSH corresponds to the first 13 N-terminal amino acid residues of ACTH1-39 

and is identical in all mammals from which it has been isolated so far (e.g. Mus 

musculus, Sus scrofa, Macaca mulata, Rattus norvegicus, Ovis aries, Camelus 

dromedarius, Equus caballus). The N-terminal serine residue of α-MSH is often 

N-acetylated and the valine at the C-terminus is almost always covalently linked 

to a carboxamide group, modifications, rendering α-MSH more potent and stable 

against exopeptidase activities (Lerner and McGuire, 1964). The structure of β-

MSH peptides of different vertebrates is more variable as compared to α-MSH. 

All β-MSH share 6 constant residues – Tyr5, His9-Phe10-Arg11-Trp-12 and Pro15 

and have an acidic iso-electric point (pI), as compared to α-MSH, which has 

higher pI. Conversely, γ-MSH sequence is not found in POMC precursor 

molecule of all vertebrate species. It is a dodecapeptide named Lys-γ1-MSH or 

just γ-MSH, and in its longer form (22-31 aa) is termed γ3-MSH. Significant 

sequence variations of the C-terminal sequence has been identified between 

species, whilst the N-terminal domain highly conserved (with Tyr2, His6-Phe7-

Agr8-TRP9 and Phe12 being the invariant residues in all species). γ-MSH is 

processed from γ3-MSH by cleavage at the dibasic residue pair RR (Figure 1.6), 

and contains an N-terminal lysine and carboxamide group that has been most 

likely generated similarly to those of α-MSH.  

In addition to these endogenous melanocortin receptor agonists, two naturally 

occurring antagonists have been confirmed: the Agouti signalling protein (ASP) 

and agouti-related protein (AGRP). Agouti’s gene, which encodes a 131 aa 

protein containing a signal sequence, controls the relative amounts of eumelanin 

and phaeomelanin pigments in mammals. Lu and colleagues noticed that Agouti, 

produced in hair follicles, acts on follicular melanocytes to inhibit α-MSH elicited 

eumelanin production (Lu et al., 1994). What is more, it has been proven that 

agouti is a high-affinity antagonist to both MC1 and MC4 and acts by preventing 

α-MSH from activating adenylate cyclase (Lu et al., 1994), thus a role in 

inflammation has been proposed (Catania et al., 2004). It is now wildly known 

that ASP (the human equivalent of mouse agouti) is broadly distributed, with 

expressions in the foreskin, liver, kidney, adipose tissue, heart, testis, and ovary 
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(Wilson et al., 1995, Voisey and van Daal, 2002). Contrary, AGRP, is specifically 

expressed in the CNS – the neuronal cell bodies of the posterior hypothalamus in 

particular (Catania et al., 2004) and has been demonstrated to be an antagonist 

of MC3 (Ollmann et al., 1997). Additionally, AGRP blocked the anti-inflammatory 

effects of the selective MC3 agonist D[TRP]8-γ-MSH in a murine model of urate 

crystal peritonitis (Getting et al., 2006).  

1.3.4 Synthetic melanocortins. 

The melanocortin peptides are implicated in the regulation of pigmentation, 

adrenal function, memory, feeding behaviour, inflammation and more, as 

described previously (see section 1.3.2).  Molecular cloning and sequencing of 

the melanocortin receptors has boosted systematic studies for investigation of 

the molecular mechanisms implicated in these functions. Synthetic and non-

peptide development have enhanced our understanding of the biological 

functions of MCs in different tissues. The complexity and the wide expression 

distributions of the receptors, together with the high sequence homology has 

impeded the identification of all of their biological effects and has hindered the 

development of selective agonists and antagonists (Grieco et al., 2002). 

Identification of endogenous and synthetic peptides have been utilised to 

evaluate the pathophysiological role of the various MCs in different tissues. 

Extensive investigations led to the identification of the minimum fragment needed 

for activation of the MCs – HFRW, except MC2 (Wikberg et al., 2000). A number 

of peptides and non-peptide compounds have been developed over the last 20 

years with varying degrees of selectivity to help elucidate the roles played by 

each receptor in disease pathologies.  
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Table 1.2 Melanocortin receptors distribution, ligand specificities and physiological 
function.  
Melanocortin 

Receptor 
Main site of 

expression 

Ligand preference Main physiological 

function 

 

MC1 

 

Melanocytes, 

macrophage, 

neutrophils, 

endothelial cells, 

fibroblasts, 

chondrocytes, CNS; 

 

α-MSH= β-MSH= ACTH>> γ-MSH 

 

Pigmentation, anti-

pyretic and anti-

inflammatory 

function; 

 

 

MC2 

 

Adrenal cortex (zona 

fasciculata and zone 

glomerulata), skin; 

 

ACTH only 
Adrenal 

steroidogenesis; 

 

 

 
MC3 

 

CNS, Placenta, 

stomach, pancreas, 

heart peritoneal, 

knee joint 

macrophages, 

chondrocytes; 

 

γ-MSH = α-MSH = β-MSH = ACTH 

Energy homeostasis, 

anti-inflammatory 

function, myocardial 

protection; 

 

MC4 

 

CNS, spinal cord 

 

α-MSH= β-MSH = ACTH > γ-MSH 
Appetite regulation, 

energy homeostasis, 

erectile function, 

pain; 

 

 

 

 

MC5 

 

Lymphocytes, 

exocrine glands, 

skin, adrenal gland, 

adipose tissue, 

kidney, lymph nodes, 

liver, skeletal muscle. 

 

α-MSH > β-MSH = ACTH > γ-MSH 

Regulation of 

exocrine gland 

secretion. 

MC1-5 – melanocortin receptors; ACTH – adrenocorticotrophic hormone; MSH – melanocortin stimulating 

hormone; CNS – central nervous system 
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1.3.4.1 Melanocortin receptor agonists. 

[Nle4D-Phe7]-α-MSH (NDP-α-MSH) was one of the first synthesised analogues of 

α-MSH to display efficacy in inflammatory models (Sawyer et al., 1980), 

however, due to its length, the economic reality of bringing this peptide to market 

led to the development of smaller compounds. Given the short half-life and size 

of the peptide, smaller fragments were developed, including the potent MC3/4 

lactam-based heptapeptide super agonist melanotan II (MTII: Ac-Nle-c[Asp-

DPhe-Lys]-NH2;, EC50 = 2.8 nM) (Hadley et al., 1998) shown to be effective in 

models of murine obesity (Fan et al., 1997) and gouty arthritis (Getting et al., 

1999, 2001).  

Further identification of the natural agonists of the MC3 led to the discovery that 

Tryptophan substitution at position 8 into the natural sequence of γ-MSH leads to 

a selective compound termed D[TRP]8-γ-MSH  (D[TRP]8-γ-MSH: H-Tyr-Val-Met-

Gly-His-Phe-Arg-DTrp-Asp-Arg-Phe-Gly-OH; EC50= 0.33 nM), which has been 

recognized to have a 300-fold and 250-fold improvement in selectivity for the 

MC3 over MC4 and MC5, compared to the naturally occurring γ-MSH (EC50 = 5.9 

nM; Grieco et al., 2000).  

These findings highlighted that those amino acids changes within the polypeptide 

of α-MSH lead to the development of increasingly selective compounds. The 

discovery of the synthetic selective MC1 agonists MS05 (Ser-Ser-Ile-Ile-Ser-His-

Phe-Arg-Trp-Gly-Lys-Pro-Val-NH3) and MS09 (Ser-Ser-Ile-Ile-Ser-His-DPhe-Arg-

Trp-Gly-Lys-Pro-Val-NH2) occurred following screening of peptide phage display 

library (Martignoni et al., 1997) with MS09 being more potent, but less selective 

than MS05 (Wikberg et al., 2000). These compounds potently down-regulate the 

expression and secretion of selectin (E-selectin), vascular cell adhesion molecule 

(VCAM), and intracellular endothelial cell adhesion molecules (ICAM) in human 

dermal vascular endothelial cells treated with TNF-α. In addition, they down-

regulate IL-1β induced NF-κB activation in these cells (Brzoska et al., 1999). The 

octapeptide 154N-5 (Met-Phe-Arg-DTrp-Phe-Lys-Pro-Val-NH2), which showed a 

high degree of HTB-14, HEK293, Jurkat, TNP-1 cell-lines, primary human cells 

and animal model (C3H/HEN mice) of TNF-α secretion (Ignar et al., 2003).  
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1.3.4.2 Melanocortin antagonists. 

Development of SHU9119 is one of the major breakthroughs in melanocortin 

pharmacology. Substitution of the bulky aromatic amino acid DNal(2’) into 

position 7 of ACTH1-39 led to the discovery of the antagonist at MC3 and MC4 with 

the structure Ac-Nle-c[Asp-His-DNal(2’)-Arg-Trp-Lys]-NH2 (Hruby et al., 1995). 

SHU9119 has allowed many groups to dissect the role of MC3 in diseases 

ranging from arthritis to cardiovascular pathologies, and also in models of obesity 

as it has been shown to be an antagonist at MC3/4 in murine model of obesity 

(Fan et al., 1997; Butler et al., 2000) and models of acute inflammation 

(Hartmayer et al., 1997; Neumann-Andersen et al., 2001; Hill et al., 2006; Adachi 

et al., 1999; Getting et al., 1999, 2001). Other substitutions into positions 6 to 15 

of ACTH1-39 have yielded the MC4 antagonist HS014 (Schioth et al., 1999), which 

blocked cAMP induced by α-MSH in MC4-transfected COS-1 cells.  The selective 

cyclic MC4 antagonist HS024 (Kask et al., 1998) has an enhanced 10-fold 

potency compared to HS014 (Schioth et al, 1999) and has been demonstrated to 

stimulate food intake in rats (Kask et al., 1998). In order to investigate further the 

role of His6 in the core tetrapeptide of the melanocortin peptides, Grieco and 

colleagues designed, synthesized and characterized new cyclic lactam ligands 

with several modifications and the most important variant was the substitution of 

the Histidine residue at position 6 in SHU9119 with a Pro and Hyp (Grieco et al., 

2002). This led to the discovery of the full agonists at MC5 – PG901 (Ac-Nle-

c[Asp-Pro-DNal(2’)-Arg-Trp]-Lys-NH2, EC50 = 0.072 nM), approx. 40 times more 

active than the superagonist MTII (EC50 = 2.8 nM), and PG911 (Ac-Nle-c[Asp-

Hyp-DNal(2’)-Arg-Trp]-Lys-NH2, EC50= 0.031 nM), which was synthesized by 

placing a Hyp residude at position 6). The His-Hyp substitution at position 6 of 

SHU9119 caused a remarkable agonistic activity of PG911 at MC5. In addition, 

both peptides showed noteworthy antagonistic activities on MC3 and MC4, 

compared to SHU9119 (Grieco et al., 2002). 

 

 



 

 
 
 

76 

1.3.5 Melanocortin peptides molecular mechanism of action. 

The main intracellular signalling mechanism of stimulated melanocortin receptors 

is cAMP production via MC/Gs coupled to adenylate cyclase (Wikberg et al., 

2000). However, the peptides have been shown to not only elicit cAMP increase, 

but also stimulate p38 pathway, extracellular signalling kinases (ERK; p44/42) 

(Mandrika et al., 2001), PKC and NF-κB transcription factors AP-1 and NF-κB as 

outlined in Figure 1.8 (Konda et al., 1994, Kalden et al., 1999, Ichiyama et al., 

1999). The binding of melanocortins to its corresponding receptor is thought to 

activate protein kinase A (PKA), which has four main effects. First, PKA 

activation induces the phosphorylation of the cAMP-responsive-element-binding 

protein (CREB), which, owing to its high affinity for the co-activator CREB-binding 

protein (CBP), prevents the association of CBP with p65 (which is a key 

component of (NF-κB). Second, activated PKA inhibits IκB kinase (IKK), which 

stabilizes the IκB inhibitor and prevents nuclear translocation of p65. Third, PKA 

activation inhibits MAPK/ERK kinase kinase 1 (MEKK1) phosphorylation and 

activation, and the subsequent activation of p38 and TATA-binding protein (TBP). 

TBP need to be phosphorylated in order to be able to bind to the TATA box and 

to form an active trans-activating complex with CBP and NF-κB (Gonzalez-Rey et 

al., 2007). A reduction in the amounts of nuclear p65, CBP and phosphorylated 

TBP inhibits the formation of the conformationally active trans-activating complex 

that is required for the transcription of most cytokine and chemokine 

genes. Fourth, inhibition of MEKK1 by PKA subsequently deactivates Jun kinase 

(JNK) and c-Jun phosphorylation. The composition of the activator protein 1 

(AP1) complex changes from the transcriptionally active c-Jun–c-Jun, to the 

transcriptionally inactive c-Jun–c-Fos or CREB (Gonzalez-Ray et al., 2007). 

The final consequence is that the transcriptional machinery, which is perfectly 

assembled to the gene promoters of several inflammatory mediators (examples 

shown in red box) after the signalling of TNF-α through TNFR1, is significantly 

disrupted by treatment with melanocortin peptides. In addition to these effects of 

melanocortin peptides there is another mechanism of action that has been 

proposed. In human MC3 transfected HELA cells, activation of cAMP-dependent 

PKA in the presence of α-MSH was shown to exert an inhibitory effect on the 

IP3-mediated increase in intracellular Ca2
+ concentration (Konda et al., 1994).  
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Figure 1.8 Molecular mechanism and transcription factors involved in the anti-
inflammatory effects of melanocortin peptides.   
The binding of melanocortins to its corresponding receptor increases cAMP and is thought to 
activate protein kinase A (PKA), which has four main effects. a) First, PKA activation induces the 
phosphorylation of the cAMP-responsive-element-binding protein (CREB) prevents the 
association of CBP with p65. b) The activated PKA hinders IκB kinase (IKK), which stabilizes the 
IκB inhibitor and stops nuclear translocation of p65. c) PKA activation prevents MAPK/ERK 
kinase kinase 1 (MEKK1) phosphorylation and activation, and activation of p38 and TATA-binding 
protein (TBP). Non-phosphorylated TBP is unable to bind to the TATA box and to form dynamic 
trans-activating complex with CBP and NF-κB. A reduction in the amounts of nuclear p65, CBP 
and phosphorylated TBP inhibits the formation of the conformationally active trans-activating 
complex that is required for the transcription of most cytokine and chemokine genes. d) Fourth, 
inhibition of MEKK1 by PKA subsequently deactivates JUN kinase (JNK) and cJUN 
phosphorylation. The composition of the activator protein 1 (AP1) complex changes from the 
transcriptionally active cJun–cJun, to the transcriptionally inactive JunB–cFos or CREB. e) The 
final consequence is that the transcriptional machinery is significantly disrupted by treatment with 
melanocortin peptides (Gonzalez-Ray et al., 2007). 
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1.4 Role of melanocortin peptides in arthritic pathologies. 

1.4.1 Osteoarthritis. 

Current treatment regimes for OA largely focus on exercise, surgery for joint 

replacement, and the treatment of symptoms, e.g., relieving pain with analgesics, 

rather than treating the underlying causes of the disease (Ettinger and Afable, 

1994, Chen et al., 2008, Franklin et al., 2010) 

Only a handful of studies so far have evaluated the therapeutic potential of ACTH 

and melanocortin peptides in OA. This may seem somewhat surprising at first 

glance given the number of studies suggesting therapeutic potential of these 

peptides in both pre-clinical models and human patient samples from RA and 

gouty arthritis patients. However, this could stem from the fact that whilst 

inflammation is considered causal to both RA and gouty arthritis, it is not 

generally accepted to be a major contributor to the development of OA.  

Catania and colleagues evaluated the presence of systemic and synovial α-MSH 

in patients with OA and RA to evaluate whether changes in levels correlated with 

disease progression. α-MSH was detected in the synovial fluid of both OA and 

RA patients, with levels that were much lower in OA than RA (Catania et al., 

1994). Of interest, however, was the observation that synovial levels of α-MSH 

were higher than plasma, suggesting a local production of this peptide (Catania 

et al., 1994). This could indicate that activation of resident cells within the joints 

cause the release of α-MSH, which in turn switches off disease progression in an 

auto or paracrine fashion. Again, given that inflammation is only considered to be 

a component of OA rather than a causal factor, this could explain why much 

lower levels of α-MSH are found in OA rather than RA patients.  One potential 

mechanism for the articular cartilage degradation observed in OA may be due to 

TNF-α induced expression of MMPs, which can be down-regulated by α-MSH. In 

the human chondrosarcoma cell line HTB-94 (SW1353), α-MSH has been shown 

to down-regulate TNF-α induced expression of MMP13 mRNA and protein (Yoon 

et al., 2008). Studies with the pharmacological inhibitor SB203580, a p38 MAPK 

inhibitor, showed that α-MSH inhibited MMP13 by modulating p38 MAPK 

phosphorylation and subsequent activation of NF-κB (Yoon et al., 2008). 
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Although α-MSH has been shown to decrease TNF-α induced MMP expression, 

the parent hormone ACTH can cause terminal differentiation of chondrocytes and 

subsequent cartilage degeneration (Evans et al., 2004). Rodent chondrocytes 

and chondrocyte cell-lines express MC3, matrix deposition was concentration 

dependently elevated in the presence of ACTH. These data highlight that the 

melanocortin system promotes chondrocyte phenotype development and their 

differentiation into mature chondrocytes, leading to an elevation in intracellular 

free calcium (Evans et al., 2005). 

1.4.2 Rheumatoid arthritis.  

RA is a complex pathology affecting many systems outside of the joints, with 40 

% of RA deaths due to cardiovascular disease. Therapeutic intervention in RA is 

a leading cause of complications, for example NSAIDs may cause elevated blood 

pressure (Getting et al., 2009) and glucocorticoids increase cardiovascular 

problems by accelerating the rate of pathologies such as arterial thickening and 

narrowing (Getting et al., 2009). Methotrexate on the other hand may also 

promote heart disease by increasing levels of homocysteine. As a result of these 

complications and the fact that NSAIDs are contraindicated in the elderly due to 

high possibility of kidney failure, the progress of novel endogenous therapeutics 

is indispensable.   

The role of melanocortin peptides in rheumatoid arthritis has not been fully 

ascertained yet. Catania et al. detected increased concentration of α-MSH in the 

synovial fluid of patient suffering from RA, juvenile arthritis, but not OA, that were 

greater than that detected in the plasma (Catania et al., 1994; Grässel et al., 

2009) suggesting local production of the peptide, i.e. that the anti-cytokine 

molecule α-MSH is produced within a site of inflammation. This increase in α-

MSH within synovial fluid also suggests the possibility of an endogenous anti-

inflammatory loop maintaining a homeostatic balance within the joint and 

controlling the host inflammatory response. Joint concentrations of α-MSH in 

these patients were directly proportional to the degree of inflammation, whilst 

systemic (plasma) levels remained at physiological concentrations (Catania et al., 

1994).  
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Utilising the adjuvant-induced arthritis model, α-MSH was shown to modulate 

weight loss, arthritic score, joint damage, and swelling, characteristic features of 

the disease. This effect on preventing weight loss was in contrast to that 

observed by the glucocorticoid prednisolone, which caused significant weight 

loss in these animals (Ceriani et al., 1994). The inflamed joint is characterised not 

only by infiltrating leukocytes, but also by activated resident bone/cartilage cells, 

such as osteoclasts and chondrocytes. Some evidence exists to suggest 

melanocortin receptor expression on these cells (Yoon et al., 2008). In situ 

hybridization shows that all MCs are expressed on chondrocytes in the mouse 

femoral bone and mRNA signals for all MCs, except MC1, were detected on 

primary rat osteoclasts, which also expressed the POMC gene (Zhong et al., 

2005), thereby suggesting the possibility that POMC peptides generated by these 

cells could act in an autocrine/paracrine manner through their corresponding 

MCs. α-MSH has been shown to inhibit TNF-α-induced MMP13 by modulating 

p38 and NF-κB signaling in human chondrosarcoma cell-line HTB-94 (Yoon et 

al., 2008). These findings indicate that α-MSH may be beneficial in arthritic 

conditions.   

1.4.3 Gouty arthritis. 

ACTH1-39 was first shown to have clinical efficacy in gout in the 1950s, although 

no mechanism of action was described for its effects (Gutman and Yu, 1950). 

Long-term administration of ACTH1-39 causes a number of side effects, including 

suppression of the HPA axis, and thus its use was superseded by other 

therapies. Current treatments for gout focus largely on the use of colchicines, 

allopurinol and NSAIDs, which cause a number of side effects, including peptic 

ulceration, gastric problems, and are poorly tolerated in the elderly and patients 

with renal insufficiency (Ritter et al., 1994), a potential reason why there is a 

renewed interest in the use of ACTH1-39. Another reason is the fact that ACTH 

demonstrates a greater efficacy than conventional glucocorticoids in controlling 

gout (Ritter et al., 1994). The authors suggested the existence of another 

mechanism of action other than the well-characterised stimulation of ACTH/MC2 

expressed on the adrenal gland (Ritter et al., 1994). Therefore, anti-inflammatory 

fragments of ACTH1-39 that do not activate the HPA axis have been sought in the 
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hope that they may have a better safety profile. Utilising murine models of gout, it 

has been demonstrated that smaller fragments of the POMC gene, including the 

peptides α-MSH, β-MSH, and ACTH4-10, could reduce urate crystal–induced 

neutrophil migration, and pro-inflammatory cytokine and chemokine release 

(Getting et al., 1999). Of specific interest are the anti-inflammatory effects of 

these peptides, which occur in a corticosterone-independent manner and thus 

there is no reflex stimulation of the HPA axis.  

These findings mirror those observed for ACTH4-10 in rat skin inflammation, 

where it was shown to inhibit prostaglandin generation and oedema formation 

(Gecse et al., 1980). The biological efficacy of these peptides was shown to 

occur via MC3 expression on peritoneal macrophages with subsequent elevations 

in cAMP. Further confirmation of the role of MC3 in mediating the anti-

inflammatory effects of these peptides was highlighted when pre-treatment of 

mice with the MC3/4 antagonist SHU9119 led to an attenuation of their efficacy. 

Based on these findings, a hypothesis was proposed that MC3 could be a novel 

therapeutic target for modulating the anti-inflammatory effects of the 

melanocortins, at least in this model of monosodium urate crystal deposition 

(Getting et al., 1999). Further studies promote this hypothesis with natural and 

synthetic agonists of the MC3, γ2-MSH  (Gecse et al., 1980) and MTII (Fan et al., 

1997) respectively, attenuating inflammation both in vivo and in vitro (Getting et 

al., 2001). In a rodent model developed to mimic certain aspects of the human 

pathology, urate crystals were injected into the knee joint, which led to migration 

of neutrophils preceded by the release of IL-1β and IL-6. Local and systemic 

administration of the parent hormone ACTH1-39 resulted in significant inhibition of 

all parameters associated with joint inflammation (swelling, arthritic score, 

neutrophil migration) (Getting et al., 2002).  

1.4.4 Role of melanocortins in other inflammatory pathologies.  

In addition to the anti-inflammatory properties discussed above, melanocortins 

have been shown in various in vitro and in vivo experiments to possess 

modulatory roles in inflammation. In vitro, α-MSH can reduce the T-lymphocyte 

co-stimulatory molecule CD86 in LPS stimulated monocytes (Bhardwaj et al., 

1997), decrease LPS-induced TNF-α production in whole blood (Catania et al., 
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2000) and THP-1 cells (Taherzadeh et al., 1999) and inhibit NO synergistically 

elicited by LPS and IFN-γ in a MØ cell-line (Star et al., 1995, Mandrika et al., 

2001). Supporting data were also shown in vivo in models of endotoxemia 

(Delgado Hernandez et al., 1999), inflammatory bowel diseases (Rajora et al., 

1997b) and experimental heart transplant (Gatti et al., 2002), where melanocortin 

peptide treatment caused the reduction of NO and TNF-α.  

Interestingly, α-MSH has been shown to modulate the elevation, production and 

release of the anti-inflammatory cytokine IL-10 in human peripheral blood 

mononuclear cells, thus promoting further the inhibition of pro-inflammatory 

cytokines induced by MØ (Bhardwaj et al., 1996). The importance of α-MSH-

induced IL-10 in mediating anti-inflammatory responses was further 

substantiated in vivo, where the suppressive effect of α-MSH on airway 

inflammation is no longer observed in IL-10 knockout mice (Raap et al., 2003).  

A remarkable facet of melanocortin biology is their ability to regulate peripheral 

acute inflammation following central administration. It was shown in brain 

ventricle injection that pre-treatment with α-MSH and ACTH11-13 reduced ear and 

hind paw oedema induced by local injection of IL-1, IL-8, leukotriene B4 and 

platelet-activating factor (Ceriani et al., 1994, Macaluso et al., 1994). When spinal 

cord trans-section was performed, these anti-oedema effects caused by central 

α-MSH injection was abolished, indicating that intact descending inhibitory neural 

pathways are needed for this effect (Macaluso et al., 1994).  
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1.5 Aims of the study and hypothesis. 

The aims of this thesis were to examine the expression and functionality of 

melanocortin receptor MC1 and MC3 in human C-20/A4 cell-line and primary 

bovine articular chondrocytes. Another aim was to ascertain their anti-

inflammatory, anti-apoptotic and chondroprotective effect on pro-inflammatory 

cytokine production following stimulation of in vitro cultures (C-20/A4 cell-line and 

primary articular chondrocytes) with TNFα/ mechanical impact of chondrocytes in 

situ and to investigate their effect on the production of anti-inflammatory proteins.  

• To investigate the response of chondrocytes to inflammatory stimuli and 

the effect on pro-inflammatory cytokine (IL-1β IL-6, IL-8 and MCP-1), 

degradive matrix metalloproteinase (MMP1, MMP3 and MMP13) and 

cartilage ECM matrix component (collagen type I and type II) production.  

• To study the effect of classical anti-inflammatory drugs glucocorticoids 

(dexamethasone) and NSAIDs (indomethacin) on expression and release 

of IL-6, IL-8 and MMPs from activated chondrocytes. 

• To ascertain melanocortin receptor expression, production and 

functionality in chondrocytes and determine whether melanocortin 

peptides can inhibit pro-inflammatory cytokines, and/or MMP production 

and induce anti-inflammatory proteins in cell-line and primary 

chondrocytes. 

• To evaluate the protective properties of melanocortin peptides against 

TNF-α-induced apoptosis and caspases activity.  

• To investigate the response of chondrocytes to lowered extracellular 

osmolarity, e.g. pro-inflammatory cytokines and degradive enzymes and 

the effect of melanocortin peptides on these parameters. 

• To characterise the cytoprotective and anti-inflammatory effect of 

melanocortin peptides on mechanically impacted articular chondrocytes in 

situ. 
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2.1 Materials and suppliers.  

2.1.1 Chemical and reagents. 

Table 2.1. Chemicals and Biochemicals used for tissue culture.  
Name Supplier Catalogue No. 

Ascorbic acid Sigma-Aldrich Company Ltd., 
Poole, UK A4403 

Foetal Bovine Serum (FBS) Invitrogen, Paisley,  
UK 16170078 

GIBCO® DMEM + Glutamax™-1 
 Invitrogen, Paisley, UK 31966 
Pen/Strep Solution (+5000 U/ml 
Penicillin, +5000 µg/ml 
Streptomycin) 

Sigma-Aldrich Company Ltd., 
Poole, UK P0781 

Sodium Chloride Fisher Scientific, 
Leicestershire, UK S13160/65 

Trypsin-EDTA Invitrogen, Paisley, UK 25300 
 
 
Table 2.2. Chemicals and biochemicals used in protein extractions, SDS-PAGE 
and Western blots.  

Name Supplier Catalogue No. 

Acryl Amide Bio-Rad Laboratories Ltd., 
Hertfordshire, UK. 161-0100 

Ammonium Persulfate Bio-Rad Laboratories Ltd., 
Hertfordshire, UK 161-0700 

β-mercaptoethanol Sigma-Aldrich Company Ltd., 
Poole, UK P0781 

Bio-Rad Protein Assay (Bradford 
solution) 

Bio-Rad Laboratories Ltd., 
Hertfordshire, UK 04693159001 

Bis-acrylamide Bio-Rad Laboratories Ltd., 
Hertfordshire, UK. 161-0154 

Coomassie© brilliant blue R250 Sigma-Aldrich Company Ltd., 
Poole, UK 25300 

Dithiotreitol (DTT) Fisher Scientific, 
Leicestershire, UK BP172-25 

Glycine, aminoacetic acid Fisher Scientific, 
Leicestershire, UK BPE381 

Glycerol Sigma-Aldrich Company Ltd., 
Poole, UK 49779 

Methanol Sigma-Aldrich Company Ltd., 
Poole, UK 32213 

N,N,N’,N’-
Tetramethylethylenediamine 
(TEMED) 

Sigma-Aldrich Company Ltd., 
Poole, UK T9281 

NuPAGE® MOPS SDS Running 
Buffer 20x Invitrogen, Paisley, UK NP0001 
NuPAGE® Transfer Buffer 20x 
 Invitrogen, Paisley, UK NP0006 
NuPAGE® Novex 10% Bis-Tris 
Gels Invitrogen, Paisley, UK NP0301BOX 
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NuPAGE® Novex LDS Sample 
Buffer 4x Invitrogen, Paisley, UK NP0007 

Ponceau S Staining Solution Sigma-Aldrich Company Ltd., 
Poole, UK P3504 

Sodium dodecyl sulphate (SDS) Sigma-Aldrich Company Ltd., 
Poole, UK A4403 

Trizma®  Base Sigma-Aldrich Company Ltd., 
Poole, UK T1503 

Trizma® hydrochloride (Tris-HCl) Sigma-Aldrich Company Ltd., 
Poole, UK T3253 

 
 
 
Table 2.3 Reagents used in ELISAs. 

Name Supplier Catalogue No. 
3, 3’,5,5’ –Tetramethylbenzidine 
tablets 

Sigma-Aldrich Company Ltd., 
Poole, UK T5525 

Bovine albumin serum (BSA; 
fraction V, minimum 98%) 

Sigma-Aldrich Company Ltd., 
Poole, UK A2153 

Dimethyl Sulfoxide (DMSO) Fisher Scientific, 
Leicestershire, UK D4121 

Hydrogen Peroxide (30%) Fisher Scientific, 
Leicestershire, UK H1550 

Phosphate Buffer Saline (PBS) 
tablets Oxoid LPD, Hertfordshire BR0014G 

Phosphate Citrate Buffer  Sigma-Aldrich Company Ltd., 
Poole, UK P4809 

Sodium acetate Fisher Scientific, 
Leicestershire, UK S210-500 

Tween-20 Fisher Scientific, 
Leicestershire, UK BPE337 

 
 
 
Table 2.4 Primers used in this study. 

Name Supplier 

β-actin forward and reverse Eurofins MWG Operon, 
London, UK 

Collagen I forward and reverse Eurofins MWG Operon, 
London, UK 

Collagen II forward and reverse Eurofins MWG Operon, 
London, UK 

IL-6 forward and reverse Eurofins MWG Operon, 
London, UK 

IL-8 forward and reverse Eurofins MWG Operon, 
London, UK 

MMP1 forward and reverse Eurofins MWG Operon, 
London, UK 

MMP3 forward and reverse Eurofins MWG Operon, 
London, UK 

MMP13 Forward and reverse Eurofins MWG Operon, 
London, UK 
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MC1 forward & reverse primers Applied Biosystems UK, 
Cheshire, UK 

MC3 forward & reverse primers Applied Biosystems UK, 
Cheshire, UK 

MC5 forward & reverse primers Applied Biosystems UK, 
Cheshire, UK 

 

 
Table 2.5. Antibodies used in this study. 

Name Supplier Cat. No. 
 
α-Tubulin Mouse mAb (clone B-5-
1-2) 

Sigma-Aldrich Company Ltd., 
Poole, UK 

T5168 

 
Cleaved Caspase-3 (Asp175) 
(5P1) Rabbit mAb 

Cell Signalling Technology Inc.,  
UK 

9664 

 
Goat anti-rabbit horseradish 
peroxidase (HRP)-conjugated IgG 

Dako Cytomation Ltd., 
Cambridgeshire, UK. 

P0448 

 
Goat anti-mouse horseradish 
peroxidase (HRP) conjugated IgG 

Dako Cytomation Ltd., 
Cambridgeshire, UK. 

P0447 

Heme oxygenase(HO)-1 rabbit 
pAb 

 
Bioquote Ltd. (supplier for 

Stressgen Biotechnologies), York, 
UK. 

SPC-112C 

 
 
 
Table 2.6 Commercial Kits used in this study.  

Commercial Kits Supplier Cat. No. 

cAMP Biotrak™ EIA system  GE Healthcare UK Ltd., 
Buckinghamshire, UK RPN2251 

Caspase-Glo® 3/7 
 

Promega UK Ltd., 
UK 

TB323 

 
DuoSet® ELISA Development 
systems 
 

R&D Systems® Europe Ltd., 
Abingdon, UK N/А 

 
GoTaq Green Mastermix 2x 
 

 
Promega UK Ltd.,  
Southampton, UK 

M7122 

 
ImProm–II™ Reverse 
Transcription System 

 
Promega UK Ltd.,  
Southampton,UK 

A3800 

NucleoSpin® RNA/Protein 
 

GE Healthcare UK Ltd., 
Buckinghamshire, UK 

740933.50 

Parameter™ PGE2 Assay 
 

R&D Systems® Europe Ltd., 
Abingdon, UK. 

KGE004B 
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Table 2.7. Additional materials and chemicals used in this study.  

Materials Company Cat. No. 

α-MSH; ACTH1-13 
Sigma–Aldrich Inc. 

Poole, UK M4135 
 
3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyl-tetrazolium bromide 
(MTT) 

 
Promega UK Ltd., Southampton, 

UK 
M2128 

3-isobutyl-1-methylxanthine 
(IBMX) 

 
Sigma–Aldrich Inc. 

Poole, UK 
I7018 

Agarose 
 

Sigma–Aldrich Inc. 
Poole, UK 

А9539 

 
Calcein-AM 

 
Anaspec Inc., 

Freemont, USA 
89201 

 
Dexamethasone 

 
Sigma–Aldrich Inc. 

Poole, UK 
D4902 

DirectLoad™ 50 bp DNA Step 
Ladder 

 
Sigma–Aldrich Inc. 

Poole, UK 
D3812 

D[TRP]8-γ-MSH 
 

Kind gift by Prof. Paolo Grieco, 
University of Naples 

N/A 

 
Ethanol, 99.9% 

 
Fisher Scientific, 

Leicestershire, UK 
AC61510-

0020 

Ethidium bromide (EtBr2) 
 

Invitrogen, 
Paisley, UK 

15585-011 

Forskolin 
 

Sigma–Aldrich Inc. 
Poole, UK 

F6886 

FUJI Medical X–Ray Film 
 

FUJIFILM EUROPE GmbH, 
Düsseldorf, Germany 

50469 

 
Full–range Rainbow™ Molecular 
Weight Marker 

 
GE Healthcare UK Ltd., 
Buckinghamshire, UK 

RPN800 

 
Hybond™–C Extra Nitrocellulose 
membrane 

 
Amersham Biosciences UK Ltd. 

Buck,  
UK 

RPN303E 

Hydrochloric acid (HCl) 
 

VWR International (supplier for 
BDH), Leicestershire, UK 

30024.290 

Indomethacin 
 

Sigma–Aldrich Inc. 
Poole, UK 

I7378 

Interleukin(IL)-6  
Sigma–Aldrich Inc. SRP4145 
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Poole, UK 

KODAK GBX 
Developer/Replenisher 

 
Sigma–Aldrich Inc. 

Poole, UK 
P7042–1GA 

KODAK GBX Fixer/Replenisher 
 

Sigma–Aldrich Inc. 
Poole, UK 

P7168–1GA 

Lipopolysaccharide (LPS; 
0111:B4) 

 
Sigma–Aldrich Inc. 

Poole, UK 
L4391 

 
Pierce® ECL Western Blotting 
Substrate 

Thermo Scientific,  
Surrey, UK 32209 

Propidium Iodide (PI) Invitrogen, 
Paisley, UK P1304MP 

RNase inhibitor 
 

Promega UK Ltd.,  
Southampton, UK 

N2611 

RQ1 RNase-free DNase 
 

Promega UK Ltd.,  
Southampton, UK 

TB518 

SHU9119 
 

Phoenix Pharmaceuticals, 
Karlsruhe, Germany 

043-24 

Sodium nitrite 
Sigma–Aldrich Inc. 

Poole, UK 
 

S5506 

Triton X-100 
 

Fisher Scientific,  
Leicestershire, UK 

 
BPE151 

Trypan Blue solution (0.4%) 
 

Sigma–Aldrich Inc. 
Poole, UK 

 
T8154 

Zymosan Type A Sigma–Aldrich Inc. 
Poole, UK Z4250 

 

2.1.2 Software. 

Table 2.8. Software used in this study. 

Software Company 
Image J Bitplane AG, Zurich, Switzerland  
Imaris 7.1.1 Imaris 
Microsoft Office 2008 Microsoft, USA 
GraphPad Prism  GraphPad Software, San Francisco, USA 
OmniGraffle Pro 5.02 Washington, USA 
Leica TCS SP1/SP2 Leica Microsystems (UK) Ltd., Milton Keynes UK 
EndNote X2 Adept Scientific, Herts, UK 



 

 
 
 

90 

2.2 Methods. 

2.2.1 Cell line storage and resuscitation.  

C-20/A4 is a human chondrocytic cell line, derived from juvenile costal 

chondrocytes (Finger et al., 2004). C20/A4 chondrocytes were stored in liquid 

nitrogen in 1.0 ml aliquots of 1.0 x 106 cells/ml in Dulbecco Modified Eagle 

Medium (DMEM) supplemented with 50.0 % FCS and 20% DMSO.  Prior to cell 

culture, cells were rapidly thawed at 37ºC in a water bath and pre-warmed 

complemented medium (DMEM + Glutamax supplemented with 50 U/ml 

Penicillin, 50 µg/ml Streptomycin and 10% FCS) added to dilute the toxicity of the 

DMSO. The resulting cell suspension was centrifuged at 2000 rpm for 10 min and 

supernatant discarded, thus removing DMSO. The cell pellet was then 

resuspended in complete medium, transferred into 25 cm2 flasks and incubated 

in humidified incubator with 95% air : 5% CO2 to allow cell proliferation.  

2.2.2 Cell line culture and maintenance. 

Cell culture media was replaced at 4-day intervals whereby media were removed 

by aspiration and replaced by fresh complemented DMEM. At 80 % confluence, 

chondrocytes were subcultured by lifting the cells from their substrate using 0.05 

% Trypsin-EDTA and centrifuging of detached adherent cells at 2000 rpm for 10 

min. The resulting cell pellet was resuspended and seeded in new culture flasks 

(1.0 x 103 cells/cm2) for continuous culture or in various (6-, 24-, or 96-) well 

plates (1.0 x 105 cell/cm2) as appropriate for experimentation. Cells were 

incubated at 37 ºC in a humidified atmosphere supplied with 95% air : 5% CO2. 

Cell line passage numbers used in all experiments were between 1 and 10. 

2.2.3 Cartilage removal and chondrocyte isolation.  

Fresh metacarpal or metatarsal phalangeal joints of 18 – 21 month old female 

animals were obtained with permission from the local abattoir and were dissected 

under aseptic conditions on the day of slaughter. Full depth articular cartilage, 

excluding subchondral bone, was removed carefully from the load bearing 

surfaces of the metacarpal phalangeal joints and cartilage explants cultured in 

DMEM (serum-free; 280 mOsm/kg:H2O; 37ºC, 95% air :5% CO2) until required 
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(used within 96h). Osmolarity was measured using Vapro™ vapour pressure 

osmometer and accurate to ± 5 mOsm (Kerrigan and Hall, 2008). 

For chondrocyte isolation, cartilage explants were incubated for ~18h at 37ºC 

with 0.8 mg/ml Collagenase in DMEM 380 mOsm (Bush and Hall, 2001). The 

osmolarity of the DMEM was raised by addition of 3.14 mg/ml filter-sterilized 

NaCl (using 2.0 µm filter) to limit cell swelling upon chondrocytes released from 

the matrix (Hall et al., 1996b). Digest material was passed through a tea strainer, 

and 20.0 µm nylon filters (Falcon) to remove undigested material and any large 

cell clumps. Chondrocytes were washed 3x by centrifugation (8 min, 20º C, 600g) 

in DMEM (380 mOsm/kg:H2O). For stimulation of freshly isolated bovine 

chondrocytes (P0 – passage 0), chondrocytes were seeded at 1.0 x 105 cells/cm2 

in 25 cm2 plastic flasks in the same serum-free 380 mOsm DMEM for 2 – 24 h to 

allow for cell attachment.  

For long-term culture of primary bovine chondrocytes, cells were isolated as 

described above and following the third wash, chondrocytes were resuspended 

in ‘complemented’ DMEM (380 mOsm/kg:H2O; 10% FCS, 50 µg/ml ascorbic acid, 

50 U/ml Penicillin, 50 µg/ml Streptomycin; pH 7.4; Kerrigan et al., 2008). Media 

was replaced when required and chondrocytes were subcultured up to passage 3 

(P3; 21 days). Briefly, supplemented media was removed and chondrocytes were 

lifted from the plastic using Trypsin-EDTA 0.05%. The suspension was diluted 

1:2.5 in DMEM (380 mOsm) prior to washing by centrifugation (3x). 

Subsequently, cells were seeded as described above in plastic flasks with 

various sizes (depending on the experimental needs).  

2.2.4 Application of single impact to bovine articular cartilage explants. 

A vertical drop tower was used to deliver single blunt impact to individual 

cartilage explants under aseptic conditions. The impacting weight and the base 

were made of hard nylon with smoothly polished surface as previously described 

(Bush et al., 2005). The individual cartilage explants were carefully positioned 

with the synovial surface uppermost, and exposed to single blunt impact with a 

weight of 137 g dropped from a height of 10 cm, equivalent to 1.14 N, 6.47 kPa 

(assuming linear acceleration). Multiple impacts occurred rarely, and these 
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explants were discarded. The cartilage pieces were then removed from the drop 

tower and returned to the 10 cm2 dishes for 6 h when the chondrocytes were 

incubated for 30 min with Calcein-AM and visualised under confocal laser 

scanning microscopy (CLSM). Human knee forces are approximately 12.0 kPa, 

significantly higher than the ones used here (Matthews et al., 1977), but it has to 

be noted that the articular cartilage explant did not have the support of the 

underlining bone, or the protection of the synovial fluid available in vivo. 

Therefore, the impact tower was used for injuring the cartilage and not as a 

model of forces found in vivo. 

Explants of bovine articular cartilage were incubated for 30 min with or without 

melanocortin peptides α-MSH and D[TRP]8-γ-MSH (3.0 µg/ml) prior to single 

impact and then incubated for 6 h. Explants were then incubated with the 

fluorescent indicators Calcein-AM (5.0 µM) and Propidium Iodide (1.0 µM) 

permitting the measurement of cell viability using CLSM. 

Cell viability of in situ chondrocytes was investigated by CLSM and cytokine 

release (IL-1β, IL-6, IL-8, MCP-1) from cartilage explants by ELISA. Tissue was 

viewed by placing the cartilage piece in a new dry dish and viewing 

perpendicularly to the articular (synovial) surface. A small amount of 

cyanoacrylate glue was applied to a small corner of the explant, at a distant point 

of that to be viewed and PBS was added.  
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2.2.5 Confocal Microscopy.  

2.2.5.1 Confocal Microscopy Imaging. 

Images were taken using an upright Leica TCS NT CLSM (Leica Microsystems, 

Milton Keynes, UK) and Leica Software. The following parameters were adopted 

for the acquisition of the images (Kerrigan and Hall, 2005). 

 

• Grey resolution of 8 bit 

• Pinhole: 1.00 airy unit, matched to the diameter of objective used 

• Beam splitter 488/543/633 

• Laser speed 400 Hz 

• Dipping lens HCX APO L U-V-1 63.0x 90 W 

 

During the incubation of cartilage explants with Calcein-AM and PI, the molecules 

diffused through the matrix into the cells.  

Calcein-AM is non-fluorescent when outside the cell. It is cell membrane 

permeable and once in the cell, the molecule undergoes enzymatic cleavage by 

intracellular esterase’s, a process, which releases the fluorophore – Calcein. It is 

comparatively membrane impermeable and therefore is trapped within the cells. 

After excitation of the dye with a 488 nm argon laser (emission at 525 nm), 

Calcein fluoresced, providing useful indication of cytoplasmic space in the living 

cells. Propidium Iodide (PI) is membrane impermeable and only when bound to 

nucleic acids, it fluoresced red (excitation at 525 – 535 nm and emission = 650 – 

670 nm), therefore indicating the presence of dead cells. When cartilage was 

impacted, it was possible to observe cell death, as dying cells lost their green 

fluorescence rapidly as it leaked out of cell membranes upon impact. Instead, 

they fluoresced red, as the PI entered the cell through the leaky membrane and 

bound to the nucleic acids.  

Chondrocytes in cartilage explants were viewed by an upright Leica TCS SP2 

CLSM (Leica Microsystems, Milton Keynes, UK) with low power magnification of 

x10 air objective lenses for cell viability measurements. Laser power and detector 

sensitivity were adjusted to provide optimal image quality, preventing dye 
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bleaching (Bush and Hall, 2001a,b). Scanning speed was 0.6 Hz with double 

frame integration, double line averaging for 1024x1024 pixel image.  

2.2.5.2 Image analysis.  

Confocal microscopy collects a series of planar images comprised of voxels (3D 

pixels). Each voxel contains information about its relative position and intensity. 

To be able to correctly portray a cell, it was essential to ascertain the correct 

boundaries of each individual cell. Images of chondrocytes loaded with Calcein-

AM showed strong homogenous fluorescence that differed tremendously from 

the emission of the surrounding matrix/DMEM media, which shows negligible 

fluorescence under the conditions used for this thesis.  

In order to determine cell viability prior to and post impact, CLSM data were 

imported into and analysed using Imaris 7.1.1 Spots feature. Based on the 

average diameter of viable cells (green) and “dead” cells (red), in the cartilage 

explant, spot analysis was used to calculate the total number of cells and the 

number of viable cells within the area of observation. For spots analysis, the 

optimum threshold for Calcein-AM and PI was calculated by selecting a smaller 

area with a known number of cells and different threshold values from 0 – 100% 

were applied in increments of 10 %. Using the resulted linear regression formula, 

the correct cell number was determined with a threshold percentage of 20 % for 

Calcein-AM-stained cells (viable cells) and 60 % for PI-stained cells (dead cells) 

as shown on Figure 2.2.  
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A B

CD

 
Figure 2.1 Schematic representation of 3D image reconstitution using Imaris 7.1.1.  

A series of images were taken using upright Leica CLSM along the z-axis of 

chondrocytes adherent to the surface of a plastic 10 cm2 culture dish (A). The images 

were imported in Imaris 7.1.1 and reconstituted (B) to give a 3D view of the observed 

cells (volume objects; C). Using the Surfaces visualization feature of the software, the 

correct cell boundaries above the background cut-off were identified by a computer-

generated representation of a specified grey value range in the data set. It creates an 

artificial solid object (D) in order to visualize the range of interest of the volume object.  
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Figure 2.2 Optimisation of spot analysis. 

Cartilage explants were stained with Calcein-AM (5.0 µM) and Propidium Iodide (1.0 µM) 

and imaged under CLSM. An area of visually countable cells (Panel B) was cropped 

from the 3D CLSM image (Panel A) and spot analysis was applied to the cropped 

section (Panel C) for both the viable (green) and non-viable (red) cells by altering the 

baseline threshold in 10 % increments from 0-100 %. Actual cell number was used to 

accurately choose the optimal threshold percentage for Calcein-AM and PI.  
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2.2.6 Cell-line and primary bovine chondrocyte stimulation. 

2.2.6.1 In vitro cell stimulation with various inflammogens. 

Primary bovine chondrocytes Po and C-20/A4 chondrocytes seeded in 96-well 

plates were stimulated with TNF-α (20.0 – 80.0 pg/ml), LPS (0.1 – 10.0 µg/ml), 

MSU crystals (0.1 – 10.0 µg/ml), H2O2 (0.01% - 1.0%). Both control and 

stimulated chondrocytes were incubated for various time periods, outlined in 

figure legends, in humidified incubator at 37ºC, 95% : 5% air : CO2. Cells were 

analysed for MTT reduction to assay cell viability and media collected for Griess 

nitrite accumulation assay and cytokine ELISAs (for detailed protocols, see: 

sections 2.3.4; 2.3.1 and 2.3.2 respectively).  

2.2.6.2 Chondrocyte drug treatment. 

2.2.6.2.1 In vitro melanocortin agonist treatment of human C-20/A4 and 
primary P0 bovine articular chondrocytes. 

C-20/A4 cell line or primary bovine P0 chondrocytes were seeded in 6- 24- or 96-

well plates and incubated for 24h at 37ºC in humidified incubator at 37ºC, 95% : 

5% air : CO2 to allow cell adhesion to the culture substrate. Culture medium was 

then replaced with serum-free DMEM medium and chondrocytes incubated in 

different conditions for various time points (outlined in the respective figure 

legends). Chondrocytes were treated with a panel of melanocortin peptides – α-

MSH, D[TRP]8-γ-MSH, PG901, PG911, or SHU9119 in a concentration range 

(0.1 – 30.0 µg/ml) for 2 – 24 h in serum-free DMEM ± TNF-α (60.0 pg/ml) for C-

20/A4 cells or for 6 h only (P0 bovine cells). The cells in the 24-well plates and 

96-well plates were analysed for MTT and cell-culture media were collected for 

cytokine ELISA experiments.  

In separate experiments, cells were treated with α-MSH, D[TRP]8-γ-MSH (3.0 

µg/ml) or SHU9119 (10.0 µg/ml) ± TNF-α (60.0 pg/ml) for 6 h. For protein 

expression and RNA extraction, cells were removed from the 6-well plates with a 

cell scraper and the respective experiment was performed as described in 

individual figure legends. The cells in the 24-well plates and 96-well plates were 
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analysed by MTT assay for cell viability, and cell-culture media were collected for 

cytokine ELISA experiments.  

Alternatively, cells were treated with α-MSH, D[TRP]8-γ-MSH (3.0 µg/ml) ± 

SHU9119 (10.0 µg/ml) + TNF-α (60.0 pg/ml) for 6 h and the media from 24-well 

plates were used for cytokine ELISA measurements. Cells plated in 6-well plates 

were used for RNA extraction.  

2.2.6.2.2 In vitro dexamethasone and Indomethacin treatment of human C-
20/A4 chondrocytes.  

To investigate the effect of classical anti-inflammatory drugs in this system, two 

widely used drugs were chosen dexamethasone (glucocorticoid) and 

Indomethacin (NSAID). Human C-20/A4 chondrocytes were pre-treated for 30 

min with 1.0 µM of either dexamethasone or indomethacin and then stimulated 

with TNF-α (60.0 pg/ml) for 0 – 24 h. Total RNA was extracted and reverse 

transcribed into cDNA. Conventional PCR was employed to investigate the 

transcription levels of IL6 and IL8 at time point 6 h. From the same experimental 

set-up, cell-free supernatants were collected at time points 0, 2, 4, 6 and 24 h 

and analysed for IL-6 and IL-8 protein release via commercially available 

ELISAs.  

2.2.6.2.3  In situ cartilage explants treatment with melanocortin peptides 
and dexamethasone.  

Cartilage explants were obtained as explained earlier (Section 2.2.3) and treated 

with PBS, dexamethasone (1.0 µM) or melanocortin peptides – α-MSH/D[TRP]8-

γ-MSH (3.0 µg/ml) for 6 h prior to confocal microscopy for evaluation of their 

effect on chondrocyte viability. From the same experimental set-up, cell free 

supernatants were collected to evaluate basal release of IL-1β, IL-6 and IL-8 and 

to compare that to the effect of the abovementioned agents.  

Alternatively, in order to evaluate and compare the protective properties of the 

melanocortin peptides and steroids on mechanically injured cartilage explants, 

the cartilage pieces were incubated for 30 min with PBS (control), 

dexamethasone (1.0 µM) or melanocortin peptides – α-MSH/D[TRP]8-γ-MSH (3.0 



 

 
 
 

99 

µg/ml) for 30 mins prior to cartilage impact (using drop tower as explained in 

section 2.2.4). The cartilage explants were then returned to their vials 

immediately, whereby they were incubated for additional 6 h at 37ºC prior to 

confocal microscopy visualization for identification of the effect of the treatments 

on cell death and changes in chondrocyte morphology. Cell-free supernatants 

were collected at that time-point in order to evaluate: 1.) the effect of mechanical 

trauma on pro-inflammatory cytokine production by the injured chondrocytes, and 

2.) the therapeutic, anti-inflammatory effect of dexamethasone, α-MSH and 

D[TRP]8-γ-MSH on chondrocytes following mechanical trauma.  

2.2.7 mRNA and protein analysis 

2.2.7.1 RNA purification and quantification. 

Total RNA was extracted from primary and cell-line chondrocytes using the 

commercially available NucleoSpin® RNA II Kit. Cell culture medium was 

aspirated and the cells washed with PBS, prior to trypsinizing them using 0.05 % 

Trypsin. Cell suspension was centrifuged at 3000 rpm for 5 min and 

subsequently lysed by incubation of the cell pellet with 350 µl buffer RA1 

(containing 3.5 µl β-ME), which contains large amounts of chaotropic ions, 

therefore immediately inactivating RNases, creating appropriate binding 

conditions favoring adsorption of RNA to the silica membrane. The viscosity of 

the lysate was reduced by centrifugation at 13,000 rpm for 1 min. RNA binding 

conditions were adjusted by the addition of 350 µl of 70 % EtOH to the filtrated 

lysate and mixed by vortexing (2 x 5 s). The mixture was then loaded onto a 

NucleoSpin RNA II Column and RNA bound to the silica membrane by 

centrifuging the lysate at 13,000 rpm for 1 min. 350 µl Membrane Desalting 

Buffer were applied to the membrane and centrifuged at 13,000 rpm for 1 min, 

improving the efficacy prior to rDNase digestion by salt removal.  

Contaminating DNA bound to the silica membrane, was removed by rDNase 

solution, directly applied to the membrane during the preparation and incubated 

at room temperature for 15 min. The sample was washed with buffer RA2 to 

inactivate the rDNase and subsequently washed twice with buffer RA3. Pure 

RNA was finally eluted under low ionic strength conditions with RNase-free H2O.  
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The concentration of samples was then determined by measuring the 

absorbance at A230, A260 and A280 using NanoDrop® ND-1000 UV-Vis 

Spectrophotometer, which enables highly accurate analyses of extremely small 

samples with remarkable reproducibility. Readings were deemed significant if 

A260 ≥ 0.1 (1 absorbance unit at 260 nm corresponds to 40.0 µg/ml RNA). The 

A260/A280 and the A260/A230 ratios provided an estimate of the purity of the RNA, 

which was considered uncontaminated if both absorbance ratios were in the 

range of 1.9 – 2.1.  

2.2.7.2 Complementary DNA (cDNA) synthesis. 

cDNA was synthesized by mixing 1.0 µg of DNase-treated total RNA, PolyT and 

Random Primers in a total volume of 20.0 µl (Promega) using the ImpromII 

Reverse Transcription System. Briefly, RNA and the oligonucleotides were 

incubated at 70˚C for 5 min to allow denaturation of RNA secondary structures 

and primers were hybridized to the RNA by cooling the samples to 4ºC for 5 min. 

Reaction buffer, MgCl2, dNTPs and Reverse Transcriptase (RT) were then added 

and incubated at 42ºC for ≥ 1 h and the RT was heat inactivated at 70ºC for 15 

min. 
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2.2.7.3 Polymerase Chain Reaction (PCR). 

Polymerase chain reaction (PCR) is a method used to amplify a specific DNA 

sequence in vitro by repeated cycles of synthesis with specific primers and 

thermostable DNA polymerase (Saiki et al., 1988). Specific primers are 

complementary to sequences that lie on opposite strands of the template DNA 

and flank the segment of DNA to be amplified. Template DNA was first denatured 

by heating the reaction to 95ºC in the presence of a large molar excess of each 

of the two primers and dNTPs. The reaction mixture was cooled to allow the 

primers to anneal to their target sequences, and subsequently the annealed 

primers extended at 72ºC by Taq DNA polymerase.  

Primer sequences for each gene, together with their specific Tm and the resulting 

fragment size are outlined in Table 2.9. Synthetic oligonucleotides were 

purchased from MWG Biotech AG, Ebersberg, Germany. Cycles of denaturation, 

annealing, and DNA synthesis were repeated 25 times as outlined below (Table 

2.10). The PCR with Taq polymerase was used for gene screening procedures, 

where the expression of key genes was checked with specific primers. 

GoTaq®Green Master Mix (Promega) and cDNA amplification performed with 

annealing temperature set to be equal to that of the primer with lower Tm.  
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Table. 2.9 Oligonucleotides used in this study. 

Name 
Nucleotide Sequence 

5’-3’ 

Length 

[bp] 

Tm 

[Cº] 

Fragment 

Size [bp] 

β-actin_FWD GTC CCG GCA TGT GCA A 16 54.3 
550 

β-actin_REV AGG ATG TTC ATG AGG TAG T  19 52.4 

MC1R_FWD GCT GGA CAA TGT CAT TGA CG 20 57.3 
497 

MC1R_REV AGT TCT TGA AGA TGC AGC C  19 54.5 

MC3R_FWD GTC TTT CCT GTG AGC AGC A  19 56.7 
820 

MC3R_REV CCA GCA GAA GAT GAA CAC  18 53.7 

MC5R_FWD GCC ATC ACG CCG GCA TC 17 58.7 
340 

MC5R_REV GAG ACA TGA AGC GAG AGC 18 71.6 

GAPD_FWD_BOV AGA ACG GGA AGC TTG TCA TC 20 57.0 
743 

GAPD_REV_BOV TGA GCT TGA CAA AGT GGT CGT 21 58.0 

MC1R_FWD_BOV CCA CCC TCC CCT TCA CCC TGG 21 67.6 
301 

MC1R_REV_BOV CAT TGT CCA GCT GCT GCA CCA CG 23 66.0 

MC5R_FWD_BOV GTC CAG AAT GCA TCC TCA CTA TGT 
GAG G 28 66.6 

642 
MC5R_REV_BOV CAG GGT GAT GGC GCC CTT CAC G 22 68.0 

IL6_FWD CTC AGC CCT GAG AAA GGA GA 20 59.4 
450 

IL6_REV TGC AGG AAC TCC TTA AAG CTG 21 57.9 

IL8_FWD ATG ACT TCC AAG CTG GCC GTG 
GCT 

24 66.1 

299 
IL8_REV TTA TGA ATT CTC AGC CCT CTT CAA 

AAA 
27 58.9 

MMP1_FWD CGA CTC TAG AAA CAG AAG AGC 
AAG A 

25 61.3 

786 
MMP1_REV AAG GTT AGC TTA CTG TCA CAC ACG 

CTT 
27 63.4 

MMP3_FWD GGA AAT CAG TTC TGG GCT ATA 
CGA GG 

26 64.8 

301 
MMP3_REV CCA ACT GCG AAG ATC CAC TGA 

AGA AG 
26 64.8 
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MMP9_FWD TGT ACG GAC CCG AAG C 16 54.3 
322 

MMP9_REV CCG TCC TTA TCG TAG TCA G 19 56.7 

MMP13_FWD GTG GTG TGG GAA GTA TCA TCA 21 57.9  
330 MMP13_REV GCA TCT GGA GTA ACC GTA TTG 17 57.9 

COL1A1-FWD ACA TGC CGA GAC TTG AGA CTC A 22 60.3 
86 COL1A1-REV CGA TCC ATA GTA CAT CCT TGG TTA 

GG 
26 62.2 

COL2A1-FWD AGC AGG TTC ACA TAT ACC GTT CTG 24 60.6 
73 

COL2A1-REV CGA TCA TAG TCT TGC CCC ACT T 22 59.9 

 
 
 
Table 2.10. Master mix and program for PCR with Taq polymerase. 
 

 

 

 

 

 

Component Volume 
(µl) 

Final 
Conc. 

 

PCR Step Time 
(min) T (ºC) 

GoTaq Green 
Mastermix, 2x 
 

12.5 1x Initial 
denaturation 5:00 

 
95 

Forward Primer, 
10 µM 
 

2.0 1 µM 
Denaturation  

 
1:00 

 
95 

Reverse Primer, 
10 µM 
 

2.0 1 µM 
Annealing 

 
1:30 

 
55-59 

cDNA Template 
 

2.0   <250 ng Elongation 1:30 72 

Nuclease-Free 
H2O 
 

6.5 N/A Final 
Elongation  

10:00 72 

Final Volume 25 N/A Soak ∞ 4 
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2.2.7.4 DNA separation by agarose electrophoresis.  

Linear double-stranded DNA-fragments were separated by an electric field due to 

the fact that the migration of DNA varies as the reciprocal of the logarithm of the 

base-pairs number (Meyers et al., 1976). Upon addition of ethidium bromide, 

which is intercalated into GC–pairs, DNA becomes fluorescent and can be 

visualized under UV-light. Agarose gels (2.0 %) were prepared in TBE buffer (40 

mM Tris-acetate, 1.3 mM EDTA–Na, 0.47 mM CH3COOH). Agarose gels (2 %) 

were prepared in TBE–buffer and DNA samples loaded onto the gel together with 

positive (β–actin) and negative controls and separated at 80–150 V. DNA 

fragments’ size was determined by comparing to a DirectLoad™Step Ladder 50 

bp (Sigma-Aldrich, Poole, Dorset, UK), suitable to estimate the size of DNA 

fragments in the range of 50–3000 bp. After electrophoresis the gel was stained 

in ethidium bromide (10.0 µg/ml) in TBE-buffer for 5-15 min. and visualized under 

UV light 

2.2.7.5 Protein extraction. 

There are two broad categories for complementary analytical applications of 

extracted proteins: identification and quantification studies and functional studies, 

including enzymatic assays and binding studies. Here, quantification studies 

have been carried out in order to determine the amount of proteins following 

stimulation of chondrocytes with various agents. Quantity determination is based 

on protein sequencing or antibody binding and does not require preservation of 

secondary, tertiary and quaternary structures.  

Following stimulation of C-20/A4 cells with various stimuli (detailed explanation in 

2.2.6.2) cell supernatants were removed and 0.5 ml of hot lysis buffer (10% v/v 

glycerol, 62.5 mM Tris–HCl – pH 6.8, 2% SDS, 100 mM DTT; 65º C) was added 

to each well. Cells were removed by scraping them off the plate using a cell 

scraper and lysate was collected and passed through a 25 gauge needle in order 

to disrupt the cell membranes. This method denatures the proteins by 

solubilisation with the anionic detergent Sodium Dodecyl Sulphate (SDS). Protein 

extracts were separated on SDS–PAGE followed by Western Blotting. 



 

 
 
 

105 

Concentrations of the protein extracts were determined at A280 using NanoDrop® 

ND-1000 UV-Vis Spectrophotometer. Briefly, the spectrophotometer was blanked 

with 2 µl Hot Lysis Buffer and 2.0 µl of each of the protein samples applied and 

the concentration and purity measured.  

2.2.7.6 Sodium Dodecyl Sulphate – Polyacryl Amide Gel electrophoresis: 
SDS-PAGE.  

SDS binds to proteins with a constant ratio of 1.4:1 (µg/µg) and thereby confers 

negative charges to the proteins, which increases proportionally to size and leads 

to linearization of the protein. Depending on the size of the molecules to be 

separated, electrophoresis is usually performed using either agarose (large 

molecules) or polyacrylamide (small molecules) gels. PAGE gels are generated 

by radical polymerization of acryl amide (AA) and bis–acryl amide (BA) catalysed 

by radicals set free from ammonium persulphate. 

A discontinuous electrophoretic gel/buffer system was employed using the 

electrophoresis apparatus Novex® Minicell (Invitrogen, Paisley) for SDS–PAGE. 

Readymade NuPAGE® 10 % Bis–Tris gels of 1.0 mm x 10 wells were used. 

Protein samples (40 µg/lane) were mixed 1:4 in NuPAGE® Novex LDS Sample 

Buffer (4x; Invitrogen, Paisley; containing 4.0 % v/v β–ME), boiled for 5 mins at 

100°C and loaded onto the NuPAGE® 10.0 % Bis–Tris gels. Full Range Rainbow 

Molecular Weight Marker (Invitrogen, Paisley) was used as a molecular weight 

marker. The upper buffer electrophoresis chamber was filled with 200 ml of 1x 

NuPAGE® Novex MOPS SDS Running buffer (20x; Invitrogen, Paisley) and the 

electrophoresis run at 200 V (constant), 100 mA/gel for 30 mins until the tracking 

dye reached the bottom of the separating gel.). The gel was washed three times 

with ddH2O and then incubated for 30 mins in GelCode Blue Stain Reagent to 

visualize proteins.  

2.2.7.7 Western Blot. 

Following electrophoresis by SDS–PAGE, proteins were electrotransferred to 

0.45 microns Hybond™–C Extra nitrocellulose membrane (Amersham 

Biosciences UK Ltd., Buck). The electroblotting was performed using 1 x diluted 



 

 
 
 

106 

NuPAGE® Novex Transfer buffer (20x; Invitrogen, Paisley) with added 10.0% v/v 

CH3OH in an XCell II™ Blot Module (Invitrogen, Paisley).  

Following electrotransfer, protein migration onto the membrane was checked 

using Ponseau S Staining Solution (0.1% w/v Ponseau S, 5.0 % v/v CH3COOH). 

This is a rapid and reversible staining method for locating protein bands on 

Western blots. 

The membrane was then blocked for ≥30 mins at room temperature with 10 ml of 

5 % w/v skimmed milk in TBST buffer (block solution) block solution (1% v/v 1.0 

M Tris–HCL pH 8.0, 3.0 % 5.0 M NaCl, 0.5% v/v Tween–20 in ddH2O). 

Subsequently, the membrane was washed 3 x 5 mins in TBST buffer and 

incubated for 1.5 h at room temperature (or overnight at 4°C) with specific to the 

protein of interest primary antibody as detailed below (Table 2.11) in milk–TBST 

solution.  The unbound antibody was then removed by washing the membrane 3 

x 5 mins in TBST solution at room temperature. The membrane was then 

incubated with milk–TBST solution containing secondary antibody (polyclonal 

goat anti–mouse Immunoglobulins/HRP, polyclonal goat anti–rabbit 

Immunoglobulins/HRP) at a dilution 1:2000 v/v at room temperature for ≥ 45 mins 

(Table 11). Following incubation the membrane was washed in TBST for 3 x 5 

mins at room temperature.  

Proteins were then visualized using a chemiluminescent detection method to 

detect peroxide labelled secondary antibody using Pierce® ECL Western Blotting 

Substrate, according to manufacturer instructions. Briefly, Pierce® ECL Western 

Blotting Substrate (1:1 Pierce® ECL Reagent 1: Pierce® ECL Reagent 2) was 

directly applied to the membrane and incubated at room temperature for 5 min, 

after which the membrane was dried and positioned in a film–developing 

Hypercassette™ (Amersham Pharmacia Biotech, Buckinghamshire, UK). In a 

dark room, the membrane was exposed to FUJI Medical X–Ray film for 1–2 sec 

at room temperature. The film was subsequently developed by incubation for 3 

mins in KODAK GBX developer/replenisher solution (Sigma–Aldrich, Poole), 

subsequent washing in ddH2O and then fixation in KODAK GBX fixer/replenisher 

solution (Sigma–Aldrich, Poole). Densitometric analysis was performed on the 

detected bands using image J analysis software. 
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Table 2.11 Immuno-blotting antibodies: dilutions and conditions. 
 
Primary 

Antibody 
Dilution Conditions Secondary Antibody Dilution 

α-tubulin 

1:2000 

1h at RT Goat anti-mouse HRP-conjugated IgG 

1:2000 
MC1 18 h at 4 °C 

Goat anti-rabbit HRP-conjugated IgG MC3 18 h at 4 °C 

HO-1 18 h at 4 °C 

Cleaved 

Caspase-

3 
1:2000 18 h at 4 °C Goat anti-rabbit HRP-conjugated IgG 1:2000 

 

 

In most instances, the membranes were re-probed for the detection of other 

proteins or secondary proteins such as the standard housekeeping protein α-

tubulin. This was achieved by stripping bound antibodies on the nitrocellulose 

membrane with the commercially available Pierce Restore PLUS Western Blot 

Stripping Buffer (Thermo Fisher Scientific Inc.) at room temperature for 15 min at 

37ºC for high affinity antibodies. The membranes were then washed in TBST 3 x 

5 min and subsequently blocked in 5 % milk blocking solution for 30 mins at room 

temperature prior to immuno-blotting. Sufficient removal of antibodies was 

ensured by incubating the stripped membranes with Pierce® ECL Western 

Blotting Substrate and consequently exposing them to films.  

 

2.3 Biochemical and analytical methods. 

2.3.1 Griess nitrite accumulation assay. 

Griess reaction assay (Bartholomew, 1984) is a colorimetric method for 

determination of iNOS activity in cells following stimulation, it essentially identifies 

nitrite accumulation within cell culture medium. The assay is based on a chemical 

reaction utilising sulphanilamide and N–1–napthylethylenediamine (NED) under 

acidic condition (H2PO4), whereby nitrite interacts with sulphanilamide in a 

diazotization reaction forming a diazonium species. Following this the diazonium 

species binds to NED to form a purple azo compound that can be detected 
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spectrophotometrically at the dual wavelength of 560 nm and 630 nm, Thereby, 

provides an indication of nitrite presence in the culture medium. 

Cell-free culture supernatants (100 µl) were collected from the experimental plate 

and transferred to a 96 well plate before an equal volume of Griess reagent (1:1 

mixture of 1.0 % w/v sulphanilamide in 5.0 % aqueous H2PO4 and 0.1 % w/v 

aqueous NED) was added to each well. The plate was incubated for 10 min at 

room temperature for colour development. Following incubation the absorbance 

of the samples was measured at wavelength of A540 nm.  

Quantification of NO2
- levels was achieved by comparing the experimental results 

to a calibration curve. Only standard curves (0 – 1000 µM sodium nitrite in 

complete medium) with correlation coefficient R2 ≥ 0.98 were used to analyze 

experimental data, as to ascertain that the fitted model explains at least 98 % of 

the variation in the response variable x (Figure 2.3). 
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Figure 2.3 Example of a typical Griess nitrite accumulation assay standard curve.  

Absorbance values for each sample were measured at 540 nm and nitrite accumulations 

determined from the standard curve using excel software. 
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2.3.2 Cytokine ELISA.  

C-20/A4 and primary chondrocytes were treated at different concentrations with a 

panel of pro–inflammatory stimuli as describe in section 2.2.6.2. Cell-free 

supernatants were analysed for pro-inflammatory cytokines (IL–1β, IL–6, IL–8, 

IL–10 MCP–1). The method of cytokine detection was performed using 

commercially available ELISA kits (R&D Systems). Firstly, a 100 µl capture 

antibody specific to the analyte of interest was bound to a 96–well plate overnight 

in order to create a solid phase. Excess, unbound antibodies were washed off 

with Wash Buffer and incubated with 300 µl blocking reagent (1% BSA dissolved 

in PBS) in order to reduce any unspecific binding. The plate was further washed 

prior to the addition of 100 µl standards, controls and samples were incubated for 

2 h to allow the analyte to bind to the capture antibody, any unbound analyte was 

removed by washing. A detection antibody (100 µl) was then added that binds to 

a different epitope and incubated for 2 h. Unbound detection antibody was 

removed by washing and 100 µl Streptavidin–HRP added for 20 mins. The plate 

was then washed and 100 µl of substrate solution TMB/H2O2 added and 

incubated for 20 mins. Colour development occurred over this period and was 

proportional to the amount of bound analyte. The colour development was 

stopped with the addition of 2N H2SO4 and intensity of the colour measured at 

A450 nm with wavelength correction. Quantification of cytokine levels was 

achieved by comparing the experimental results to a standard curve (Figure 2.4).  
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Figure 2.4 Represntative ELISA calibration curves generated using IL-1β  (A), IL-6 

(B), IL-8 (C), MCP-1 (D) and IL-10 (E).  

The standard curves were calculated using a computer-generated 4-PL curve fit. Only 

standard curves with correlation coefficient R ≥ 0.98 were used to analyse experimental 

data, as to ascertain that the fitted model explains at least 98 % of the variation in the 

response variable x.  
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2.3.3 Cyclic AMP (cAMP) detection assay. 

In functional studies, the alteration of Gi- and Gs-coupled GPCRs is normally 

examined by detecting the concentration of cAMP. cAMP is the intracellular 

signalling molecule 3’–5’–cyclic adenosine monophosphate. It modulates 

intracellular processes by binding to the regulatory units of different protein 

kinases, thus activating their catalytic subunits. That causes initiation of protein 

phosphorylation, an event that alters the functionality of the targeted enzymes 

and/or transcription factors. cAMP is formed by a chemical reaction catalysed by 

adenylate cyclase, which converts ATP to cAMP and inorganic phosphate and is 

triggered or inhibited as a result of direct interaction with G-protein α–subunits. 

Gs and Gi–coupled GPCR activation/inhibition with various agonist or 

antagonists would therefore result in increase or inhibition of cAMP production, 

which can be detected using the cAMP assay.  

In order to determine if the melanocortin agonists are able to cause cAMP 

accumulation within chondrocytes, cAMP Biotrak EIA system was used. Human 

chondrocytic cells C-20/A4 were re–suspended to 1.0 x 105 cells/ml and plated in 

96–well plates overnight to allow adherence. Medium was then replaced with 1.0 

µM IBMX (90.0 µL), and cells then incubated for 30 mins with media, 

melanocortin peptides or Forskolin (3.0 µM). The media was removed and 100 µl 

lysis buffer 1B was added to each well, the plate was then placed on a plate 

shaker for 10 mins to allow for lysis. The lysate standards (0–3200 fmol), 

substrate blank (B), non–specific c binding (NSB) and samples (100 µl each) 

were then prepared and added to the plate. Antiserum was added to each well 

except the NSB and blank wells and incubated at 3 – 5°C for exactly 2 h. Then 

50.0 µl cAMP –peroxidase conjugate was added to all wells except the blank and 

incubated at 3 – 5 ºC for 1 h. Plate was then washed with wash buffer and 150 µl 

of enzyme substrate was added into all wells, and the plate incubated for 30 mins 

at room temperature. The colorimetric reaction was then stopped by adding 100 

µl Stop 1.0 M H2SO4 into each well and mixing. The OD was determined at A450 

cAMP accumulation levels were then calculated by comparing the experimental 

results to a standard curve (Figure 2.5).  
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Figure 2.5 Representative Calibration Curve for cAMP accumulation.  

The graph was generated by plotting the percentage B/Bo as a function of the log cAMP 

concentration. 

 

 

2.3.4 MTT cell proliferation assay. 

MTT cell proliferation assay measures mitochondrial function as an indication of 

cell viability (Mosmann, 1983). The assay is often used to determine the 

cytotoxicity of potential medicinal agents and toxic materials, since those would 

stimulate or inhibit cell viability and growth. The principle of this assay is to 

assess the ability of mitochondrial succinate dehydrogenase for metabolizing the 

yellow soluble form of MTT (3-(4,5-Dimethyl–2–thiazolyl)–2,5–diphenyl–2H–

tetrazolium bromide, a yellow tetrazole) by reducing it to purple insoluble 

formazan in living cells (Figure 2.6) (Mosmann, 1983). The amount of formazan 

produced is directly proportional to the number of active cells and thus can be 

measured spectrophotometrically to quantify the formazan product.  

Briefly, chondrocytes were treated with or without pro–inflammatory stimuli ± a 

range of melanocortin peptides/ anti–inflammatory drugs for 1 – 72h, supernatant 

collected and removed. Fresh media containing MTT Stock Solution (5.0 µg/ml; 
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10X) was added to each well and cells incubated for 2 h at 37ºC. MTT solution 

was then discarded and the resulting formazan deposits were dissolved in DMSO 

for 15 min prior to absorbance measurement at A570 and A630. Samples containing 

only DMEM + C-20/A4 chondrocytes represented 100 % viability (positive 

control), whereas 0 % was represented from DMEM without cells (negative 

control). 

 

 
Figure 2.6 General reaction scheme for the reduction of MTT to formazan by 

mitochondrial succinate dehydrogenase (Mosmann, 1983). 
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2.3.5 Caspase-Glo 3/7 apoptosis assay. 

The Caspase-Glo® 3/7 assay is a homogenous luminescent assay that 

measures caspase-3 and caspase-7 activities. These caspases belong to a 

family of cysteine/aspartic acid-specific proteases, which plays key effector roles 

in mammalian cells apoptosis (Nicholson and Thornberry, 1997, Thornberry and 

Lazebnik, 1998, Garcia-Calvo et al., 1999).  

In order to detect cell apoptosis following various treatments of the cells, C-20/A4 

cells were plated at 2.0 x 104/well in 96-well plates with 100 µl of DMEM medium 

supplemented with 1 % Pen/Strep and incubated for 24 h to allow adherence. 

Cells were treated with various agents (pro-inflammatory stimuli ± relevant drug) 

for 6 h and caspase 3 and 7 activity was then evaluated according to the 

manufacturer’s protocol (Promega).  

100 µl of Caspase-Glo 3/7 Reagent was added negative control cells or treated 

cells in DMEM medium. The blank reaction was used to measure background 

luminescence associated with the C20/A4 cell culture system and the Caspace-

Glo reagent. The negative control reactions were prepared in order to detect and 

record basal levels of caspase activity in the C-20/A4 cell culture system.  

Content was mixed gently on a plate shaker at 300-500 rpm for 30 sec and left at 

room temperature to incubate for 1 h, following which luminescence was 

measured using plate-reading luminometer.  

 
2.4 Data analysis and statistics. 

For both in vitro and in situ studies, experiments were performed in triplicates 

unless stated otherwise in the individual figure legends. Bovine articular 

chondrocytes were extracted and pooled together from 3 – 4 animal joints per 

experiment (N=3/4) and performed also in triplicate. Data are reported as mean ± 

standard error of the mean (SEM) unless otherwise stated. Significant differences 

were determined by One-way/Two-way analysis of variance (ANOVA), followed 

by Dunnet’s post-test, or Bonferroni’s multiple comparison tests as appropriate 

using GraphPad Prism 5.0, (GraphPad Software, CA, USA). Values of p≤ 0.05 

were considered significant, where p≤ 0.05 (*), p≤ 0.01 (**) and p≤ 0.001 (***).  
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3.1 Effect of pro-inflammatory stimuli on C-20/A4 
chondrocyte function.  

It is increasingly appreciated that mediators typically associated with 

inflammatory arthritis, such as catabolic cytokines and nitric oxide are produced 

by chondrocytes in OA. The role these mediators play in the progression of 

cartilage degradation during OA is an area of intense investigation.  

In this thesis, I have evaluated whether human C-20/A4 chondrocytes might be 

used as a surrogate model for evaluating the effect of anti-inflammatory drugs 

including the effect of melanocortin peptides on inflammatory mediator release 

from activated chondrocytes. I have investigated the cells response to 

inflammatory stimuli (TNF-α, LPS, Zymosan, H2O2 and MSU crystals) on 

synthesizing and releasing pro-inflammatory mediators, such as nitric oxide and 

various catabolic cytokines and chemokines including IL-1β, IL-6, IL-8 and MCP-

1.  

3.1.1 Effect of TNF-α, LPS, H2O2 and MSU crystals on nitrite 

concentration and cell viability.  

Initially, it was investigated whether a panel of stimuli (TNF-α, LPS, Zymosan, 

H2O2 and MSU crystals) were able to cause activation of the iNOS gene and this 

was determined by measuring the release of nitrate from stimulated 

chondrocytes. Nitric oxide is an important signalling molecule that acts in many 

tissues to regulate a diverse range of physiological processes. Cytotoxicity as a 

result of a substantial NO-formation is an established apoptosis initiating factor 

(Brune et al., 1999). Following stimulation, chondrocyte viability was assessed by 

MTT assay to ascertain the effect of the inflammatory stimuli on this parameter.   

C-20/A4 chondrocytes were plated in monolayer in DMEM media (50.0 U/ml 

Penicillin, 50.0 µg/ml Streptomycin) for 24 h prior to stimulation with TNF-α (20.0 

– 80.0 pg/ml), LPS (0.1 – 10.0 µg/ml), H2O2 (0.01 – 1.0 %) or MSU crystals (0.1 – 

1.0 µg/ml) for 6 h. Cell free supernatants were collected and analysed for nitrite 

release by Griess assay. In unstimulated cells there was a basal release of nitrite 

(1.227 ± 1.214 µM) and the effect of the inflammogens were compared to this 
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value. In initial experiments C-20/A4 chondrocytes were stimulated with high 

concentrations of H2O2 to determine whether C-20/A4 chondrocytes produce 

nitrite compared to unstimulated control cultures.  

H2O2 caused a concentration-dependent increase in NO release, where 0.01%, 

0.1% and 1.0% H2O2 led to 139.28 ± 6.24 µM, 175.67 ± 7.18 µM and 210.12 ± 

10.31 µM respectively (p≤ 0.001), thereby indicating that the chondrocytes can 

release substantial quantities of nitrite when stimulated (Figure 3.1 A). After 

validating the ability of C-20/A4 cells to respond to oxidative stress by activating 

iNOS, we tested the response of the chondrocytes to TNF-α, LPS and MSU 

crystals stimulation.  

 

Figure 3.1 B demonstrates the effect of TNF-α (20.0 – 80.0 pg/ml) on nitrite 

formation. Stimulation of the human cell-line chondrocytes led to a significant 

release of nitrite, whereby TNF-α (20.0 pg/ml) caused 19.18 ± 6.79 µM, which 

was not substantially altered upon increasing the concentrations, however, 

maximal release was observed at 80.0 pg/ml (20.86 ± 6.33 µM, p≤ 0.05 vs. 

control). Next, it was evaluated whether the observed effect was due to the 

particular stimulus being used; therefore nitrite release in the presence of LPS 

(0.1 – 10.0 µg/ml) was examined (Figure 3.1) and significant alterations were 

detected: 36.35 ± 7.95 µM, 30.35 ± 9.64 mM and 24.99 ± 7.21 µM for 1.0, 3.0 

and 10.0 µg/ml LPS respectively (p≤ 0.05 for all concentrations tested). 

Conversely, MSU crystals (30 – 1000 ng/ml) did not cause a significant increase 

in nitrite release compared to unstimulated controls (p> 0.05; Figure 3.1 D).  

Following identification of C-20/A4 chondrocytes capability to produce NO, cell 

viability was assessed by MTT assay in the presence of these stimuli, thereby 

confirming the cytotoxicity of the given stimulus in this cell-line model. To ensure 

that cell death could be measured in C-20/A4 chondrocytes, cells were 

stimulated with 0.01 %, 0.1 % and 1.0 % H2O2, which caused a concentration-

dependent decrease in cell viability with 82.25 ± 4.66 %, 87.14 ± 4.23 % and 

92.80 ± 1.29 % cell death respectively (p<0.001; Figure 3.2A). Similarly, TNF-α 

(20.0 – 80.0 pg/ml) caused a significant concentration-dependent decline in C-

20/A4 chondrocyte viability (Figure 3.2 B), where 20.0 pg/ml caused 16.14 % ± 
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4.09 % reduction in viability (p≤ 0.05). Analogous effects were noted following 

40.0 pg/ml (11.8 ± 3.4%, n.s.), whilst at higher concentrations (60.0 pg/ml) there 

was 27.58 ± 2.85% (p≤ 0.01) rate of cell death, which was slightly increased at 

80.0 pg/ml to 30.22 ± 1.18 % (p≤ 0.001) compared to untreated cells (Figure 3.2 

B). C-20/A4 chondrocytes were then stimulated with LPS, which caused a 23.29 

± 3.14 % (p≤ 0.001), 19.24 ± 2.83 % (p≤ 0.001) and 17.42 ± 3.23 % (p≤ 0.01) cell 

death at 1.0, 3.0, and 10.0 µg/ml concentrations respectively.  

MSU crystals (30 – 1000 ng/ml) did not alter cell viability of C-20/A4 

chondrocytes compared to unstimulated cells. This finding, combined with the 

observation that it did not induce nitrite release led to discontinuation of further 

use of this inflammogen (Figure 3.1 D, Figure 3.2 D).  
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Figure 3.1.  The effect of inflammatory stimuli on nitric oxide production from C-

20/A4 chondrocytes.  

C-20/A4 chondrocytes (1.5 x 105 cells/cm2) were plated in serum-free DMEM and 

stimulated with H2O2 (0.01 – 1.0 %; Panel A), TNF-α (20.0 – 80.0 pg/ml; Panel B), LPS 

(1.0 – 10.0 µg/ml; Panel C) or MSU crystals (0.1 – 1.0 µg/ml; Panel D) for 6 h. Cell-free 

supernatants were then collected and analysed for nitrite release via Griess assay. 

Dotted line represents basal release of nitrite (1.23 ± 1.21 µM). Data are presented as 

Mean ± SEM of n=9 experiments, assessed in triplicate.  *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001 

vs. untreated control cultures.  
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Figure 3.2.  The effect of inflammatory stimuli on C-20/A4 chondrocytes viability.  

C-20/A4 chondrocytes (1.5 x 105 cells/cm2) were plated in serum-free DMEM (280 and 

stimulated with H2O2 (0.01 – 1.0 %; Panel A), TNF-α (20.0 – 80.0 pg/ml; Panel B), LPS 

(1.0 – 10.0 µg/ml; Panel C) or MSU crystals (0.1 – 1.0 µg/ml; Panel D) for 6 h. Cell 

viability was then determined via MTT reduction assay. Dotted line represents control 

sample cell viability – untreated cells (100%). Data are presented as Mean ± SEM of n=9 

experiments, assessed in triplicate. *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001 vs. untreated control 

cultures.  
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3.1.2 Detection of pro-inflammatory cytokines release following 

stimulation of C-20/A4 chondrocytes with TNF-α and LPS.  

The importance of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6 IL-8 in 

the induction of catabolic processes in chondrocytes has been recognized 

(Pelletier et al., 1991, Shinmei et al., 1991, Lotz et al., 1992, Reboul et al., 1996, 

Melchiorri et al., 1998, Shlopov et al., 2000, Fernandes et al., 2002, Schuerwegh 

et al., 2003, Rai et al., 2008, Goldring et al., 2008). The major source of pro-

inflammatory cytokines in OA has been thought to be activated synovium or 

infiltrating inflammatory cells, however strong evidence exists that chondrocytes 

can also release these mediators and drive the inflammatory response within the 

joint (Goldring, 2000; Goldring et al., 2011). In order to investigate whether 

human C-20/A4 chondrocytes are capable of releasing pro-inflammatory 

cytokines, cells were stimulated with TNF-α and LPS and mRNA and protein 

levels of pro-inflammatory cytokines were determined.  

3.1.2.1 Effect of TNF-α and LPS on IL6 and IL8 mRNA expression in 

C20/A4 chondrocytes. 

In initial experiments, the effect of TNF-α (60.0 pg/ml) and LPS (1.0 µg/ml) was 

investigated on IL6 and IL8 mRNA expression levels following 0 – 48 h 

incubation periods. Total RNA was extracted from stimulated and non-stimulated 

cells and conventional RT-PCR amplification reactions with specific primers for 

IL6 and IL8 genes (Table 2.9) were used. Gene expression was visualized on 2 

% agarose gels, run in conjunction with β-actin (Figure 3.5 A).  RT-PCR showed 

that C-20/A4 chondrocyte respond to TNF-α (60.0 pg/ml), a concentration 

chosen from previous experiments to cause a sub-maximal rate of cell death and 

nitrite release, thereby substantially increasing IL6 and IL8 expression in time-

dependent manner (Figure 3.3 A). Maximal mRNA levels of IL6 and IL8 were 

detected 2 h post-stimulation gradually decreased in the period between 6 – 48 

h, as determined by densitometric analysis (Figure 3.3 B and C).  Incubation 

period of 6 h was chosen as suitable for subsequent experiments as it led to sub-

maximal release of IL6 and IL8, thereby allowing for the concentration dependent 

effect of TNF-α to be investigated. TNF-α (20.0 – 80.0 pg/ml) caused increases 
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in IL6 and IL8 with densitometric quantification showing a 53-fold increase in 

expression of IL6 peaking at 40.0 pg/ml  TNF-α (Figure 3.4 A), and a 9-fold 

increase in IL8 compared to control (Figure 3.4 B and C).  

In order to clarify the response of C-20/A4 chondrocytes to LPS, the effect of 

various concentrations on pro-inflammatory cytokine expression was 

investigated. LPS induced a concentration-dependent increase in the expression 

of IL6 and IL8 (Figure 3.4 C and D), whereby chondrocytes were notably 

activated following concentrations as low as 0.1 µg/ml, and reaching a 72-fold 

increase in IL6 and 13.5-fold increase in IL8 expression at 1.0 µg/ml compared to 

untreated controls (p≤ 0.001). Each value was normalized to the respective β-

actin expression. Shown are the means of four independent experiments. 
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Figure 3.3. Densitometric quantification of IL6 and IL8 expression in C-20/A4 

chondrocytes treated with TNF-α  (60.0 pg/ml) for 0-48 h.  

C-20/A4 chondrocytes were stimulated with TNF-α (60.0 pg/ml) at time 0 and total RNA 

extracted 0-48 h post-stimulation. PCR amplification with the respective primers for IL6 

and IL8 was used to detect and quantify gene expression on 2% agarose gels in 

triplicates with β-actin used as internal control (Panel A). Comparison of 

densitometrically quantified IL6 (Panel B) and IL8 (Panel C) shown in arbitrary units, 

each value normalized to the respective β-actin expression. Data are presented as Mean 

± SEM of four independent experiments *p≤0.05, **p≤0.01, ***p≤ 0.001). 
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Figure 3.4. Densitometric quantification of IL6 and IL8 expression in C-20/A4 cells 

treated with TNF-α  (20.0 – 80.0 pg/ml) and LPS (0.1 – 1.0 µg/ml) for 6 h.  

C-20/A4 chondrocytes were stimulated with TNF-α (20.0 – 80.0 pg/ml) and LPS (0.1 – 

1.0 µg/ml) at time 0 and total RNA extracted 6 h post stimulation. PCR amplification with 

the respective primers for IL6 and IL8 was used to detect and quantify gene expression 

on 2 % agarose gels in triplicates with β-actin used as internal control (Panel A). 

Comparison of densitometrically quantified IL6 (Panel B and C) and IL8 (Panel D and E) 

shown in arbitrary units, each value normalized to the respective β-actin expression. 

Data are presented as Mean ± SEM of four independent experiments *p≤0.05, **p≤0.01, 

***p≤ 0.001). 
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3.1.2.2 Effect of TNF-α and LPS on IL-6 and IL-8 cytokine release from 

C20/A4 chondrocytes. 

Following identification of TNF-α and LPS ability to induce IL6 and IL8 

expression in C-20/A4 chondrocytes, the effect of various concentrations of these 

stimuli over a time course was investigated, thereby confirming the genuine 

translation of IL6 and IL8 mRNA to protein. C-20/A4 chondrocytes were 

stimulated with TNF-α (20.0 – 80.0 pg/ml) and LPS (1.0 – 10.0 µg/ml) for 0, 2, 6 

and 24 h and cell-free supernatants were collected and analysed. Stimulation for 

2 h with TNF-α (20.0 – 80.0 pg/ml) resulted in well-defined bell-shaped curve 

effect in IL-6 release, peaking at 60.0 pg/ml (99.23 ± 13.81 pg/ml; p≤ 0.05) and 

decreasing thereafter with 80.0 pg/ml leading to 74.55 ± 17.89 pg/ml (p≤ 0.05; 

Figure 3.5 A). Lower concentrations of TNF-α failed to illicit significant IL-6 

release at this time-point as compared to control (DMEM treated cultures). 

Subsequently, a longer, 6 h incubation period was employed to investigate IL-6 

production from chondrocytes in response to TNF-α, with 20.0 pg/ml and 40.0 

pg/ml of TNF-α caused 45.52 ± 8.3 pg/ml and 59.64 ± 2.4 pg/ml of IL-6 

respectively (p≤ 0.05; Figure 3.5 B). As previously seen, maximal release 

following 2 h of stimulation was caused by 60.0 pg/ml of TNF-α with 117.1 ± 

26.09 pg/ml (p≤ 0.05), which slightly decreased following treatment with 80.0 

pg/ml TNF-α (84.31 ± 5.69 pg/ml; p≤ 0.05). Analogous effects were observed at 

24 h, when a bell-shaped release of IL-6 was detected with 20.0 pg/ml and 40.0 

pg/ml causing 52.79 ± 2.60 pg/ml and 63.30 ± 6.97 pg/ml of IL-6 respectively (p≤ 

0.05). Increasing the concentrations led to the detection of a maximal release of 

154.30 ± 10.32 pg/ml (p≤ 0.01) detected at 60.0 pg/ml, which decreased at 80.0 

pg/ml TNF-α (139.34 ± 11.48 pg/ml (p≤ 0.01; Figure 3.5 C).  

The effect of LPS (0.1 – 10.0 µg/ml) was subsequently determined and confirmed 

to cause a concentration-dependent increase in IL-6 at 2 h compared to 

untreated control cultures (Figure 3.5 D). Concentrations lower than 1.0 µg/ml did 

not cause statistically significant difference compared to control values (p≤ 0.05), 

but higher concentrations of LPS led to 73.467± 13.83 pg/ml, 176.85 ± 23.5 pg/ml 

and 152.34 ± 6.44 pg/ml of IL-6 production (p≤ 0.05) for 1.0, 3.0 and 10.0 µg/ml 

respectively. Similar observations were made when C-20/A4 chondrocytes were 
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treated with LPS for 6 h; however, here, in accordance with RT-PCR detected 

levels, 0.1 µg/ml and 0.3 µg/ml of LPS caused a significant increase in IL-6 

production, leading to 61.33 ± 7.11 pg/ml and 68.67 ± 10.33 pg/ml respectively 

(p≤ 0.05; Figure 3.5 E). At 24 h post-stimulation LPS (0.1 – 10.0 µg/ml), a 

maximal release of 134.93 ± 14.72 pg/ml of IL-6 was recorded following 

stimulation with LPS (3.0 µg/ml; p≤ 0.01; Figure 3.5 F) There was no significant 

difference between the potency of the various concentrations probably due to a 

plateau, which is reached at concentrations this high. 

Consequently the translation of IL-8 mRNA to protein was determined. C-20/A4 

chondrocytes were stimulated with TNF-α and LPS for 0, 2, 6 and 24 h and a 

bell-shaped response was recorded regardless of the time-point. The results, 

reported in Figure 3.6 A, demonstrated the lack of efficacy of low concentrations 

of TNF-α (20.0 and 40.0 pg/ml) at short incubation periods (2 h) in the 

chondrocyte system. However, 2 h-stimulation with 60.0 pg/ml and 80.0 pg/ml of 

TNF-α caused significant IL-8 production with 130.23 ± 9.5 pg/ml and 142.65 ± 

12.5 pg/ml respectively (p≤ 0.05), (Figure 3.6 A). These amounts were compared 

to basal levels of IL-8 synthesis (63.34 ± 5.32 pg/ml). TNF-α caused a bell-

shaped response in IL-8 production at 6 h post-simulation, peaking at 60.0 pg/ml 

(205.90 ± 27.1 pg/ml; p≤ 0.01), and slowly decreasing following stimulation with 

80.0 pg/ml of TNF-α (145.68 ± 4.72 pg/ml; p≤ 0.01; Figure 3.6B). In contrast to 

the effect at 20.0 and 40.0 pg/ml of TNF-α at 2h, these concentrations led to 

significant increase in IL-8 production following 6 h incubation (120.38 ± 3.67 

pg/ml and 131.8.41 pg/ml; p≤ 0.05; Figure 3.6 B) compared to control (72.65 ± 

7.34 pg/ml). Lastly, TNF-α effect at 24 h was determined with 20.0 and 40.0 pg/m 

leading to 348.57 ± 53.23 pg/ml and 391.36 ± 35.7 pg/ml of IL-8 respectively (p≤ 

0.01), compared to control (79.33 ± 15.65 pg/ml).  

LPS (0.1 – 10.0 µg/ml), being a bacterial lipopolysaccharide has been shown to 

cause joint and cartilage inflammation (Lotz et al., 1992). At all concentrations 

and time-points tested it caused a significant increase in IL-8 production. At 2 h, 

6 h and 24 h there was a concentration-dependent increase leading to a maximal 

release of IL-8 at 3.0 µg/ml with 189.5 ± 25.46 pg/ml, (p≤ 0.05), 243.53 ± 18.31 

pg/ml (p≤ 0.01) and 272.54 ± 10.29 pg/ml  (p≤ 0.01) respectively. All other 
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concentrations caused similarly significant amounts of IL-8, but were not different 

from one another within the incubation period (Figure 3.6 D-F).  

 
Figure 3.5 Effect of pro-inflammatory stimuli on IL-6  release from C20/A4 

chondrocytes.  

C-20/A4 chondrocytes were stimulated with TNF-α (20.0 – 80.0 pg/ml; Panel A – C) or 

LPS (0.1 – 10.0 µg/ml; Panel D – F) and cell-free supernatants collected at 0, 2, 6 and 

24 h. IL-6 release was then determined by ELISA. Data are presented as Mean ± SEM 

of n=4 independent experiments repeated in triplicate, *p≤ 0.05, **p≤ 0.01 vs. Time 0 

(dotted line). 
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Figure 3.6. Effect of pro-inflammatory stimuli on IL-8 release from C20/A4 

chondrocytes. 

C-20/A4 chondrocytes were stimulated with TNF-α (20.0 – 80.0 pg/ml; Panel A – C) or 

LPS (0.1 – 10.0 µg/ml; Panel D – F) and cell-free supernatants collected at 0, 2, 6 and 

24 h. IL-8 production was then determined by ELISA. Data are presented as Mean ± 

SEM of n=4 independent experiments repeated in triplicate, *p≤0.05, **p≤0.01 vs. Time 

0 (dotted line). 
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3.1.2.3 Effect of TNF-α and LPS on IL-1β and MCP-1 cytokine release 

from C-20/A4 chondrocytes. 

In separate experiments C-20/A4 chondrocytes were stimulated with different 

concentrations of TNF-α (20.0 – 80.0 pg/ml) and LPS (1.0 – 10.0 µg/ml) for 0, 2, 

6 and 24 h and cell-free supernatants were analysed for IL-1β and MCP-1 by 

ELISA. Given that IL-1β is considered to be active locally within cartilage and 

leads to matrix destruction, IL-1β levels were measured (Attur et al., 2000; 

Fernandes et al., 2002; Kapoor et al., 2011). In addition, to assess chondrocyte 

contribution to the chemotactic environment of inflamed joints the intracellular 

content of the CC (IL-1β) and CXC chemokine (MCP-1) was investigated, with 

specific interest in MCP-1 production (Villager et al., 1992; Borzi et al., 1999). 

TNF-α and LPS caused a significant increase in IL-1β release (p≤ 0.05) 

compared to unstimulated control cells. Treatment with TNF-α caused a 

significant concentration-dependent increase in IL-1β at 2, 6 and 24 h post-

stimulation.  

Following 2 h stimulation, the lower concentrations (20.0 and 40.0 pg/ml) of TNF-

α didn’t cause significant up-regulation in IL-1β production, consistent with the 

results obtained for IL-6 and IL-8. The maximal release of 16.74 pg/ml at this time 

point was induced by 80.0 pg/ml (p≤ 0.05; Figure 3.7 A), and these observations 

were confirmed at 6 h, where 80.0 pg/ml caused 28.35 ± 3.25 pg/ml IL-1β to be 

released (p≤ 0.05; Figure 3.7 B), However, at 6 h, 40.0 pg/ml and 60.0 pg/ml of 

TNF-α also led to significant increase in the concentration of IL-1β, 15.73 ± 1.1 

pg/ml and 24.37 ± 8.69 pg/ml respectively (p≤ 0.05). IL-1β was not detectable at 

24 h following stimulation with 80.0 pg/ml, however at 60.0 pg/ml, a small but 

detectable amount of IL-1β was observed (14.61 ± 3.1 pg/ml, p≤ 0.05; Figure 3.7 

C).   

LPS (3.0 µg/ml) stimulation of C-20/A4 chondrocytes for 2 h caused the maximal 

release of IL-1β for this time point with 17.23 ± 2.86 pg/ml (p≤ 0.05; Figure 3.7 

D). Following 6 h stimulation, LPS caused a concentration-dependent bell-

shaped response, with 1.0 µg/ml causing 26.55 ± 10.31 pg/ml of IL-1β to be 

released (p≤ 0.05; Figure 3.7 E). At 24 h post-stimulation, a plateau was reached, 
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with all concentrations causing similar amounts of IL-1β to be released (p≤ 0.05; 

Figure 3.7 F). 

Next, TNF-α (20.0 – 80.0 pg/ml) effect was evaluated on MCP-1 production, 

where stimulation for 2 h (Figure 3.8 A) did not yield statistically significant 

increases in MCP-1 compared to basal levels (46.18 ± 14.21 pg/ml; p≤ 0.05). 

TNF-α (20.0 pg/ml) did not cause any significant change in MCP-1 levels 

regardless of the incubation periods (p> 0.05) evaluated, however, with 

increasing concentrations of the cytokine at 6 h (Figure 3.8 B), there was a 

significant increase in MCP-1 production of 69.39 ± 4.21 pg/ml (p≤ 0.05), 101.2 ± 

16.37 pg/ml (p≤ 0.05) and 119.92 ± 8.74 pg/ml (p≤ 0.05) for TNF-α 40.0 pg/ml, 

60.0 pg/ml and 80.0 pg/ml respectively. MCP-1 levels at 24 h following 

stimulation with TNF-α (40.0 – 80.0 pg/ml; Figure 3.8 C) followed a  bell-shaped 

curve, where 40.0, 60.0 and 80.0 pg/ml TNF-α causing 70.43 ± 5.23 pg/ml (p≤ 

0.05), 101.34 ± 12.09 (p≤ 0.05) and 93.324 ± 6.42 pg/ml (p≤ 0.05) respectively 

compared to basal production (39.29 ± 11.28 pg/ml).  

Subsequently, LPS was evaluated and found to stimulate significant rise in MCP-

1 release with a maximal response achieved at 3.0 and 10.0 µg/ml following 6 h 

incubation (Figure 3.8 E), with 68.34 ± 4.52 pg/ml and 70.11 ± 3.32 pg/ml 

respectively compared to untreated controls (46.18 ± 14.21 pg/ml). At 2 h post-

stimulation (Figure 3.8 D), MCP-1 release was lower 25.29 ± 2.38 pg/ml (0.3 

µg/ml; p≤ 0.05), 41.34 ± 12.23 pg/ml (1.0 µg/ml; p≤ 0.05), 23.55 ± 6.89 pg/ml (3.0 

µg/ml, p≤ 0.05) and 32.43 ± 12.48 pg/ml (10.0 µg/ml; p≤ 0.05). Incubation periods 

longer than 6 h did not induce statistically significant increases in MCP-1 release 

from C-20/A4 chondrocytes compared to basal levels (39.31 ± 8.89; p≤ 0.05; 

Figure 3.8 F). 
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Figure 3.7. Effect of pro-inflammatory stimuli on IL-1β   release from C20/A4 

chondrocytes.  

C-20/A4 chondrocytes were stimulated with TNF-α (20.0 – 80.0 pg/ml; Panels A – C) or 

LPS (0.1 – 10.0 µg/ml; Panels D – F) and cell-free supernatants collected at 0, 2, 6 and 

24 h and IL-1β determined by ELISA. Data are presented as Mean ± SEM of n=4 

independent experiments repeated in triplicate, *p≤ 0.05 vs. Time 0 (Dotted line).  
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Figure 3.8. Effect of pro-inflammatory stimuli on MCP-1 release from C20/A4 

chondrocytes. 

C-20/A4 chondrocytes were stimulated with TNF-α (20.0 – 80.0 pg/ml; Panel A – C) or 

LPS (0.1 – 10.0 µg/ml; Panel D – F) and cell-free supernatants collected at 0, 2, 6 and 

24 h and analysed for MCP-1  by ELISA. Data are presented as Mean ± SEM of n=4 

independent experiments repeated in triplicate, *p≤ 0.05 vs. Time 0 (Dotted line).  
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3.1.2.4 Time dependent release of pro-inflammatory cytokines following 
C-20/A4 chondrocyte stimulation.  

In order to fully understand the response of C-20/A4 chondrocytes to 

inflammogens, they were stimulated with TNF-α at 60.0 pg/ml and LPS at 1.0 

µg/ml (the most potent concentrations identified from previous experiments) for a 

longer time course investigation including incubation periods of up to 72 h. Cell-

free supernatants were collected at each individual time point and subsequently 

analysed for IL-6 and IL-8 release by ELISA.  

Cultured C-20/A4 cells had a basal release of IL-6 (21.09 ± 18.49 pg/ml) and IL-8 

(72.65 ± 13.32 pg/ml). TNF-α (60.0 pg/ml) and LPS (1.0 µg/ml) caused a 

significant time-dependent increase in IL-6 (Figure 3.9 A, B) and IL-8 (Figure 3.9 

C, D), with maximal production detected at 48 h post-incubation, with 154.30 ± 

10.32 pg/ml and 159.65 ± 20.86 pg/ml (p≤ 0.001) of IL-6 following TNF-α and 

LPS stimulation respectively. Maximal release of IL-8 was detected at 48 h 

(558.90 ± 11.34 pg/ml, p≤ 0.001), whilst following LPS stimulation it was detected 

at 72 h (378.79 ± 46.86 pg/ml, p≤ 0.001). Release of these pro-inflammatory 

cytokines following 2 h of incubation with TNF-α (60.0 pg/ml) and LPS (1.0 µg/ml) 

caused significant increases of 99.23 ± 13.81 pg/ml (p≤ 0.05) and 73.47 ± 13.82 

(p≤ 0.05) of IL-6 and 130.23 ± 9.50 pg/ml (p≤ 0.05) and 172.64 ± 14.97 pg/ml (p≤ 

0.01) IL-8 respectively. At later time-points there was an increase in these 

cytokines, such that following 4 h stimulation with LPS there was a marked up-

regulation of IL-6 and IL-8 with 112.0 ± 11.3 pg/ml (p≤ 0.05) and 219.45 ± 12.22 

pg/ml for IL-6 and IL-8 respectively. Incubation of chondrocytes with TNF-α (60.0 

pg/ml) and LPS (1.0 µg/ml) for 6 h caused 117.1 ± 26.1 pg/ml and 135.99 ± 

20.13 pg/ml release of IL-6, for the two inflammogens respectively, and 205.92 ± 

27.10 pg/ml and 223.74 ± 15.33 pg/ml release of IL-8, respectively (p≤ 0.05). 
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Figure 3.9. Effect of TNF-α  and LPS on IL-6 and IL-8 release in C-20/A4 cells over 

0-72 h period.  

C-20/A4 chondrocytes were stimulated with TNF-α (60.0 pg/ml; dark blue bars) or LPS 

(1.0 µg/ml; light blue bars) and cell-free supernatants collected at 0 – 72 h. IL-6 (Panel 

A, B) and IL-8 (Panel C, D) were then determined by ELISA. Data are presented as 

Mean ± SEM of n=7 independent experiments repeated in triplicate, *p≤ 0.05, **p≤ 0.01, 

***p≤ 0.001 vs. Time 0 (represented by a dotted line). 
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3.1.3 Effect of TNF-α and LPS on MMP1, MMP3 and MMP13 expression 

in C20/A4 chondrocytes. 

OA is increasingly characterised by release of pro-inflammatory cytokines and 

other mediators of the host inflammatory response and cartilage degradation 

initiated by MMPs. Generally, collagenase expression induced by TNF-α is 

thought to be NFκB-dependent, a pathway also used by TLRs (Zhang et al., 

2008). Initially, the effects of TNF-α and LPS (TLR4 ligand) were investigated on 

MMP1, MMP3 and MMP13 expression by C20/A4 chondrocytes. The effect of 

TNF-α (20.0 – 80.0 pg/ml) and LPS (0.1 – 1.0 µg/ml) on MMPs levels were at 

first evaluated following 6 h stimulation of C-20/A4 chondrocytes and the total 

RNA extracted from stimulated and non-stimulated cells was analysed for 

transcription of these genes by RT-PCR.  

LPS and TNF-α caused increases in MMP1 (Figure 3.10 A) and MMP13 (Figure 

3.11 A) and decreased expression of MMP3 in C-20/A4 cells at 6 h. (Figure 3.12 

A). TNF-α (20.0 – 80.0 pg/ml) caused significant increases in MMP1 expression 

(Figure 3.10 B), with 20.0 pg/ml causing 1.5-fold increase compared to basal 

(0.21 ± 0.02 au to 0.33 ± 0.04 au, p≤ 0.05). Increased concentrations of TNF-α 

(40.0 and 60.0 pg/ml) led to a plateau effect of 8-fold up-regulation of MMP1 with 

expression levels of 1.66 ± 0.22 au and 1.71 ± 0.11 au respectively (p≤ 0.01 for 

both concentrations), whilst 80.0 pg/ml of TNF-α caused a slightly less profound 

but similar increase to 1.52 ± 0.23 au representing 7-fold increase in expression 

(p≤ 0.01). LPS stimulation caused a bell-shaped response with a significant 

increase in MMP1 expression at 0.1 µg/ml (8-fold increase; 1.78 ± 0.21 au, 

p<0.01) and at 1.0 µg/ml (7-fold increase; 1.47 ± 0.1 au, p≤ 0.01), with a maximal 

12-fold up-regulation detected following stimulation with 0.3 µg/ml LPS (2.18 ± 

0.3 au, p≤ 0.01; Figure 3.10 C).  

Densitometric analysis of MMP13 expression showed a concentration dependent 

increase in expression (Figure 3.11 A), whilst no detection was observed in non-

stimulated C-20/A4 chondrocytes. TNF-α (20.0 and 40.0 pg/ml) caused an 

increase in MMP13 expression to 0.057 ± 0.03 au and 0.1 ± 0.02 au, respectively 

(p≤ 0.05).  TNF-α 60.0 pg/ml and 80.0 pg/ml caused 0.23 ± 0.01 ± 0.002 au and 
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0.34 ± 0.07 au respectively (p≤ 0.001; Figure 3.11 B). Similarly, LPS (0.1 – 1.0 

µg/ml) at all concentrations led to significant increases in MMP13 expression 

levels (Figure 3.11 C), with 0.1 µg/ml causing 0.13 ± 0.003 au and higher 

concentrations causing 0.205 ± 0.002 au and 0.2 ± 0.03 au (p≤ 0.001 both) 

expression for 0.3 µg/ml and 1.0 µg/ml respectively.  

MMP3 was then evaluated as it has been shown to be highly expressed in 

healthy hip cartilage, and significantly reduced in osteoarthritic hip cartilage 

(Kevorkian et al., 2004). Both TNF-α and LPS significantly reduced MMP3 levels 

(Figure 3.12 A). TNF-α stimulation caused a bell-shaped inhibition in MMP3 

expression with 60.0 pg/ml, with a 46% down-regulation of the protease 

expression from 0.580 ± 0.051 au to 0.31 ± 0.05 au (p≤ 0.05; Figure 3.12 B). 

Treatment with LPS caused a concentration dependent decrease in MMP3 

expression with 1.0 µg/ml causing a complete inhibition in expression compared 

to untreated controls (p≤ 0.001). Lower concentrations of LPS caused significant 

inhibition with 0.1 µg/ml and 0.3 µg/ml leading to 64% and 77% down-regulation 

of MMP3 expression (0.21 ± 0.04 and 0.13 ± 0.06 au, p≤ 0.01) compared to 

control cultures (Figure 3.12 C).  

Following identification of MMP1, MMP3 and MMP13 mRNA expression at 6 h, 

the effect of TNF-α in a time-dependent manner was investigated. C-20/A4 

chondrocytes were stimulated with TNF-α (60.0 pg/ml) for 0 – 48 h. MMP1 was 

markedly increased in a time-dependent manner (Figure 3.13 A). Unlike IL6 and 

IL8 expression, which peaked at 2 h post-stimulation, TNF-α stimulation of 

MMP1 did not cause significant change in expression at this time point (0.31 ± 

0.04 au compared to untreated 0.22 ± 0.03 au). However, at 6 h there was a 

marked 8-fold increase to 1.71 ± 0.11 au (p<0.001). The expression of MMP1 

continued to increase over the time course to 2.12 ± 0.22 au (p≤ 0.001) at 24 h 

and was reduced at 48 h (1.72 ± 0.23 au, 8-fold; p≤ 0.001; Figure 3.13 B).  

Similarly, MMP13 expression was unchanged following 2 h stimulation with TNF-

α (0.021 ± 0.022 au; p>0.05); however, expression was significantly increased at 

6 h with a 11.5-fold increase in expression compared to 2 h (p<0.001; Figure 

3.13 D). Increasing the length of the incubation time caused further increases in 
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expression of MMP13 with 0.29 ± 0.03 au and 0.34 ± 0.07 au at 24 h and 48 h 

post-incubation respectively.  

Treatment of C-20/A4 with TNF-α (60.0 pg/ml) caused a significant reduction of 

MMP3. It was significantly reduced by 55% down to 0.26 ± 0.05 au (p≤ 0.01) at 2 

h, by 36% down to 0.37 ± 0.42 au (p≤ 0.05) and at 24 h the expression of MMP3 

was down-regulated to 0.31 ± 0.05 au, a 46% decrease (p≤ 0.05) as compared to 

untreated controls (0.580 ± 0.051 au). At 48 h post stimulation, there was a slight 

non-significant inhibition of MMP3 expression (Figure 3.13 C).  

 



 

 
 
 

138 

 

Figure 3.10. Densitometric quantification of MMP1 expression in C-20/A4 cells 

treated with TNF-α  (20.0 – 80.0 pg/ml) and LPS (0.1 – 1.0 µg/ml) for 6 h.  

C-20/A4 chondrocytes were stimulated with TNF-α (20.0 – 80.0 pg/ml) or LPS (0.1 – 1.0 

µg/ml) at time 0 and total RNA extracted 6 h post stimulation. PCR amplification with the 

respective primers for MMP1 was used to detect and quantify gene expression on 2 % 

agarose gels in triplicates with β-actin used as internal control (Panel A). Comparison of 

densitometrically quantified MMP1 expression by TNF-α (Panel B) and LPS (Panel C) 

shown in arbitrary units, each value normalized to the respective β-actin expression. 

Data are presented as Mean ± SEM of four independent experiments **p≤ 0.01. 
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Figure 3.11. Densitometric quantification of MMP13 expression in C-20/A4 cells 

treated with TNF-α  (20.0 – 80.0 pg/ml) and LPS (0.1 – 1.0 µg/ml) for 6 h.  

C-20/A4 chondrocytes were stimulated with TNF-α (20.0 – 80.0 pg/ml) or LPS (0.1 – 1.0 

µg/ml) at time 0 and total RNA extracted 6 h post stimulation. PCR amplification with the 

respective primers for MMP13 was used to detect and quantify gene expression on 2 % 

agarose gels in triplicates with β-actin used as internal control (Panel A). Comparison of 

densitometrically quantified MMP13 expression by TNF-α (Panel B) and LPS (Panel C) 

shown in arbitrary units, each value normalized to the respective β-actin expression. 

Data are presented as Mean ± SEM of four independent experiments **p≤ 0.01, ***p≤ 

0.001. 
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Figure 3.12. Densitometric quantification of MMP3 expression in C-20/A4 cells 

treated with TNF-α  (20.0 – 80.0 pg/ml) and LPS (0.1 – 1.0 µg/ml) for 6 h.  

C-20/A4 chondrocytes were stimulated with TNF-α (20.0 – 80.0 pg/ml) or LPS (0.1 – 1.0 

µg/ml) at time 0 and total RNA extracted 6 h post stimulation. PCR amplification with the 

respective primers for MMP3 was used to detect and quantify gene expression on 2 % 

agarose gels in triplicates with β-actin used as internal control (Panel A). Comparison of 

densitometrically quantified MMP3 expression by TNF-α (Panel B) and LPS (Panel C) 

shown in arbitrary units, each value normalized to the respective β-actin expression. 

Data are presented as Mean ± SEM of four independent experiments, **p≤ 0.01, ***p≤ 

0.001.  
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Figure 3.13. Densitometric quantification of MMP1, MMP3 and MMP13 expression 

in C-20/A4 cells treated with TNF-α  (60.0 pg/ml) for 0-48 h.  

C-20/A4 chondrocytes were stimulated with TNF-α (20.0 – 80.0 pg/ml) at time 0 and total RNA 

extracted 0-48 h post stimulation. PCR amplification with the respective primers for MMP1, MMP3 

and MMP13 were used to detect and quantify gene expression on 2 % agarose gels in triplicates 

with β-actin used as internal control (Panel A). Comparison of densitometrically quantified MMP1 

(Panel B), MMP3 (Panel C) and MMP13 (Panel D) expression by TNF-α shown in arbitrary units, 

each value normalized to the respective β-actin expression. Dotted line represents basal 

expression levels. Data are presented as Mean ± SEM of four independent experiments *p≤ 0.05, 

***p≤ 0.001.  



 

 
 
 

142 

3.1.4 Effect of TNF-α on COL2A1 and COL1A1 expression. 

In healthy articular cartilage, chondrocytes are actively maintaining the steady-

state expression of collagens and proteoglycans. Articular chondrocytes are 

sensitive to various growth factors and cytokines, which either enhance or reduce 

the synthesis of type II collagen, a marker of normal function of articular 

chondrocytes (Goldring et al., 1994). In osteoarthritis, cytokines including IL-1β, 

IL-6, IL-8, and TNF-α, produced by osteoarthritic chondrocytes significantly up-

regulate matrix metalloproteinases (MMPs) gene expression, and decrease the 

synthesis of tissue specific macromolecules, such as collagen II, therefore 

inhibiting the chondrocyte’s compensatory synthesis pathways required to 

restore the integrity of the degraded extracellular matrix (Pelletier et al., 1991, 

Goldring et al., 1994b, Shlopov et al., 1997, Shlopov et al., 2000, Goldring et al., 

2011).  

Human C-20/A4 chondrocytes were found to respond to TNF-α in a time and 

concentration-dependent manner, by producing large amounts of the above-

mentioned pro-inflammatory cytokines and significantly up-regulating 

collagenases 1 and 3. Next, in order to further investigate whether stimulation 

with TNF-α induces conditions resembling the events observed in OA 

chondrocytes, we investigated its effect on COL1A1, COL2A1 expression and 

additionally calculated the COL2A1:COL1A1 ratio to study the effect of TNF-α on 

the chondrocytic phenotype of the C-20/A4 cells. The results showed that 

expression of COL2A1, a marker for normal function of articular chondrocytes, 

was significantly down-regulated after TNF-α (60.0 pg/ml) treatment, in 

comparison to unstimulated cultures of C-20/A4 chondrocytes. The inflammogen 

caused a 66.7 % reduction in mRNA expression of collagen type II from 0.754 ± 

0.08 au to 0.24 ± 0.012 au (p≤ 0.01) and 49 % reduction in COL1A1 expression 

from 2.25 ± 0.16 au to 1.121 ± 0.05 au (p≤ 0.01), as calculated following 

densitometric analysis (Figure 3.14 B) of the PCR product bands with the correct 

size (Figure 3.14 A).  

Despite the large drop in overall collagen production, there was only slight, 

insignificant change in the indicator of differentiation COL2A1:COL1A1 ratio, as 

compared to untreated C-20/A4 chondrocytes, indicated in Figure 3.14 C.  
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Figure 3.14 Quantification of the effect of TNF-α  on COL1A1 and COL2A1 

expression.  

C-20/A4 chondrocytes were treated with TNF-α (60.0 pg/ml) and total RNA extracted 6 h 

post stimulation. PCR amplification with the respective primers for COL1A1 and COL2A1 

was used to detect and quantify gene expression on 2 % agarose gels in triplicates with 

β-actin used as internal control (Panel A). Comparison of densitometrically quantified 

COL1A1 and COL2A1 expression (Panel B) is shown in arbitrary units (au), each value 

normalized to the respective β-actin expression. Comparison of COL2A1:COL1A1 ratio 

prior and after stimulation with TNF-α is shown in Panel C. Data are presented as Mean 

± SEM of 3 independent experiments **p≤ 0.01.  
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3.2 Effect of classical anti-inflammatory drugs on 
inflammatory mediator release from C-20/A4 
chondrocytes 

To determine whether inflammatory pathways were modulated in the presence of 

classical anti-inflammatory drugs, the effect of the non-steroidal anti-inflammatory 

drug indomethacin and glucocorticoid dexamethasone on stimulated 

chondrocytes was evaluated. Indomethacin is an indol derivative that’s a non-

selective COX-1 and COX-2 inhibitor with anti-inflammatory, analgesic, and 

antipyretic effects (Hart and Boardman, 1963). Dexamethasone is a potent 

synthetic member of the glucocorticoid class of steroid drugs. It acts as an anti-

inflammatory and immunosuppressant drug and is 20-30 times more potent than 

the naturally occurring cortisol and 4-5 times more potent than prednisone 

(Vayssiere et al., 1997). Dexamethasone and indomethacin are used to treat 

many inflammatory and autoimmune diseases including osteoarthritis and 

rheumatoid arthritis.  

3.2.1 Effect of indomethacin on IL-6 and IL-8 mRNA and protein in C-
20/A4 chondrocytes. 

C-20/A4 cell cultures were treated with 1.0 µM indomethacin for 30 min prior to 6 

h incubation with TNF-α (60.0 pg/ml). Total RNA was extracted and PCR 

analysis performed using specific primers for the amplification of IL-6 and IL-8 

(Table. 2.9). A significant decrease was observed in IL-6 and IL-8 expression 

following treatment with indomethacin (1.0 µM; Figure 3.15 A) with a significant 

61.4 %, (p≤ 0.001) and 78.6 % (p≤ 0.001) down-regulation of IL-6 and IL-8 

respectively as determined by densitometric quantification compared to β-actin 

(Figure 3.15 B).  

Subsequently, its effect on IL-6 and IL-8 protein levels was determined. C-20/A4 

chondrocytes were pre-treated with 1.0 µM indomethacin for 30 min prior to 

stimulation with TNF-α (60.0 pg/ml) and cell-free supernatants collected and 

analysed for IL-6 and IL-8 by ELISA.  Indomethacin completely abrogated the 

release of the pro-inflammatory cytokines IL-6 and IL-8 bringing it down to basal 

levels (Figure 3.16 A and B). 
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Figure 3.15. Densitometric quantification of the effect of indomethacin on TNF-α-

mediated IL-6 and IL-8 gene expression.  

C-20/A4 chondrocytes were pre-treated for 30 min with PBS or indomethacin (1.0 µM) 

prior to stimulation with TNF-α (60.0 pg/ml) and total RNA extracted 6 h post stimulation. 

PCR amplification with the respective primers for IL6 and IL8 was used to detect and 

quantify gene expression on 2 % agarose gels in triplicates with β-actin used as internal 

control (Panel A). Comparison of densitometrically quantified IL6 and IL8 expression by 

TNF-α (Panel B) shown in arbitrary units, each value normalized to the respective β-

actin expression. Data are presented as Mean± SEM of four independent experiments 

***p≤ 0.001.  
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Figure 3.16. Effect of Indomethacin on TNF-α-mediated IL-6 and IL-8 release.   

C-20/A4 chondrocytes were pre-treated for 30 min with PBS or Indomethacin (1.0 µM) 

prior to stimulation with TNF-α (60.0 pg/ml) and cell-free supernatants collected at 6 h 

post stimulation. IL-6 (Panel A) and IL-8 (Panel B) expression by TNF-α were then 

determined. Data are presented as Mean± SEM of n=4 independent experiments 

repeated in triplicate, **p≤ 0.01, ***p≤ 0.001.  
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3.2.2 Effect of dexamethasone on IL-6 and IL-8 mRNA and protein on 
C20/A4 chondrocyte. 

In order to investigate the effect of dexamethasone on the expression of pro-

inflammatory cytokines IL6 and IL8 in TNF-α treated C-20/A4 chondrocytes, cells 

were pre-treated with 1.0 µM dexamethasone for 30 mins before stimulation with 

TNF-α (60.0 pg/ml) and incubated for 6 h. PCR analysis was performed using 

specific primers for the amplification of IL6 and IL8 (Table. 2.9). Pre-treatment of 

C-20/A4 cells with 1.0 µM dexamethasone led to a significant 72.6 % down-

regulation of IL6 and IL8 by 83 % compared to control (Figure 3.17).  This effect 

at the mRNA level was confirmed at the protein level with a complete abrogation 

of TNF-α induced IL6 and IL8 release (Figure 3.18).  
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Figure 3.17. Densitometric quantification of the effect of dexamethasone on TNF-

α-mediated IL6 and IL8 gene expression.  

C-20/A4 chondrocytes were pre-treated for 30 min with PBS or dexamethasone (1.0 µM) 

prior to stimulation with TNF-α (60.0 pg/ml) and total RNA extracted 6 h post stimulation. 

PCR amplification with the respective primers for IL6 and IL8 was used to detect and 

quantify gene expression on 2% agarose gels in triplicates with β-actin used as internal 

control (Panel A). Comparison of densitometrically quantified IL6 and IL8 expression by 

TNF-α (Panel B) shown in arbitrary units, each value normalized to the respective β-

actin expression. Data is presented as Mean ± SEM of n=4 independent experiments 

***p≤ 0.001.  
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Figure 3.18. Effect of Dexamethasone on TNF-α-mediated IL-6 and IL-8 protein 

release.  

C-20/A4 chondrocytes were pre-treated for 30 min with PBS or dexamethasone (1.0 µM) 

prior to stimulation with TNF-α (60.0 pg/ml) and cell-free supernatants collected at 6 h 

post stimulation. TNF-α stimulated IL-6 (Panel A) and IL-8 (Panel B) production was 

then determined. Data are presented as Mean ± SEM of n=4 independent experiments 

repeated in triplicate, *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001.  
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3.2.3 Effect of indomethacin on MMP1, MMP3 and MMP13 gene 
expression.  

The effect of indomethacin on the regulation of MMP1, MMP3 and MMP13 gene 

expression in non-stimulated and TNF-α stimulated C-20/A4 chondrocytes was 

investigated (Figure 3.19) 

C-20/A4 cells were pre-treated with 1.0 µM Indomethacin for 30 min prior to 

stimulation with TNF-α (60.0 pg/ml) for 6 h. Total RNA was extracted and PCR 

analysis performed using specific primers for the amplification of MMP1, MMP3 

and MMP13 (Table. 2.9; Chapter 2). Following gel electrophoresis of the PCR 

reactions on 2 % agarose gels, the correct bands (Figure 3.19 A) were quantified 

densitometrically and a significant decrease in the proteinases expression (p≤ 

0.01) was detected with a >75 % inhibition of the interstitial collagenase MMP1, 

67% reduction in MMP13 and a 49 % down-regulation of MMP3 expression 

compared to TNF-α stimulated controls (Figure 3.19 B).  

3.2.4 Effect of dexamethasone on MMP1, MMP3 and MMP13 gene 
expression. 

Following identification of the anti-cytokine properties of dexamethasone, its 

effect on the expression of MMP1, MMP3 and MMP13 in non-stimulated and 

TNF-α-treated C-20/A4 chondrocytes was investigated (Figure 3.20). 

C-20/A4 cells were pre-treated with 1.0 µM dexamethasone for 30 minutes prior 

to stimulation with TNF-α (60.0 pg/ml) for 6 h. Total RNA was extracted and PCR 

analysis performed using specific primers for the amplification of MMP1, MMP3 

and MMP13 (Table. 2.9,). A significant decrease in the proteinases expression 

(p≤ 0.01) was detected with a >75 % inhibition of MMP1, 42 % reduction in 

MMP13 and a 49 % down-regulation of MMP3 expression compared to TNF-α 

stimulated controls (Figure 3.20).  
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Figure 3.19. Effect of Indomethacin on TNF-α-mediated MMP1, MMP3 and MMP13 

expression.  

C-20/A4 chondrocytes were pre-treated for 30 min with PBS or indomethacin (1.0 µM) 

prior to stimulation with TNF-α (60.0 pg/ml) at time 0 and total RNA extracted 6 h post 

stimulation. PCR amplification with the respective primers for MMP1, MMP3 and MMP13 

were used to detect and quantify gene expression on 2 % agarose gels in triplicates with 

β-actin used as internal control (Panel A). Densitometrically quantified MMP1, MMP3 

and MMP13 expression by TNF-α alone or in presence of Indomethacin shown in 

arbitrary units, each value normalized to the respective β-actin expression (Panel B).   

Data are presented as Mean ± SEM of n=4 independent experiments *p≤ 0.05.  
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Figure 3.20. Effect of Dexamethasone on TNF-α-mediated MMP1, MMP3 and 

MMP13 expression.  

C-20/A4 chondrocytes were pre-treated for 30 min with PBS or dexamethasone (1.0 µM) 

prior to stimulation with TNF-α (60.0 pg/ml) at time 0 and total RNA extracted 6 h post 

stimulation. PCR amplification with the respective primers for MMP1, MMP3 and MMP13 

were used to detect and quantify gene expression on 2 % agarose gels in triplicates with 

β-actin used as internal control (Panel A). Densitometrically quantified MMP1, MMP3 

and MMP13 expression by TNF-α alone or in presence of dexamethasone shown in 

arbitrary units, each value normalized to the respective β-actin expression (Panel B). 

Data are presented as Mean ± SEM of n=4 independent experiments *p≤ 0.05.  
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3.3 Effect of melanocortin peptides treatment on C-20/A4 
activation. 

3.3.1 Expression of MC1, MC3 and MC5 mRNA and protein on C-20/A4 
chondrocytic cells. 

Melanocortin peptides (e.g. α-MSH) have been shown to possess anti-pyretic 

and anti-inflammatory functions via activation of a family of seven 

transmembrane receptors termed melanocortin receptors of which five have been 

identified (MC1-5, Getting et al., 2009). Expression of MC1, MC3 and MC5 by 

C20/A4 chondrocytes was determined. 

 

Total RNA was extracted from the cells and reverse-transcribed into cDNA via 

RT-PCR. PCR amplification reactions were used to assay for MC1, MC3 and MC5 

expression. MC1 and MC3 were highly expressed on C-20/A4 chondrocytes, with 

detection of specific bands corresponding to the expected size 493 bp and 820 

bp respectively. Very slight MC5 expression was also detected at the expected 

size of 340 bp. All samples were run alongside β-actin as an internal control 

(Figure 3.21). 

 
Following identification of MC1 and MC3 mRNA, protein levels of these receptors 

were determined by employing Western Blotting. Protein extracts were prepared 

and examined for MC1 and MC3 protein expression. Western Blotting confirmed 

the presence of both of the melanocortin receptors in human C-20/A4 

chondrocytes at the expected size of 35 and 40 kDa for MC1 and MC3 

respectively. C-20/A4 cells expressed lower levels of MC3 compared to MC1 

receptor after both were compared and normalized to the internal control α-

Tubulin (Figure 3.22). 
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Figure 3.21. Endogenous expression of MC1, MC3 and MC5 by C-20/A4 

chondrocytic cell-line.  

C-20/A4 chondrocytes were grown to confluence and RNA extracted.  PCR amplification 

with the respective primers for MC1, MC3 and MC5 were used to detect and quantify 

gene expression on 2 % agarose gels in triplicates with β-actin used as internal control. 

Densitometrically quantified MC1, MC3 and MC5 shown in arbitrary units, each value 

normalized to the respective β-actin expression. Data are presented as Mean ± SEM of 

5 independent experiments. 
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Figure 3.22. Detection of MC1 and MC3 protein in human C-20/A4 chondrocytic 

cells.  

Protein detection was performed using mouse anti-α-Tubulin mAb, rabbit anti-MC1 mAb 

and rabbit anti-MC3 mAb (1:2000). Bands with sizes corresponding to MC1 (35 kDa), 

MC3 (40 kDa) and α-tubulin (55 kDa) were detected and melanocortins receptor 

expression confirmed in C-20/A4 cells. The image is a representative of 3 individual 

experiments.  
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3.3.2 cAMP accumulation in C-20/A4 chondrocytes following 
melanocortin peptide stimulation. 

Following identification of MC1, MC3 and MC5 mRNA and MC1, MC3 protein, a 

panel of melanocortin peptides was evaluated to ascertain receptor functionality 

by determining intracellular cAMP accumulation within the C20/A4 chondrocytes. 

C-20/A4 cells were treated with α-MSH, D[TRP]8-γ-MSH, SHU9119, PG910, 

PG911 or a direct adenylate cyclase stimulator, forskolin, used as positive control 

in all cases. Forskolin (3.0 µM) increased the intracellular cAMP level to 2227.44 

± 74.42 fmol/well, representing 9-fold increase over PBS-vehicle control (249.36 

± 10.56 fmol/well).  Treatment of C-20/A4 chondrocytes with the pan 

melanocortin receptor agonist α-MSH (1.0 – 30.0 µg/ml), for 30 mins caused a 

significant increase in intracellular cAMP at 3.0, 10.0 and 30.0 µg/ml by 

approximately 2-fold, 2.6-fold and 1.7-fold increase to 568.86 ± 22.74 fmol/well 

(p≤ 0.001), 638.6 ± 41.6 fmol/well (p≤ 0.001) and 429.1 ± 18.9 fmol/well (p≤ 0.05) 

respectively compared to the vehicle control level of 249.36 ± 10.56 fmol/well 

(Figure 3.23 A) 

Similarly, a drastic 3.2-fold increase in cAMP accumulation peaking at 800.83 ± 

30.0 fmol/well (p≤ 0.001) was recorded following treatment with 3.0 µg/ml of the 

highly selective MC3 receptor agonist D[TRP]8-γ-MSH (Figure 3.23 B).  A 

significant increase of 3-fold compared to vehicle control levels was observed at 

10.0 µg/ml (789.9 ± 49.15 fmol/well, p≤ 0.001) and 30.0 µg/ml (696.2 ± 27.59 

fmol/well, p≤ 0.001). In comparison, the MC3/4 receptor antagonist SHU9119 (1.0 

– 10.0 µg/ml) failed to induce a statistically significant cAMP response in C-20/A4 

cells at any of the concentrations tested (Figure 3.23 C).  

The MC5 full agonists PG901 and PG911 (1.0 –10.0 µg/ml) were then evaluated 

to determine whether MC5 was a functionally active receptor. Both are full 

agonists at the MC5 (EC(50) = 0.072 nM and 0.031 nM, respectively), but full 

antagonists at the MC3/4. However, no statistically significant cAMP formation 

was recorded following stimulation at any of the concentrations (Figure 3.23 D, 

E).   
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Following identification that α-MSH and D[TRP]8-γ-MSH induced cAMP 

accumulation in C-20/A4 chondrocytes, the peptides were evaluated in the 

presence of the MC3/4 antagonist SHU9119 to determine if the cAMP 

accumulation occurred via these receptors (Figure 3.24). C-20/A4 chondrocytes 

were incubated with α-MSH and D[TRP]8-γ-MSH (0 – 30.0 µg/ml) alone or in the 

presence of SHU9119 (10.0 µg/ml).  

SHU9119 totally abrogated the effect elicited by D[TRP]8-γ-MSH, whilst cAMP 

formation triggered by α-MSH was only slightly reduced at 3.0 µg/ml (Figure 3.24 

B). SHU9119 inhibited the activation of the MC3 elicited by D[TRP]8-γ-MSH at all 

concentrations evaluated; where at 3.0 µg/ml of the antagonist, only slight 

inhibition resulted leading it to drop from 379.82 ± 15.29 fmol/well to 320.21 ± 

30.35 fmol/well (n/s, p> 0.05). The addition of the antagonist with 3.0 µg/ml 

D[TRP]8-γ-MSH caused the cAMP levels to fall from 800.83 ± 29.99 to 318.84 ± 

9.34 fmol/well, representing ~ 87 % reduction (p≤ 0.001).  

Similarly, SHU9119 (10.0 µg/ml) inhibition led to a >84 % reduction in cAMP 

accumulation elicited by 10.0 µg/ml D[TRP]8-γ-MSH (p≤ 0.01) with a reduction 

from 789.9 ± 49.2 fmol/well down to 338.04 ± 10.6 fmol/well cAMP accumulation 

for D[TRP]8-γ-MSH and D[TRP]8-γ-MSH + SHU9119 (10.0 µg/ml). Even the 

highest concentration of the selective MC3 agonist, had no effect when given 

simultaneously with the MC3/4 receptor antagonist: the concentration of cAMP 

was reduced from 696.21 ± 27.59 to 290.12, illustrating an 80 % reduction in 

cAMP accumulation (p≤ 0.001). cAMP levels triggered by  α-MSH, were not 

reduced by SHU9119,  except when the antagonist was added in conjunction 

with 3.0 µg/ml of α-MSH, when SHU9119 (10.0 µg/ml) led to 15.5% decrease in 

cAMP formation  from 568.86 ± 22.74 to 480.29 ± 35.3  (n.s., p> 0.05; Figure 

3.24 A).  
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Figure 3.23. MC1, MC3, MC5 functionality determined by cAMP EIA.  

C-20/A4 chondrocytes were treated with 1.0-30.0 µg/ml α-MSH (A), [DTRP8]-γ-MSH (B) 

and with 1.0-10.0 µg/ml SHU9119 (C), PG-901 (D) and PG911 (E) for 30 min and cAMP 

(fmoles/well) accumulation determined by cAMP EIA. Dotted lines indicate basal 

accumulation in PBS-treated whilst dashed lines indicate maximal accumulation in 3.0 

µM FSK-treated C20/A4 cells. Data is Mean ± SEM of n=6 samples, n.s. p> 0.05, *p≤  

0.05, ***p≤  0.001) vs. PBS-treated control cultures. 
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Figure 3.24.  SHU9119 prevents D[TRP]8-γ-MSH from activating MC3, but has no 

effect on MC1 functionality.  

C-20/A4 chondrocytes were treated with 1.0-30.0 µg/ml α-MSH (Panel A) and [DTRP8]-

γ-MSH (Panel B) alone or in the presence of SHU9119 (10 µg/ml) for 30 min and cAMP 

(fmoles/well) accumulation determined by cAMP EIA. Dotted lines indicate basal 

accumulation in PBS-treated, whilst dashed lines indicate maximal accumulation in FSK-

treated C20/A4 cells. Data is Mean ± SEM of n=6 samples, *p≤  0.05, ***p≤  0.01 vs. 

PBS-treated control cultures. 
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3.3.3 Modulation of pro-inflammatory mediator release and apoptosis 

by melanocortin peptides on TNF-α stimulated C20/A4 

chondrocytes. 

3.3.3.1 Effect of melanocortin peptides on basal release of pro-
inflammatory cytokines production from C-20/A4 chondrocytes.  

Following identification of functionally active MC1 and MC3 on C-20/A4 

chondrocytes, their effect on basal cytokine production was determined. C-20/A4 

chondrocytes were treated with α-MSH (3.0 µg/ml), D[TRP]8-γ-MSH (3.0 µg/ml) 

and SHU9119 (10.0 µg/ml), and the basal levels of production of the pro-

inflammatory cytokines IL-1β, IL-6, IL-8 and MCP-1 were determined by cytokine 

ELISAs (Table 3.3). Treatment of cells with melanocortin peptides did not cause 

significant alteration compared to control cultures treated with DMEM alone (p> 

0.05). 
 

Table 3.3 Effect of melanocortin derived peptides on basal levels of pro-

inflammatory cytokine release from C-20/A4 chondrocytes. 

Data are Means ± SEM of n=4 of three determinations.  

Interleukin(IL)-1β; IL-6, Interleukin(IL)-6, interleukin(IL)-8; MCP-1, monocyte chemoatractant 

protein-1 

 IL-1β  IL-6 IL-8 MCP-1 

DMEM Media 2.77± 0.44 21.09±18.5 72.65±4.78 46.18 ± 14.12 

α-MSH (3.0 µg/ml) 5.76±1.8 38.29±29.1 82.3±5.36 54.26 ± 11.11 

D[TRP]8-γ-MSH (3.0 µg/ml) 3.69±0.65 23.19±11.65 67.76±6.3 48.42± 7.1 

SHU9119 (10.0 µg/ml) 4.55±0.55 37.19±2.97 85.58±4.85 54.41±11.93 
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3.3.3.2 Attenuation of TNF-α-activated pro-inflammatory cytokines 

release from C-20/A4 chondrocytes by α-MSH and D[TRP]8-γ-

MSH.  

The identification of the melanocortin receptors’ functionality on C-20/A4 

chondrocytes and their non-cytotoxic effects, led to the evaluation of α-MSH and 

D[TRP]8-γ-MSH effect on pro-inflammatory cytokine release following TNF-α-

stimulation.  

The C-20/A4 cell-line was treated with α-MSH or D[TRP]8-γ-MSH in 

concentrations ranging from 0.3 – 30.0 µg/ml for 30 mins prior to stimulation with 

TNF-α, cell free supernatants were collected at 2, 6 and 24 h post-stimulation 

and pro-inflammatory cytokines IL-1β, IL-6 and IL-8 were determined by 

commercially available ELISAs.   

α-MSH led to a significant concentration-dependent decrease in IL-1β 

concentration with a maximal reduction detected at 3.0 µg/ml α-MSH with 88.6 ± 

3.2 % at 2 h (p≤ 0.001) and 84.8 ± 4.01 % at 6 h (p≤ 0.001) compared to TNF-α-

stimulated controls. The melanocortin peptide did not modulate IL-1β release at 

24 h post-stimulation (Figure 3.25 A). The MC3 agonist D[TRP]8-γ-MSH (3.0 

µg/ml) led to the maximal observed reduction of 72.73 ± 3.31 % at 6 h (Figure 

3.25 B). 

Evaluating the effects of α-MSH on IL-6 showed that after 6 h, α-MSH caused a 

concentration-dependant effect peaking at 3.0 µg/ml with 72.1 ± 2.3 % compared 

to TNF-α-stimulated controls. It was observed that higher concentrations did not 

elicit a significant effect. α-MSH did not exert any detectable effect at 24 h post-

stimulation, except when C-20/A4 chondrocytes were treated with low 

concentration of 0.3 µg/ml with 37 ± 3.4 % and 34.5 ± 4.6 % inhibition of IL-6 

respectively (p≤ 0.05). D[TRP]8-γ-MSH caused a concentration-dependent 

response observed at all time-points (Figure 3.26 B). The maximum effect at 2 h 

was observed following stimulation with 0.3 and 3.0 µg/ml with 75.0 ± 6.9 % and 

73.1 ± 3.5 % reduction respectively. At 6 h, 3.0 µg/ml were identified as the most 

potent concentrations leading to 61.3 ± 2.1 % and 60.2 ± 2.6 % inhibition of IL-6 
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synthesis respectively. The peptide was still effective at 24 h post stimulation with 

a pronounced concentration-dependent reduction of IL-6 concentration, peaking 

with 85 ± 2.0 % inhibition at 30.0 µg/ml (Figure 3.26 B). 

α-MSH inhibited IL-8 release in a concentration dependent manner at 2 and 6 h 

and was not effective at later time points (Figure 3.27 A). At 2 h, the greatest 

reduction in IL-8 synthesis was caused by 3.0, and 30.0 µg/ml of α-MSH with 

59.2 ± 5.5 % and 66.7 ± 9.85 % decrease respectively, while 0.3 had less effect 

leading to 47.2 ± 9.6 % down-regulation. There was a concentration dependent 

inhibition of IL-8, 6 h post stimulation, with a maximal reduction of 60.21 ± 2.1% 

caused by 3.0 µg/ml α-MSH.  

D[TRP]8-γ-MSH (0.3 µg/ml) failed to suppress the effect of TNF-α, except at 24 h 

post-stimulation, when it caused 51% decrease in the cytokine production (Figure 

3.27 B). The higher concentration of 3.0 µg/ml, led to significant down-regulation 

of IL-8 release regardless of the time point evaluated with a 67.32 ± 2.76%, 44.71 

± 5.14 % and 37.11 ± 2.4 % reductions at 2, 6 and 24h respectively. Following 

treatment of C-20/A4 chondrocyte with 30.0 µg/ml of D[TRP]8-γ-MSH a consistent 

decrease of 80.72 ± 2.13 % (p≤ 0.01), 64.72 ± 2.3 % (p≤ 0.001) and 69.89 ± 3.23 

% (p≤ 0.01) was observed at 2, 6 and 24 h post-stimulation respectively.  
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Figure 3.25.  Effect of α-MSH and D[TRP]8-γ-MSH on TNF-α  induced IL-1β  release 

from C-20/A4 cells.  

C-20/A4 chondrocytes were pre-treated for 30 min with PBS (Dotted line), α-MSH or 

D[TRP]8-γ-MSH (0.3 – 30.0 µg/ml) prior to stimulation with TNF-α (60.0 pg/ml; dashed 

line) and cell-free supernatants collected at 2, 6 and 24 h post stimulation and analysed 

for IL-1β by ELISA. Data are presented as Mean ± SEM of n=4 independent experiments 

repeated in triplicate, *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001.  
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Figure 3.26.  Effect of α-MSH and D[TRP]8-γ-MSH on TNF-α  induced IL-6 release 

from C-20/A4 cell-line.  

C-20/A4 chondrocytes were pre-treated for 30 min with PBS (Dotted line), α-MSH or 

D[TRP]8-γ-MSH (0.3 – 30.0 µg/ml) prior to stimulation with TNF-α (60.0 pg/ml; dashed 

line) and cell-free supernatants collected at 2, 6 and 24 h post stimulation and analysed 

for IL-6 by ELISA. Data are presented as Mean ± SEM of n=4 independent experiments 

repeated in triplicate, *p≤ 0.05, **p≤ 0.01, ***p≤0.001. 
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Figure 3.27.  Effect of α-MSH and D[TRP]8-γ-MSH on TNF-α  induced IL-8 release 

from C-20/A4 cell-line.  

C-20/A4 chondrocytes were pre-treated for 30 min with PBS, α-MSH (Panel A) and 

D[TRP]8-γ-MSH (0.3 – 30.0 µg/ml, Panel B) prior to stimulation with TNF-α (60.0 pg/ml) 

and cell-free supernatants collected at 0, 2, 6 and 24 h post stimulation and analysed for 

IL-8 by ELISA. Data are presented as Mean ± SEM of n=4 independent experiments 

repeated in triplicate, *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001.  
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3.3.3.3 Effect of PG901 and PG911 on TNF-α stimulated pro-

inflammatory cytokines release from C-20/A4 chondrocytes.  

Following the finding that MC5 was not functionally active, the effects of the 

selective agonist PG901 and PG911 on cytokine release was evaluated to 

ensure that the anti-cytokine effects elicited by α-MSH were independent of MC5. 

C-20/A4 chondrocytes were pre-treated with PG901 or PG911 (3.0 or 10.0 µg/ml) 

prior to stimulation with TNF-α (60.0 pg/ml) and were incubated for 6 h. 

Subsequently, IL-1β, IL-6, IL-8 and MCP-1 release was determined by ELISA 

(Table 3.1). As previously observed (Figures 3.5, 3.6 and 3.8), TNF-α (60.0 

pg/ml) caused a significant release of these cytokines compared to control cells 

(†p≤ 0.05), IL-1β, IL-6 and MCP-1 were not inhibited by PG901 or PG911 at any 

concentration evaluated. However, a different scenario was observed with 

respect to IL-8 only PG911 (10.0 µg/ml) caused a 40.4 ± 23.3 % reduction; all 

other concentrations of PG911 and PG901 were inactive.  
 

Table 3.1 Effect of PG901 and PG911 on TNF-α  induced cytokine release from C-

20/A4 cell-line. 

 IL-1β  IL-6 IL-8 MCP-1 

Medium 2.77± 0.44 21.09±18.5 72.65±4.78 46.18 ± 14.12 

TNF-α  (60 pg/ml) 24.37±8.69† 280.6 ± 20.39† 202.82 ± 21.04† 101.2± 16.37† 

TNF-α  + PG901 
(3.0 µg/ml) 17.56 ± 1.03 231.29 ± 24.19 165.41 ± 23.81 84.6 ± 16.37 

TNF-α  + PG901 
(10.0 µg/ml) 19.43 ± 3.29 253.62 ± 26.46 144.84 ± 25.41 89.96 ± 18.91 

TNF-α  + PG911 
(3.0 µg/ml) 19.92 ±4.99 273.396 ± 48.21 181.37 ± 54.78 97.05 ± 5.29 

TNF-α  + PG911 
(10.0 µg/ml) 16.38 ± 2.01 244.29 ± 17.14 122.46 ± 18.47* 85.88 ± 6.05 

Data are Means ± SEM of n=4 of three determinations †, *p≤ 0.05.  

IL-1β, Interleukin 1β; IL-6, inteleukin-6; IL-8, interleukin-8; MCP-1, monocyte chemoatractant 

protein-1.  
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3.3.4 Effect of SHU9119 on α-MSH and D[TRP]8-γ-MSH modulation of 

pro-inflammatory cytokines from C-20/A4 chondrocytes.  

The effect of the MC3/4 antagonist SHU9119 on α-MSH and D[TRP]8-γ-MSH 

modulation of cytokine release was evaluated to determine whether MC1 or MC3 

were transmitting the anti-inflammatory effects of these peptides in the 

chondrocyte system. C-20/A4 chondrocytes were pre-treated with α-MSH or 

D[TRP]8-γ-MSH (3.0 µg/ml) ± SHU9119 (10.0 µg/ml) for 30 mins prior to 

stimulation with TNF-α (60.0 pg/ml) and total RNA and cell-free supernatants 

were collected at 6 h post-stimulation. Total RNA was extracted from the treated 

C-20/A4 chondrocytes and PCR amplification performed using IL6 and IL8 

specific primers (Table 2.9).   

3.3.4.1 Antagonistic effect of SHU9119 on IL6 and IL8 gene expression 

following α-MSH and D[TRP]8-γ-MSH stimulation 

Densitometric quantification (Figure 3.28 A) showed that α-MSH (3.0 µg/ml) 

significantly down-regulated TNF-α-induced IL6 and IL8 expression, therefore 

causing a 35 % drop in IL6 expression from 0.802 ± 0.025 to 0.517 ± 0.018 au 

(p≤ 0.05) and a 24.5 % down-regulation of IL-8 from 1.92 ± 0.1 au down to 1.45 ± 

0.028 au (p≤ 0.05), this effect was not blocked by SHU9119 (Figure 3.28 B and 

C).  

The MC3 agonist D[TRP]8-γ-MSH significantly inhibited the transcription of both 

IL6 and IL8 genes as shown by densitometric quantification (Figure 3.29 A) with 

a 27 % inhibition of IL6 expression from 0.802 ± 0.025 au to 0.585 ± 0.02 au (p≤ 

0.05) and 35.7 % reduction in IL8 transcription from 1.92 ± 0.1 to 1.234 ± 0.016 

au (p≤ 0.01). SHU9119 completely inhibited the effect of D[TRP]8-γ-MSH on IL6 

and IL8, such that IL6 expression was 0.94 ± 0.05 au and IL-8 was 1.85 ± 0.19 

au (p≤ 0.05; Figure 3.29 B and C). 
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3.3.4.2 Effect of SHU9119 on cytokine release from α-MSH and D[TRP]8-

γ-MSH pre-treated TNF-α-activated C-20/A4 chondrocytes.  

In order to further elucidate the function of the melanocortin peptides α-MSH and 

D[TRP]8-γ-MSH  on TNF-α stimulated cytokine production, the MC3/4 antagonist 

SHU9119 was used to selectively block the function of MC3. C-20A4 cells were 

pre-treated with 3.0 µg/ml of α-MSH or D[TRP]8-γ-MSH for 30 min prior to 

stimulation with TNF-α (60.0 pg/ml) for 6 h and IL-6, IL-8 and MCP-1 levels were 

detected by ELISA. α-MSH (3.0 µg/ml) caused a marked reduction in IL-6, 

causing a 72.13 ± 2.3 % (p≤ 0.01; Figure 3.30 A), 60.22% (p≤ 0.01) reduction in 

IL-8 production (Figure 3.30 B) and a 21.3 % reduction in MCP-1 (p≤ 0.05; Figure 

3.30C). These effects were not abrogated in the presence of SHU9119 (Figure 

3.30 A-C).  

The selective MC3 agonist D[TRP]8-γ-MSH inhibited IL-6 production by 68 % (p≤ 

0.01), 44.72 % (p≤ 0.01) reduction in IL-8 secretion and a 26 % (p≤ 0.01) 

reduction in MCP-1 (p≤ 0.05) an effect blocked by SHU9119 (Figure 3.30 D-F).  
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Figure 3.28. Densitometric quantification of IL-6 and IL-8 mRNA expression in 

TNF-α-activated C-20/A4 chondrocytes treated with α-MSH and SHU9119 for 6 h.  

C-20/A4 chondrocytes were pre-treated for 30 min with α-MSH (3.0 µg/ml) ± SHU9119 

(10.0 µg/ml) prior to stimulation with TNF-α (60.0 pg/ml) and total RNA extracted 6 h 

post stimulation. PCR amplification with the respective primers for IL-6 and IL-8 was 

used to detect and quantify gene expression on 2 % agarose gels in triplicates with β-

actin used as internal control (Panel A). Comparison of densitometrically quantified IL-6 

and IL-8 expression following treatments (Panel B) shown in arbitrary units, each value 

normalized to the respective β-actin expression. Data are presented as Mean ± SEM of 

n=4 independent experiments *p≤ 0.05.  
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Figure 3.29. Densitometric quantification of IL-6 and IL-8 mRNA expression in 

TNF-α-activated C-20/A4 chondrocytes treated with D[TRP]8-γ-MSH and SHU9119 

for 6 h.  

C-20/A4 chondrocytes were pre-treated for 30 min with D[TRP]8-γ-MSH (3.0 µg/ml) ± 

SHU9119 (10.0 µg/ml) prior to stimulation with TNF-α (60.0 pg/ml) and total RNA 

extracted 6 h post stimulation. PCR amplification with the respective primers for IL-6 and 

IL-8 was used to detect and quantify gene expression on 2 % agarose gels in triplicates 

with β-actin used as internal control (Panel A). Comparison of densitometrically 

quantified IL-6 and IL-8 expression following treatments (Panel B) shown in arbitrary 

units, each value normalized to the respective β-actin expression. Data are presented as 

Mean ± SEM of n=4 independent experiments *p≤ 0.05, **p≤ 0.01). 
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Figure 3.30. Effect of SHU9119 on IL-6, IL-8 and MCP-1 release from α-MSH and 

D[TRP]8-γ-MSH pre-treated C-20/A4 chondrocytes.   

C-20/A4 chondrocytes were pre-treated for 30 min with PBS, α-MSH (Panel A – C) or 

D[TRP]8-γ-MSH (3.0 µg/ml) alone (Panels D – F) or in the presence of SHU9119 (10.0 

µg/ml) prior to stimulation with TNF-α (60.0 pg/ml) and cell-free supernatants collected at 

6 h post stimulation and analysed for IL-6, IL-8 and MCP-1 by ELISA. Data are 

presented as Mean ± SEM of n=4 independent experiments repeated in triplicate, *p≤ 

0.05, **p≤ 0.01. 
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3.3.4.3 Effect of SHU9119 on MMP1, MMP3 and MMP13 expression in α-

MSH D[TRP]8-γ-MSH and pre-treated TNF-α  activated 

chondrocytes. 

Following the identification of the anti-cytokines effects of α-MSH and D[TRP]8-γ-

MSH, their effect was evaluated on matrix metalloproteinases expression (Figure 

3.31A). α-MSH (3.0 µg/ml) caused a significant ~80 % down-regulation in the 

transcription of MMP1; densitometric quantification of the bands revealed that 

expression was reduced from 1.71 ± 0.11 au to 0.34 ± 0.04 au (p≤ 0.001; Figure 

3.31 B). MMP3 expression was reduced by α-MSH by 48 % from 0.37 ± 0.02 au 

(TNF-α-treated control cultures) to 0.19 ± 0.03 au (p≤ 0.01; Figure 3.31C), whilst 

MMP13 expression was inhibited by 66.7 % from 0.24 ± 0.01 au (TNF-α, 60.0 

pg/ml) to 0.083 ± 0.002 au  (Figure 3.31 D).  

This inhibition of MMP1, MMP3 and MMP13 was not modified in the presence of 

SHU9119. Nevertheless, when SHU9119 (10.0 µg/ml) was added together with 

α-MSH (3.0 µg/ml), there was a marked synergistic down-regulation of MMP13 

synthesis, with the combination causing a marked inhibition of 87.5 % (p≤ 0.001) 

compared to TNF-α treated controls and 57.8 % drop compared to samples pre-

treated with α-MSH alone (p≤ 0.05).  

Treatment of C-20/A4 chondrocytes with D[TRP]8-γ-MSH (3.0 µg/ml) led to a 

significant 88.9 % reduction in MMP1 expression (0.189 ±0.1 au; p≤ 0.001; 

Figure 3.32A) an effect blocked completely by co-administration of SHU9119 

(10.0 µg/ml; Figure 3.32 B). MMP3 was reduced by 76 % (0.098 ± 0.006 au; p≤ 

0.01) compared to TNF-α stimulated cultures (0.372 ± 0.012 au) an effect 

blocked by SHU9119 (10.0 µg/ml), returning the expression levels back to TNF-

α-stimulated levels (0.372 ± 0.012 au; Figure 3.32 C). A similar observation was 

noted for MMP13 gene expression, where D[TRP]8-γ-MSH (3.0 µg/ml) caused a 

91.7 % drop in transcription levels (0.02 ± 0.004 au; p≤ 0.001) as compared to 

TNF-α−treated controls (0.237 ± 0.008 au), an effect completely abolished by 

SHU9119 (10.0 µg/ml; Figure 3.32 D) . 
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Figure 3.31. Densitometric quantification of MMPs mRNA expression in C-20/A4 

cells treated with α-MSH and SHU9119 for 6 h.  

C-20/A4 chondrocytes were pre-treated for 30 min with α-MSH (3.0 µg/ml) ± SHU9119 (10.0 

µg/ml) and stimulated with TNF-α (60.0 pg/ml). Total RNA was extracted at 6 h post 

stimulation and PCR amplification with the respective primers for MMP1, MMP3 and MMP13 

was used to detect and quantify gene expression on 2 % agarose gels in triplicates, with β-

actin used as internal control (Panel A). Comparison of densitometrically quantified MMP1, 

MMP3 and MMP13 expression for α-MSH ± SHU9119 (Panel B, C and D) shown in arbitrary 

units, each value normalized to the respective β-actin expression. Data is presented as 

Mean ± SEM of n=4 independent experiments *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001).  
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Figure 3.32. Densitometric quantification of MMPs mRNA expression in C-20/A4 

cells treated with D[TRP]8-γ-MSH and SHU9119 for 6 h.  

C-20/A4 chondrocytes were pre-treated for 30 min with D[TRP]8-γ-MSH (3.0 µg/ml) ± 

SHU9119 (10.0 µg/ml) and stimulated with TNF-α (60.0 pg/ml). Total RNA was extracted at 

6 h post stimulation and PCR amplification with the respective primers for MMP1, MMP3 and 

MMP13 was used to detect and quantify gene expression on 2 % agarose gels in triplicates 

with β-actin used as internal control (Panel A). Comparison of densitometrically quantified 

MMP1, MMP3 and MMP13 expression for [DTRP]8-γ-MSH ± SHU9119 (Panel B, C and D) 

shown in arbitrary units, each value normalized to the respective β-actin expression. Data is 

presented as Mean ± SEM of n=4 independent experiments *p≤0.05, **p≤ 0.01, ***p≤ 0.001).  
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3.3.5 Evaluation of the effect of melanocortin peptides on anti-
inflammatory protein synthesis and release from C-20/A4 
chondrocytes. 

Human chondrocytes from healthy and osteoarthritic cartilage have been 

previously shown to express both IL-10 as well as the IL-10 receptor (IL10R; 

Iannone et al., 2001). IL-10 has potent anti-inflammatory properties, repressing 

the expression of inflammatory cytokines such as TNF-α, IL-6 and IL-1β by 

activated cells. Direct stimulation of OA chondrocytes with IL-10 has been shown 

to inhibit the activation of chondrocytes by TNF-α and therefore to down-regulate 

the expression of MMP1 and MMP13 (Shlopov et al., 2000). In addition, IL-10 

has been shown to induce HO-1, which is implicated in the protection against 

tissue damage and is repressing pro-inflammatory cytokines such as TNF-α. 

Therefore, following identification of the anti-inflammatory properties of α-MSH 

and D[TRP]8-γ-MSH on TNF-α stimulated C20/A4 chondrocytes, their effect on 

the production of these anti-inflammatory proteins was next evaluated. 

3.3.5.1 Effect of melanocortin peptides alone on IL-10 release from C-
20/A4 chondrocytes. 

IL-10 protein levels in cell-free supernatants were determined by ELISA following 

stimulation of C-20/A4 chondrocytes with a panel of melanocortin peptides (α-

MSH, D[TRP]8-γ-MSH, PG901, PG911 all at 3.0 µg/ml and SHU9119 (10.0 

µg/ml) for 0, 2, 6 and 24 h.  

Figure 3.33 A and B demonstrates the time-dependent increase in IL-10 release 

peaking at 6 h following α-MSH (3.0 µg/ml) and D[TRP]8-γ-MSH (3.0 µg/ml) 

treatment. At time 0 there was almost no basal release of IL-10 (1.625 ± 0.92 

pg/ml). However, following stimulation with α-MSH and D[TRP]8-γ-MSH for 2 h, 

there was a significant 15.5-fold (25.28 ± 2.25 pg/ml, *p≤ 0.05) and 12-fold (19.96 

± 3.25 pg/ml; *p≤ 0.05) increase in IL-10 production for both peptides 

respectively. IL-10 levels steadily increased to 37.9 ± 4.13 pg/ml and 25.92 ± 2.3 

pg/ml following stimulation with α-MSH and D[TRP]8-γ-MSH for 6 h respectively. 

At 24 h post-treatment, α-MSH and D[TRP]8-γ-MSH treatment caused IL-10 

concentrations to return to levels similar to those observed at 2h (15.67 ± 3.93 
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pg/ml and 19.23 ± 4.76 pg/ml, *p≤ 0.05 both peptides). At all time points 

SHU9119, PG901 and PG911 (10.0 µg/ml) failed to induce any significant 

increase in IL-10 above basal production at time 0h (Figure 3.33 C-E).  

3.3.5.2 Effect of melanocortin peptides on IL-10 production from TNF-α-

activated C-20/A4 chondrocytes.  

Pre-treatment of TNF-α−activated C-20/A4 chondrocytes with α-MSH (0.3 – 30.0 

µg/ml) for 2h caused a concentration-dependent increase in IL-10, peaking with 

37.5 ± 2.83 pg/ml following addition of 3.0 µg/ml α-MSH. Concentrations higher 

than 3.0 µg/ml didn’t cause significant increases in IL-10 compared to untreated 

controls (1.625 ± 0.919 pg/ml).  At 6 h post stimulation α-MSH caused a 

significant increase in IL-10 production at 0.3 – 3.0 µg/ml (*p≤ 0.05) compared to 

untreated controls (5.34 ± 3.34 pg/ml). The maximal response of 48.42 ± 3.21 

pg/ml was elicited by 0.3 µg/ml α-MSH, although this was not significantly 

different compared to 3.0 µg/ml (43.83 ± 2.24 pg/ml, p≤ 0.05; Figure 3.34). IL-10 

release was subsequently evaluated at 24 h, in order to determine if this 

induction was maintained over a longer time frame. At this time-point a different 

scenario was observed with concentrations of 3.0 and 30.0 µg/ml able to cause 

detectable IL-10 release. The maximal response at this time-point was elicited by 

30.0 µg/ml α-MSH (50.19 ± 4.12 pg/ml).  

Given that the pan-melanocortin agonist α-MSH caused increases in IL-10 the 

MC3 agonist D[TRP]8-γ-MSH (0.3 - 30.0 µg/ml) was subsequently evaluated prior 

to stimulation with TNF-α (60.0 pg/ml). The MC3 agonist caused a marked 

release of IL-10 at 2, 6 and 24 h post stimulation, with concentrations of 3.0 and 

30.0 µg/ml proving to be the most effective. D[TRP]8-γ-MSH (30.0 µg/ml) caused 

a maximal release of 34.12 ± 2.52 pg/ml of IL-10 at 2 h, compared to untreated 

controls (1.625 ± 0.919 pg/ml; *p≤ 0.05). At 6 h post stimulation 3.0 and 30.0 

µg/ml of D[TRP]8-γ-MSH significantly increased IL-10 release with a peak of 

24.94 ± 2.15 pg/ml at 3.0 µg/ml. At 24 h a concentration-dependent increase in 

IL-10 release was observed with a maximal release of 37.33 ± 0.83 pg/ml at 3.0 

µg/ml (Figure 3.34). 
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Figure 3.33. Time dependent release of IL-10 from C20/A4 cells following treatment 

with α-MSH, D[TRP]8-γ-MSH, SHU9119, PG901 and PG911.  

C-20/A4 chondrocytes were treated α-MSH (3.0 µg/ml, Panel A), D[TRP]8-γ-MSH (3.0 

µg/ml; Panel B), SHU9119 (10.0 µg/ml; Panel C), PG901 (3.0 µg/ml; Panel D) or PG911 

(3.0 µg/ml; Panel E) and cell-free supernatants collected at 0, 2, 6 and 24 h. IL-10 was 

then determined by ELISA. Data are presented as Mean± SEM of n=4 independent 

experiments repeated in triplicate, *p≤ 0.05, vs. Time 0 (dotted line). 



 

 
 
 

178 

2 6 24

0

10

20

30

40

50

60 untreated 0.3 3.0

!-MSH (µg/ml)

30.0

**

**

**

**

**

*

**

IL
-1

0
 r

e
le

a
s
e

(p
g
/m

l)

2 6 24

0

10

20

30

40

50

60 Untreated 0.3 3.0 30.0

D[TRP]8-"-MSH, (µg/ml)

**

*

****

* *

*

Time (h)

IL
-1

0
 r

e
le

a
s
e

(p
g
/m

l)

A

B

 
 
 
 
 
 
 

Figure 3.34 Effect of α-MSH and D[TRP]8-γ-MSH on IL-10 release from TNF-α-

activated C-20/A4 chondrocytes.  

C-20/A4 chondrocytes were treated with α-MSH or D[TRP]8-γ-MSH (0.3 – 30.0 µg/ml) for 

30 min prior to TNF-α (60.0 pg/ml) stimulation. Cell-free supernatants were collected at 

for 2, 6 and 24 h and analysed for IL-10 by ELISA. Data are presented as Mean ± SEM 

of n=4 independent experiments repeated in triplicates. *p≤ 0.05, **p≤ 0.01 vs. untreated 

control cultures. 
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3.3.5.3 Determination of HO-1 release from C-20/A4 cells following 
melanocortin peptide stimulation.  

HO-1 release from C-20/A4 chondrocytes treated with vehicle (DMEM), α-MSH 

or D[TRP]8-γ-MSH (3.0 µg/ml) alone or in presence of TNF-α (60.0 pg/ml) was 

investigated via Western Blot and the results are shown in Figure 3.35. C-20/A4 

chondrocytes were treated with melanocortin peptides for 6 h either alone or 

given 30 min prior to stimulation with TNF-α and samples collected 6 h later.  

Western Blot analysis identified basal production of HO-1 (0.50 ± 0.04 au), which 

was significantly increased following treatment with TNF-α (60.0 pg/ml) for 6 h to 

1.02 ± 0.01 au (p≤ 0.001). The treatment of chondrocytes with α-MSH (3.0 µg/ml) 

alone caused a significant 3-fold increase in HO-1 production (1.39 ± 0.04 au; p≤ 

0.001), compared to the media-treated controls and a 36 % increase when 

compared to TNF-α alone (p≤ 0.01). The combination of α-MSH and TNF-α 

caused a significant increase in HO-1 with a 6-fold increase in HO-1 (2.64 ± 0.14 

au, p≤ 0.001) compared to untreated controls and an approximate 3-fold increase 

when compared to TNF-α-stimulated samples (p≤ 0.001).  

A similar observation was made following treatment of the cells with the MC3 

agonist D[TRP]8-γ-MSH (3.0 µg/ml), which caused a 3-fold increase in HO-1 

expression, raising it to 1.37 ± 0.02 au (p≤ 0.01) compared to untreated controls 

and 34 % increase compared to HO-1 production by TNF-α-stimulated 

chondrocytes (p≤ 0.01). Combination of the MC3 agonist with TNF-α caused the 

highest increase in HO-1 (2.87 ± 0.12 au, p≤ 0.001) protein with a ~ 7-fold 

increase compared to media-treated samples, and a ~ 3-fold increase, compared 

to TNF-α stimulated samples. The expression of α-Tubulin standards was found 

to be consistent with all treatments. HO-1 production was normalized to the 

standard expression in that reaction (Figure 3.35 A). 
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Figure 3.35. Effect of α-MSH and D[TRP]8-γ-MSH on HO-1 protein levels in human 

C-20/A4 chondrocytic cell line.  

Cultures of C-20/A4 chondrocytes were treated for 6 h with: Lane 1: DMEM medium, 

Lane 2: TNF-α (60 pg/ml), Lane 3: α-MSH (3.0 µg/ml), Lane 4: D[TRP]8-γ-MSH (3.0 

µg/ml), Lane 5: α-MSH + TNF-α (60 pg/ml), Lane 6: D[TRP]8-γ-MSH (3.0 µg/ml) + TNF-α 

(60.0 pg/ml). Bands with sizes corresponding to HO-1 (32 kDa) and α-tubulin (55 kDa) 

were detected by Western blotting. The image is representative of four individual 

experiments (Panel A). Comparison of densitometrically quantified HO-1 expression by 

human C-20/A4 cell-lines is shown in arbitrary units (Panel B). Data are presented as 

Mean ± SEM of n=4 experiments. †p≤ 0.01, **p≤ 0.01, ***p≤ 0.001 vs. cultures treated 

with TNF-α alone. 

 



 

 
 
 

181 

3.3.6 Effect of melanocortin peptides on chondrocyte apoptosis. 

3.3.6.1 Effect of α-MSH and D[TRP]8-γ-MSH on basal caspase 3/7 activity 

Substantial evidence supports that chondrocyte death, due to inflammation 

and/or injury is an important risk factor predisposing to osteoarthritis and one that 

exacerbates the disease progression, as chondrocytes are unable to reproduce 

and compensate for the lost cells (Sharif et al., 2004; Lopez-Armada et al., 

2006). We have shown that melanocortins do not cause any statistically 

significant increase in the production of pro-inflammatory cytokines from C-20/A4 

(Table 3.3), and in order to investigate their effect on chondrocyte apoptosis, we 

employed Caspase-Glo®-3/7 assay to measure any changes in caspase-3/7 

activity following treatment.  

C-20/A4 chondrocytes were treated with vehicle (DMEM), α-MSH or D[TRP]8-γ-

MSH (0.1 – 30.0 µg/ml) for 6 h and caspase-3/7 activity was determined 

according to the manufacturer’s instructions (Promega UK Ltd., UK).  Both α-

MSH and D[TRP]8-γ-MSH (0.1 – 30.0 µg/ml), were did not activate caspase-3/7 

apoptotic pathway (Figure 3.36), however α-MSH caused a moderate non-

significant inhibition of the basal level of activity of the enzymes. 

 

 



 

 
 
 

182 

0.1 0.3 1.0 10.0 30.0

2.0!1003

2.5!1003

3.0!1003

3.5!1003

4.0!1003

!-MSH

DTRP8-"-MSH 

C
a
s
p

a
s
e
 3

/7
 a

c
ti

v
it

y
/R

L
U

 

Figure 3.36. The effect of α-MSH and D[TRP]8-γ-MSH on caspase 3/7 activity of 

untreated C-20/A4 chondrocytes.  

C-20/A4 chondrocytes were plated at 2.0 x 104 cells/well, and treated with DMEM or 

D[TRP]8-γ-MSH (0.1 – 30.0 µg/ml) for 30 min prior to stimulation with TNF-α (60.0 pg/ml) 

for 6 h. Caspase-3/7 activity was determined by Caspase-3/7 Glo Assay (Promega, UK) 

Dotted line symbolizes Caspase 3/7 activity following PBS treatment (control). Data are 

presented as Mean ± SEM of n=4 experiments, assessed in triplicates. 
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3.3.6.2 Melanocortin peptides inhibit caspase-3 production, caspase-3/7 

activity and cell death of TNF-α-activated C-20/A4 chondrocytes. 

C-20/A4 chondrocytes were treated with TNF-α (60.0 pg/ml) to establish levels of 

caspase-3 activity (Figure 3.37). Western blot analysis against cleaved 

(activated) caspase-3 (Asp-175) showed 0.52 ± 0.045 au basal production 

(DMEM) of cleaved caspase-3, which upon stimulation with TNF-α led to 0.65 ± 

0.24 au thereby representing a significant 24 % increase in production (p≤ 0.05). 

Upon pre-treatment of the cells with MC pan-agonist α-MSH and the selective 

MC3 agonist D[TRP]8-γ-MSH, there was significant reduction in the synthesis of 

activated caspase-3 compared to the levels caused by TNF-α, with a 50 % (0.32 

± 0.012 au) and 42 % (0.37 ± 0.03) reduction for α-MSH (3.0 µg/ml) and 

D[TRP]8-γ-MSH  (3.0 µg/ml) respectively (p≤ 0.01).  

In order to investigate the involvement of the specific melanocortin receptors, 

SHU9119 (10.0 µg/ml) was utilized to specifically block MC3. When used in 

conjunction with α-MSH it did not block the effect of the peptide however, the 

antagonist did cause a slight (~8.7 %; n.s. p>0.05) synergistic inhibition in the 

production of activated caspase-3 (0.27 ± 0.02 au) compared to the effect of α-

MSH + TNF-α alone.  

The opposite effect was observed when SHU9119 was given in conjunction with 

the selective MC3 agonist D[TRP]8-γ-MSH, whereby it markedly hindered 

D[TRP]8-γ-MSH from activating its receptor (Figure 3.37). The combination led to 

significant ~25 % increase in cleaved caspase-3 production (0.47 ± 0.01 au; p≤ 

0.01) compared to the effect of D[TRP]8-γ-MSH  without the antagonist (0.37 ± 

0.3 au).  

Cell viability was evaluated using MTT proliferation assay (Figures 3.38, 3.39). C-

20/A4 chondrocytes were treated with DMEM, α-MSH or D[TRP]8-γ-MSH (0.1 – 

30.0 µg/ml) ± TNF-α (60.0 pg/ml) for 6 h with cell viability determined via MTT 

assay and caspase-3/7 activity determined by Caspase-3/7® Glo Assay. TNF-α 

(60.0 pg/ml) caused a 26 % cell death as determined by MTT Assay, which was 

alleviated in a concentration-dependent manner by treatment with the peptides; 
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maximal inhibition of cell death was achieved at 1.0 and 3.0 µg/ml of α-MSH, and 

3.0 and 10.0 µg/ml D[TRP]8-γ-MSH  (p≤ 0.01).  

Treatment of the C-20/A4 chondrocytes with TNF-α increased caspase-3/7 

activity 5.7-fold compared to DMEM, but was attenuated in the presence of α-

MSH and D[TRP]8-γ-MSH in a concentration-dependent manner (p≤ 0.01; Figure 

3.38). Pre-treatment of cells with the MC3/4 antagonist SHU9119 fully reversed 

the effect of D[TRP]8-γ-MSH, but had no effect on α-MSH effect on these 

parameters. 
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Figure 3.37. Western Blot detection and densitometric quantification of Cleaved 

caspase-3 protein levels in human C-20/A4 chondrocytic cell line.  

Cultures of C-20/A4 chondrocytes were treated for 6 h with: Lane 1: DMEM medium, 

Lane 2: TNF-α (60 pg/ml), Lane 3: α-MSH (3.0 µg/ml), Lane 4: D[TRP]8-γ-MSH (3.0 

µg/ml), Lane 5: α-MSH + TNF-α (60 pg/ml), Lane 6: D[TRP]8-γ-MSH (3.0 µg/ml) + TNF-α 

(60 pg/ml). Bands with sizes corresponding to Cleaved caspase-3 (Asp175; 17, 19 kDa) 

and α-tubulin (55 kDa) were detected by Western blotting. The image is representative 

of 4 individual experiments (Panel A). Comparison of densitometrically quantified 

Cleaved caspase-3 (Asp175) expression by human C-20/A4 cell-lines is shown in 

arbitrary units (au, Panel B). Data are presented as Mean ± SEM of n=4 experiments: 

**p≤ 0.01, ***p≤ 0.001 vs. respected control.  
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Figure 3.38.  The effect of α-MSH on cell viability and caspase 3/7 activity on TNF-

α-activated C-20/A4 chondrocytes.  

C-20/A4 chondrocytes were plated at 2.0 x 104 cells/well, and treated with PBS or α-

MSH (0.1 – 30.0 µg/ml) for 30 min prior to stimulation with TNF-α (60.0 pg/ml) for 6 h. 

Cell viability was determined via MTT reduction assay (Panel B) and caspase-3/7 activity 

determined by Caspase-3/7 Glo Assay (Panels A and B). Dashed (red) line represents 

control sample cell viability – untreated cells as determined by MTT (100%); Dotted line 

symbolizes Caspase 3/7 activity following DMEM treatment (control). Data are presented 

as Mean ± SEM of n=4 experiments, assessed in triplicate.  *p≤ 0.05, **p≤ 0.01, **p≤ 

0.01 vs. TNF-α-treated controls; †p≤ 0.01 vs. untreated controls. 
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Figure 3.39. The effect of D[TRP]8-γ-MSH on cell viability and caspase 3/7 activity 

on TNF-α-activated C-20/A4 chondrocytes.  

C-20/A4 chondrocytes were plated at 2.0 x 104 cells/well, and treated with PBS or 

D[TRP]8-γ-MSH (0.1 – 30.0 µg/ml) for 30 min prior to stimulation with TNF-α (60.0 pg/ml) 

for 6 h. Cell viability was determined via MTT reduction assay (Panel A) and caspase-

3/7 activity determined by Caspase-3/7 Glo Assay (Panel A and B). Dashed (red) line 

represents control sample cell viability – untreated cells (100%); Dotted line symbolizes 

Caspase 3/7 activity following PBS treatment (control). Data are presented as Mean ± 

SEM of n=4 experiments, assessed in triplicate.  *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001 vs. vs. 

TNF-α-treated controls; †p≤ 0.01 vs. untreated controls. 
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Figure 3.40. The effect of α-MSH and D[TRP]8-γ-MSH on cell viability following 

TNF-α  activation.  

C-20/A4 chondrocytes were plated at 2.0 x 104 cells/well, and pre-treated with a-

MSH/D[TRP]8-γ-MSH (0.1 – 30.0 µg/ml) ± SHU9119 (10.0 µg/ml) for 30 min prior to 

stimulation with TNF-α (60.0 pg/ml) for 6 h. Cell viability was determined via MTT 

reduction assay. Dashed line represents TNF-a (60.0 pg/ml) treated control cell viability 

– 74.13%. Data are presented as Mean ± SEM of n=4 experiments, assessed in 

triplicate.  *p≤ 0.05, **p≤ 0.01, compared to respective control. 
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3.3.7 Effect of hypo-osmolarity on C-20/A4 chondrocyte function.   

Cartilage hydration plays an important role in the physiology of healthy 

chondrocytes. Highly hydrated proteoglycans inflate the cartilage tissue and thus 

it confers an ability to resist compressive forces (Hall, 1998). However, during 

osteoarthritis, matrix metalloproteinases are significantly over-expressed, driving 

the major degradation of collagen that occurs during OA (Kevorkian et al., 2004, 

Kobayashi et al., 2005).  The damaged collagen network allows the charged 

proteoglycans to attract more water, which leads to dilution of the charged ions in 

the extracellular space and misbalance of osmolarity compared to the 

chondrocytic cytoplasm, thereby increased water-flow into the cell and altered 

metabolism (Maroudas, 1976, Bush and Hall, 2001a, Bush and Hall, 2005).  As it 

is very difficult to mimic these conditions in situ and in vivo, the effect of 

hypotonic media (140 mOsm:H2O) on chondrocyte function was investigated in 

C-20/A4 chondrocyte system. The production of pro-inflammatory cytokine 

production and expression of matrix metalloproteinases was investigated 

following treatment of the chondrocytes with hypo-osmotic (140 mOsm) DMEM 

culture media.  

3.3.7.1 Effect of hypo-osmolarity on pro-inflammatory cytokines release 
and MMPs expression in C-20/A4 chondrocytes.  

C-20/A4 chondrocytes stimulated with TNF-α (60 pg/ml) showed increased pro-

inflammatory cytokine expression and release (IL-1β, IL-6, IL-8) and significant 

rise in MMP1 and MMP13. Here, an in vitro model, was designed to mimic the 

hypo-osmolarity in osteoarthritic cartilage in order to investigate its effects on the 

production of the catabolic pro-inflammatory cytokines IL-6 and IL-8, and the 

detrimental collagenases 1 and 3.   

C-20/A4 chondrocytes were grown in hypotonic media (140 mOsm) for 0, 24 and 

72 h and IL6 and IL8 expression determined using semi-quantitative PCR 

amplification reactions with the appropriate primers (Table 2.9). PCR products 

were visualised on 2 % agarose gel and the results were normalised to internal 

control β-actin (Figure 3.41 A). The resulting bands were analysed by 

densitometry (Figure 3.41 B). There was a significant increase in IL6 and IL8 
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mRNA levels. Cells incubated for 24 h in 140 mOsm DMEM media released 37-

fold more IL6 compared to control cultures and with increasing the time-periods 

to 72 h, the expression of IL6 increased to 42-fold compared to cells incubated in 

normal 280 mOsm DMEM (Figure 3.41). Similarly, IL8 expression was 

significantly increased following incubation with hypo-osmotic solution. The 

treatment of C-20/A4 cells with hypo-osmotic solution for 24 h caused a 8-fold 

up-regulation of IL8 expression, which continued to increase to 10-fold at 72 h 

post-stimulation.   

Changes in protein levels of IL-6 and IL-8 were investigated following incubation 

of the cells in 140 mOsm DMEM for 24 and 72 h by ELISA (Figure 3.42). C-20/A4 

cells were incubated with 140 mOsm DMEM media for 24 or 72 h. Cell-free 

supernatants were collected and analysed for IL-6 and IL-8 production by 

commercially available IL-6 and IL-8 ELISAs according to manufacturer’s 

instructions (R&D Systems, UK). There was a significant time-dependent 

increase in the concentration of IL-6 as compared to time 0. C-20/A4 

chondrocytes responded to decreased osmolarity of the extracellular space 

(DMEM) with a release of 150 ± 12.66 pg/ml and 192.34 ± 7.83 pg/ml of IL-6 

following incubation with the hypo-osmotic medium for 24 and 72h respectively 

(p≤ 0.001 for both values) compared to time 0 (21.09 ± 18.5 pg/ml). Similar 

observations were made for IL-8 production following incubation with 140 mOsm 

DMEM media for 24 and 72h, which yielded 394.32 ± 15.60 pg/ml and 376.10 ± 

11.38 pg/ml respectively (p≤ 0.001), compared to the untreated control cells 

(72.65 ± 4.78 pg/ml). There was slight but insignificant reduction in IL-8 

production between 24 and 72 h post stimulation (Figure 3.42). 
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Figure 3.41. Densitometric quantification of IL-6 and IL-8 expression in C-20/A4 

cells incubated in hypotonic (140 mOsm) DMEM media for 24 h and 72 h. 

C-20/A4 chondrocytes were stimulated with hypotonic media (140 mOsm) at time 0 and 

total RNA extracted at 0 h, 24 h and 72 h post stimulation. PCR amplification with the 

respective primers for IL6 and IL8 was used to detect and quantify gene expression on 2 

% agarose gels in triplicates with β-actin used as internal control (Panel A). Comparison 

of densitometrically quantified IL-6 (Panel B) and IL-8 (Panel C) shown in arbitrary units, 

each value normalized to the respective β-actin expression. Data are presented as Mean 

± SEM of n=4 independent experiments ***p≤ 0.001). 
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Figure 3.42 Time dependent effect of hypo-osmotic (140 mOsm) DMEM media on 

IL-6 and IL-8 protein release. 

C-20/A4 chondrocytes were treated with hypotonic media (140 mOsm) at time 0 and 

cell-free supernatants were collected at 0, 24 and 72 h post stimulation. Supernatants 

were then analysed by commercially available ELISA for IL-6 and IL8 production. Data 

are presented as Mean ± SEM of n=3 independent experiments repeated in triplicate, 

**p≤ 0.01, ***p≤ 0.001) vs. Time 0. 

 

The effect of hypotonic media on MMP1, MMP3 and MMP13 expression was 

determined using PCR amplification reactions with the appropriate primers (Table 

2.9). The PCR products were visualised on 2 % agarose gel and the results were 

normalised to internal control β-actin (Figure 3.43 A). Densitometric analysis 

showed that upon incubation of C-20/A4 chondrocytes with 140 mOsm DMEM 

media for 24 h and 72 h, MMP1 expression was significantly elevated with 0.49 ± 

0.12 au (2.3-fold increase; p≤ 0.05) at 24 h and a 4-fold increase at 72 h (0.932 ± 

0.0263 au; p≤ 0.001 vs. Time 0 h). Interestingly, MMP3 expression was 

increased slightly following 72 h compared to non-treated cells (0.714 ± 0.04 au, 

1.23-fold; p≤ 0.05 vs. Time 0), whilst no significant changes were observed at 24 

h. MMP13, a collagenase that is expressed in neither non-stimulated C-20/A4 

cells, (as shown on Figure 3.43 B), nor in healthy human cartilage, was 

significantly up-regulated to 0.557 ± 0.058 au after 24 h incubation in 140 mOsm 

DMEM (p≤ 0.001), and expression was increased following 72 h (0.642 ± 0.01 

au; p≤ 0.001 vs. Time 0).  
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Figure 3.43. Densitometric quantification of MMP1, MMP3 and MMP13 expression 

in C20/A4 cells treated with 140 mOsm DMEM media.  

C20/A4 chondrocytes were stimulated with hypotonic media (140 mOsm) at time 0 and 

total RNA extracted 0-72 h post stimulation. PCR amplification with the respective 

primers for MMP1, MMP3 and MMP13 was used to detect and quantify gene expression 

on 2 % agarose gels in duplicates with β-actin used as internal control (Panel A). 

Comparison of densitometrically quantified MMP1, MMP3 and MMP13 expression 

induced by hypotonic saline (140 mOsm:H2O, Panel B) shown in arbitrary units, each 

value normalized to the respective β-actin expression. Data is presented as Mean± SEM 

of n=4 independent experiments *p≤ 0.05, ***p≤ 0.001). 
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3.3.7.2 Attenuation of extracellular hypo-osmolarity-induced matrix 

metalloproteinases production by melanocortin peptides α-MSH 

and D[TRP]8-γ-MSH.  

In order to investigate different aspects of the anti-inflammatory properties of the 

melanocortin peptides α-MSH and D[TRP]8-γ-MSH, their effect was evaluated on 

the up-regulated expression of catabolic proteinases caused by the hypo-osmotic 

challenge.  

C-20/A4 cells were incubated in 140 mOsm DMEM for 24 h + α-MSH (3.0 µg/ml) 

or D[TRP]8-γ-MSH (3.0 µg/ml).  Total RNA was extracted and MMP1, MMP3 and 

MMP13 gene expression was analysed by semi-quantitative PCR (Figure 3.44 A) 

with the specific primers for the amplification of the individual genes listed in 

Table 2.9. Following treatment for 24 h, α-MSH failed to cause any significant 

inhibition of the expression of MMP1, MMP3 and MMP13. Similarly, D[TRP]8-γ-

MSH at 3.0 µg/ml failed to cause any detectable change in the expression of 

MMP3, however, the MC3 agonist reduced the transcription of MMP1 (from 0.49 

± 0.12 au to 0.25 ± 0.05 au) and MMP13 (from 0.56 ± 0.06 au to 0.11 ± 0.01 au), 

representing 49 % and 80 % inhibition respectively (Figure 3.44 B).  
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Figure 3.44. Effect of melanocortins on MMP1, MMP3 and MMP13 expression in C-

20/A4 cells treated with 140 mOsm DMEM for 24 h measured by densitometry. 

C-20/A4 chondrocytes were pre-treated with α-MSH or D[TRP]8-γ-MSH prior to 

stimulated with hypotonic media (140 mOsm) at time 0 and total RNA extracted 24 h 

post stimulation. PCR amplification with the respective primers for MMP1, MMP3 and 

MMP13 was used to detect and quantify gene expression on 2 % agarose gels in 

duplicates with β-actin used as internal control (Panel A). Comparison of 

densitometrically quantified MMP1, MMP3 and MMP13 expression induced by hypotonic 

saline (140 mOsm; Panel B) shown in arbitrary units, each value normalized to the 

respective β-actin expression. Data are presented as Mean ± SEM of n=3 independent 

experiments *p≤ 0.05). 
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3.4 Effect of pro-inflammatory stimuli on primary bovine 
chondrocytes function.  

3.4.1 Detection of pro-inflammatory cytokines release following 
primary chondrocyte activation. 

C-20/A4 cell-line chondrocytes have been shown within this thesis to respond to 

TNF-α and LPS stimulation leading to the release of pro-inflammatory cytokines. 

Given these findings, primary bovine articular chondrocytes (freshly extracted, 

cultured in monolayers) were evaluated to determine whether primary cells 

responded in a similar fashion, as these have been shown to be a good model 

for human primary chondrocytes (Kerrigan and Hall, 2005). Isolated bovine 

articular chondrocytes were cultured and incubated in serum-free 380 mOsm 

DMEM medium for 24 h prior to stimulation with TNF-α (20.0 – 60.0 pg/ml) and 

LPS (1.0 – 10.0 µg/ml) for 6 h, cell-free supernatants were collected and 

analysed for IL-1β, IL-6 and IL-8 by ELISA. 

3.4.1.1 Effect of TNF-α and LPS on IL-6 and IL-8 release from bovine 

chondrocytes.  

TNF-α stimulation of primary bovine chondrocytes led to significant increases in 

IL-6 release (Figure 3.45 A). The pro-inflammatory cytokine (20.0 – 80.0pg/ml) 

caused a concentration-dependent increase in synthesis and release of IL-6 from 

the bovine articular chondrocytes with 20.0 pg/ml causing a significant release of 

38.54 ± 9.85 pg/ml of IL-6 (p≤ 0.05) compared to untreated controls (3.2 ± 1.38 

pg/ml). IL-6 levels doubled following stimulation with 40.0 pg/ml (78.59 ± 13.68 

pg/ml, p≤ 0.01). Increasing concentrations of TNF-α led to 174.38 ± 14.6 pg/ml 

(p≤ 0.001) and 347.07 ± 29.79 pg/ml (p≤ 0.001) of IL-6 production at 60.0 pg/ml 

and 80.0 pg/ml respectively. LPS (1.0 – 10.0 µg/ml) also caused significant 

increases in IL-6; however, all concentrations evaluated caused a similar 

response. A maximal response was achieved following stimulation with LPS (3.0 

µg/ml), where 163.23 ± 12.24 pg/ml of IL-6 was released. Both 1.0 and 10.0 

µg/ml of LPS had similar effect, causing 156.93 ± 15.35 pg/ml and 159.12 ± 

12.24 pg/ml of IL-6 release respectively. The increase caused by LPS at all 
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concentrations was significantly increased compared to the untreated controls 

(3.2 ± 1.38 pg/ml; p≤ 0.001; Figure 3.45 B). 

Following the determination of IL-6, IL-8 levels from stimulated bovine 

chondrocytes were evaluated. TNF-α (20.0 – 80.0 pg/ml) caused a bell-shaped 

concentration dependent effect, peaking at 40.0 pg/ml and 60.0 pg/ml with 46.67 

± 13.65 pg/ml (p<0.05) and 45.56 ± 2.94 pg/ml (p≤ 0.01) respectively, whilst 

higher concentrations of TNF-α (80.0 pg/ml) caused lower levels of IL-8 release 

(28.89 ± 3.9 pg/ml (p≤ 0.01; Figure 3.45 C). LPS (1.0 – 10.0 µg/ml) caused a 

similar response with 22.33 ± 3.1 pg/ml (p≤ 0.01) and 12.29 ± 1.98 pg/ml (p≤ 

0.05) IL-8 release for 3.0 µg/ml and 10.0 µg/ml respectively, however, 1.0 µg/ml 

of LPS failed to induce any significant increase in IL-8 compared to control 

values (p> 0.05; Figure 3.45 B).  

3.4.1.2 Effect of TNF-α and LPS on IL-1β and MCP-1 release from bovine 

chondrocytes.  

Treatment of bovine chondrocytes with TNF-α (20.0 – 80.0 pg/ml) caused a bell 

shaped concentration-dependent effect on IL-1β release following 6 h incubation, 

peaking at 60.0 pg/ml with 21.87 ± 0.2 pg/ml (p≤ 0.05) compared to untreated 

controls (0.82 ± 0.06 pg/ml; Figure 3.46 A). Lower concentrations of TNF-α 

caused 17.06 ± 0.65 pg/ml and 17.40 ± 0.23 pg/ml IL-1β release for 20.0 and 

40.0 pg/ml respectively (p≤ 0.05). Similar response was observed following 

stimulation with the highest tested concentration 80.0 pg/ml of TNF-α leading to 

17.92 ± 0.26 pg/ml IL-1β released (p≤ 0.05). LPS stimulation also activated the 

bovine chondrocytes to produce IL-1β at all concentrations tested (Figure 3.46 

B), with a maximal release following stimulation with 3.0 µg/ml, causing a release 

of 20.8 ± 3.8 pg/ml IL-1β (p≤ 0.05). LPS at 1.0 and 10.0 µg/ml led to significant 

17.9 ± 1.2 pg/ml and 19.8 ± 2.9 pg/ml IL-1β release from the chondrocytes 

compared to control (p≤ 0.05). 

Similarly to the effect on IL-1β, IL-6 and IL-8, TNF-α (20.0 – 80.0 pg/ml) and LPS 

1.0 – 10.0 µg/ml) caused significant production of MCP-1 (Figure 3.46 C). TNF-α 

caused a maximal response at 60.0 pg/ml with 159.44 ± 13.29 pg/ml (p≤ 0.001), 

whilst 20.0 pg/ml was unable to exhibit any effect on the production of MCP-1, 
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but when the concentration was doubled to 40.0 pg/ml, there was a significant 

elevation in MCP-1 (79.86 ± 25.12 pg/ml; p≤ 0.001) compared to untreated 

controls. 

When primary bovine cells were treated for 6 h with LPS (1.0 – 10.0 µg/ml) there 

was a significant increase in MCP-1, with a maximal production of 108.05 ± 4.2 

pg/ml at 3.0 µg/ml LPS. All other concentrations caused very similar amount of 

MCP-1 production (p≤ 0.001 for all doses of LPS used; Figure 3.46 D).  
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Figure 3.45   Effect of TNF-α  and LPS on IL-6 and IL-8 release from extracted 

bovine chondrocytes.  

Bovine chondrocytes were extracted from cartilage explants and cultured for plated for 

24 h in serum-free 380 mOsm DMEM prior to stimulation. Panel A and C: TNF-α (20.0-

80.0 pg/ml) and Panel B and D: LPS (1.0-3.0 µg/ml) for 6 h. Cell-free supernatants were 

collected and analysed for IL-6 IL-8 levels by ELISA. Data are presented as Mean ± 

SEM of n=4 independent experiments performed in triplicate. *p≤ 0.05, **p≤ 0.01 vs. 

untreated samples (0.0). 
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Figure 3.46   Effect of TNF-α  and LPS on IL-1β  and MCP-1 release from extracted 

bovine chondrocytes.  

Bovine chondrocytes were extracted from cartilage explants and cultured for plated for 

24 h in serum-free 380 mOsm DMEM prior to stimulation. Panel A and C: TNF-α (20.0 – 

80.0 pg/ml) and Panel B and D: LPS (1.0 – 3.0 µg/ml) for 6 h. Cell-free supernatants 

were collected and analysed for IL-1β (Panels A, B) and MCP-1 (Panels C, D) levels by 

ELISA. Data are presented as Mean ± SEM of n=4 independent experiments performed 

in triplicate.  **p≤ 0.01, ***p≤ 0.001) vs. untreated controls (0.0). 
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3.4.2 Melanocortin receptors expression in bovine articular 
chondrocytes.  

 
Following the identification of cytokine release from primary bovine chondrocytes, 

expression of MC was determined. Gene and species specific primers were 

designed for both MC1 and MC5 in order to determine whether MC1 and MC5 

were expressed in the articular chondrocytes of Bos taurus. However, the full 

coding sequence of MC3 has not been revealed yet, therefore it was not possible 

to investigate its expression at that point. Total mRNA was extracted from non-

stimulated chondrocytes extracted from at least 5 individual bovine joints and 

conventional RT-PCR used to quantify the transcriptional levels of both genes.  

 

There was a marked expression of MC1 that was consistent between the 

individual animals and confirmed by the detection of size-specific bands on 2 % 

agarose gels, corresponding to the expected size of MC1 fragment of interest 

(Figure 3.47). The transcriptional studies of MC5 were non-conclusive, since the 

expression of the gene varied significantly between the tested animal tissues. All 

samples were run alongside GAPDH internal control.  
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Figure 3.47 Endogenous expression of MC1 and MC5 in primary bovine 

chondrocytes.  

Freshly extracted bovine primary chondrocytes were cultured for 24 h in serum-free 380 

mOsm DMEM media and total RNA was subsequently extracted. PCR amplification with 

the respective primers for bovine MC1 and MC5 were used to detect and quantify gene 

expression on 2% agarose gels in triplicates with Gapdh used as internal control. 

Densitometrically quantified MC1 and MC5 shown in arbitrary units, each value 

normalized to the respective GAPDH expression. Data is presented as Mean ± SEM of 

cartilage from 5 different animals. 
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3.4.3 Effect of melanocortin peptides on pro-inflammatory cytokine 

release from TNF-α stimulated primary bovine chondrocytes.  

Since the coding region of MC3 was not available to design the primers needed 

for the investigative study of MC3 expression, another approach was used that 

allowed research into whether MC3 was expressed by using the selective MC3 

agonist [DTRP8]-γ-MSH. The pan-agonist α-MSH, MC3 agonist D[TRP]8-γ-MSH 

and MC3/4 antagonist/MC1 agonist SHU9119 were used in separate experiments 

to reveal whether MC1 and MC3 were present and able to modulate the release 

of pro-inflammatory mediator release from primary bovine articular chondrocytes.  

In order to investigate the validity and efficacy of melanocortin peptides at 

inhibiting the release of pro-inflammatory cytokines following TNF-α stimulation, 

they were investigated in primary bovine chondrocytes (Figure 3.48). Primary 

bovine chondrocytes were extracted from bovine cartilage and monolayer 

cultures incubated in serum-free 380 mOsm DMEM medium for 24 h prior to pre-

treatment for 30 min with α-MSH, D[TRP]8-γ-MSH or SHU9119 (1.0 – 30.0 µg/ml) 

prior to stimulation with TNF-α (60.0 pg/ml) for 6 h.  Pre-treatment of primary 

bovine chondrocytes with α-MSH, D[TRP]8-γ-MSH and SHU9119 caused a 

significant decrease in IL-β levels. Concentrations between 1.0 and 10.0 µg/ml of 

α-MSH significantly reduced the levels of IL-1β produced by TNF-α from 21.87 ± 

0.23 pg/ml down to 12.85 ± 0.29 pg/ml (α-MSH 1.0 µg/ml), representing a 41% 

decrease (p≤ 0.05).  α-MSH (3.0 µg/ml) decreased IL-1β concentration to 13.30 ± 

0.71 pg/ml, a 39 % reduction (p≤ 0.05). Increasing the peptide concentration did 

not alter the inhibition of IL-1β compared to the lower 3.0 µg/ml concentration 

with a similar 39 % reduction. Higher concentrations of α-MSH (30.0 µg/ml) did 

not have a statistically significant effect (17.34 ± 1.4 pg/ml; p> 0.05; Figure 3.48) 

compared to TNF-α−treated controls.  

Treatment of primary chondrocytes with D[TRP]8-γ-MSH caused a bell shaped 

concentration dependent decrease in IL-1β levels with 1.0 µg/ml being essentially 

inactive (19.68 ± 1.58 pg/ml; p> 0.05). Levels of IL-1β were reduced by 61 % 

following stimulation with 3.0 µg/ml (p≤ 0.05) and a maximal effect of 76 % at 

10.0 µg/ml (p≤ 0.05), and starting to slowly decrease efficacy when the 



 

 
 
 

203 

concentration was increased to 30.0 µg/ml (39%). A modest inhibitory effect was 

observed with SHU9119 with 1.0 µg/ml (16.84±0.72 pg/ml; p≤ 0.05) and 3.0 

µg/ml (17.46 ± 0.9 pg/ml; p≤ 0.05) causing a reduction of 23 % and 20 % 

respectively. Higher concentrations had no significant effect on TNF-α induced 

IL-1β levels (Figure 3.48). 

 
 

Figure 3.48 Effect of melanocortin peptides on IL-1β  release from TNF-α  activated 

primary bovine chondrocytes.  

Bovine chondrocytes were extracted from bovine cartilage and cultured for 24 h in 

serum-free 380 mOsm DMEM medium. Chondrocytes pre-treated with α-MSH, D[TRP]8-

γ-MSH or SHU9119 (1.0-30.0 µg/ml) for 30 mins, prior to stimulation with TNF-α (60.0 

pg/ml) for 6 h. Cell-free supernatants were collected and analysed for IL-1β levels by 

ELISA. Data are presented as Mean± SEM of n=4 independent experiments repeated in 

triplicate, *p≤ 0.05 vs. culture treated with TNF-α alone. Dashed line represents TNF-α 

treatment; dotted line – untreated cultures.  
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α-MSH caused a significant abrogation of TNF-α-induced IL-6 release from 

primary bovine chondrocytes (Figure 3.49 A). TNF-α-stimulation alone caused 

174.38 ± 14.6 pg/ml of IL-6 release. α-MSH was most effective at 1.0 µg/ml 

causing a 92.7 % inhibition in IL-6 release (12.74 ± 1.2 pg/ml; p≤ 0.001). Higher 

concentrations of peptide still exerted a significant inhibitory effect with 3.0 µg/ml 

causing an 87.3 % decrease (22.18 ± 0.9 pg/ml; p≤ 0.001), 10.0 µg/ml causing a 

76.4 % reduction (41.22 ± 0.57 pg/ml; p≤ 0.001) and 30.0 µg/ml a 48% decrease 

(90.8 ± 10.24 pg/ml; p≤ 0.01) compared to control.  

Following identification of the inhibitory effect of α-MSH, the MC3 agonist 

D[TRP]8-γ-MSH was evaluated.  D[TRP]8-γ-MSH (1.0 – 10.0 µg/ml) caused a bell 

shaped inhibitory effect of IL-6 release (Figure 3.49 A). The maximal effect was 

observed at 3.0 µg/ml with a 72 % decrease in IL-6 release, whilst 1.0 and 10.0 

µg/ml had a reduced inhibitory effect displaying 40.1 % (104.46 ± 3.11 pg/ml; p≤ 

0.01) and 48.2 % (90.34 ± 16.29 pg/ml; p≤ 0.01) reduction respectively. Higher 

concentrations (30.0 µg/ml) did not cause a statistically significant change in the 

release of IL-6 (p> 0.05) compared to TNF-α alone. The MC3/4 antagonist/MC1 

agonist SHU9119 failed to inhibit IL-6 release at all concentrations evaluated 

(Figure 3.49 A).  

D[TRP]8-γ-MSH attenuated IL-8 release elicited by TNF-α (60.0 pg/ml) in a bell 

shaped dependent fashion (Figure 3.49 B). The maximal effect was reached at 

3.0 µg/ml causing a 69.4 % decrease in IL-8 levels (13.93 ± 1.13 pg/ml; p≤ 0.01) 

compared to TNF-α treated controls (45.56 ± 2.94 pg/ml), a similar reduction was 

observed at 1.0 µg/ml with a 66.5 % decrease. At 10.0 µg/ml a 57 % inhibition 

was observed, however at 1.0 and 30.0 µg/ml of D[TRP]8-γ-MSH failed to inhibit 

IL-8 release (p> 0.05). In contrast all concentrations of α-MSH evaluated caused 

a significant inhibition of IL-8 with a maximal inhibition being observed at 3.0 

µg/ml of 66.02 % (15.49±1.28 pg/ml). As previously observed with IL-6, 

SHU9119 failed to inhibit significantly inhibit IL-8 release at all concentrations 

evaluated (p≤ 0.05; Figure 3.49 B).  
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Figure 3.49 Effect of melanocortin peptides on IL-6 and IL-8 release from TNF-α-

activated primary bovine chondrocytes. 

Bovine chondrocytes were extracted from bovine cartilage and cultured for 24 h in 

serum-free 380 mOsm DMEM medium. Chondrocytes pre-treated with α-MSH, D[TRP]8-

γ-MSH or SHU9119 (1.0-30.0 µg/ml) for 30 mins, prior to stimulation with TNF-α  (60.0 

pg/ml) for 6 h. Cell-free supernatants were collected and analysed for IL-6 and IL-8 

levels by ELISA. Data is presented as Mean ± SEM of n=4 independent experiments 

repeated in triplicate, *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001   vs. TNF-α alone. 
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3.4.4 Effect of MC3/4 antagonist SHU9119 on anti-inflammatory effect of 

α-MSH and D[TRP]8-γ-MSH in TNF-α activated bovine primary 

chondrocytes.  

To try and unravel whether MC1 and/or MC3 was mediating the effects of the 

melanocortin peptides α-MSH and D[TRP]8-γ-MSH, SHU9119 was added on 

TNF-α activated primary P0 bovine articular chondrocytes. Primary P0 bovine 

articular chondrocytes were extracted and cultured in a monolayer with serum-

free 380 mOsm DMEM medium for 24 h prior to stimulation. The cells were 

treated with the peptides (1.0 – 10.0 µg/ml) for 30 min ± SHU9119 (10.0 µg/ml) 

prior to stimulation with TNF-α (60.0 pg/ml) for 6 h and IL-1β, IL-6 and IL-8 levels 

were detected by ELISA (Figure 3.50). SHU9119 failed to significantly block the 

effect of α-MSH at 1.0 and 3.0 µg/ml (p>0.05), surprisingly however, at 10.0 

µg/ml α-MSH the inhibitory effect on IL-1β was blocked in the presence of 

SHU9119 (Figure 3.50 A). In contrast SHU9119 (10.0 µg/ml) abrogated the anti-

inflammatory effect of D[TRP]8-γ-MSH at all concentrations evaluated (Figure 

3.50 B).  

α-MSH inhibitory effect on IL-6 was not blocked in the presence of SHU9119 at 

1.0 and 3.0 µg/ml. (Figure 3.51 A) However when SHU9119 (10.0 µg/ml) was 

combined with higher doses of α-MSH (10.0 µg/ml), there was a synergistic 

effect that caused a marked decrease in IL-6 levels (13.33 ± 3.22 pg/ml) a 66.7 

% reduction compared to α-MSH alone (41.22 ± 0.56 pg/ml). In contrast D[TRP]8-

γ-MSH at all concentrations evaluated (1.0 – 10.0 µg/ml) was completely blocked 

when SHU9119 was given in combination (Figure. 3.51 B). IL-8 released 

following TNF-α stimulation of P0 chondrocytes showed that SHU9119 (10.0 

µg/ml) failed to inhibit the anti-cytokine effects of α-MSH (1.0 – 10.0 µg/ml, 

Figure 3.51 C). D[TRP]8-γ-MSH inhibition of IL-8 was abrogated in the presence 

of SHU9119 (Figure 3.51 D).  

Finally, given that SHU9119 blocked the action of D[TRP]8-γ-MSH but not of α-

MSH, we evaluated the effect of this combination on IL-10 synthesis. Treatment 

of the P0 bovine chondrocytes with α-MSH led to significant increase in IL-10 

levels (Figure 3.52 A), there was no synergistic effect when cells were incubated 
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with a combination of α-MSH and SHU9119 and the peptide’s actions were not 

significantly affected by the addition of the MC3/4 antagonist. There was a general 

reduction in the melanocortin effect, which could be attributed to its partial 

binding affinities to MC3 in contribution to MC1. However, SHU9119 prevented 

D[TRP]8-γ-MSH from binding to its receptor, therefore reduced significantly IL-10 

production (Figure 3.52 B). SHU9119 caused 89 % reduction of IL-10 in 1.0 

µg/ml and 10.0 µg/ml of D[TRP]8-γ-MSH treated cells, and 86 % when given 

simultaneously with 3.0 µg/ml of D[TRP]8-γ-MSH. 
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Figure 3.50 Effect of the MC3/4 antagonist SHU9119 on IL-1β  release from TNF-α  

activated primary bovine articular chondrocytes following α-MSH and D[TRP]8-γ-

MSH treatment.  

Bovine chondrocytes were extracted from bovine cartilage and cultured for 24 h in 

serum-free 380 mOsm DMEM medium. Chondrocytes were then pre-treated with α-MSH 

(Panel A) or D[TRP]8-γ-MSH (1.0 – 10.0 µg/ml; Panel B) ± SHU9119 (10.0 µg/ml) for 30 

mins, prior to stimulation with TNF-α (60.0 pg/ml) for 6 h. Cell-free supernatants were 

collected and analysed for IL-1β levels by ELISA. Data are presented as Mean ± SEM of 

n=4 independent experiments repeated in triplicate, *p≤ 0.05, **p≤0.01 vs. TNF-α alone. 
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Figure 3.51. Effect of the MC3/4 antagonist SHU9119 on IL-6 release from TNF-α  

activated primary bovine articular chondrocytes following α-MSH and D[TRP]8-γ-

MSH treatment.  

Bovine chondrocytes were extracted from bovine cartilage and cultured for 24 h in 

serum-free 380 mOsm DMEM medium. Chondrocytes were then pre-treated with α-MSH 

(Panel A) or D[TRP]8-γ-MSH (Panel B; 1.0 – 10.0 µg/ml) ± SHU9119 (10.0 µg/ml) for 30 

mins, prior to stimulation with TNF-α (60.0 pg/ml) for 6 h. Cell-free supernatants were 

collected and analysed for IL-6 levels by ELISA. Data is presented as Mean ± SEM of 

n=4 independent experiments repeated in triplicate, *p≤ 0.05, **p≤ 0.01 vs. TNF-α alone. 
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Figure 3.52 Effect of the MC3/4 antagonist SHU9119 on IL-10 release from TNF-α  

activated primary bovine articular chondrocytes following α-MSH and D[TRP]8-γ-

MSH treatment.  

Bovine chondrocytes were extracted from bovine cartilage and cultured for 24 h in 

serum-free 380 mOsm DMEM medium. Chondrocytes were then pre-treated with α-MSH 

(Panel A) or D[TRP]8-γ-MSH (Panel B; 1.0 – 10.0 µg/ml) ± SHU9119 (10.0 µg/ml) for 30 

mins, prior to stimulation with TNF-α (60.0 pg/ml) for 6 h. Cell-free supernatants were 

collected and analysed for IL-10 levels by ELISA. Data is presented as Mean ± SEM of 

n=4 independent experiments repeated in triplicate, *p≤ 0.05, **p≤ 0.01 vs. TNF-α alone. 
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3.4.5 Cartilage impact and the effect of melanocortins and steroids on 
bovine chondrocytes in situ. 

Mechanical stress above the physiological range can profoundly influence 

articular cartilage causing matrix damage, changes to chondrocyte metabolism 

and cell injury/death (Bush and Hall, 2005) and therefore has been implicated as 

a risk factor for the development of osteoarthritis. The mechanism of cell damage 

is not understood, but chondrocyte volume could be a determinant of the 

sensitivity and subsequent response to load (Hall, 1998). In OA, it is possible that 

the chondrocyte swelling that occurs renders the cells more sensitive to the 

damaging effects of mechanical stress. Here, changes in viability of in situ 

chondrocytes following a single blunt impact have been investigated in the 

presence of α-MSH, D[TRP]8-γ-MSH, and the steroid dexamethasone evaluated 

at the time of impact and 6h post-impact. 

3.4.5.1 Cell viability of articular bovine chondrocytes in vivo following 
single impact.  

Explants of bovine articular cartilage were incubated with the fluorescent 

indicators 5.0 µM Calcein-AM and 1.0 µM Propidium Iodide, permitting the 

measurement of cell viability, respectively, using confocal laser scanning 

microscopy (CLSM). Cartilage was then subjected to a single impact with 1.14 N 

force delivered from a vertical drop tower, which caused areas of chondrocyte 

injury/death within the superficial zone (SZ) as shown on Figure 3.52.  

Cell death following single impact was quantified using Imaris 7.1.1 Spots 

analysis software and the results are shown in Figure 3.58. Impact caused a 

significant (*p<0.05) increase in cell death. Non-impacted cartilage showed 2.95 

± 0.26 % chondrocytes death, which following impact increased to 13.50 ± 1.72% 

(Figure 3.53).  Areas of chondrocyte injury inflicted from impact tower injury can 

be seen on Figure 3.58 and visually compared to non-impacted counterparts 

(original 3D volume image reconstitutions [A and B] and spots analysis [a and b] 

respectively).  
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Figure. 3.52. A 3D-image of cartilage impacted chondrocytes.  

Cartilage explant was incubated for 30 min at 37ºC with 5.0 µM Calcein-AM and 1.0 µM 

Propidium Iodine for staining alive and dead cells respectively and visualized using 

CLSM at x630 magnification using x63 immersable lens. Iso-surface object were created 

for all cells, in order to create presentation image of an impacted piece of cartilage 

(image not used for volume analysis) Red cells represent chondrocytes undergoing cell 

death, and green – cells that are alive and fully functional at the time of imaging.  
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Figure 3.53 Effect of single impact on cell death as quantified by Imaris 7.1.1 Spots 

Software. 

Bovine articulate cartilage explants were incubated with the fluorescent indicators 

Calcein-AM (5.0 µM) and Propidium Iodide (1.0 µM) prior to (Panel A, a) and at 6 h post-

mechanical trauma (Panel B, b) for 30 min, and visualized under CLSM. Imaris 7.1.1 

Spot Analysis software was used to quantify the number of viable (green) and non-viable 

(red) cells. Panels a, and b represent Spots analysis of the original CLSM images, taken 

at x100 magnification (Panels A and B). Percentage cell death was calculated based on 

the acquired results (Panel C). Data are representative images or Mean ± SEM of n=4 

experiments, repeated in triplicates, *p≤ 0.05 vs. non-impacted control samples.   
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3.4.5.1.1 The effect of melanocortins and dexamethasone on cell death. 

In order to investigate whether the melanocortin peptides have chondroprotective 

properties, cell viability was quantified as described earlier. Briefly, cells were 

treated for 6 h with 3.0 µg/ml α-MSH or D[TRP]8-γ-MSH, or 1.0 µM 

dexamethasone and then incubated with the fluorescent indicators Calcein-AM 

(5.0 µM) and Propidium Iodide (1.0 µM) for 30 min prior to CLSM, permitting the 

measurement of cell viability. 

Figure 3.54 demonstrates that α-MSH caused a reduction in chondrocyte death 

compared to basal levels (2.95 %). Cell death decreased to 0.97 %, when 

cartilage explants were incubated for 6 h with α-MSH (3.0 µg/ml) prior to CLSM 

imaging, representing 67 % reduction in cell death, compared to untreated 

controls (p≤ 0.05). However, neither D[TRP]8-γ-MSH (3.0 µg/ml) nor 

dexamethasone (1.0 µM) was able to show any significant effect on this 

parameter.  
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Figure 3.54. Chondroprotective effect of melanocortin peptides as quantified by 

Imaris 7.1.1 Spots Analysis software.  

Bovine articular cartilage explants were treated with either DMEM (Panel A), α-MSH (3.0 

µg/ml; Panel B), D[TRP]8-γ-MSH (Panel C), or 1.0 µM dexamethasone (Panel D) for 6 h. 

Cartilage explants were then incubated for 30 min at 37ºC with the fluorescent indicators 

Calcein-AM (5.0 µM) and Propidium Iodine (1.0 µM) for staining alive and dead cells 

respectively, immediately following which the explants were visualized using CLSM at 

x100 magnification. Imaris 7.1.1 Spot Analysis software was used to quantify the number 

of viable (green) and non-viable (red) cells. Percentage cell death was calculated based 

on the acquired results (Panel E). Data are representative images or Mean ± SEM of 

n=4 experiments, repeated in triplicates, *p≤ 0.05 vs. non-impacted control samples.   
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3.4.5.1.2 The effect of melanocortins and dexamethasone on pro-
inflammatory cytokine release from non-impacted bovine 
chondrocytes in situ.  

In order to determine the basal levels of pro-inflammatory cytokines released 

from non-impacted bovine cartilage explants, the cartilage pieces were incubated 

in 380 mOsm DMEM for 24 h, following which the medium was replaced with 

fresh DMEM and IL-1β, IL-6 and IL-8 release was detected at 6 h by ELISA. 

Similarly, the effect of the melanocortins on pro-inflammatory cytokine release 

from non-injured cartilage pieces were evaluated in the supernatants at 6 h, post-

treatment of the bovine explants with α-MSH (3.0 µg/ml), D[TRP]8-γ-MSH (3.0 

µg/ml) or dexamethasone (1.0 µM) and compared to the basal levels of cytokine 

release (Figure 3.55).  

There was a significant basal production of cytokines detected in the 

supernatants of non-treated bovine articular cartilage explants, with 17.94 ± 4.61 

pg/ml/g (pg/ml per gram of cartilage tested) of IL-1β, 59.33 ± 8.75 pg/ml/g of IL-6 

and 97.11 ± 10.57 pg/ml of IL-8, values which were not significantly altered by 

the addition of any of the drugs as can be seen from Figure 3.55 Panels A, B and 

C respectively.  

 

 

 

 

 

 

 



 

 
 
 

217 

1 1 1

0

20

40

60

80

100

120 !-MSH (3.0 µg/ml)  

DTRP8-"-MSH (3.0 µg/ml)

Dexamethasone (1.0 µM)

IL
-1
#
 c

o
n

c
e
n

tr
a
ti

o
n

 (
p

g
/m

l/
g

)

0

20

40

60

80

100

120
IL

-6
 c

o
n

c
e
n

tr
a
ti

o
n

 (
p

g
/m

l/
g

)

1 1 1

0

20

40

60

80

100

120

IL
-8

 c
o

n
c
e
n

tr
a
ti

o
n

 (
p

g
/m

l/
g

)

A

B

C

 
Figure 3.55 Effect of α-MSH, D[TRP]8-γ-MSH and dexamethasone on basal 

production of IL-1β , IL-6 and IL-8.  

Bovine articular cartilage explants were treated with DMEM, α-MSH (3.0 µg/ml), 

[DTRP]8-γ-MSH (3.0 µg/ml), or dexamethasone (1.0 µM) for 6 h and cell-free 

supernatants were collected and analysed for IL-1β (Panel A), IL-6 (Panel B) and IL-8 

(Panel C) via commercially available ELISAs (R&D Systems). Results were corrected 

per gram of tissue tested. Data are presented as Mean ± SEM of n=4 experiments 

repeated in triplicate. DMEM-treated control samples are represented by a dotted line. 
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3.4.5.2 The effect of melanocortin peptides and dexamethasone on 
impacted cartilage explants.  

3.4.5.2.1 The effect of melanocortin peptides and dexamethasone on cell 
death as detected via CLSM.  

In order to investigate whether melanocortin peptides were able to exhibit a 

protective effect on impacted bovine chondrocytes in situ, cell viability was 

quantified as described previously. Briefly, cells were treated for 30 min with 

DMEM, α-MSH (3.0 µg/ml), D[TRP]8-γ-MSH (3.0 µg/ml), or dexamethasone (1.0 

µM) prior to impact and incubated for 6 h. 30 min prior to CLSM imaging, 

cartilage explants were incubated with the fluorescent indicators Calcein-AM (5.0 

µM) and Propidium iodide (1.0 µM).  

All drugs caused a significant decrease in cell death (p≤ 0.05) compared to 

DMEM-treated impacted sample (Figure 3.56). Upon single blunt impact using 

the vertical drop tower, 13.5 ± 1.72 % of the cells in the injured cartilage were 

found to be dead 6 h following the impact. Treatment of cartilage explants with 

melanocortin peptides or dexamethasone for 30 min prior to impact and left to 

incubate for 6 h resulting in significant protective effects on the chondrocytes. 

Cell death was reduced to 5.10 ± 1.42 %, when the articular cartilage explants 

were incubated with α-MSH (3.0 µg/ml), representing a 62% reduction (p≤ 0.05). 

Similar was the effect of the selective MC3 agonist D[TRP]8-γ-MSH with the 

peptide protecting 66 % of the cells during the first 6 h of impact, allowing for only 

4.63 ± 0.62 % of the chondrocytes to undergo cell death (p≤ 0.05). Similarly, 

dexamethasone exhibited chondroprotective properties and caused a 50 % 

reduction in cell death compared to DMEM-treated impacted cartilage explant 

with just 6.75 ± 2.38 % of the cells in the injured explant to undergo cell death (p≤ 

0.05).  

3.4.5.2.2 Melanocortin peptides and dexamethasone decrease pro-
inflammatory cytokines induced by mechanical trauma. 

In order to investigate the involvement of pro-inflammatory cytokines in the 

chondrocyte function following cartilage injury, bovine articular cartilage explants 

were subjected to a single impact with a force of 1.12 N. Following the 
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mechanical trauma, the cartilage were returned to their media for 6 h, when cell-

free supernatants were collected. Similarly, the cartilage explants were treated 

with the melanocortin peptides and dexamethasone for 30 min, following which 

period they were subjected to single impact and returned back in the same media 

containing the respective drug for additional 6 h. The supernatants were then 

collected and analysed for IL-1β, IL-6 and IL-8 production by ELISA.   

Upon impact, the chondrocytes in the DMEM-treated impacted explants 

produced 351.22 ± 24.12 pg/ml/g IL-1β (Figure 3.57), representing a 19-fold 

increase (p≤ 0.001) in the release of this pro-inflammatory cytokine compared to 

the basal amounts released by the chondrocytes from non-impacted cartilage 

explants. The injury led to 13-fold increase (p≤ 0.001) in IL-6 production 

compared to basal levels, with 448.41 ± 19.65 pg/ml/g at 6 h post-impact (Figure 

3.57 B). Similarly, there was a significant, 3-fold increase in the levels of IL-8 (p≤ 

0.001), with 293.46 ± 13.94 pg/ml/g (Figure 3.57 C). All of the drugs were found 

to be effectively reducing these amounts of pro-inflammatory cytokines, produced 

by the chondrocytes in response to the mechanical trauma. α-MSH (3.0 µg/ml) 

decreased the release of IL-1β by 41 % to 209.14 ± 2.22 pg/ml/g (p≤ 0.01) 

compared to the respective DMEM-treated samples (Figure 3.57 A). The 

selective MC3 agonist was significantly more potent in inhibiting the release of IL-

1β to 175.09 ± 19.13 pg/ml/g (50 %, p≤ 0.01). In similar fashion dexamethasone 

caused an even larger reduction of 58% of IL-1β release (149.80 ± 2.83 pg/ml/g; 

p≤ 0.001).  IL-6 release was significantly inhibited in the presence of α-MSH, 

D[TRP]8-γ-MSH and Dexamethasone down to 158.32 ± 12.87 pg/ml/g, 130.88 ± 

7.75 pg/ml/g and 73.57 ± 6.26 pg/ml/g for each of the peptides respectively, 

therefore representing 65%, 71% and 84% reduction in the secretion of this 

cytokine (p≤ 0.01).  A similar effect on IL-8 release was observed, with α-MSH 

causing a significant 53 % reduction, with detected levels of 137.26 ± 15.60 

pg/ml/g of IL-8 (p≤ 0.01, compared to DMEM-treated impacted controls). 

D[TRP]8-γ-MSH led to 54 % decrease down to 133.81 ± 22.05 (p≤ 0.01). 

Dexamethasone was slightly more effective in reducing IL-8 release with a 65 % 

decrease (104.10 ± 12.39 pg/ml/g) in the levels, detected in the supernatants of 

impacted cartilage explant incubated only with DMEM media. 
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Figure 3.56 Effect of melanocortins and dexamethasone on chondrocyte death 

following impact as quantified by Imaris 7.1.1 Spots Analysis software.  

Bovine articular cartilage explants were treated with either DMEM (Panel A), α-MSH (3.0 

µg/ml; Panel B), [DTRP]8-γ-MSH (3.0 µg/ml Panel C), or 1.0 µM Dexamethasone (Panel D) 

for 30 min prior to blunt single impact delivered by a vertical drop tower and incubated for 6 

h. Cartilage explants were then incubated for 30 min at 37ºC with the fluorescent indicators 

Calcein-AM (5.0 µM) and Propidium Iodine (1.0 µM) for staining alive and dead cells 

respectively, immediately following which the explants were visualised using CLSM at x100 

magnification. Imaris 7.1.1 Spot Analysis software was used to quantify the number of viable 

(green) and non-viable (red) cells. Cell death was calculated based on the acquired results 

(Panel E). Data are representative images or Mean ± SEM of n=4 experiments, repeated in 

triplicates, *p≤ 0.05 vs. DMEM-incubated impacted controls.  



 

 
 
 

221 

 

Figure 3.57. Effect of α-MSH, D[TRP]8-γ-MSH and dexamethasone on basal 

production of IL-1β , IL-6 and IL-8.  

Bovine articular cartilage explants were treated with DMEM, α-MSH (3.0 µg/ml), 

D[TRP]8-γ-MSH (3.0 µg/ml), or dexamethasone (1.0 µM) for 6 h and cell-free 

supernatants were collected and analysed for IL-1β (Panel A), IL-6 (Panel B) and IL-8 

(Panel C) via commercially available ELISAs (R&D Systems). Results were corrected 

per gram of tissue tested. Data are presented as Mean ± SEM of n=4 experiments 

repeated in triplicate. *p<0.05, **p<0.01, ***p<0.001 compared to DMEM-treated controls 

(Dotted line). 
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Osteoarthritis is a degenerative joint disorder, characterized by inflammation and 

cartilage degradation (Pelletier et al., 1991, Shinmei et al., 1991, Lotz et al., 

1992, Reboul et al., 1996, Melchiorri et al., 1998, Shlopov et al., 2000, 

Fernandes et al., 2002, Schuerwegh et al., 2003, Goldring et al., 2008, Rai et al., 

2008). It has long been known that the body produces endogenous compounds 

capable of repressing or resolving inflammation. These include annexin-1 (Flower 

and Blackwell, 1979, Hannon et al., 2003), galectins (La et al., 2003) and in the 

context of this thesis, the melanocortin peptides (Star et al., 1995, Ichiyama et 

al., 1999, Getting et al., 2001, 2002, Scholzen et al., 2003). They have been 

shown to possess a multitude of actions including inhibition of cytokines, 

chemokines and NO release from MØ (Star et al., 1995, Getting et al., 1999, 

2001 Kalden et al., 1999) and reduction of adhesion molecule expression on the 

endothelium (Kalden et al., 1999, Scholzen et al., 2003), all these actions help to 

modulate the host’s inflammatory response. Given the wealth of knowledge 

generated so far, few studies have looked at the potential anti-inflammatory 

effect of melanocortin peptides in osteoarthritis.  

This thesis investigates the ability of melanocortins to modulate pro-inflammatory 

cytokines production (such as IL-1β, IL-6, IL-8, MCP-1) and induce anti-

inflammatory protein release (HO-1 and IL-10), but also apoptotic pathways 

induction and cell death from cell line and primary bovine chondrocytes in vitro 

and in situ. This work has allowed for better understanding of their potential role 

of melanocortin peptides in modulating some of the inflammatory pathways and 

cell death aspects of degenerative pathologies such as osteoarthritis, but also to 

ascertain the role of chondrocytes in this disorder.  

Several main conclusions can be drawn from the results presented in this thesis. 

The first converges on the use of an in vitro cell culture-based model of 

chondrocyte inflammation that allows studying the effects of inflammatory 

mediators on chondrocyte metabolism and cytokine and chemokine production. It 

has been shown that monolayer cultures, yielding high cell density are one of the 

best tools for studying the cellular and molecular mechanisms of activated 

chondrocytes (Finger et al., 2004, Goldring, 2004).  
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Furthermore, this thesis has evaluated whether the human C-20/A4 

chondrocytes are a suitable surrogate model for evaluating the effect of anti-

inflammatory drugs including melanocortin peptides on inflammatory mediator 

release from stimulated cells. The human C-20/A4 chondrocytic cell-line, and 

primary chondrocytes in vitro and in situ (cartilage explants) were investigated for 

expression of pro-inflammatory cytokines and cartilage degrading MMP 

production upon activation and the role that these cytokines play in cartilage 

metabolism (collagen type I and type II production) was also studied. These 

results suggested a possible role for chondrocytes in cartilage inflammation and 

damage.  

Secondly, functionally active MC receptors were detected in human C-20/A4 

chondrocytes and primary bovine articular chondrocytes, which upon activation 

led to a significant induction of cAMP formation, partial repression of pro-

inflammatory cytokine and matrix metalloproteinases production, and marked 

increase in production of the anti-inflammatory proteins HO-1 and IL-10.  

Thirdly, it was concluded that inhibition of MC3 activity by SHU9119 exacerbates 

the inflammatory response of the chondrocytes and abolishes the potent anti-

inflammatory effects displayed by D[TRP]8-γ-MSH, therefore suggesting a role for 

this receptor in modulating some of the inflammatory pathways elicited by 

activation of C-20/A4 chondrocytes.  

Finally, the protective effects of melanocortins were evaluated on TNF-α-induced 

chondrocyte death and inflammation, as well as identification of their 

cytoprotective and anti-inflammatory role in mechanically injured cartilage 

explants. During osteoarthritis ECM matrix degradation leads to tissue hydration 

that signifies a decrease in extracellular osmolarity and leads to chondrocyte 

sensitization to external stimuli. An in vitro model (using C-20/A4 chondrocytes) 

was established mimicking these conditions, which led to the production of pro-

inflammatory cytokines and MMPs and subsequently, the anti-inflammatory 

properties of the melanocortins in this model were confirmed. In all cases a 

strong correlation occurred with: melanocortin peptide dampening the pro-

inflammatory cytokine synthesis/release, inducing anti-inflammatory proteins and 

cytokines to aid in the resolution of inflammation and significantly diminishing 
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chondrocyte cell death resulting from both mechanical trauma (in the case of 

cartilage explants) and the cytotoxic effect of exogenous TNF-α.   

Chondrocytes play an important role in maintaining the integrity of cartillage, 

during osteoarthritis they become activated leading to the release of an array of 

pro-inflammatory mediators, apoptosis and alterations in the synthesis of ECM 

(Pelletier et al., 1991, Goldring et al., 1994b, Shlopov et al., 1997, 2000, Goldring 

et al., 2011). Immortalised chondrocytic cell lines have been developed to serve 

as easily accessible, reproducible models of chondrocyte function. Given the 

difficulty in obtaining human tissue, the use of human cell lines can be invaluable, 

in trying to dissect the inflammatory pathways involved in chondrocye function 

and identification of novel treatments for modulating these pathways.  Primary 

cultures of articular chondrocytes isolated from various animal and human 

sources have served as useful models for studying the mechanisms controlling 

the response of chondrocytes to various pro-inflammatory and catabolic factors 

and cytokines (Goldring, 2004). The use of human chondrocytes is problematic 

and the restricted access to human tissue posses great difficulties for using these 

cells as a surrogate model. The immortalized chondrocyte cell lines, instead of 

substituting for primary chondrocytes, may serve as models for increasing 

knowledge on chondrocyte function not achievable by the use of primary 

chondrocytes (Finger et al., 2004). Therefore a reproducible source of 

chondrocytes with human origin would be the most desirable model for studying 

cartilage function relative to human osteoarthritis (Goldring, 2004) and that is why 

the human cell line C-20/A4 chondrocytes were used to evaluate chondrocyte’s 

function and response to inflammatory mediators.  
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Effect of pro-inflammatory stimuli on nitric oxide release and on 
chondrocyte death. 

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-

independent enzyme which can catalyse NO production from L-arginine. The 

induction of iNOS activity has been demonstrated in a wide variety of cell types 

under stimulation with cytokines and LPS. Recent studies have indicated that 

human articular chondrocytes express iNOS (Schmidt et al., 2010).  C-20/A4 

chondrocytes monolayer cultures were stimulated with varying concentrations of 

H2O2, TNF-α, LPS and  MSU for 6 h and the ability of these stimuli to activate 

iNOS to produce NO was tested in conjunction with testing their effect on 

chondrocyte viability. Substantial amounts of NO, released from C-20/A4 cells 

following stimulation with H2O2 were detected at 6 h post stimulation via the 

Griess assay, demonstrating that the chondrocytes can react to oxidative stress 

by activating iNOS (Mendes et al., 2003a,b). In particular, the expression of iNOS 

has been associated with chondrocytes during the pathogenesis of OA 

(Grabowski et al., 1997) and the overproduction of nitric oxide was detected in 

synovial tissue and articular cartilage (Melhiorri et al., 1998). Mendes and 

collegaues., however demonstrated that H2O2 on its own cannot induce iNOS in 

human articular chondrocyte, but rather mediates IL-1β-induced iNOS expression 

and activation (Mendes et al., 2003 a,b). However, in preliminary studies, H2O2 

failed to cause significant induction in the release of IL-1β. Therefore the ability of 

C-20/A4 chondrocytes to release nitrate following H2O2 activation is not in 

agreement with previously published work by Mendes et al (Mendes et al., 2003 

a,b) and could thus be a characteristic of our cell-line. 

Inflammation is a characteristic feature of osteoarthrtis (Hegemann et al., 2005, 

Maccoux et al., 2007) and the role of TNF-α, as inflammation-propagator is well 

documented (Oppenheim et al., 1989; Pelletier et al., 1991; Westacott et al., 

1996; Martel-Pelletier et al., 1999). TNF-α receptors have been detected on the 

surface of human articular chondrocytes with expression levels significantly 

increased in osteoarthritic compared to healthy tissue (Westacott et al., 1994). 

This thesis demonstrates that TNF-α can activate C-20/A4 chondrocytic iNOS to 

produce NO in amounts significantly higher than those detected in non-

stimulated counterparts. The NO production was maximal following 80.0 pg/ml 
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but was not significantly different from those observed following stimulation with 

lower concentrations of the cytokine. This ability of TNF-α to induce nitrite 

release agrees with findings obtained from TN-α-stimulated canine chondrocytes, 

where human recombinant TNF-α up-regulates iNOS expression (Rai et al., 

2008). It was concluded that TNF-α was able to induce nitric oxide synthesis in 

chondrocytes, suggesting a possible role of this cytokine in chondrocyte-induced 

inflammation and possibly matrix metalloprotienase induction.  

To further our understanding of the most appropriate stimulus for activation of C-

20/A4 chondrocytes the effect of LPS (the principle component of the outer 

membrane of Gram-negative bacteria) was determined, as cells have been 

shown to generally respond to LPS by up-regulating expression of variety of 

inflammatory cytokines and cytotoxic mediators, such as NO, observed in arthritis 

(Haglund et al., 2008, Campo et al., 2010). C-20/A4 chondrocyte stimulation by 

various concentrations of TNF-α and LPS, led to significantly elevated NO 

production, an event accompanied by a concentration-dependent increase in 

chondrocyte death. The effect of TNF-α and LPS on this parameter was modest 

but sufficient for the purposes of this study, thus making them suitable for further 

evaluation in this study.  

Given the role that MSU crystals play in gouty arthrirtis (McCarty et al., 1966, 

McGill and Dieppe, 1991, Chilappa et al., 2010) by depositing into the knee joint 

and driving leukocyte migration and the release of pro-inflammatory cytokines 

including IL-1β and KC in mouse (Getting et al., 2006), their effect on 

chondrocytes was investigated. However, MSU crystals were unable to activate 

these cells at any of the concentrations tested, since a non-significant amount of 

nitrite release and pro-inflammatory cytokines and chemokines were detected  To 

date no studies have shown that this cell line can be activated by MSU crystals, 

although a recent study has shown that MSU crystals can cause an upregulation 

in COX-2 in primary chondrocytes (Lee et al., 2009). The lack of effect could be 

due to differences often observed between primary and immortal cell-lines. 

However, although primarily thought to be the causative agent for gouty arthritis, 

there is conflicting evidence over the role they play in OA with a suggestion that 

urate crystals play an important role in contributing to the onset and/or 

acceleration of OA (for review see Nowatzky et al., 2010).  
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Osteoarthritis is accompanied by extended apoptotic chondrocyte death, which 

has been thought to play a central role in the initiation and progression of the 

disorder (Blanco et al., 1998; Kim et al., 2000; Aigner et al., 2001). A diverse set 

of stimuli can trigger the apoptotic process in virtually all eukaryotic cells (Steller, 

1995, Thompson, 1995); therefore the cytotoxicity of various concentrations of 

H2O2, TNF-α, LPS and  MSU on C-20/A4 chondrocytes via the mitochondrial 

functionality assay, MTT, which is a convenient assay used to monitor cell death 

quantitatively rather than qualitatively was investigated. H2O2, caused an 80 to 95 

% reduction in cell-vialbility, even at the lowest concentration used.  The 

reduction in chondrocyte cell-viability due to the endogenous production of 

excessive amounts of ROS has been previously described (Del Carlo and 

Loeser, 2002). In addition, H2O2 stimulation in C-20/A4 chondrocyte model 

provides data relevant to chondrocyte death initiated by endogenous ROS 

production, which has been reported to occur after mechanical trauma (Kurz et 

al., 2004). The use of this stimulus validated that C-20/A4 chondrocytes were 

able to respond to oxidative stress; however its use was discontinued for the 

present study due to the amount of cell death determined. Given the high-level of 

cell-death attributed to using H2O2, the effect of TNF-α on this parameter was 

determined. TNF-α led to a marked concentration-dependent cell death, causing 

chondrocytes to possibly undergo cell death through recruitment of the 

mitochondrial pathway of apoptosis thought blc2 family (Thomas et al., 2000). Its 

cytotoxicity was highest at 80.0 pg/ml, leading to a near 30 % reduction in cell 

viability, whilst lower concentrations, such as 60.0 pg/ml led to a more moderate 

15 % decrease in cell viability and apoptosis. Moreover, the ability of TNF-α to 

trigger apoptosis in chondrocytes has been previously confirmed (Li et al., 2011). 

LPS stimulation caused ~20% decrease in chondrocyte viability, with lower 

concentrations (1.0 µg/ml) being more cytotoxic than higher concentrations (10.0 

µg/ml). Taken together, these results demonstrate that both TNF-α and LPS 

impair mitochondrial function in C-20/A4 chondrocytes. 
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C-20/A4 chondrocytes respond to TNF-α and LPS by expressing and 

releasing pro-inflammatory cytokines. 

Following the identification that C-20/A4 human chondrocytes respond to TNF-α 

and LPS, the effects of these inflammogens on the release of pro-inflammatory 

cytokines/chemokines, degradive enzymes and catabolites were evaluated since 

they are released from chondrocytes upon stimulation (Goldring et al., 2011) 

Initially, RT-PCR showed that following stimulation with TNF-α and LPS there 

was an upregulation in mRNA levels of IL6 and IL8  with  TNF-α (60.0 pg/ml: a 

concentration chosen for sub-maximal release of nitrite and cell death) causing a 

marked increase in both IL6 and IL8 expression at all time points evaluated, with 

a peak at 2 h and decreasing thereafter. Upregulation of pro-inflammatory 

cytokines has been previously reported in this cell-line (Palmer et al., 2002) and 

that this observation is translated to primary chondrocytes (Rai et al., 2008). 

Given that these cells are in  monolayers, the fast upregulation of these genes 

could be explained as they are exposed to the inflammogen in the cell culture 

media directly, so they can act immediately after stimulation (Rai et al., 2008). 

After identifying the 6 h time-point as suitable for subsequent experiments, since 

it caused a sub-maximal up-regulation in IL-6 and IL-8 mRNA, different 

concentrations of TNF-α and LPS were evaluated.  TNF-α caused a bell-shaped 

response with 60.0 pg/ml causing a sub-maximal upregulation in the cytokines 

genes. These results are in accordance with published data, where TNF-α has 

been shown to stimulate the production of variety of pro-inflammatory cytokines 

(Shinmei et al., 1991; Shlopov et al., 2000; Rai et al., 2008) 

Even though LPS has been used to induce cartilage degradation for the last 30 

years (Jasin, 1983, Morales et al., 1984, Tian et al., 1989), the expression of its 

membrane receptor (TLR4) on chondrocytes and their response to LPS have 

only been recently investigated (Kim et al., 2006; Haglund et al., 2008). In order 

to gain a further insight into how chondrocytes respond to this pro-inflammatory 

stimulus, C-20/A4 chondrocytes were stimulated with increasing concentrations 

of LPS (0.1 – 1.0 µg/ml) and detected a concentration-dependent elevation in IL-

6 and IL-8 expression, peaking at 1.0 µg/ml, which was in accordance with other 

studies (Bobacz et al., 2007).  
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Following the identification of an upregulation in IL-6 and IL-8 mRNA, an ELISA 

assay was used to ascertain whether this message was genuinely translated into 

protein.  IL-6 and  IL-8  release was detected at 2, 6 and 24 h after stimulation 

with TNF-α and LPS and is in agreement with previous studies (Campo et al., 

2008, Henrotin et al., 1996, Lotz et al., 1992). For this part of the study, the 

concentration range of LPS was broadened by including 3.0 µg/ml and 10 µg/ml, 

in order to further investigate the effect of the concentration LPS on the 

production of these cytokines and to identify if a bell-shaped response could be 

observed. TNF-α and LPS caused a time and concentration-dependent effect 

with significant elevations in both IL-6 and IL-8 production. However, at 24 h post 

stimulation, all concentrations of LPS were equipotent, thus suggesting that a 

plateau might be reached at that time point. Previous studies have demonstrated 

that production of IL-1β, IL-6, IL-8, and TNF-α was responsive to a wide range of 

LPS concentrations (0.1 ng/ml – 10.0 µg/ml) and that these cytokines were first 

detected at 1 – 4 h and reached a plateau levels after 6 h (DeForge et al., 1992).  

The importance of these findings is related to the fact that the C-20/A4 cell-line 

responds to inflammatory stimuli in a similar fashion to primary cells/cartillage 

(Henrotin et al., 1996; Campo et al., 2008). Taken together, these findings 

demonstrated that the C-20/A4 chondrocytes are capable of expressing and 

producing IL-6, therefore suggesting that IL-6 may also play a physiological role 

in cartilage. An interesting finding of this study is the novel expression of IL-8  by 

the human chondrocytic cell line, showing significant up-regulation following TNF-

α-stimulation. Currently, the role of this chemokine has not been thoroughly 

investigated in human cartilage – a weak IL-8 mRNA signal had been detected in 

normal untreated chondrocytes (Lotz, 1992; David, 2007) and freshly isolated 

chondrocytes have been shown to spontaneously release detectable amount of 

IL-8 (Fan et al., 2005). Our data confirm these findings suggesting that IL-8 and 

other CXC chemokines, may trigger the release of matrix degradative enzymes 

and therefore the subsequent cartilage destruction (Lotz et al., 1992).  

In order to broaden our investigative spectrum of pro-inflammatory cytokines, we 

looked at IL-1β and MCP-1 mRNA and protein in response to TNF-α and LPS 

stimulation. These cytokines were chosen since IL-1β is active locally within 

cartilage and has been shown to play an important part in OA initiation and 
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progression (Fernandes, 1999 ; Kobayashi, 2005; Lopez-Armada, 2006; Kapoor, 

2011). Moreover, IL-1β has been immunolocalized in chondrocytes taken from 

human OA cartilage with histologically confirmed degenerative changes (Dayer, 

2002; Goldring et al., 2011) with its role as propagator of inflammation leading to 

cartilage degradation being well documented (Westacott, 1996; Martel-Pelletier, 

1999; Attur, 2000; Moldovan, 2000; Lopez-Armada, 2006; Kapoor, 2011).  

MCP-1 evels were then determined following activation of C-20/A4 chondrocytes 

with varying concentrations of TNF-α and LPS. Although its main role is 

monocyte chemotaxis and activation (Zachariae et al., 1990), it is involved in a 

vital pathologic relationship between chondrocytes and the synovium, where 

through the release of MCP-1, chondrocytes “invite” mononuclear phagocytes 

into the cartilage, resulting in rheumatoid pannus formation onto the articular 

surface (Villiger et al., 1992). Here, TNF-α and LPS caused MCP-1 to be release 

with low levels of detection at early time-points and detectable amounts at 6 h. 

The time-frame for MCP-1 release observed in chondrocytes is supported by 

previous studies, which demonstrated that maximal production of MCP-1 was 

detected 4 h  post induction of zymosan-peritonitis (Ajuebor et al., 1998). In 

addition, work by Lotz and colleagues, reveiled using in situ hybridization of 
cartilage organ cultures that chondrocytes in the superficial tangential zone 
responded within 2 h of stimulation with IL-1 by significantly increasing MCP-1 
transcripts and chondrocytes in deeper layers responded by 4 h and reached 
maximum MCP-1 expression by 8 – 12 h (Villiger et al.,1992). This release of 

MCP-1 from chondrocytes highlights the fact that monocytes can migrate into the 

joint, therefore promoting cartilage degradation in the later stages of OA. 

Therfore, targetting these cytokines may play an important role in stopping the 

development of this pathology.   

Following the identification of cytokine release from activated chondrocytes their 

effect on catilage degradation processes was determined (Brinckerhoff, 1992, 

Goldring et al., 2008,  2011, Grassel et al., 2009), consequential from the up-

regulation and activation of MMPs (Shlopov, 1997, 1999, 2000). The effect of 

TNF-α and LPS on matrix degradative enzymes was investigated as these 

collagenases are unique enzymes capable of cleaving interstitial collagens 
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(Gadher et al., 1990, Kevorkian et al., 2004). Generally, collagenase expression 

is believed to be  NF-κB dependent, a pathway that is also employed by the TLR 

receptors (Zhang et al., 2008). TNF-α and LPS caused a concentration-

dependent bell-shaped increase in MMP1 and MMP13 mRNA levels in C-20/A4 

chondrocytes. These results are in agreement with a previous study, in which a 

four-fold increase in MMP1 was was observed following stimulation with IL-1β 

(Grange et al., 2006) although it is reported for the first time here that MMP13 is 

also upregulated in these cells. This upregulation in MMP1 and MMP13 has 

previously been shown in primary chondrocytes (Shlopov et al., 2000; Rai et al., 

2008). This was substantiated by the observation, that the levels of these 

collagenases increased with extended incubation times observed here and 

previously (Rai et al., 2008). Interestingly, MMP1 expression was significantly up-

regulated in the stimulated samples, showing high similarity to the expression 

profile of MMP1 in normal and OA human knee cartilage, and demonstrating the 

opposite of what takes place in the human hip during end stages of OA, where 

MMP1 is down-regulated (Kevorkian et al., 2004). However, the current increase 

in the expression could suggest a possible role of MMP1 in this in vitro C-20/A4 

chondrocyte model, and suggest that it resembles more the processes that occur 

in knee OA, rather than than that of the hip OA.  

Statistically-significant changes were observed in the expression profile of MMP3 

with decreased expression, in a concentration-dependent manner, following a 

stimulation with both TNF-α and LPS for 6 h. This reduction in MMP3 has not 

been previously reported in this cell-line and correlates with data in knee OA 

cartilage (Bau et al., 2002). The down-regulation of MMP3 in this in vitro model is 

interesting especially when compared to the reported increase in the MMP3 

levels in the synovial fluid of RA patients (Matsuno et al., 2001). However, MMP3 

is reported to be the most highly expressed matrix metalloproteinase in normal 

knee cartilage, suggesting a maintenance function of this enzyme in normal 

cartilage metabolism, which was dysregulated in OA (Bau et al., 2002; Kevorkian 

et al., 2004).   

Further examination of the collagenases showed that the main catabolic enzyme 

for type II collagen found in cartilage, MMP13, was increased in TNF-α-

stimulated C-20/A4 chondrocytes, which is consistent with the current belief that 
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it is the principal collagenase in OA (Kevorkian et al., 2004). Previous studies 

have demonstrated that IL-6 promotes cartilage degradation (Shlopov et al., 

2000) by directly inducing MMP1 and MMP13. Here, its demonstrated that there 

is simultaneous up-regulation of IL-6 and MMP13, therefore confirming the 

hypothesis that IL-6 and MMP13 are involved in the progression of OA.  

Overexpression of these genes in the cartilage may further induce an increase of 

hypertrophic chondrocytes (Goldring et al., 2011, Tchetina et al., 2005) resulting 

in the destruction of the upper-layer cartilage matrix and progression of cartilage 

degeneration.  

In healthy articular cartilage, chondrocytes are actively maintaining the 

expression and ratio of collagens and proteoglycans (Hall, 1998). Chondrocytes 

are very sensitive to pro-inflammatory cytokines, an observation supported by 

this study. Studies have reported that pro-inflammatory cytokines either reduce or 

enhance the production of type II collagen, a marker of normal function of 

chodrocytes (Ho et al., 2006). Therefore to determine if the cell-line responded in 

a similar fashion to primary cells, the direct effect of TNF-α on the expression of 

the cartilage specific collagens was determined by RT-PCR. TNF-α stimulation 

caused COL1A1 and COL2A1 levels to decline significantly, therefore inhibiting 

the chondrocyte compensatory synthesis pathways, required to restore integrity 

of the degraded matrix (Goldring and Goldring, 2004). It is important to point out, 

that TNF-α did not influence the differentiation indicator ratio of COL2A1: 

COL1A1 detected in unstimulated C-20/A4 cells, which is an important 

observation as dedifferentiated cells would be undesirable for the purposes of 

this study. 

To ensure that our in vitro cell-line system responded in a similar fashion to 

primary cells the effect of the glucocorticoid dexamethasone and the NSAID 

Indomethacin was evaluated given the role they play in the treatment of 

inflammatory pathologies. Glucocorticoids are powerful anti-inflammatory 

molecules shown to be able to repress transcriptional activation of genes 

including IL1, IL-6, IL-8, TNF-α, γ-interferon, colony stimulating factor (CSF)-

1/macrophage, granulocyte macrophage (GM)-CSF (Taniguchi, 1988). Most of 

these genes are activated by the transcription factors NF-κB and AP-1, and their 

down-regulation confirms that glucocorticoids are interfering with these pathways 
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(Vayssiere et al., 1997). NSAIDs exert their effects by inhibiting COX enzyme 

(part of the arachidonic acid cascade) and reducing prostaglandins leading to a 

diminished inflammation and pain (Vane, 1971, 1976). At present only COX-1 

and COX-2 are clinically relevant, with COX-1 regarded as housekeeping 

enzyme responsible (via prostaglandins and thromboxane A2) for physiological 

functions including protection of gut mucosal integrity and vascular homeostasis 

(Chen et al., 2008), whilst COX-2 appears to be a more important mediator of 

inflammation and thus a key factor in arthritic pain (Chen et al., 2008).  

Dexamethasone and Indomethacin were administered 30 min prior to TNF-α 

stimulation of C-20/A4 chondrocytes. Dexamethasone and indomethacin have 

previously been shown to inhibit cytokine production in other cell systems 

(Mukaida et al., 1991). Glucocorticoids activate intracellular receptors that then 

bind to glucocorticoid-responsive elements in the promoters of various genes, or 

inhibit NF-κB transocation in the nucleus (Vayssiere et al., 1997). Furthermore, 

they inhibit AP-1 DNA binding ability and therefore block the respective gene 

expression (Vayssiere et al., 1997). In this study they were shown to inhibit TNF-

α (60.0 pg/ml) induced expression of IL-6 and IL-8 mRNA and protein, an effect 

accompanied by a abrogation of the expression of MMP1, MMP3 and MMP13 

over the time-course. This ability to modulate inflammatory pathways in this cell-

type was in agreement with previous studies utilizing primary chondrocytes 

(Richardson and Dodge, 2003).  Both the glucocorticoid dexamethasone and the 

NSAID indomethacin completely abrogated the production of IL-6 and IL-8 at all 

time points tested, and in doing so they negatively surpassed even the basal 

levels of production of these cytokines detected in unstimulated cells. However, 

although this effect may be desireable in management of acute inflammation, in 

chronic inflammatory diseases such as OA, this could lead to supression of the 

HPA axis and lead to impaired wound healing, Cushings syndrome and 

opportunistic infections (Gupta et al., 2000; Alekseev et al., 2001; Dorscheid et 

al., 2006). 

Data generated here looking at exempler cytokines, shows that TNF-α and LPS 

alone  trigger a cascade of cytokines in this in vitro model. The results obtained 

from the ELISA and the PCR revealed a minimum 2-fold increase in inflammatory 

marker genes in these activated C-20/A4 chondrocytes. Of importance was the 



 

 
 
 

235 

observation that classical anti-inflammatory drugs (dexamethasone and 

indomethacin) were able to modulate these pathways. These data sugests that 

its possible to use this cell-line as a surrogate in vitro model for investigating 

inflammatory pathways within these cells and to evaluate the effects of the 

melanocortin peptides.  

Melanocortin receptor expression in C-20/A4 chondrocyte and the role of 
melanocortins in modulation of pro-inflammatory cytokine production  

Melanocortin peptides have potent antipyretic and anti-inflammatory effects 

(Grabbe, 1996; Getting et al., 1999, 2001, 2008, 2009; Getting 2002, 2006, 

Luger, 2000), which they deliver via activation of a family of 7TM-GPCRs 

(Catania et al., 2004). These are termed melanocortin receptors and to date five 

subtypes have been identified (Getting et al., 2009). Previous research within the 

field of inflammation has highlighted that these peptides can modulate the effect 

of several pro-inflammatory cytokines and chemokines such as TNF-α, IL-1β, IL-

6, and IL-8 (Catania et al., 1999; Grassel et al., 2009) and they are inducers of 

the anti-inflammatory cytokine IL-10 (Redondo et al., 1998; Lam et al.,  2005) . 

This study tested the hypothesis that targeting melanocortin receptors may 

provide a novel therapeutic approach to treatment of chondrocyte inflammation, 

such as that observed in OA.  

For this purpose, pharmacological and molecular techniques were used 

employing the melanocortin receptor pan-agonist α-MSH (Catania et al., 2006; 

Getting, 2002, 2006; Getting et al., 2009; Rajora et al., 1996, 1997) and the 

selective MC3 agonist D[TRP]8-γ-MSH (Grieco, 2000; Getting, 2006; Getting et 

al., 2008, 2009). To date, two receptors have been identified to mediate the anti-

inflammatory effects of melanocortin peptides, namely the MC1 and MC3 

(Getting, 2002, 2006, Getting et al., 2009). However, some evidence points 

towards a role played by MC5 in inflammation, since its expression has been 

detected on B-lymphocytes (Buggy, 1998) and T-lymphocytes (Taylor and 

Namba, 2001), suggesting a potential role in immuno-modulation.  

Initially, expression of MC1, MC3 and MC5 was determined in C-20/A4 

chondrocytes, reported here for the first time with a strong signal MC1 and MC3, 

and a very faint signal corresponding to MC5. Recently, gene expression of MC1 
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was identified in the human chondrosarcoma cell line HTB-94 (Yoon et al., 2008), 

and MC1, MC3 and MC5 transcripts have been detected in primary articular 

chondrocytes (Grässel et al., 2009). Whilst the detection of MC1 is in agreement 

with previous studies, to our knowledge the detection of MC3 expression in 

human chondrocytes is novel. Given the apparent disparity in the results 

observed and those generated previously in primary cells, western blotting was 

used to determine if mRNA for MC1 and MC3 was translated into protein.  

Following the identification of mRNA and protein for MC1,3 and mRNA for MC5, 

the functionality of the receptors was determined by evaluating a panel of 

melanocortin peptides (displaying different receptor selectivity) on cAMP 

accumulation as detected by EIA. Melanocortin receptors are positively coupled 

to adenylate cyclase, which upon activation causes increase in intracellular 

cAMP formation (Catania et al., 2006 ; Gantz et al., 2003; Getting et al., 2009). In 

order to determine the functionality of the melanocortin receptors, at first we 

tested whether the MC1 receptor agonist α-MSH, the MC3 selective agonist 

D[TRP]8-γ-MSH, and the MC5 selective agonists SHU9119, PG901 and PG911 

could induce cAMP accumulation in the human C-20/A4 cells. Our functional 

studies showed that both α-MSH and D[TRP]8-γ-MSH were able to ellicit a 

significant and concentration-dependent increase in cAMP formation, this effect 

being observed in C-20/A4 chondrocytes for the first time. Whilst α-MSH has 

previously been shown to induce cAMP accumulation in chondrocytes (Grassel 

et al., 2009) the ability of the MC3 agonist D[TRP]8-γ-MSH to incude increases in 

cAMP has not been previously demostrated in chondrocytes. This increase in 

cAMP occurred in a bell-shaped manner and is in agreement with previous 

studies utilizing these peptides in other cell-types (Getting et al., 2006). 

Given that MC5 mRNA was observed in C-20/A4 chondrocytes and has 

previously been shown to be epxressed on primary articular chondrocytes 

(Grassel et al., 2009), the effect of selective MC5 agonists PG901, PG911 

(Grieco et al., 2002) and the mixed agonist/antagonist SHU9119 (Hruby et al., 

1995) was evaluated. Treatment of cells with these peptides at all the 

concentrations evaluated did not cause an increase in cAMP accumulation. This 

lack of effect of the selective MC5 agonists PG901 and PG911, was perhaps due 
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to the weak mRNA expression of this receptor, not translated to protein. Whilst 

we cannot completely rule out the expression of a functionally active MC5 in the 

C-20/A4 cell model, given the fact that more selective compounds maybe 

developed in the future, which would allow further investigation of this receptor. 

At present, it is highly unlikely that this receptor plays a role in modulating the 

effects of the melanocortin peptides given the low expression level and lack of 

functionality displayed here in this model.  

Given that α-MSH and D[TRP]8-γ-MSH significantly elevated cAMP levels, the 

peptides were evaluated in the presence of the MC3/4 anatagonist SHU9119 (Fan 

et al., 1997) used at a concentration previously shown to inhibit the cAMP 

accumulation elicited by these peptides (Getting et al., 2006), thus allowing 

identification of whether MC1 or MC3 was involved. Incubation of the C-20/A4 

chondrocytes with SHU9119 was able to inhibit D[TRP]8-γ-MSH confirming 

previous findings in other cell types (Getting et al., 2006) and in models of 

inflammation (Getting et al., 2008, Leoni et al., 2008, Patel et al., 2010), whereby 

D[TRP]8-γ-MSH mediates its effects via MC3. Not surprisingly, SHU9119 (10.0 

µg/ml) failed to block α-MSH at all concentrations, except 3.0 µg/ml, which 

caused an extremely modest reduction in cAMP levels. At MC3, the peptides 

ACTH1-39, α-MSH, β-MSH and γ-MSH are equipotent (Getting, 2006) and even 

though α-MSH preferentially activates MC1, it cannot be excluded that, at this 

concentration, some of the increase in cAMP observed with α-MSH may be 

inpart due to activation of the MC3. 

Numerous studies have highlighted the ability of melanocortin peptides to inhibit 

cytokine release in vitro (Lam et al., 2005, 2006) and also in vivo models of 

inflammation (Ceriani et al., 1994, Getting, 2002, Getting et al., 2003, 2006, 

2008). However, to date only one study has investigated the effect of 

melanocortin peptides on chondrocytes (Grässel et al., 2009) and none using the 

selective MC3 agonist D[TRP]8-γ-MSH. C-20/A4 chondrocytes were treated with 

α-MSH (3.0 µg/ml), D[TRP]8-γ-MSH (3.0 µg/ml), and SHU9119 (10.0 µg/ml) to 

ascertain their effect on basal release of cytokines from these cells. In order to 

determine the effect of the petides in the absence of detectible inflammation, IL-
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1β, IL-6, IL-8 and MCP-1 levels were determind by ELISA and  showed that none 

of the peptides caused an elevation in basal cytokine release from these cells.  

The effect of melanocortin peptides on TNF-α induced inflammatory markers, 

was then evaluated since its has been shown to be involved in activation of 

chondrocytes leading to the degradation of cartillage within the knee joint. α-MSH 

has long been known to suppress inflammation by down-regulating the 

expression of pro-inflammatory cytokines, and to have anti-inflammatory and 

immuno-modulatory actions in rodent models of inflammation in a corticosterone-

independent manner (Getting et al., 1999). Here it inhibited TNF-α-induced 

release of IL-1β, IL-6, IL-8 and MCP-1 from C-20/A4 chondrocytes in a 

concentration-dependent manner. The peptide displayed potent anti-cytokine 

effects at both 2, and 6 h, a similar observation that was noted in primary murine 

peritoneal macrophages (Getting et al., 1999) and macrophage cell-lines (Lam et 

al., 2006). The peptide did not elicit any effect following 24 h incubation. The 

suppression of IL-1β, IL-6 and IL-8 by α-MSH in C-20/A4 chondrocytes is in 

accordance with the overall anti-inflammatory and protective capacity of the 

peptide (Catania et al., 2004). 

Given the elevation in cAMP observed with the MC3 agonist D[TRP8]-γ-MSH, it 

was evaluated in this model. Here the effect of D[TRP]8-γ-MSH (0.1 – 30.0 µg/ml) 

on modulation of pro-inflammatory cytokine release from human C-20/A4 

chondrocytes activated by TNF-α was determined. C-20/A4 chondrocytes were 

treated with the selective melanocortin peptide for 30 min prior to stimulation with 

TNF-α, and subsequently incubated for 2-24 h, when supernatants were 

collected and analysed for IL-1β, IL-6 and IL-8 release. D[TRP]8-γ-MSH showed a 

bell-shaped inhibition of IL-1β release with 3.0 µg/ml and 10.0 µg/ml being 

consistently the most potent concentrations, causing ~ 70-80 % inhibition. 

Similarly, a bell-shaped response in IL-6 was observed following 2 and 6 h of 

incubation, peaking at 3.0 µg/ml D[TRP]8-γ-MSH, however, when the treatment 

was continued for 24 h, the peptide showed a concentration dependent inhibition 

of IL-6. IL-8 production was inhibited by D[TRP]8-γ-MSH in a concentration-

dependent manner at all time points, with 10.0 and 30.0 µg/ml being the most 

potent with a 70-80% reduction in this chemokine following TNF-α stimulation. 
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These data highlight for the first time the ability of this peptide to inhibit cytokine 

release from chondrocytes. The peptide displayed efficacy at all time-points 

evaluated and was still active at 24 h post treatment, correlating with the findings 

of this peptide in urate crystal-induced inflammatory cytokine release from 

macrophages (Lam et al., 2005) The maximal anti-inflammatory effect at 2 and 6 

h post stimulation was reached by 3 and 10.0 µg/ml of D[TRP]8-γ-MSH 

concentrations previously shown to be effective (Getting et al., 2006, 2008) with 

a 70-80 % inhibition of IL-1β release. 

This ability of the peptide to supress cytokine release was recently confirmed in a 

model of LPS-induced lung inflammation (Getting et al., 2008). With respect to 

models of arthritis α-MSH has been shown to repress experimental adjuvant-

induced arthritis in rats (Ceriani et al., 1994), whilst a recent study by the Perretti 

group has highlighted the importance of the MC3 agonist D[TRP]8-γ-MSH in a 

model of serum transfer arthritis where the peptide was effective in wild type mice 

but not in MC3-/- null mice (Patel et al., 2010). However, neither of the selective 

MC5 agonists (MC3/4 antagonists) PG901 and PG911 was able to cause 

significant decrease of TNF-α-induced pro-inflammatory cytokines, which 

together with the inability of the peptides to elicit cAMP increases, suggesting 

that this receptor is not functionally active in C-20/A4 chondrocytes. 

The anti-inflammatory effects of α-MSH and D[TRP]8-γ-MSH were evaluated on 

IL-6 and IL-8 transcription levels in the presence or absence of the MC3/4 

antagonist SHU9119, at a dose previously shown to abrogate the inhibitory 

effects of γ2-MSH on chemokine release (10.0 µg/ml) (Getting and Perretti, 

2000). α-MSH has been shown previously shown to suppress an array of 

inflammatory cytokines including TNF-α (Rajora, 1997 ; Delgado Hernandez, 

1999) and IL-1β (Getting et al., 2003). α-MSH has tremendous effect on 

chemotaxis, further supported by the finding of Luger’s group that this 

melanocortin peptide inhibits the production and release of IL-8 (Brzoska et al., 

1999). Our study demonstrates and confirms the anti-inflammatory effect of not 

only α-MSH, but also D[TRP]8-γ-MSH in human C-20/A4 chondrocytes. The pre-

treatment of C-20/A4 chondrocytes with α-MSH (3.0 µg/ml) prior to TNF-α 

stimulation caused an ~30 % inhibition in the expression of IL-6 (35 %) and IL-8 
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(25 %), therefore supporting the collected evidence that this peptide and its 

putative receptor have marked impact on IL-6 and IL-8 regulation. Additionally, α-

MSH not only inhibited the transcription of these genes, but also the protein 

release of IL-6, IL-8 and MCP-1 from the cells. Cytokine ELISAs showed that 

there was a 70 %, 60 % and 21 % reduction in IL-6, IL-8 and MCP-1 protein 

levels released from C-20/A4 chondrocytes. The ability of α-MSH to exert anti-

inflammatory actions has been well documented (Martin, 1991 ;Lipton, 1997, 

1999; Catania, 1999), whereas the use of the mixed MC3/4 antagonist SHU9119 

(Hruby et al., 1995; Fan et al., 1997; Getting et al., 2006) did not affect the 

observed anti-cytokine effects of α-MSH, suggesting that the latter must be 

preferentially activating MC1 in order to exert its effect.  

D[TRP]8-γ-MSH was also able to diminish pro-inflammatory cytokines expression 

causing 27% and 36% inhibition of TNF-α-stimulated IL-6 and IL-8 transcription, 

respectively. Furthermore, similarly to the action of α-MSH, D[TRP]8-γ-MSH led 

to 68 %, 45 % and 26 % reduction in IL-6, IL-8 and MCP-1 production, 

respectively, an observation in accordance with other studies exemplifying the 

anti-inflammatory and anti-migratory effects of D[TRP]8-γ-MSH on cultured Mø 

both in vitro and in vivo (Getting et al., 2006). An important finding was that 

SHU9119 completely obliterated the effect of D[TRP]8-γ-MSH not only on 

cytokine transcription levels, but also on the synthesis and release of IL-6, IL-8 

and MCP-1 from C-20/A4 cells compared to the effect of D[TRP]8-γ-MSH alone. 

These data, together with the functional studies of MC1 and MC3 receptor 

activation, highlight not only the anti-inflammatory properties of α-MSH and 

D[TRP]8-γ-MSH, but also confirms that both MC1 and MC3 might be the main 

targets for inflammation modulation in C-20/A4 chondrocytic system. Of interest 

is the fact that unlike dexamethasone and indomethacin, neither of the 

melanocortin peptides caused a complete abrogation of pro-inflammatory 

cytokine production. In contrast, they modulated the production of the tested 

cytokines, therefore allowing for some level of synthesis from the chondrocytes.  

A novel finding of this study is the expression of functionally active MC3 on C-

20/A4 chondrocytes and that agonism of this receptor modulates the 

inflammatory response of TNF-α-activated human C-20/A4 chondrocytes. 
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However in this cell-line no one has ever investigated the effect of melanocortin 

peptides or their receptors on matrix metalloproteinases expression following 

TNF-α stimulation. We have shown that TNF-α potently up-regulates the 

expression of MMP1 and 13 and that there is an upregulation in pro-inflammatory 

cytokines confirming previous findings (Fernandes et al., 2002; Martel-Pelletier et 

al., 1999). α-MSH pre-treatment of TNF-α-activated C-20/A4 chondrocytes led to 

a marked 48 % reduction in transcription of MMP1, one of the interstitial 

collagenases, significantly up-regulated in human osteoarthritic cartilage 

compared to healthy tissue (Reboul et al., 1996; Kevorkian et al., 2004).  

Collagenase 3, or MMP13, is highly up-regulated in chondrocytes isolated from 

human osteoarthritic chondrocytes (Shlopov et al., 1997) and following TNF-α 

stimulation (Rai et al., 2008), and was significantly down regulated by α-MSH 

(3.0 µg/ml) in our model of TNF-α-activated C-20/A4 chondrocytes. The 

melanocortin peptide down-regulated the expression of MMP13 by 67 %, 

compared to TNF-α-stimulated levels. These findings are in agreement with a 

recent study showing that α-MSH can inhibit TNFα-induced MMP13 expression 

in the chondrosarcoma cell line HTB-94 (Yoon et al., 2008).  

In order to additionally confirm the involvement of MC1 and MC3 in the 

transmission of these effects, SHU9119 was added in conjunction with α-MSH, 

but no significant effect was observed on the expression of either MMP1 or 

MMP3. However, an interesting observation was made when analysing the effect 

of this combination on MMP13 expression. RT-PCR showed that SHU9119 and 

α-MSH synergistically inhibited the expression of this collagenase, leading to 87 

% reduction compared to TNF-α-stimulated levels, thereby suggesting other 

mechanism by which this combination might affect the expression of this 

particular collagenase.  

Similar results were obtained following pre-treatment of chondrocytes with the 

selective MC3 agonist. D[TRP]8-γ-MSH was more potent than α-MSH in reducing 

MMPs expression, with reductions of 89 %, 76 % and 92 % in MMP1, MMP3 and 

MMP13 expression, respectively, compared to levels detected following TNF-α 

treatment. However, when cells were treated with SHU9119 and D[TRP]8-γ-MSH, 
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the effect was completely attenuated in all cases, confirming the involvement of 

MC3 in the modulation of degradative matrix metalloproteinases. All these actions 

contribute to a local attenuation of the host’s inflammatory response. Given the 

wealth of knowledge generated so far, few studies have looked at the potential of 

the melanocortins in inducing anti-inflammatory mediators in chondrocytes 

(Iannone et al., 2001; Fernandes et al., 2002).  

In contrast to the suppressive effects of endogenous melanocortin peptides on 

pro-inflammatory cytokines production and release, they have been shown to 

elicit significant elevations in the production of the anti-inflammatory cytokine with 

potent immuno-suppressive properties, IL-10 (Bhardwaj et al., 1996; Redondo et 

al., 1998; Lam et al., 2006). The importance of IL-10 in melanocortin receptor 

biology was first demonstrated in a model of contact hypersensitivity, where an 

antibody against this cytokine abrogated the protective action attained by α-MSH 

application (Grabbe et al., 1996). The anti-inflammatory effect of α-MSH 

observed here and in other models, could be dependent on IL-10 induction, given 

that α-MSH was inactive in IL-10 knock out mice in a murine model of allergic 

airway inflammation (Raap et al., 2003). This study sought to reveal, whether α-

MSH and D[TRP]8-γ-MSH could stimulate the production of IL-10 in C-20/A4 

chondrocytes in the presence and absence of TNF-α. Additionally, the ability of 

SHU9119, PG901 and PG911 was tested in order to investigate whether these 

peptides could stimulate their cognate receptor (MC5) to induce IL-10 synthesis. 

Human chondrocytes from healthy and osteoarthritic cartilage have been shown 

to express the anti-inflammatory cytokine IL-10 and its putative receptor IL10R 

(Iannone et al., 2001), which upon interacting down-regulate TNF-α-induced 

MMP1 and MMP13 (Shlopov et al., 2000). Here, we have demonstrated, that 

treatment with α-MSH and D[TRP]8-γ-MSH (3.0 µg/ml), but not SHU9119 (10.0 

µg/ml), PG901 and PG911 (3.0 pg/ml) leads to significant increase in basal IL-10 

release from C-20/A4 chondrocytes. In addition, it was apparent that the 

response of the chondrocytes was time-dependent, with both α-MSH and 

D[TRP]8-γ-MSH causing maximal induction of IL-10 at 6 h post-stimulation. α-

MSH was significantly more potent than D[TRP]8-γ-MSH at inducingIL-10 

although both peptides elevated basal levels of IL-10 as early as 2 h post-

administration, and maintained them for 24 h. These results demonstrate that in 
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part melanocortin peptides can exert a homeostatic control over chondrocyte 

physiology with the ability to induce anti-inflammatory cytokines. This therefore 

suggests a possible role in modulating basal levels of pro-inflammatory synthesis 

in this cell type even when no apparent inflammation is occurring.  

Given the induction of basal IL-10 by the melanocortin peptides, their effect were 

investigated over a concentration range in the presence of TNF-α-induced 

chondrocyte inflammation over a time-course. α-MSH caused a concentration-

dependent bell shaped response with maximal release of IL-10 caused by 1.0 

µg/ml at early time-points and 10.0 µg/ml at later time points (24 h), whilst 

D[TRP]8-γ-MSH (30.0 µg/ml) caused a maximal release of IL-10 at 2 h post-

stimulation. The ability of α-MSH and D[TRP]8-γ-MSH to trigger the production of 

IL-10 clearly suggests that activated melanocortin receptors may have crucial 

anti-inflammatory properties, conducted through activation of this cytokine.  

The anti-inflammatory protein HO-1 has been implicated in the protection against 

tissue injury and is modulated by cytokines such as TNF-α (Fernandes et al., 

2003). It has been shown to be expressed and functionally active in human 

osteoarthritic chondrocytes from OA tissue with IL-10 shown to modulate its 

production (Lee and Chau, 2002; Fernandes et al., 2003). A potential link 

between melanocortin receptor-dependent cAMP formation and HO-1 induction 

has previously been identified (Lam et al., 2005). This idea stemmed from the 

fact that cAMP analogues have been shown to induce HO-1 in rat hepatocyte 

culture (Immenschuh et al., 1998). To address this, the human C-20/A4 

chondrocytes were employed to monitor alteration in HO-1 protein production, 

following incubation with α-MSH and D[TRP]8-γ-MSH at 3.0 µg/ml in the 

presence and absence of TNF-α. C-20/A4 chondrocytes produced detectable 

basal levels of HO-1, and melanocortin peptides were able to provoke a marked 

up-regulation of HO-1 evident at 6 h post-incubation with the melanocortin 

receptor pan-agonist α-MSH and the synthetic MC3/4 agonist D[TRP]8-γ-MSH. 

Interestingly, when chondrocytes were pre-treated with the melanocortin peptides 

prior to stimulation with TNF-α, there was notable elevation in HO-1 production. 

Together with the fact that TNF-α moderately, but significantly induced the 

production of HO-1, these results are in accordance with published data 
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(Wagener et al., 2003). The downstream sequence of events currently remains 

unclear, and further investigation would be needed to elucidate the action of 

melanocortin receptor signalling in chondrocytes.  

Chondrocyte apoptosis and the protective effect of melanocortin peptides  

Chondrocytes are the only cell type present within articular cartilage and thus 

chondrocyte apoptosis plays an important part during the processes of cartilage 

development, aging and in cartilage pathologies (Blanco et al., 1998). 

Chondrocytes have been shown to be susceptible to endogenous degradative 

stimuli, such as TNF-α and IL-1β by up-regulating the synthesis of pro-

inflammatory cytokines and matrix metalloproteinases, inhibiting collagen and 

proteoglycan synthesis, therefore causing loss of cartilage (Ismail et al., 1992; 

Martel-Pelletier et al., 1999; Fernandes et al., 2002; Kapoor et al., 2011). The 

importance of apoptosis has been identified with an increase in the number of 

apoptotic chondrocytes in osteoarthritic lesional than in non-lesional cartilage 

(Kim et al., 1999; Kim et al., 2000; Kouri et al., 2000; Hashimoto et al., 1998; 

Kirsch et al., 2000). In addition, chondrocyte apoptosis and the reduction of 

tissue cellularity represent an important step in 

the pathogenesis of cartilage degradation (Blanco et al., 1998; Maneiro et al., 

2003).  

Currently, it remains unclear which pathways induce apoptosis and are 

responsible for the loss of chondrocytes and subsequent cartilage degradation. 

DeWolf and colleagues observed that TNF-α (30.0 ng/ml) stimulated caspase-3 

driven apoptosis in human chondrocytic cell line (Nuttal et al., 2000) and that 

TNF-α induced apoptosis of bovine chondrocytes in vitro (Schuerwegh et al., 

2003). In our in vitro study, we demonstrate that TNF-α potently induces 

chondrocyte apoptosis, suggesting that this is part of the mechanism of cartilage 

destruction, thereby substantiating those existing data. TNF-α concentrations 

(60.0 – 80.0 pg/ml) caused approximately 28% of the C-20/A4 chondrocytes to 

die, whereas lower concentrations caused around 10-15 % rate. Clinical studies 

have demonstrated that pathophysiological concentrations of TNF-α detected in 

OA synovium of patients with severe disease progression are in the range of 1.0 

– 10.0 ng/ml (Westacott et al., 1990), much higher than the concentrations used 
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in this study. One reason for using lower concentrations is that chondrocytes in 

vivo die in the context of extracellular matrix, which may physically limit the levels 

of pro-inflammatory cytokines reaching the chondrocytes as opposed to in vitro 

experiments, where the chondrocytes are cultured in monolayer, allowing for fast 

and equal distribution of TNF-α to all chondrocytes, thereby increasing 

susceptibility of the chondrocyte to undergo apoptosis in response to TNF-α.   

Moreover, the expression of p55 TNF-α receptor has also been localized in areas 

of osteoarthritic lesions of human cartilage (Webb et al., 1997), and given that 

the pro-inflammatory cytokine TNF-α is particularly important in the 

pathophysiology of cartilage disease, I aimed to further investigate the precise 

role it plays in chondrocyte apoptosis. It was confirmed that TNF-α modulates the 

activation of apoptotic pathways in human C-20/A4 chondrocytes and may be 

partially dependent on the activation of caspase-3 and -7. Western blot analysis 

showed that there was a significant 24 % increase in the protein levels of the 

activated executioner caspase-3 (Asp-175; 17, 19 kDa) following treatment of the 

C-20/A4 chondrocytes with TNF-α for 6 h. In addition, TNF-α treatment (60.0 

pg/ml; 6 h) led to marked 5.7-fold increase in caspase-3/7 activities, which was 

confirmed by Caspase-Glo® 3/7 assay analysis. These results are an important 

finding and are not in accordance with the work by the Blanco group, who 

detected increased mRNA and protein levels of both caspase-3 and -7 in 

cultured human OA chondrocytes stimulated with TNF-α, but protein analysis 

detected only the intermediate, inactive forms of these enzymes (Lopez-Armada 

et al., 2006). Contrary to those reports, recent studies have demonstrated that 

TNF-α causes enhanced chondrocyte apoptosis by increasing capsase-3/7 

activities (Nuttal et al., 2000; John et al., 2007; Kayal et al., 2010).  

Role of melanocortins in prevention of pro-inflammatory cytokine-induced 
apoptosis.  

Following the identification of α-MSH’s and D[TRP]8-γ-MSH’s ability to markedly 

reduce the synthesis and production of pro-inflammatory cytokines, as well as 

down-regulating degradative matrix metalloproteinases expression, their effect 

on TNF-α induced cellular toxicity and cell-death inducing signals was evaluated.  

Both peptides inhibited TNF-α-induced cell death and significantly down-
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regulated the production and activity of caspase-3 and -7. Both peptides at all 

concentrations tested failed to cause any damage to the treated C-20/A4 

chondrocytes and additionally caused 40 - 50 % reduction in cleaved caspase-3 

protein expression as determined by western blot. These results were confirmed 

by testing the activity of the executioner caspases 3 and 7 and measuring 

mitochondrial functionality following pre-treatment with α-MSH and D[TRP]8-γ-

MSH on TNF-α-activated C-20/A4 chondrocytes. The peptides exhibited strong 

concentration-dependent protective effect against TNF-α-induced cell death, 

whereby 49 % and 55 % reduction in chondrocyte apoptosis was observed 

following treatment with α-MSH (3.0 µg/ml) and D[TRP]8-γ-MSH respectively.  

Other studies support the molecular mechanism by which melanocortin peptides 

prevent apoptosis in chondrocytes, with one particular study on neuronal cell-line 

GT1-I demonstrating the inhibitory effect of the melanocortin peptide NDP-MSH 

on caspase-3 activation as readout of apoptosis (Windebank et al., 1994) whilst 

α-MSH prevents LPS/INF-γ-induced astrocyte apoptosis via activation of MC4 

(Caruso et al., 2007).   

To our knowledge, this study is the first to show the inhibitory effect of α-MSH 

and D[TRP]8-γ-MSH in a model of TNF-α-induced chondrocyte apoptosis in vitro. 

Through antagonism of MC3/4, demonstrates that MC1 and MC3 are involved in 

the transmission of the anti-apoptotic effects of α-MSH and D[TRP]8-γ-MSH 

respectively in the human C-20/A4 chondrocytic cell line. SHU9119 (10.0 µg/ml) 

antagonized the effects of D[TRP]8-γ-MSH, but not α-MSH on down-regulating 

the production of cleaved caspase-3 as a marker of apoptosis and consistently 

reversed the protective effect of the selective MC3 agonist on mitochondrial 

function in the model of TNF-α-induced chondrocyte death. The combination led 

to 27 % up-regulation of cleaved caspase-3 production and cell death was 

observed at TNF-α-produced levels regardless of the concentration used.  

Combined, these results demonstrate, that MC3 is particularly important in 

transmitting the anti-inflammatory, cyto-protective, anti-apoptotic and immuno-

modulatory effects of melanocortin peptides. In addition, the role of MC1 has 

been also confirmed, given the fact that MC5 is non-functional in this C-20/A4 

chondrocyte model and MC2 is solely activated by ACTH1-39 (Getting, 2006).  
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Effect of hypotonic solution on chondrocyte function. 

To further understand the potential role that melanocortin peptides play in 

modulating chondrocyte activity, their effect was investigated on the function of 

osmotically challenged chondrocytes. Articular cartilage is highly hydrated tissue 

whereby approximately 30 % of the water in the cartilage is found within the 

collagen intrafibrillar space (Hall, 1998). The amount of water in the cartilage 

depends on the fixed charge density of the proteoglycans, which bear strong 

negative electrical charges (Maroudas et al., 1979), neutralised by positive ions 

in the surrounding fluid. The high concentration of ions in the extracellular matrix, 

compared to the outside the tissue, has been shown to increase osmotic 

pressure (Maroudas, 1979; Maroudas and Evans, 1972). In OA and upon matrix 

degradation, the water content of cartilage increases and leads to over-hydration 

of the negatively charged proteoglycans, which alters the chondrocyte 

extracellular physio-chemical environment by reducing the osmolality causing an 

increase in cell volume; an early event during osteoarthritis (Gardner, 1992; Bush 

& Hall, 2004).  

C-20/A4 chondrocytes were subjected to hypotonic conditions (280 to 140 

mOsm), and a significant time-dependent up-regulation of pro-inflammatory 

cytokines IL-6 and IL-8 from C-20/A4 chondrocytes was observed, with a 37-fold 

increase in IL-6 and 8-fold up-regulation of IL-8 expression at 24 h and 42-fold 

and 10 fold, respectively at 72 h. These results were further substantiated by 

ELISA detection of these cytokines, which confirmed that the intensification on 

cytokine transcription, in response to chronic hypo-osmotic challenge, was 

translated into protein released from the C-20/A4 chondrocytes.  

This study, to our knowledge, is the first to investigate the effect of lowered media 

osmolarity on C-20/A4 chondrocyte inflammatory profile. A novel finding, 

demonstrated by this work, is that upon reduction of extracellular osmolarity, C-

20/A4 chondrocytes respond by increasing not only pro-inflammatory cytokines, 

but also the expression of MMP1 and MMP13, which increased in a time-

dependent manner. MMP1 mRNA was up-regulated 2.3-fold following 24 h 

incubation in the 140 mOsm DMEM and this increased to 4-fold, compared to 

cells incubated in normal 280 mOsm culture media. Interestingly, MMP13 mRNA 
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(which is not present in non-treated C-20/A4 or healthy human cartilage) was 

elevated following stimulation with 140 mOsm media, and the detected amounts 

were significantly higher compared to TNF-α-stimulated levels. Hypo-tonicity did 

not seem to affect MMP3 expression in the first 24 h of incubation, but caused 

increased transcription when the chondrocytes were incubated for 72 h. This 

finding is supported by work on other cell type showing that cellular stresses such 

as pro-inflammatory cytokines and osmotic stress activate MAPK pathways (JNK, 

ERK1/2 and p38) (Lewis, 1998; Garrington, 1999). It has been shown that JNK 

and ERKs phosphorylate AP-1 family member c-Jun (Karin, 1995, Leppa et al., 

1998), which then dimerizes with c-Fos and initiates the transcription of various 

MMP genes. Other groups have shown that the ERK1/2 pathway mediates the 

activation of the MMP1 promoter via an AP-1 element (Frost, 1994; Rutter, 1995; 

Korzus, 1997). 

However, whether the altered osmolality of the C-20/A4 chondrocytes media is 

directly triggering the expression of these MMPs cannot be concluded by this 

work, as 140 mOsm DMEM also affects the synthesis of various cytokines, such 

as IL-6, which in turn can directly alter both MMP1 and MMP13 gene expression 

in a concentration-dependent manner. This is an important finding, since 

osteoarthritic cartilage is also defined by increased expression and synthesis of 

pro-inflammatory cytokines, matrix metalloproteinases and increased tissue 

hydration. 

Since the events of OA, which we attempted to mimic here in the C-20/A4 

chondrocyte model  (increased production and release of pro-inflammatory 

cytokines and catabolic matrix metalloproteinases, increased degradation and 

reduced collagen type II production, chondrocyte apoptosis and cartilage 

hydration), it seems likely that a perpetuation of self-inducible and pathological 

events could lead to the chronic profile of this joint disorder, thus novel avenues 

for pharmacological intervention could look at targeting these processes. 

The effect of α-MSH and D[TRP]8-γ-MSH on hypo-tonicity induced over-

expression of matrix metalloproteinases was determined. D[TRP]8-γ-MSH down-

regulated both MMP1 and MMP13 expression even at 24 h post stimulation with 

140 mOsm DMEM. However, α-MSH only caused a modest non-significant 
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decrease in the transcription of MMP1 and MMP13, its effect was not statistically 

different from the levels caused by the hypotonic media alone. None of the 

peptides altered the expression of MMP3 by C-20/A4 chondrocytes.  

These results suggest, that α-MSH probably due to its short half-life (6 h) is 

unable to down-regulate MMPs expression at 24 h, especially, since the hypo-

osmotic medium, surrounding the chondrocytes seems to be exerting strong pro-

inflammatory effects, which is unlike the effect of the pro-inflammatory stimuli 

used for various cell stimulation. The fact that IL-6 and IL-8 levels are increasing 

even at 72 h post incubation of C-20/A4 chondrocytes with 140 mOsm DMEM, 

suggested a possible role for these cytokines in the synergistic induction of 

MMPs expression at time-points as late as 24 and 72 h.  

Primary bovine chondrocyte (P0) activation by various pro-inflammatory 
stimuli. 

Following the identification of the protective role that melanocortin peptides could 

play on pro-inflammatory cytokines and MMP expression following TNF−α 

stimulation in C-20/A4 chondrocytes, it was decided to determine whether these 

effects translated to primary cells and cartillage. C-20/A4 chondrocytes have 

been shown throughout this thesis to respond to various stimuli by secreting 

significant amounts of pro-inflammatory cytokines, chemokines and other non-

cytokine pro-inflammatory mediators, such as NO and matrix metalloproteinases. 

Even though immortalized cell lines are a suitable method for studying the 

function and the response of chondrocytes to various stimuli, primary cultures of 

articular chondrocytes may respond differently to these stimuli. In order to 

elucidate whether the findings confirmed in the C-20/A4 cell-line chondrocytes 

are consistent with the responses detected within primary chondrocytes, we 

employed primary articular chondrocytes extracted from load bearing regions of 

bovine knee joint cartilage.  

High-density primary articular chondrocytes cultures (passage 0, P0) were 

established to study the effect of TNF-α and LPS on the release of pro-

inflammatory cytokines IL-1β, IL-6, IL-8 and MCP-1. Primary chondrocytes 

reacted to both TNF-α and LPS via a concentration-dependent up-regulation of 
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the production and release of all cytokines measured. TNF-α at all 

concentrations induced significant IL-6 release, which was highly comparable to 

the response observed in C-20/A4 cells, with the exception of the highest 

concentration of TNF-α  (which was less effective in C-20/A4 compared to P0 

primary chondrocytes). These results are in accordance with previous 

observations that IL-6 mRNA is up-regulated following TNF-α-stimulation of 

human articular chondrocytes (Shlopov et al., 2000), or in OA tissue (Hrycaj et 

al., 1995, Shinmei et al., 1991).  In addition, LPS was similarly potent in the 

induction of IL-6 secretion from both C-20/A4 cells and primary articular 

chondrocytes, despite somewhat higher levels in C-20/A4 cells.  

In addition, bovine articular chondrocytes, much like the C-20/A4 chondrocytes 

were readily inducible to release IL-8, which can promote neutrophil-mediated 

inflammation and cartilage degeneration. TNFα and LPS promoted abundant IL-8 

secretion from the primary bovine chondrocytes, a finding that is in agreement 

with the ability of these inflammogens to exert the same effect in human articular 

cartilage (Terkeltaub et al., 1991). The maximal IL-8 release from bovine 

chondrocytes was comparatively low, reaching just 50.0 pg/ml (TNF-α 40.0 – 

60.0 pg/ml), as opposed to 205 pg/ml of IL-8 detected in C-20/A4 chondrocytes 

following stimulation with the same concentrations of the cytokine. Regardless of 

these slight discrepancies, this study accentuates the fact that articular 

chondrocytes are readily inducible to express the IL-8 gene and secrete 

biologically active IL-8, which can promote neutrophil-mediated inflammation and 

cartilage destruction. 

TNF-α and LPS stimulated articular chondrocytes released significant amounts 

MCP-1, in concentrations concordant with the detected levels in C-20/A4 

chondrocytes (maximum 120 pg/ml) following 6 h stimulation, thus confirming our 

initial findings. In agreement with the results of this study is the work by Lotz and 

colleagues, who have demonstrated the ability of human articular cartilage to 

respond to IL-1β stimulation by significantly up-regulating the transcription of 

MCP1 within 2 – 4 h of stimulation (Villiger et al., 1992). The fact that 

chondrocytes release biologically active MCP-1 in response to factors that are 

present in cartilage or synovium of osteoarthritic patients provides a possible 
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mechanism by which chondrocytes implicate in the initiation and progression of 

cartilage degradation observed in osteoarthritis.  

Il-1β has a fundamental function in osteoarthritis pathophysiology as it controls 

the degeneration of articular cartilage matrix and severely affects chondrocyte 

apoptosis. Therefore targeting the activation mechanism of this catabolic 

cytokine seems to be essential as a therapeutic approach (Moldovan et al., 2000; 

Lopez-Armada et al., 2006; Kapoor et al., 2011). In this study, we have already 

demonstrated that both TNF-α and LPS are able to induce moderate secretion of 

this cytokine from human C-20/A4 chondrocytes. These findings were further 

substantiated by the detection of IL-1β secretion in response to TNF-α and LPS 

from primary articular chondrocytes as well. In both cell types, TNF-α generally 

initiated low (up to 40.0 pg/ml) levels of IL-1β secretion.  

As previously discussed, the expression and secretion of all these pro-

inflammatory cytokines has been previously detected in chondrocytes extracted 

from osteoarthritic cartilage (Martel-Pelletier et al., 1999; Maccoux et al., 2007; 

Villiger et al., 1992), which shows the relevance of the results acquired by the 

present study.  

Effect of melanocortin peptides on TNF-α-activated primary bovine 

articular chondrocytes.  

During this study, we have shown that human C-20/A4 chondrocyte express 

functionally active melanocortin receptors MC1 and MC3, and show very slight 

expression of MC5, which was found to be functionally inactive. Here we 

demonstrate the expression of MC1 in bovine primary chondrocytes and yet again 

we detected MC5 expression. The expression of MC3 unfortunately, was not 

investigated, because at the time the experiments were conducted the full 

sequence of the bovine MC3 gene was not yet discovered, preventing the 

construction of primers.  

Here, bovine articular chondrocytes consistently express MC1, which is in 

agreement with other studies reporting the expression of this receptor in 

chondrocyte cell lines as well as primary cells (Yoon et al., 2008; Grässel et al., 

2009). MC5, which has also been detected, showed great variation between the 
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tested animals, with some samples showing slight expression, and others none 

at all. Additional work is required to fully unravel the expression of this 

melanocortin receptor in bovine primary chondrocytes.  

To support our RT-PCR detection of the melanocortin receptors, we evaluated 

the pan agonist α-MSH, to test MC1 functional activity, whilst the synthetic 

selective MC3 agonist D[TRP]8-γ-MSH was used to evaluate whether bovine 

chondrocytes possess a functionally active MC3. The MC3/4 antagonist and potent 

MC1 agonist SHU9119 was also evaluated to determine 1) to determine whether 

D[TRP]8-γ-MSH specifically activates its putative receptor (MC3) by blocking its 

binding sites; and 2) to conclude the role of α-MSH and MC1 in modulation pro-

inflammatory cytokines levels in the primary articular chondrocytes (P0).  

Pre-treatment of primary chondrocytes with α-MSH and D[TRP]8-γ-MSH prior to 

stimulation with TNF-α caused a concentration-dependent decrease in IL-1β a 

similar observation to that noted in the cell-line. However, a note should be taken 

that the inhibitory effect of α-MSH (1.0 and 3.0 µg/ml) on IL-1β concentrations (~ 

40 % reduction) was lower in bovine chondrocytes compared to the cell-line, 

where similar concentrations caused > 80 % reduction.  

Interestingly, lower concentrations of SHU9119 (1.0 and 3.0 µg/ml) led to a low 

20 % inhibition in IL-1β release from bovine chondrocytes, suggesting a potential 

role for MC1. However, SHU9119 was not capable of reducing either IL-6 or IL-8 

production at any of the concentrations tested, which is in agreement with our 

findings from the human C-20/A4 chondrocytic cell-line. Conversely, both α-MSH 

and D[TRP]8-γ-MSH led to marked concentration-dependent bell shaped 

decreases in both IL-6 and IL-8 production. Unlike the effect of α-MSH on IL-1β, 

1.0 and 3.0 µg/ml of α-MSH abrogated IL-6 production from the cultured primary 

bovine chondrocytes, by 93 % and 87 % reduction respectively. Similarly, 

D[TRP]8-γ-MSH (3.0 µg/ml) caused a similar degree of inhibition of IL-6, whilst 

both peptides inhibited IL-8 release, a similar observation as noted in the cell-

line. This observation of bell-shaped inhibition of cytokine production by 

melanocortin peptides from primary cells was initially observed in macrophages 

following MSU crystal stimulation (Getting et al., 1999) 
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The MC3/4 antagonist SHU9119, did not significantly alter the anti-inflammatory 

effect elicited by α-MSH on TNF-α-induced IL-1β, IL-6 and IL-8 production. 

Interestingly, SHU9119 and α-MSH (30.0 µg/ml) appeared to be synergistically 

acting to reduce the production of IL-6. From the results, it seemed that, with 

increasing concentrations of α-MSH, it started to slowly lose its effectiveness, 

and thus a combination with SHU9119 allowed it to “help” the α-MSH (30.0 

µg/ml) to maintain the same level of cytokine inhibition. These findings are 

controversial, and may suggest that: 1) α-MSH does not act through activation of 

MC3 in chondrocytes; 2) SHU9119, being relatively selective MC5 agonist might 

be causing very mild reduction in IL-6 levels, only if high concentrations of α-

MSH are used. This might be a resulting from desensitization of the receptors on 

chondrocytes and possible internalisation of MC1, allowing for or inducing a 

switch in the mechanisms by which the peptides works. It has been long known 

that GPCRs, such as melanocortin receptors, are regulated via multiple 

mechanisms(Clark, 1986, Perkins, 1991). This has been well illustrated by 

studies of β2-adrenergic receptor, reviewed in detail (Carman and Benovic, 1998, 

Ferguson et al., 1998, Lefkowitz et al., 1998), where agonist-induced activation of 

the receptor activates adenylate cyclase within seconds of binding (von Zastrow 

and Kobilka, 1992). However, following prolonged activation of the receptors, 

their ability to induce cAMP formation declined significantly. In addition, many 

GPCRs can be regulated by ligand-induced endocytosis or internalization (von 

Zastrow and Kobilka, 1992). SHU9119 (10.0 µg/ml) potently blocked and 

reversed the anti-inflammatory effect of D[TRP]8-γ-MSH at all concentrations 

tested, thereby suggesting that MC3 receptor is expressed and functionally active 

in bovine primary chondrocytes.  

Given the ability of these peptides to modulate pro-inflammatory cytokines, the 

peptides were evaluated on production of pro-resolving anti-inflammatory 

cytokines. IL-10 production was observed from stimulated bovine primary 

chondrocytes and is in agreement with that observed in human chondrocytes 

from healthy and osteoarthritic cartilage, which express both IL-10 and its 

putative receptor IL10R (Iannone et al., 2001). Consistent with previous findings 

α-MSH caused the release of IL-10 (Bhardwaj et al., 1996), the melanocortin 

peptides substantially elevated the production of the anti-inflammatory cytokine. 
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Primary bovine chondrocytes did not produce detectable basal IL-10 release; 

however, following 30 min pre-treatment of TNF-α-activated primary 

chondrocytes, there was a bell-shaped elevation of this cytokine following 

stimulation. Once again, SHU9119 failed to block the effect of α-MSH but 

completely abolished the anti-inflammatory effect of D[TRP]8-γ-MSH, therefore 

indicating a dual role for both MC1 and MC3 in modulating the inflammatory 

response in these cells. 

Cartilage impact and the anti-inflammatory and protective effect of 
melanocortins in models of mechanical trauma on cartilage tissue. 

Cartilage metabolism is contingent in part with mechanical forces, including shear 

stress and hydrostatic pressure that occur during normal joint loading. Previous 

in vitro work confirms that chondrocytes in culture continue to respond to a 

variety of loading conditions (Mankin and Lippiello, 1970). The distinctive 

properties of cartilage are believed to affect the chondrocyte reaction to pressure. 

It is largely documented that within physiological limits mechanical loading of 

healthy joints contributes significantly to the maintenance of the articular cartilage 

ECM by chondrocytes, but the precise relationship between mechanical loading 

and chondrocyte metabolism is still vague (Saamanen et al., 1987). Mechanical 

loading above physiological ranges and/or frequency gives rise to substantial 

cartilage injury (Burton-Wurster et al., 1993; Guilak et al., 1994) including 

increase in synthesis and release of pro-inflammatory mediators and degradative 

enzymes (Pickvance et al., 1993, Guilak et al., 1994, Wang et al., 2010b). 

Alteration in joint loading is additionally considered an important factor in the 

initiation of osteoarthritis (Anderson and Felson, 1988).  

The effect of mechanical trauma on the functionality and metabolism of 

chondrocytes is receiving increasing attention (D'Lima, 2001a,b; Borrelli, 2004; 

Kurz, 2004), particularly because within mature articular cartilage, chondrocytes 

do not undergo cell division (Sailor, 1996; Buckwalter, 1998). Additionally, 

osteoarthritis is featured by reduced cellularity (Stockwell, 1991), a fact that is 

thought to contribute to the inability of the remaining chondrocytes to maintain 

normal matrix synthesis, thereby contributing to cartilage degradation (Bush et 

al., 2005).  
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Given the importance of this in the development of OA, the effect of a single 

impact blunt mechanical impact, delivered via drop tower (Bush et al., 2005) on 

chondrocyte viability and rates of pro-inflammatory mediator synthesis were 

determined. Following impact in situ chondrocytes within the superficial zone 

were shown to be particularly sensitive to mechanical injury confirming previous 

observations using bovine articular cartilage explants (Bush et al., 2005). 

Chondrocyte cell death was apparent 6 h post impact and was visibly localized to 

the distinct areas of impact. Confocal laser scanning microscopy and imaging 

allowed us to study the cell viability of individual chondrocytes within bovine 

articular cartilage explants subjected to a single blunt impact.  

The data showed that ~3 % of the chondrocytes in non-impacted cartilage were 

non-viable following excision of the explant from the joint and increased 

significantly to 13 % following application of mechanical injury to the cartilage 

explant. The experiments conducted in this study were performed on cartilage 

explants excised from the underlying bone. However, judging from the results 

and the confinement of chondrocyte damage to the superficial zone, it is unlikely 

that the subchondral bone is a major factor of cartilage surface properties within 

these experiments (Bush et al., 2005).  

It is important to note that this study has not been designed to clarify in vivo 

response to single blunt impact. The drop tower is a useful technique for 

simulating true impact (Bush et al., 2005), but it is not possible to mimic the 

impact waveform or displacement applied to the cartilage explant during 

compression. Nevertheless, the observed changes in matrix structure, surface 

damage to cartilage explant and the loss of chondrocytes in the superficial zone 

(Quinn et al., 1998, Quinn et al., 1999) are similar to the changes observed in 

osteoarthritic cartilage (Thompson et al., 1991; Wilder et al., 2002). Within this 

study, we have demonstrated the protective properties of melanocortin peptides 

in a model of TNF-α-induced chondrocyte apoptosis/cell-death. Here, we have 

shown that α-MSH (3.0 µg/ml), but not D[TRP]8-γ-MSH or dexamethasone (1.0 

µM) are able to inhibit basal chondrocyte apoptosis in non-impacted cartilage. 

The melanocortin receptor pan-agonist decreased chondrocyte cell-death from 3 

% to <1 %.  



 

 
 
 

256 

In order to expand our study on the effect melanocortins on primary 

chondrocytes in situ, we detected basal levels of pro-inflammatory mediator 

release of IL-1β, IL-6 and IL-8 in non-impacted cartilage and compared them to 

the effect of melanocortin peptides and dexamethasone. Our data demonstrates 

that chondrocytes from non-impacted cartilage produce significant basal levels of 

IL-1β, IL-6 and IL-8 cytokines, consistent with the effect of TNF-α on the 

chondrocytic cell-line. Previously, freshly isolated chondrocytes have been 

shown to spontaneously release detectable amounts of IL-8, but these are 

rapidly increased following stimulation, suggesting that functionally expressed 

chemokines by chondrocytes may trigger the release of matrix degradative 

enzymes and subsequent cartilage destruction (Lotz et al., 1992). IL-1β was also 

detected in cartilage explants prior to impact, similarly to that observed in normal 

human articular cartilage (Middleton et al., 1996). Bovine articular chondrocytes 

in situ also produced IL-6, a potent pleuotropic cytokine and important mediator 

of the cell interactions in osteoarthritis. This was consistent with the finding of 

Shinmei and collegues, who detected the expression of this cytokine in human 

articular chondrocytes (Shinmei et al., 1989). These basal release of cytokines 

were not modified by α-MSH, D[TRP]8-γ-MSH or dexamethasone.  

However, the peptides led to significant reduction of cell death when 

administered 30 min prior to single blunt impact inflicted by the drop tower. At 6 h 

post-impact, α-MSH and D[TRP]8-γ-MSH caused significant protection of the 

chondrocytes from cell death, compared to levels detected following mechanical 

trauma in the absence of the peptide.  Dexamethasone also caused a protective 

effect following impact although with a lower level of protection being observed 

compared to the peptides. Consistent with our previous observations that 

melanocortins can protect against TNF-α-induced chondrocyte apoptosis, these 

data confirms that melanocortins exert cyto-protective properties not only in cell-

line chondrocytes in vitro, but also in primary articular chondrocytes in situ.   

Mechanical injury was associated with a significant upregulation of IL-1β, IL-6 

and IL-8 release compared to levels produced by chondrocytes in non-impacted 

cartilage, and the melanocortin peptides α-MSH, D[TRP]8-γ-MSH and 

dexamethasone significantly down-regulated the release of these cytokines. α-
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MSH was the least effective of the three treatments on cytokine release, whilst 

D[TRP]8-γ-MSH was more effective than α-MSH in reducing these cytokines 

levels. Dexamethasone showed the greatest effect in reducing pro-inflammatory 

synthesis caused by mechanical trauma to the cartilage explants. Here, in 

accordance with our previous results, melanocortins exhibited modulatory effects 

on the production of pro-inflammatory cytokines from impacted cartilage, rather 

than complete abrogation of the cytokine response as previously seen in models 

of acute inflammation (Getting et al., 1999, 2002, 2006, 2008). However, the data 

for dexamethasone was contradictory to the previous findings, showing that 

dexamethasone abrogated completely the release of these cytokines from cell-

line chondrocytes. One explanation for these findings might be the relatively low 

permeability of the cartilage matrix, compared to culture media, which poses no 

physical barrier for the drugs to reach and affect chondrocytes and their function. 

Furthermore, pro-inflammatory mediator release from C-20/A4 cell line was 

caused by exogenous TNF-α-stimulation, whereas in situ articular chondrocytes 

were activated by mecanical trauma. Nevertheless, it is important to note that 

joint trauma leads to excessive synthesis of pro-inflammatory cytokines, one of 

the major ones being TNF-α (Ertel et al., 1995), which could potentiate the 

cartilage destruction shown by our work on C-20/A4 chondrocytes. 
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5.1 Conclusion.  

The results generated in this thesis indicate that C-20/A4 chondrocytes and 

primary articular chondrocytes in vitro and in situ respond to exogenous stress 

(pro-inflammatory mediators, changes in extracellular osmolarity, mechanical 

trauma) by producing significant amounts of pro-inflammatory cytokines (such as 

IL-1β, IL-6, IL-8 and MCP-1), and collagen derisive matrix metalloproteinases 

(MMP1 and MMP13), therefore corroborating the possible role of the 

chondrocyte in initiation and progression of cartilage degradation, as observed in 

OA. In addition, the work presented here indicates that there is significant down 

regulation of cartilage ECM components such as collagen type I and type II upon 

TNF-α-activation of C-20/A4 chondrocytes, which if translated to in vivo work 

could additionally lead to a reduction in the quality of the cartilage matrix, thereby 

leaving the cartilage prone to injury.  

Melanocortins have been previously shown to possess a vast range of 

physiological and pharmacological actions. However, little research has occurred 

with respect to their role in chondrocyte inflammation. This thesis highlights the 

anti-inflammatory and anti-apoptotic effects of melanocortin peptides α-MSH and 

D[TRP]8-γ-MSH in an in vitro chondrocyte-based model of TNF-α-induced 

stimulation. The melanocortin peptides were able significantly down regulate pro-

inflammatory cytokines and cartilage degradative MMPs, but also to lower 

cytokine-induced apoptosis and to induce the anti-inflammatory proteins (IL-10 

and HO-1) in this cell-line. These effects were transmitted through the activation 

of MC1 and MC3, both of which were found to be expressed and functionally 

active in C-20/A4 chondrocytes. The influence of the peptides was not limited to 

the human cell-line chondrocytes; instead, the results highlight the ability of the 

peptides to reduce TNF-α-induced pro-inflammatory cytokine and MMP 

expression in primary bovine articular chondrocytes. 

Moreover, the data presented here confirm that mechanical impact is an effective 

modulator of chondrocyte metabolism in vitro. This information adds to our basic 

understanding of how mechanical loading influences articular cartilage 

metabolism. Understanding the precise mechanisms by which impact trauma 

alters cartilage metabolism will provide vital insights for development of 



 

 
 
 

260 

approaches for the treatment of arthritic pathologies. The melanocortin peptides 

not only showed chondroprotective effect in C-20/A4 chondrocytes, but also in 

articular chondrocytes in situ. This is a novel finding, suggesting potential clinical 

implications whereby people with joint injury/trauma or people suffering from OA 

could benefit from potential melanocortin peptide treatment.  
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Figure 5.1 Melanocortins modulate pro-inflammatory cytokine production and 

exhert anti-infammatory and cytoprotective properties in chondrocytes.  
The binding of melanocortins to either MC1 or MC3, functionally active on the membrane of 

chondrocytes, increases cAMP, which activates protein kinase A (PKA), therefore leading to four 

main effects. First, PKA activation induces the phosphorylation of the cAMP-responsive-element-

binding protein (CREB) prevents the association of CBP with p65. b) The activated PKA hinders 

IκB kinase (IKK), which stabilizes the IκB inhibitor and stops nuclear translocation of NF-κB. c) 

PKA activation prevents MAPK/ERK kinase kinase 1 (MEKK1) phosphorylation and activation, 

and activation of p38 and TATA-binding protein (TBP). Non-phosphorylated TBP is unable to bind 

to the TATA box and to form dynamic trans-activating complex with CBP and NF-κB. A reduction 

in the amounts of nuclear p65, CBP and phosphorylated TBP inhibits the formation of the 

conformationally active trans-activating complex that is required for the transcription of most 

cytokine and chemokine genes, therefore a great reduction in the synthesis of IL-1β, IL-6, IL-8 

and MCP-1 by the chondrocyte is observed. d) Fourth, inhibition of MEKK1 deactivates JUN 

kinase (JNK) and cJUN phosphorylation. The composition of the activator protein 1 (AP1) 

complex changes from the transcriptionally active cJun–cJun, to the transcriptionally inactive 

cJun–cFos or CREB. In addition, melanocortin peptides inhibit chondrocyte apoptosis by 

significantly inhibiting TNF-α-induced caspase-3 production and deactivating both executioner 

caspases - caspase-3 and caspase-7. Furthermore, activation of MC1 and MC3 led to significant 

up-regulation of production of IL-10 and HO-1, which support and assist the resolution of 

inflammation.  

The final consequence is that the transcriptional machinery of chondrocytes is significantly 

disrupted by the melanocortin treatment, thereby driving pro-resolution of inflammation and 

emphasizing the anti-inflammatory and cytoprotective properties of the melanocortin peptides. 

This study exploits the melanocortin pathways as a first step towards possible development of 

future anti-inflammatory therapeutics and emphasized the need of further research in this 

direction.  

 

 

 

 

 



 

 
 
 

263 

5.2 Future work 

•   To investigate the effect of melanocortin peptides on collagen production 

by activated/osteoarthritic chondrocytes.  

•   To localize IL-6, IL-8, MMP1 and MMP13 gene loci to either euchromatin 

or heterochromatin in healthy and osteoarthritic chondrocytes and to 

investigate the effect of selective melanocortin peptides on the localization 

of these gene loci. 

•   To scrutinize the mechanism of hyper- and hypomethylation of MMP1, 

MMP3 and MMP13 following stimulated/osteoarthritic chondrocytes; to 

evaluate how epigenetic changes may relate to the pathogenesis of 

osteoarthritis.  

•   To investigate the effect of melanocortin treatment on cytokine and MMP 

genes methylation status in normal and osteoarthritic chondrocytes.  

•  To evaluate the peptides in pre-clinical models of OA and to look at the 

effect of these peptides on human tissue. 
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