

University of Westminster Eprints
http://eprints.wmin.ac.uk

Using Java for plasma PIC simulations.

Quanming Lu1,2
Vladimir Getov2
Shu Wang3

1School of Earth & Space Sciences, University of Science & Technology of
China
2Harrow School of Computer Science, University of Westminster
3ZhuHai Branch, China Netcom Corporation Ltd, P.R. China

Copyright © [2003] IEEE. Reprinted from International Parallel and Distributed
Processing Symposium, 2003: proceedings, pp.7-13.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of the University of
Westminster's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By
choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

Using Java for Plasma PIC Simulations

Quanming Lu1;2, Vladmir Getov2 and Shu Wang3

1School of Earth and Space Sciences, University of Science and Technology of China,
Hefei, Anhui 230026, P. R. China, Email: qmlu@ustc.edu.cn

2School of Computer Science, University of Westminster,
Watford Road, Northwick Park, Harrow HA1 3TP, U.K., Email: V.S.Getov@wmin.ac.uk

3ZhuHai Branch, China Netcom Corporation Ltd.,
ZhuHai, Guangdong 519020, P. R. China, Email:wangshu@china-netcom.com

Abstract

Plasma particle-in-cell (PIC) simulations model the in-
teractions of charged particles with the surrounding fields.
This application has been recognized as one of the grand
challenge problems facing the high-performance comput-
ing community due to its huge computational requirements.
Recently, with the explosive development of Internet, Java
is receiving increasing attention and is thought as a po-
tential candidate for high-performance computing. In this
paper, we present our approach to developing 2- and 3-
dimensional parallel PIC simulations in Java. We also re-
port the execution times for both versions from performance
experiments on a symmetric multi-processor (Sun E6500)
and a Linux cluster of Pentium III machines. Those re-
sults are also compared with benchmark measurements of
the corresponding Fortran version of the same algorithm.
Keywords: Java, PIC simulations, Benchmarking, Mes-
sage passing, High performance computing

1 Introduction

A plasma PIC code follows the orbits of particles in
the surrounding fields which are calculated self-consistently
from the charge and/or current densities incurred by these
same particles, where the particles can be located anywhere
within the simulation domain but the surrounding fields are
defined only on discrete grid points. The basic PIC algo-
rithm consists of an initialization phase followed by four
processing phases which are repeated many times: (1) the
gather phase interpolates force fields from the grid points to
each particle; (2) under the influence of these force fields the

particle push phase updates each particle’s orbit; (3) then
the new charge and/or current densities on the grid points
can be deposited from particles by the scatter phase; and (4)
at last the field solver phase solves appropriate equations
to obtain the surrounding fields. The PIC simulation has
long been used by scientists to study the nonlinear kinetic
problem in space and laboratory plasma physics [4] with a
wide spectrum of implementations using various program-
ming languages on different platforms [1, 14].

Recently, with the development of computer technology,
the assumption that high performance computing will be
done primarily on specialized supercomputers is questioned
increasingly. The rapid progress in performance and con-
nectivity of ordinary workstations and PCs make it look
equally possible that the future of the parallel computing
will also be on local area networks (LAN) [3] or even the
Internet [6]. The growth of the Internet offers the world
a high performance massive computational power at very
little cost. Programsmay be written to take advantage of re-
sources based in logically and geographically different loca-
tions without change of their existing infrastructure. How-
ever problems arise because of the diversity of operating
systems, CPUs and networks involved. To overcome these
problems, a paradigm must be created which makes the
heterogeneous environment opaque to programmers. Ide-
ally the programmers would create a software application
which could be run on a cross-platform metacomputing en-
vironment, that is, the environment may be comprised of
multi-processor shared memory machines, or a network of
workstations, or both.

The development of Java has seen the above possibil-
ity brought a step closer. Java source code is first compiled
into platform independent bytecode, which is interpreted by

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

a Java Virtual Machine (JVM), so the same bytecode can be
run on any platform. Besides this, Java is also an object-
oriented language. It is simple and efficient, providing sup-
port for various features such as multithreading and Inter-
net communication and protocols. All of these make Java
a natural language for network computing, hence making
it potentially attractive to scientific programmers hoping to
harness the collective computational power of networks of
workstations, PCs or the Internet [11]. And the attractive-
ness of Java for scientific computing has being encouraged
by bodies like Java Grande. The Java Grande Forum has
been set up to coordinate community efforts to standard-
ize many aspects of Java, and to ensure that its future de-
velopment will be more appropriate for scientific program-
mers [10]. One thing that should be done is to obtain ex-
perience in how to implement scientific computing in Java
and to benchmark its performance. Several suites of bench-
mark tests have been developed to measure and compare
the performance of Java [8, 9], but most of them include
kernel-level benchmarks only.
In this paper, we implement two- and three-dimensional

PIC simulation codes in Java, which are more realistic
benchmarks. The message passing library we used is mpi-
Java, which provides a Java interface to the widely used
Message Passing Interface (MPI). In Section 2, the details
of the PIC simulation codes and their parallel algorithms
are described. Section 3 discusses the implementation of
the object-oriented PIC simulation codes in Java. Finally,
the performance of the codes on the Sun E6500 is pre-
sented. For the sake of simplicity, most of the following dis-
cussions involve only the two-dimensional PIC code. The
three-dimensional code can be easily inferred.

2 PIC simulations

There are two main techniques to parallelize PIC codes
on parallel platforms. The first is particle decomposition,
which assigns evenly the particle population to processors
while replicating the whole spatial domain on each proces-
sor. The second is domain decomposition. In this algo-
rithm, different processors are allocated to different spatial
regions and particles are assigned to processors according to
the spatial regions they belong to. As particles move from
one region to another, they are assigned to the processor
which is associated with the new region. The details includ-
ing advantages and disadvantages of these two algorithms
can be found in [16].
The parallel plasma PIC simulation code we used is a

skeleton PIC code which was developed by Decyk as a
testbed where new algorithms can be developed and bench-
marked [5]. It was originally written using the Fortran lan-
guage with a message-passing library, and it has been im-
plemented with other parallel programming models [12].

Beam

Particle Data

x(npp)
...
u(npp)
...

Grid Data
fx(nx,ny)
...

Y

X

Processor 4

Processor 3

Processor 2

Processor 1

����

Figure 1. Grid and particle partition.

The code uses the electrostatic approximation where mag-
netic fields are neglected. Therefore, only electrons are be-
ing moved during simulation experiments. In this situation,
the electrons move in the electric fields interpolated from
the grid points and only deposit their charges to grid points.
After getting the charge density, Poisson’s equation can be
solved with Fast Fourier Transformation (FFT) methods on
grid points for the electric potential. Then the electric field
can be obtained from the electric potential. Periodic bound-
ary conditions are used when implementing this PIC simu-
lation, and the only diagnostic in this code is particle and
field energy. A quadratic spline function is used for the in-
terpolation between grids and particles, and all the variables
are in 64 bit precision. The physical problem in this code
is beam plasma instability where 10% of the particles are
beam particles whose beam velocity is five times the ther-
mal velocity of the background electrons.

Although this code has been deliberately kept minimal,
it includes all the essential pieces for a complete PIC simu-
lation – advancing particles, depositing charge and solving
fields, such that more complicated PIC algorithms can be
easily developed based on this skeleton. A one-dimensional
domain decomposition, as shown in Figure 1, is used in our
code [5, 13]. The domain is divided evenly into several sub-
domains (in the figure the number of subdomains is 4), and
each subdomain with its associated electric fields and par-
ticles is assigned to the corresponding processor. In order
to provide higher communication burden for benchmarking
reasons, the streaming particles are moving normally to the
partition surface.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

3 PIC codes in Java

Java is an object-oriented language. It can encapsu-
late data (attributes) and methods (behaviors) into objects.
The data and methods of an object are intimately tied to-
gether. Objects can communicate with one another across
well-defined interfaces without knowing how other objects
are implemented – usually implementation details are hid-
den within the objects themselves. Java programmers create
their own user-defined types called classes to instantiate ob-
jects. Each class contains data as well as the set of methods
that manipulate the data; the data components of a class are
called instance variables. Java programmers can also create
a new class from an existing class. The new class inherits
the attributes and behaviors of an existing class, then adds
attributes and behaviors, or overrides the superclass behav-
iors to customize the class to meet their needs. This prop-
erty is called inheritance.
The entire code in our plasma PIC simulations is written

in Java, except for the low-level interface to the message
passing library. Here, we choose to use mpiJava, which
is a Java wrapper interface to existing MPI libraries [2].
Its purpose for development has been to provide Java pro-
grammers with the traditional functionality of MPI through
a Java interface to legacy MPI libraries. This tool enables
communication to the underlying MPI library by using the
Java Native Interface (JNI) API.
The basic structure of the skeleton PIC code is illustrated

in Figure 2. It consists of initialization followed by four
parts which are field manager, field solver, acceleration and
deposit. The details of these parts are described as follows:
(1) Initialization: Give each particle its initial position

and velocity, calculate initial charge densities on grid points,
and initialize some parameters to be used later.
(2) Field Manager: In order to use the fast Fourier

transformation (FFT) more efficiently, we change a real
sequence into complex sequence by combining every two
neighboring real variables into one complex variable (the
first is the real part, and the other is the imaginary part) be-
fore starting the FFT transformation. The procedure for the
inverse Fourier transformation (IFFT) does just the oppo-
site. In addition to this, the interactions between the fields
and the particles are not confined to one subdomain, when
moving particles or depositing the charges of particles to
grid points in one subdomain, the grid points of its neigh-
bors must be used. They are the one uppermost row of the
grid points in the beneath subdomain and two lowest rows
of the grid points in the upper subdomain, so the field array
of the real space must keep three extra rows of grid points
which are called guard points. Their correspondences in
complex space do not have guard points. This part trans-
forms the fields from real space to complex (before doing
FFT), or vice versa (after doing IFFT).

Field Manager Field Solver Field Manager

DepositParticle ManagerAcceleration

Figure 2. Structure of our skeleton PIC codes.

(3) Field Solver: First change the charge density from
complex space to Fourier space, then solve the Poisson
equation and get the electric fields in Fourier space, and fi-
nally transform fields into complex space with inverse fast
Fourier transformation(IFFT). The fields in complex space
can be changed to real space by field manager, and then
used by acceleration. When implementing FFT/IFFT in
parallel, we first transform in one coordinate direction, then
transpose the array, and finally finish the FFT/IFFT in the
other coordinate direction.
(4) Acceleration: First interpolate the fields from grid

points to particles, and then update the position and velocity
of each particle. Then assign the particles that leave this
subdomain to corresponding processors.
(5) Deposit: Scatter the charge of each particle to the

grid points, and then obtain charge density on grid points.
There are two main kinds of data structures in the PIC

code. One kind is associated with particles; it consists of
x; y; u; v which are particle positions and velocities in the
coordinate directions. The other is associated with fields, it
includes q; fx; fy; qc; fxc; fycwhich correspond to charge
density, electric field in the coordinate directions in real and
complex spaces. Because Java doesn’t support complex
variables, we use one double array with two elements to
represent one complex variable, the two elements being the
real and imaginary parts of the complex variable, respec-
tively.
If implemented using Fortran or C, each part of the ba-

sic structure above corresponds to one subroutine or func-
tion. But in Java the fundamental element is the classwhich
encapsulates data and methods together. Taking into ac-
count the fact that the PIC code has two main data struc-
tures, we construct two main classes which extend from
one class named PICSimulator. The two main classes are
named plasma and field. And the PICSimulator class de-
fines some parameters which other classes will use, such as
particle number, grid number, etc., it is as follows:

class PICSimulator{
public static final int nx=...,ny=...,nt=..., nvp=...;

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

......
}

where nx and ny are grid numbers in X and Y directions
respectively, nt is the total particle number on all subdo-
mains and nvp is the number of processors used in our sim-
ulations. Of course we must define many other parameters
which are not listed in the example.
The plasma class declares x; y; u; v as its private data and

owns three methods: the constructor method used to initial-
ize the particle positions and velocities, the push method
corresponding to the acceleration part which moves parti-
cles, and the depost method corresponding to the deposit
part which deposits particle charges to grid points. Its struc-
ture is as follows:

class plasma extends PICSimulator{
......
private double[] x=new double[npmax], y=new double[npmax],

u=new double[npmax], v=new double[npmax];
public plasma(int myRank) {...}
public void push(double fx[][], fy[][], dt) {...}
public void depost(double q[][]) {...}

}

where dt is time interval, myRank is the rank (unique
identifier) of the current process returned from the mpi-
Java library, and npmax is the maximumnumber of particles
which subdomains can contain.
In push method, it first moves the particles in every sub-

domain, defines some arrays which contain the particles
which will move to other subdomians, then use mpiJava li-
brary to move these particles, it likes:

public void push(double fx[][], double fy[][], double dt) throw
MPIException{

double[][] sbufr=new double[...][...],sbufl=new double[...][...];
double[][] rbufr=new double[...][...],rbufl=new double[...][...];
......
for(int j=0; j<npp; j++){
...... //move particles and define sbufr and sbufl
}
......
MPI.COMM_WORLD.Send(sbufr,0,...,MPI.DOUBLE,...,...);
MPI.COMM_WORLD.Recv(rbufl,0,...,MPI.DOUBLE,...,...);
......
MPI.COMM_WORLD.Send(sbufl,0,...,MPI.DOUBLE,...,...);
MPI.COMM_WORLD.Recv(rbufr,0,...,MPI.DOUBLE,...,...);
......

}

where npp is the actual number of particle in correspond-
ing subdomain, sbufr and sbufl are used to contain the par-
ticles which move to other subdomains,and rbufr and rbufl
are defined to receive the particles from other subdomains.
The depost method deposits particle charges to grid

points, the structure is as follows:

public void depost(double q[][]){
for(int j=0; j<npp; j++){
...... //deposit particle charges to grid points
}

}

In the field class, some private data and three methods are
declared: the constructormethod defines some arrays which
will be used by other methods, and the cppfp, fsolver meth-
ods correspond to the parts field manager, and field solver

respectively. Here we do not declare the field data as private
data in the field class because we will use them for commu-
nication between classes or inside the class. The structure
is like:

class field extends PICSimulator{
......
public field(int myRank) {...}
public void cppfp(int isign, double f[][], fc[][][]) {...}
public void fsolver(double fc[][][],fxc[][][],fyc[][][]) {...}

}

Where isign is a key. In the cppfp method it is used to
decide whether field transformation is from real space to
complex space, or vice versa. Its structure is as follows:

public void cppfp(int isign, double f[][], double fc[][][]) throws
MPIException{

double[][] sbl=new double[...][...],sbr=new double[...][...],
rbl=new double[...][...],rbr=new double[...][...];

if(isign==-1){
......
MPI.COMM_WORLD.Send(sbl,0,...,MPI.DOUBLE,...,...);
MPI.COMM_WORLD.Recv(rbr,0,...,MPI.DOUBLE,...,...);
......
MPI.COMM_WORLD.Send(sbr,0,...,MPI.DOUBLE,...,...);
MPI.COMM_WORLD.Recv(rbl,0,...,MPI.DOUBLE,...,...);
......

}
if(isign==1){
.....
MPI.COMM_WORLD.Send(sbl,0,...,MPI.DOUBLE,...,...);
MPI.COMM_WORLD.Recv(rbr,0,...,MPI.DOUBLE,...,...);
......
MPI.COMM_WORLD.Send(sbr,0,...,MPI.DOUBLE,...,...);
MPI.COMM_WORLD.Recv(rbl,0,...,MPI.DOUBLE,...,...);
......

}
}

where the arrays sbl,sbr and rbl,rbr are used to send and
receive the data on guard points.
The method fsolver is to solve the possion equation with

fast Fourier Transformation, the structure is as follows:

public void fsolver(double fc[][][],fxc[][][],fyc[][][]){
double[][][] qt=new double[...][...][...],
fxt=new double[...][...][...],fyt=new double[...][...][...];
......
isign=-1
fft(isign,qc,qt);
pois(qt,fxt,fyt);
isign=1
fft(isign,fxc,fxt);
fft(isign,fyc,fyt);
......
{......} //define methods fft and pois

}

Where isign is the key , it determines to implement FFT
or IFFT with the same method. qt and fxt fyt are the charge
density and electric fields in Fourier space.
The main procedure of the PIC code is described as fol-

lows:

class plasma extends PICSimulator{
public static void main(String[] args){

double[][] q,fx,fy;
double[][][] qc,fxc,fyc;
......
plasma plasma =new plasma(myRank);
field field=new new field(myRank);
......
for(int k=0; k<nloop; k++){

isign=-1;
field.cppfp(isign,q,qc);
field.fsolver(qc,fxc,fyc);
isign=1;
field.cppfp(isign,fx,fxc);
field.cppfp(isign,fy,fyc);
plasma.push(fx,fy,dt);
plasma.depost(q);

}
}

}

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

where the nloop variable defines the number of iteration.
The original Fortran code is written in Fortran 77 style,

and its main procedure consists of several subroutines. In-
side the Java methods, it is easy to write Java codes from
their Fortran counterparts(subroutines), except for two pe-
culiarities: (1) in our Java code we use one double-precision
array with two elements to represent one complex variable
from the Fortran code; (2) normally Fortran arrays have
indices starting from 1 (this is the situation in our Fortran
code), while Java indices start from 0. For the communica-
tions among processors, we use a standard MPI mode with
blocking send and receive for message passing.

4 Performance Results and Discussions

In this section, we present the performance results of the
2D and 3D plasma PIC codes both in Java and Fortran on a
Sun E6500 and a Linux cluster. The Sun E6500 consists of
thirty 336MHz Ultra Sparc 2 processors with shared mem-
ory, and its operating system is Solaris 2.6. Fortran and Java
compilers are Sun Fortran F90 2.0 and Sun JDK 1.3 respec-
tively, while the message passing library is Sun MPI 2.0.
The Linux cluster consists of 16 PC computers connected
with 100Mb/s Fast Ethernet switches. Every computer has
an Intel Pentium III 900MHz processor with 256Mbytes of
memory. The operating system is Redhat Linux 6.2, and
compilers include Gnu Fortran 77 and Sun JDK 1.3. The
message passing library is MPICH 1.2. For parallel com-
puting in Java on both systems it needs a Java interface-
mpiJava1.2 which binds Java code to the MPI library.
Firstly, we measure the total run time of the PIC simu-

lation codes to compare Java performance with Fortran on
the Sun E6500 and PC cluster. The Fortran compiler and
corresponding options on the Sun E6500 and PC cluster are
”f90 -O5 -fast -xtarget=ultra2 -xcache=16/32/1:4096/64/1”
and ”f77 -O3” respectively. We run the Java bytecodes with
the JIT (just-in-time) compiler and the HotSpot server VM
(Virtual Machine) on both the Sun E6500 and the PC clus-
ter. The total time reported here excludes the initialization
time. The particle data are always initialized on one proces-
sor. In this way, all the particles have the same initial states
regardless of the number of processors used, and therefore
the calculated energy is always the same.
Both 2D and 3D PIC codes use 32768 grid points, but

their particle numbers are 1,310,720 and 294,912 respec-
tively. We run the 2D code for 325 time steps and 3D code
for 425 time steps to ensure that the beam instability is fully
developed. During the process of the beam instability, some
processors have more particles than others due to the par-
ticle bunch up. The maximum load imbalance observed in
our code is about 10% [5]. When the codes are run on paral-
lel computers, there is little difference for the total elapsed
time on different processors. Nevertheless, we choose the

Table 1. The run time of the separate parts in
the 2D PIC code for different compiler on the
Sun E6500 and the PC cluster: (a) Sun E6500;
(b) PC cluster.

(a)

No. of Fortran compiler Java com piler
proc. Particle time Field time Particle time Field time
1 549.86 15.60 3780.68 69.06
2 272.33 7.73 1800.93 47.33
4 136.49 4.80 893.18 28.47
8 69.45 3.94 451.70 20.13
16 39.31 5.59 243.33 13.74

(b)

No. of Fortran compiler Java c ompiler
proc. Particle time Field time Particle time Field time
1 488.26 15.05 1194.92 20.10
2 239.36 8.71 592.21 15.03
4 123.19 4.57 305.87 11.64
8 68.55 4.06 158.18 9.89
16 43.20 4.28 89.41 8.64

longest elapsed time as our measured time.
The measured total time for the 2D and 3D codes with

Java and Fortran compilers are given in Figure 3. The re-
sults show that the performance of Fortran is higher than
that of Java, the performance ratio of Fortran to Java is
about 6 on the Sun E6500 and 2.3 on the PC cluster. The
performance of the PC cluster is higher than that of Sun
E6500, but as the number of processors increases, their per-
formance approaches each other, This is due to the higher
communication overhead on the PC cluster.In Fig(a), we
can find the closeness of the performance of the two Fortran
implementations on Sun E6500 and PC cluster, the reason is
that the Fortran on Sun E6500 is superior to the Gun Fortran
on PC cluster, although the processor on Sun E6500 is 336
MHz compared with the 900 MHz processor on PC cluster.
The field time and the particles time of the 2D and 3D

PIC codes are presented in Table 1 and Table 2 respectively.
The field time includes the overheads for the field manager
and the field solver which solve the Poisson equation using
the FFT. The particles time includes the overheads for ac-
celeration and depositwhich move the particles and deposit
the charge to grid points. The particles time contributes
most to the total time, usually above 80%. In the codes,
the particles time corresponds to the run time of the meth-
ods push and depost from the plasma class. From these two
methods we can deduce howmany floating-point operations
are needed to move one particle every iteration. From this,
an estimation of the performance rate, i.e. the number of the
floating-point operations per second can be calculated after
the real time spent on these two methods in one benchmark

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

0.5 1 2 4 8 16 32
32

64

128

256

512

1024

2048

4096

8192
(a)

a: Java on Sun E6500
b: Java on PC cluster
c: Fortran on Sun E6500
d: Fortran on PC cluster

d

c

b

a

T
ot

al
 r

un
 ti

m
e(

s)

Number of processors

0.5 1 2 4 8 16 32
32

64

128

256

512

1024

2048

4096

8192
(b)

a: Java on SUN E6500
b: Java on PC clsuter
c: Fortran on Sun E6500
d: Fortran on PC cluster

d

c

b

a

T
ot

al
 r

un
 ti

m
e(

s)

Number of processors

Figure 3. Total run time versus number of pro-
cessors for the parallel PIC codes on the Sun
E6500 and the PC cluster: (a) 2D code; (b) 3D
code.

Table 2. The run time of separate parts in the
3D PIC code on the Sun E6500 and the PC
cluster: (a) Sun E6500; (b) PC cluster.

(a)

No. of Fortran compiler Java compiler
proc. Particle time Field time Particle time Field time
1 794.10 27.83 5222.12 126.89
2 353.82 35.06 2567.14 116.18
4 154.02 15.34 1275.15 69.92
8 83.32 14.06 663.68 73.89
16 41.02 17.53 368.08 51.67

(b)

No. of Fortran compiler Java compiler
proc. Particle time Field time Particle time Field time
1 526.64 20.57 1298.93 40.23
2 264.56 17.49 627.16 33.73
4 134.77 15.28 322.09 28.48
8 74.62 14.95 168.01 25.57
16 40.32 15.36 87.40 21.38

run is known.
The 2D and 3D results are listed in Tables 3(a) and 3(b)

respectively. They show that the performance rate of the
2D code is a little higher than that of the 3D code, the ratio
being 1.3-1.6 on the Sun E6500 and 1.1-1.4 on the PC clus-
ter. From the tables, we can find that the field time with 16
processors is longer than with 8 processors for the Fortran
code, while the field time with 16 processors is shorter than
with 8 processors for the Java code. In our implementation,
the field time consists of two parts, which are the compu-
tation time and co-ordination overhead (including message
passing, unparallelized computation and others). The com-
putation time is found to decrease linearly with the number
of processors due to low load imbalance in our code, while
the co-ordination overhead becomes larger with the num-
ber of processors. When the rate of the co-ordination and
computation time is large enough, it is possible that the run
time becomes larger for larger number of processors. The
co-ordination cost for Fortran and Java is almost the same,
but the computation time for the Fortran code is shorter than
for the Java code. Hence, it is easy to see that the field time
is longer with 16 processors than 8 processors when using
Fortran.

5 Conclusions

Today, the most widely used language for scientific com-
puting is Fortran due to its high performance. However,
Java has been getting more and more popular. It has at-
tracted many scientists to do scientific computing in Java
because it supports many new features such as portability

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Table 3. The performance in Mflop/s for the
PIC codes on the Sun E6500 and the PC clus-
ter: (a) 2D code; (b) 3D code.

(a)

No. of Sun E6500 PC cluster
proc. Fortran Java Fortran Java
1 95.3 13.9 107.3 44.0
2 199.7 29.1 227.2 88.5
4 395.5 58.7 438.2 171.4
8 786.1 116.0 796.4 331.3
16 1527.1 215.3 1389.6 585.9

(b)

No. of Sun E6500 PC cluster
proc. Fortran Java Fortran Java
1 62.1 9.4 93.6 37.8
2 139.2 19.2 186.2 78.6
4 319.8 38.6 365.5 152.8
8 591.2 74.2 660.1 293.1
16 1200.8 133.8 1221.6 563.3

across platforms, powerful graphical user interface toolkits,
Internet communication and protocols, etc., which are very
important in modern scientific computing. The Java Grande
forum was formed at the beginning of 1998 to encourage
programmers to use Java as an environment for scientific
computing. Members of the forum also designed a bench-
mark suite to evaluate Java’s performance, but most of the
codes are microbenchmarks or kernels.

In this paper we introduce a skeleton of a PIC code in
Java. Our version was successfully implemented with the
2D and 3D plasma PIC codes. The performance of Java
has been measured, and the results show that Java’s perfor-
mance is about 15% of Fortran on Sun E6500 and 45% of
Fortran on the Linux cluster.

The performance of Java is still very low compared with
other computer languages such as Fortran. Much effort
needs to be invested before Java can be used as a real tool
for scientific computing. However, considering that Java
is a very new computer language and still under develop-
ment, this looks feasible. Very promising approaches exist
with the development of optimization technologies such as
advanced JIT compilers [7], native code compilers which
produce machine specific executables from Java source
code [15], and mixed language techniques [13] which re-
place some time-consuming Java methods with other high
performance computer languages through JNI. All these
new technologies are subject to future work with our skele-
ton PIC simulations code. Nevertheless, even now we have
enough reasons to feel optimistic about Java’s future role in
scientific computing.

6 Acknowledgement

The authors would like to thank the University of Wales
- Cardiff for the use of their computer system Sun E6500.
Special thanks go to Bryan Carpenter at Florida State Uni-
versity for his help in the installation of mpiJava1.2 on Sun
E6500. This work was financed partly by National Science
Foundation of China (NSFC) under Grants No. 40084001
and 40174041 and by the NFF initiative of the HEFCE in
the U. K.

References

[1] E. Akarsu, K. Kincer, T. Haupt, and G. C. Fox. Particle-in-
cell simulation codes in high performance Fortran. In Pro-
ceedings of Supercomputing’96(IEEE, 1996).

[2] M. Baker, B. Carpenter, G. Fox, S. H. Ko, and S. Lim. mpi-
Java:An object-oriented Java interface to MPI. In Proceed-
ings of International Workshop on Java for Parallel and Dis-
tributed Computing, San Juan, Puerto Rico, April 1999.

[3] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A.
Ranawak, and C. V. Packer. Beowulf: A parallel workstation
for scientific computation. In Proceedings of International
Conference on Parallel Processing, 1995.

[4] C. K. Birdsall and A. B. Langdon. Plasma physics via com-
puter simulation. Hilger, New York, 1991.

[5] V. K. Decyk. Skeleton PIC codes for parallel computers.
Comput. Phys. Commun, 87(1995):87–94.

[6] G. Fox and W. Furmanski. Computing on the Web - new
approaches to parallel processing - Petaop and Exaop per-
formance in the year 2007. Technical Report SCCS-784,
Northeast Parallel Architectures Center, Syracuse Univer-
sity, 1997.

[7] T. R. Halfhill. Heating up Java. IBM Research magazine,
36(4), 1998.

[8] Java Benchmarks: VolancoMark.
http://www.volano.com/benchmarks.html.

[9] Java Grande Benchmarks at EPCC.
http://www.epcc.ed.ac.uk/javagrande/.

[10] Java Grande Forum web-site. http://www.javagrange.org/.
[11] G. Judd, M. Clement, and Q. Snell. DOGMA: Distributed

object group metacomputing architecture. Concurrency:
Practice and Experience, 10(11-13):977–983, 1998.

[12] Q. M. Lu and D. S. Cai. Implementation of parallel plasma
particle-in-cell codes on PC cluster. Comput. Phys. Com-
mun., 135(2001):93–104.

[13] Q. M. Lu and V. S. Getov. Mixed-language high-
performance computing for plasma simulation. Scientific
Programming, 11(1):(to appear), 2003.

[14] C. Norton, B. Szymanski, and V. Decyk. Object oriented
parallel computation for plasma simulation. Communica-
tions of the ACM, 38(10):88–100, October 1995.

[15] V. Seshadri. IBM high-performance compiler for Java. AIX-
pert Mag., September 1997.

[16] D. W. Walker. Characterizing the parallel performance of a
scale, particle-in-cell simulation code. Concurrency: Prac-
tice and experience, 2(4):257–288, December 1990.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

