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Nonlinear-Stability Analysis of Higher Order ∆–Σ
Modulators for DC and Sinusoidal Inputs

Jaswinder Lota, Member, IEEE, Mohammed Al-Janabi, Member, IEEE, and Izzet Kale, Member, IEEE

Abstract—The present work that exists on predicting the sta-
bility of ∆–Σ modulators is confined to DC input signals and
unity quantizer gains. This poses a limitation for numerous ∆–Σ
modulator applications. The proposed research work gives the
stability curves for DC, sine, and dual sinusoidal inputs for any
value of the quantizer gain. The maximum stable input limits
for third-, fourth-, and fifth-order Chebyshev-Type-II-based ∆–Σ
modulators are established using the describing-function method
for DC and sinusoidal inputs. Closed-form mathematical expres-
sions for the gains of the quantizer for higher order ∆–Σ modu-
lators whose inputs are two concurrent sinusoids are derived from
first principles. The derived stability curves are shown to agree
reasonably well with the simulation results for different types of
input signals and amplitudes.

Index Terms—DC and sinusoidal inputs, nonlinear, quantizer
gain, stability, ∆–Σ modulators.

I. INTRODUCTION

THE WELL-KNOWN sources of nonlinearity in ∆–Σ
modulators are the 1-bit quantizer, op-amp nonlinear DC

gain, op-amp slew rate, and nonlinear switch response. The
nonlinear op-amp gain and slew rate result in considerable
harmonic distortion at the output spectrum of the ∆–Σ mod-
ulator. The nonlinear quantizer affects the stability of the ∆–Σ
modulator and is therefore the main area of investigation in this
paper. The stable input amplitude limits for ∆–Σ modulators
are complicated to predict due to the severe nonlinearity of
the 1-bit quantizer. To date, various approaches have been
applied to more accurately characterize the quantizer [1]–[6],
[8], [9]. One technique is to model the quantizer as a threshold
function in the state equations. The analysis, however, gets
complicated for higher order ∆–Σ modulators and has therefore
been limited to the first- and second-order ∆–Σ modulators
[1]–[4]. For higher order ∆–Σ modulators, linearized modeling
is a method that has been found to be useful for performance
analysis [5], [6], [8], wherein the 1-bit quantizer is modeled as
a linear gain and an additive noise source. However, apart from
performance predictions, the linearized-modeling approach did
not previously provide useful stability predictions until a new
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Fig. 1. Quasi-linear ∆–Σ modulator quantizer model.

interpretation of the instability mechanism for ∆–Σ modulators
based on the noise-amplification curve was given in [9]. This
is however restricted for DC inputs and unity quantizer gains.
This quasi-linear method can be extended to more than one
input with each input represented by a separate equivalent gain.
This concept forms the basis for the describing-function (DF)
method [10]. In this paper, the stability analysis based on
the noise-amplification curve is accomplished using the DF
method for DC single- and dual-tone sinusoidal inputs for
nonunity quantizer-gain values. The noise transfer functions
(NTFs) of these ∆–Σ modulators utilize Chebyshev-Type-II
filters because they achieve better in-band signal-to-noise ra-
tios (SNRs) as compared with Butterworth filters of the same
order. In Section II, the quasi-linear stability analysis of ∆–Σ
modulators is explained based on the noise-amplification curve.
In Section III, the derivation of the noise-amplification curves
for DC and sinusoidal inputs with the DF method is given. The
simulation results are illustrated and discussed in Section IV
followed by the conclusions in Section V.

II. QUASI-LINEAR-STABILITY ANALYSIS

OF ∆–Σ MODULATORS

A generic ∆–Σ modulator having its quantizer replaced by a
gain factor K, followed by additive quantization noise q(k) [9],
is shown in Fig. 1.

The output of the modulator in the z-domain is given by

Y (z) = STF(z)X(z) + NTF(z)Q(z) (1)

where Y (z), X(z), and Q(z) are the {z}-transforms of the
output, input, and quantizer noise signals, respectively. The
STF(z) and NTF(z) represent the signal transfer functions
(STFs) and NTFs of the ∆–Σ modulator, which are derived
from Fig. 1

STF(z) =
KG(z)

1 + K · H(z)
(2)

NTF(z) =
1

1 + KH(z)
. (3)

0018-9456/$25.00 © 2008 IEEE
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Fig. 2. A(K) curves for some Chebyshev-Type-II NTFs.

It can be seen from (2) and (3) that the poles of the denom-
inator [1 + KH(z)] determine the stability of the modulator.
For a given loop-filter H(z), there will be a certain interval
[Kmin,Kmax] for which the modulator is stable [11]. Assuming
q(k) to be Gaussian white noise G(0, σ2

q ) and the transfer
function between q(k) and y(k) to be known, then the output
noise variance is given by [9]

Var {y(k)} = σ2
q

1∫
0

∣∣NTF(ejπf )
∣∣2 df = σ2

qA(K) (4)

where σ2
q is the variance of q(k) and A(K) is the total out-

put noise-power-amplification factor. Using Parseval’s relation,
A(K) can be found in the time-domain as

A(K) =
∞∑

k=0

|NTF(k)|2 ∆= ‖NTF‖2
2 (5)

where NTF(k) is the impulse response corresponding to
NTF(z) and A(K) is the squared second-norm of NTF(z) [9].
The A(K) curves of the loop-filter are crucial for the stability
analysis of ∆–Σ modulators. Typical curves for the Chebyshev-
Type-II NTFs are shown in Fig. 2.

The Amin value is the global minimum of the curve. If K
increases slightly in the region, where A(K) is monotonically
increasing, it results in a higher A(K) value, which leads to
more quantization noise transfer into the ∆–Σ modulator. This
tends to decrease K, leading to a stable equilibrium state [9].
However, where the A(K) curve is monotonically decreasing,
even small perturbations can destabilize the modulator. As
the signal power increases, the values along the A(K) curve
decrease and approach Amin. The two values of K come close
together and, finally, merge at Amin. This characterizes the
onset of instability. The modulator-operating region escapes to
the left portion of the curve, where it is characterized by low
values of K. Therefore, for stable operation A(k) > Amin [9].
The Amin values for the Chebyshev-Type-II-based NTFs are
shown in Fig. 3.

Fig. 3. Amin values versus stop-band attenuation for the third-, fourth-, and
fifth-order Chebyshev-Type-II-based NTFs.

Fig. 4. ∆–Σ modulator linear-signal model.

Fig. 5. ∆–Σ modulator linear-noise model.

III. NOISE-AMPLIFICATION CURVES—DF METHOD

Using the DF model, the quantizer-gain K shown in Fig. 1
can be represented with two separate gains Kx and Kn [6], as
shown in Figs. 4 and 5.

Fig. 4 describes the model for the input signal with linear
gain Kx, whereas Fig. 5 describes the noise-signal model with
linear gain Kn. The combined output signal is given by

y(k) = yx(k) + yn(k). (6)

A. DC Input

The linearized gains for a 1-bit quantizer with an output ±∆
have been calculated in [6] and are given as follows, where
erf(·) is the error function [7]

Kn = 2
∆
σ2

en

e−m2
e/2σ2

en (7)

Kx =
∆
me

erf
(

me

σen

√
2

)
(8)
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where me is the mean value of the quantizer input in the signal
model, and σ2

en
is the noise variance input to the quantizer in

the noise model. The variance of the output signal is given by

Var {y(k)} = E
{
y2(k)

}
− E2 {y(k)} (9)

where E{·} is the expectant operator.
The output signal in the time domain can be expressed as

y(k) = en(k)Kn + q(k) + ex(k)Kx. (10)

The first term on the right-hand side of (9) is the power of the
output signal, which is given by

E
{
y2(k)

}
=E

{
e2
n(k)K2

n

}
+ E

{
q2(k)

}
+ E

{
e2
x(k)K2

x

}
(11)

E
{
y2(k)

}
=σ2

en
K2

n + σ2
q + m2

eK
2
x. (12)

Since the quantization noise is assumed as G(0, σ2
q ) the mean

values of en(k) and q(k) are equal to zero, then the second term
on the right-hand side of (9) becomes

E2 {y(k)} = m2
eK

2
x. (13)

The resultant variance of the output signal using (9), (12), and
(13) becomes

Var {y(k)} = σ2
en

K2
n + σ2

q . (14)

The noise-power-amplification factor for a DC input signal
Adc(K) after using (4), (7), and (14) simplifies to

Adc(K) =
Var {y(k)}

σ2
q

=

(
2
π

) [
e−λ2

]2
+ σ2

q

σ2
q

(15)

where λ is a factor defined as follows: λ = me/σen
√

2, and σ2
q

is the quantization noise power given by [6]

σ2
q = ∆2

[
1 − mx

∆2
− 2

π
e−2[erf−1(mx

∆ )]2
]

. (16)

B. Sinusoidal Input

The linearized gains for a sinusoidal input and random
Gaussian feedback components have been solved for the case
of an ideal relay in [12], which can be assumed for a 1-bit
quantizer with an output of ±∆ [6] and are shown as follows:

Kn =
(

2
π

) 1
2
(

∆
σen

)
F

(
1
2
, 1,−υ2

)
(17)

Kx =
(

2
π

) 1
2
(

∆
σen

)
F

(
1
2
, 2,−υ2

)
. (18)

Here, υ∆(a/
√

2) = (1/σen
), where a is the amplitude of the

sinusoidal input signal x(k). The expression F (α, γ, x) is the

confluent hypergeometric function defined by [13], and Γ is a
gamma function [7]

F (α, γ, χ) ∆= 1 +
αχ

γ
+

α(α + 1)χ2

γ(γ + 1)Γ2
+ · · · (19)

The variance of the output signal is given by

Var {y(k)} = E
{
y2(k)

}
− E2 {y(k)} . (20)

The power of the output signal is given by

E
{
y2(k)

}
=E

{
e2
n(k)K2

n

}
+ E

{
q2(k)

}
+ E

{
e2
x(k)K2

x

}
(21)

E
{
y2(k)

}
=σ2

enK2
n + σ2

qs
+ σ2

ex
K2

x (22)

where σ2
qs is the quantization noise power for a sinusoidal input.

The second term on the right-hand side of (20) is

E2 {y(k)} =E2 {en(k)Kn} + E2 {q(k)} + E2 {e
x
(k)Kx}

(23)

E2 {y(k)} =E2 {ex(k)}K2
x (24)

where the mean values of en(k) and q(k) are zero. The input
signal is a sinusoid modeled as a random variable (RV) having
constant amplitude. Since the phase is random with a uniform
probability density function (pdf) E{ex(k)} = 0. Therefore,
from (20) and (24)

Var {y(k)} = E
{
y2(k)

}
. (25)

Given that the frequency of x(k) is small in the baseband
region, this then results in [6]

Ex(z)
X(z)

≈ 1
Kx

. (26)

The variance of ex(k) is

σ2
ex

=
1

K2
x

σ2
x. (27)

From (25) and (27), the output-signal variance is

Var {y(k)} = σ2
qs

+ K2
nσ2

en
+ σ2

x. (28)

The output-noise variance is therefore

Varn {y(k)} = σ2
qs

+ K2
nσ2

en
. (29)

Substituting (17) in (29), the noise-amplification factor for a
sinusoidal input signal becomes

Asin e(K) =

(
2
π

)
F 2

(
1
2 , 1,−υ

2
)

+ σ2
qs

σ2
qs

. (30)
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The values of υ and σ2
qs can be found using the following

expressions derived in [6]:

υ2F 2

(
1
2
, 2,−υ2

)
=

π

4

(
a2

∆2

)
(31)

σ
2

qs
= ∆2

[
1 − a2

2∆2
− 2

π
F 2

(
1
2
, 1,−υ2

)]
. (32)

C. Two Sinusoidal Inputs (Incommensurate)

The linearized gains for two sinusoidal input signals
xa(t) = a cos(w1t + φ1), xb(t) = b cos(w2t + φ2) and a ran-
dom Gaussian signal representing the feedback components
have been solved for the case of the 1-bit quantizer, as shown
in the Appendix, where the final expressions are given by

Ka =
(

2
π

) 5
2
(

∆
σ

)(
b

a

)(
1

1
2 − ρ2

b

){
1F1

(
1,

3
2
,−ρ2

a

)
+ψa

}

(33)

Kb =
(

2
π

) 5
2
(

∆
σ

)(a

b

)( 1
1
2 − ρ2

a

){
1F1

(
1,

3
2
,−ρ2

b

)
+ ψb

}

(34)

Kn =

√
2
π

(
∆
σ

)
e−ρ2

ae−ρ2
bζ (35)

where

ψa =
{

4
3
ρ2

a − 16
45

ρ4
a +

16
175

ρ6
a − 128

6615
ρ8

a + · · ·
}

(36)

ψb =
{

4
3
ρ2

b −
16
45

ρ4
b +

16
175

ρ6
b −

128
6615

ρ8
b + · · ·

}
(37)

ζ =
{

1 + ρ2
aρ2

b +
ρ4

aρ4
b

4
+

ρ6
aρ6

b

36
+

ρ8
aρ8

b

576
+ · · ·

}
(38)

and ρ2
a = (1/2)(a2/σ2); ρ2

b = (1/2)(b2/σ2).
From (29), the output-noise variance is given by

Var {y(k)} = σ2
en

K2
n + σ2

qab
(39)

where σ2
qab

is the quantization noise power for the two uncor-
related sinusoidal inputs xa(t) and xb(t). Therefore, from (35)
and (39), the noise-amplification factor is given by

A
ab

(K) =

(
2
π

){
e−ρ2

ae−ρ2
b

}2

ζ2 + σ2
qab

σ2
qab

. (40)

Since xa(t) and xb(t) are uncorrelated, the power of the output
signal is given by

E
{
y2(k)

}
= σ2

en
K2

n + σ2
qab

+ σ2
eb

K2
b + σ2

ea
K2

a (41)

where σ2
eb

and σ2
ea

are the powers of the sinusoidal inputs at the
quantizer input. From (27), we have

σ2
eb

=
1

K2
b

σ2
b

σ2
ea

=
1

K2
a

σ2
a. (42)

From (35), (41), and (42), we get

∆2 =
2
π

∆2{e−ρ2
ae−ρ2

b}2ζ2 + σ2
qab

+
b2

2
+

a2

2
. (43)

Rearranging (43), the quantization noise power is given by

σ2
qab

= ∆2

[
1 − a2

2∆2
− b2

2∆2
− 2

π

{
e−ρ2

ae−ρ2
b

}2

ζ2

]
. (44)

From (34) and (42), we get

(
2
π

)5(
a2

b2

)
ρ2

b[
1
2 − ρ2

a

]2
{

1F1

(
1,

3
2
,−ρ2

b

)
+ ψb

}2

=
b2

2
.

(45)

Similarly, from (33) and (42) for the sinusoid xa(t), we have

(
2
π

)5(
b2

a2

)
ρ2

a[
1
2 − ρ2

b

]2
{

1F1

(
1,

3
2
,−ρ2

a

)
+ ψa

}2

=
a2

2
.

(46)

The two simultaneous (45) and (46) were solved by deploying
the MATLAB Symbolic Toolbox in order to get the values of
ρa and ρb for various values of a and b.

In Sections I–III, we have seen that the noise-amplification
factor can be determined in two ways, viz., statistically and nu-
merically. Statistically, it can be derived from (4), provided that
the noise and signal quantizer gains are known. The quantizer
gain is therefore split up as signal and noise quantizer gains
using the DF method. The derived noise-amplification factor
here is a function of the signal amplitude and the quantization
noise power. In case the of DC and single-sine inputs, the signal
and noise gains have been used from the nonlinear-control
theory. Equations (15) and (30) give the statistically derived
noise-amplification factor for DC and single-sine inputs. For
the dual sinusoidal input, the quantizer gains have been derived
from the Appendix. The noise-amplification factor is arrived
from (40).

The noise-amplification factor can also be derived numer-
ically from (3) and (5). Here, the parameter is a function of
the quantizer gain and the NTF, as shown in Fig. 2. The Amin

value is the global minimum value of the curve. To ensure
stability, the value of the noise-amplification factor must always
exceed Amin. Therefore, from the statistically derived noise-
amplification factor (which is a function of the input signal and
noise power), we can infer the values of the input amplitude,
for which its noise-amplification factor is always greater than
Amin, to ensure the stability of the ∆–Σ modulator for a
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Fig. 6. Quantization noise for DC and sinusoidal inputs.

Fig. 7. Variation of υ (sine) and λ (DC) versus the input-signal amplitude.

particular NTF. The derived stability curves for a given NTF
can therefore be plotted and will be covered in the next section.

IV. RESULTS AND SIMULATIONS

A. DC and Single Sinusoidal Inputs

The variation of the DC and sinusoidal-input quantization
noise power σ2

q and σ2
qs, with respect to the input-signal am-

plitude using (16) and (32), are shown in Fig. 6.
As shown, σ2

q decreases and becomes zero as the input-signal
amplitude increases to unity. The quantization noise power
σ2

qs does not decrease to zero and remains at 0.3 for an input
amplitude of 1.0. Equation (31) has been solved for υ up to the
tenth power of υ using the MATLAB Symbolic Toolbox.

Fig. 7 shows the variation of λ and υ, with respect to the
input-signal amplitude.

Fig. 8. Noise-amplification factor for sinusoidal and DC inputs.

Fig. 9. Stable-input amplitude for Chebyshev-Type-II NTF(z).

It has been observed that, for amplitudes less than 0.4, the
quantization noise λ and υ are almost the same for DC and
sinusoidal inputs. This coincides with the fact that, in nonlinear
feedback systems, the effective gain of the nonlinearity on a
small signal is independent of the signal type [10]. The noise-
amplification factors Adc(K) and Asin(K) using (15) and (30)
are shown in Fig. 8. It is shown that the values of Adc(K) using
the DF method are the same as in [9].

Using Adc(K) and Asin(K), the maximum stable input
amplitudes for the third-, fourth-, and fifth-order Chebyshev-
Type-II-based ∆–Σ modulator are shown in Fig. 9.

However, these are true for unity values of quantizer gain K.
The variations of the stable sinusoidal input amplitude for the
third-, fourth-, and fifth-order Chebyshev-Type-II-based ∆–Σ
modulator in relation to the quantizer gain K and the stop-band
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Fig. 10. (a) Stable amplitude limit for third order for DC input. (b) Stable
amplitude limit for fourth order for DC input.

attenuation are shown in Fig. 10(a) and (b) for a DC input and
in Fig. 11(a) and (b) for a sinusoidal input, respectively.

For comparison, the stable input-amplitude variation for dc
and sinusoidal inputs for a fifth-order Chebyshev-Type-II-based
∆–Σ modulator with a stop-band attenuation of 67 dB is shown
in Fig. 12.

B. Two Sinusoidal Inputs

From (45) and (46), the values of ρb have been shown in
Fig. 13(a). It is shown that ρb gets bigger as the amplitude b
increases. However, the increase in ρb gets attenuated as the
signal amplitude a increases from 0.2 to 0.8. As shown, the
effect of this attenuation decreases when b > a. This becomes
more noticeable for a = 0.8.

The amplitude of ρa, as shown in Fig. 13(b), is seen to
gradually decrease as b increases. It is also seen to drop sharply
when the amplitude of b becomes greater than a.

The values of ρa and ρb for the following amplitudes are as
follows: a = 0.2, 0.4, 0.6, and 0.8 are shown in Fig. 14(a)–(d).

Fig. 11. (a) Amplitude limit for third order for sinusoidal input. (b) Amplitude
limit for fourth order for sinusoidal input.

The magnitudes of ρa and ρb become equal when both sinu-
soids have the same amplitudes, i.e., a = b.

Using (44), the quantization noise power σ2
qab

is plotted in
Fig. 15. The σ2

qab
in the regions b < 0.2, b < 0.4, and b < 0.6

for the curves A (a = 0.2), B (a = 0.4), and C (a = 0.6) (left
side of the nulls for the three curves), respectively, increases
mainly due to ρa. As ρa becomes bigger when the amplitude
a increases from 0.2 to 0.6 in Fig. 13(b), so does σ2

qab
in this

region. The increase in σ2
qab

in the regions b > 0.2, b > 0.4, and
b > 0.6 (right-hand side of the three nulls) for the curves A, B,
and C, respectively, is mainly attributed to ρb. As ρb increases
with a reduction in the amplitude a from 0.6 to 0.2 in Fig. 13(a),
so does σ2

qab
.

Since the quantization noise power σ2
qab

, ρa and ρb are
known; the same are substituted in (40) to obtain the noise-
amplification curves Aab(K) for a = 0.2, 0.4, and 0.6. These
noise-amplification curves Aab(K) are plotted in Fig. 16.
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Fig. 12. Stable amplitude variation for DC and sinusoid inputs.

Using the values obtained for Aab(K), the stable amplitude
limits for b have been plotted for the third-, fourth-, and
fifth-order Chebyshev-Type-II-based NTF for a = 0.2 and 0.4
in Figs. 17(a)–(c) and 18(a)–(c), respectively.

Simulations for the fifth-order Chebyshev-Type-II-based
∆–Σ modulator, as shown in Fig. 19, were performed for 1400
samples, where the input amplitude was increased in steps of
0.1. The maximum stable amplitude limits were obtained and
compared with simulations as shown in Fig. 20.

The difference between the theoretical and simulated input
stability limits is attributed to the presence of more spectral
tones when the input to the ∆–Σ modulator is a DC signal.
This discrepancy in the values is seen to decrease noticeably for
single-tone sinusoidal inputs, because the quantization noise in
this case tends to become more Gaussian. For ∆–Σ modulators
whose inputs comprise of two sinusoids, the theoretical and
simulated input stability limits are seen to be quite similar for
relatively small input-amplitude signals. However, the differ-
ence increases as the amplitudes of the two sinusoids become
larger. This is due to the occurrence of tones as the ∆–Σ
modulator approaches its stability limit. A further reason for
this discrepancy could be that the derivation of the three gains
(i.e., two sinusoids and one Gaussian) is based on the modified
nonlinearity concept. In order to compute the gain for any of
the three inputs, it is assumed that the nonlinear function has
been modified in turn by each of the two remaining inputs.
However, in real-life, this may not be the case as all the three
inputs coexist simultaneously.

V. CONCLUSION

The maximum stability input limits for different types of in-
put signals and amplitudes were derived from the first principles
and shown to be dependent on the quantizer gain as well as
the stop-band attenuation of the NTFs. The derived stability
curves were shown to depend on the noise-amplification factor,

Fig. 13. (a) Variation of ρb versus b for different a amplitudes. (b) Variation
of ρa versus b for different a amplitudes.

and therefore, the composition of the quantization noise of
the ∆–Σ modulators. The theoretically derived stability curves
were shown to agree reasonably well with the simulation results
for various types of input signals and amplitudes. The stability
limits for the sinusoidal-input signals were theoretically proved
to be greater than the DC case for ∆–Σ modulators of the
same order. This finding is particularly useful for the design
of higher order ∆–Σ with improved SNRs and dynamic ranges.
The derived stability curves will enable the designer of ∆–Σ
modulators to predict with greater accuracy the stability of ∆–Σ
modulators for any NTF and quantizer gain values.

APPENDIX

In this Appendix, the derivation of the gains for the two
sinusoidal and Gaussian inputs to a 1-bit quantizer is made.
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Fig. 14. (a) Variation of ρa and ρb with amplitude b at a = 0.2. (b) Variation of ρa and ρb with amplitude b at a = 0.4. (c) Variation of ρa and ρb with
amplitude b at a = 0.6. (d) Variation of ρa and ρb with amplitude b at a = 0.8.

If the inputs to the nonlinearity are of different pdfs or of dif-
ferent magnitudes of similar waveforms, the output component
from one of these inputs depends not only on the magnitude of
this particular input but also on the magnitudes of all the other
inputs. The concept used here is the modified-linearity concept
[14], whereby to determine the response to a particular input,
the nonlinear characteristic is modified in turn by each of the
input signals present to obtain a modified nonlinearity to which
the input is applied.

The two sinusoidal inputs considered here are xa(t) =
a cos(w1t + φ1) and xb(t) = b cos(w2t + φ2), where a and
b are constants, ω1 and ω2 are the sinusoidal frequencies,
assumed to be incommensurate, and φ1 and φ2 are RVs each
having a uniform pdf in the interval [0, 2π]. The third input
is the quantization noise assumed to be Gaussian G(0, σ), i.e.,
with zero mean and variance σ2.

Sinusoidal Gains

The modified nonlinearity of a 1-bit quantizer with a random
input is given by [12]

n1(γ) = 2∆

γ∫
0

q(y)dy (A1)

where ±∆ is the output of the 1-bit quantizer, and q(y) is the
pdf of the random input.

Therefore, for a Gaussian input

n1(γ) = 2∆

γ∫
0

(
1

σ
√

2π

)
e

−y2

2σ2 dy (A2)
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Fig. 15. Variation of quantization noise versus the two sine amplitudes.

Fig. 16. Aab(k) variation versus the two sine amplitudes a and b.

which, when integrated, simplifies to

n1(γ) = ∆erf
(

γ

σ
√

2

)
. (A3)

Next, we consider the nonlinearity n1(γ) that is further mod-
ified to n2(γ) by one of the sinusoidal signals, for example,
xa(t). This further modified nonlinearity is given by [14]

n2(γ) =

a∫
−a

p(x)n1(x + γ)dx (A4)

where p(x) is the pdf of xa(t), i.e.,

n2(γ) =

a∫
−a

1
π

1√
a2 − x2

∆erf
(

x + γ

σ
√

2

)
dx (A5)

can be rewritten as

n2(γ) =
2∆
π

a∫
0

1√
a2 − x2

erf
(

x + γ

σ
√

2

)
dx. (A6)

When integrating (A6), we get (A7), which is

n2(γ) =

∣∣∣∣∣∣∣


[
e−

(γ+x)2

2σ2 σ

√
2
π

+ (γ + x)erf
(

x + γ

σ
√

2

)]

−


σ2xerf

(
x+γ

σ
√

2

)
(a2 − x2)






×




(a2 − x2)
3
2

(a2x2)(a2 + xγ) − σ2a2 − 2x2σ2



∣∣∣∣∣∣∣
a

0

.

(A7)

After applying the limits, (A7) simplifies to

n2(γ)=
(

2∆
π

)(
a

σ2−a2

){
σ

√
2
π

e
−γ2

2σ2 +γerf
(

γ

σ
√

2

)}
(A8)

where n2(γ) is now the nonlinearity of the 1-bit quantizer,
which has been modified by the sinusoidal input xa(t) and
the quantization noise G(0, σ). The next step is to evaluate the
gain for xb(t) to this modified nonlinearity. This gain for xb(t)
would be a function of the input amplitudes a and b and would
also depend on the quantization noise power σ2.

The gain Kb of the sinusoidal input xb(t) to this nonlinearity
n2(γ) is given by [12]

Kb =
1
σ2

b

b∫
−b

xn2(x)r(x)dx (A9)

where σ2
b = b2/2 is the variance, and r(x) is the pdf of xb(t).

From (A8) and (A9), we get the gain for xb(t) as in (A10),
which is

Kb =
(

2
b2

)(
2∆
π2

)(
2a

σ2 − a2

)

×


σ

√
2
π

b∫
0

e
−x2

2σ2
x√

b2 − x2
dx

+

b∫
0

x2

√
b2 − x2

erf
(

x

σ
√

2

)
dx


 . (A10)
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Fig. 17. (a) Stable input limits of amplitude b of third order for a = 0.2. (b) Stable input limits of amplitude b of fourth order for a = 0.2. (c) Stable input limits
of amplitude b of fifth order for a = 0.2.

By putting x = bu1/2, the first integral in (A10) can be
simplified to

I1 =

b∫
0

e
−x2

2σ2
x√

b2 − x2
dx =

(
b

2

) 1∫
0

e−ρ2
b
uu0(1 − u)

1
2 du

(A11)

where ρ2
b = b2/2σ2. This reduces (A11) to the integral form

of the confluent hypergeometric function 1F1(α, β, λ), which
is [13]

Γ(β)
Γ(α)Γ(β − α)

1∫
0

eλuuα−1(1 − u)β−α−1du =1 F1(α, β, λ).

(A12)

From (A11) and (A12), I1 can be integrated as

I1 =
(

b

2

) 1∫
0

e−ρ2
b
uu0 (1 − u)

1
2 du = b1F1

(
1,

3
2
,−ρ2

b

)
.

(A13)

The second integral in (A10) can be solved by expanding
the error function and integrating within the limits, as shown
in (A14)

I2 =

b∫
0

erf
(

x

σ
√

2

)
x2

√
b2 − x2

dx = 2
b2

√
π

η (A14)
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Fig. 18. (a) Stable input limits of amplitude b of third order for a = 0.4. (b) Stable input limits of amplitude b of fourth order for a = 0.4. (c) Stable input limits
of amplitude b of fifth order for a = 0.4.

where η is an infinite series given by

η =
{

2
3
ρb −

8
45

ρ3
b +

8
175

ρ5
b −

64
6615

ρ7
b + . . .

}
. (A15)

From (A10), (A13), and (A14), we get

Kb =
(

2
b2

)(
2∆
π2

)(
2a

σ2 − a2

)

×
{

σ

√
2
π

b1F1

(
1,

3
2
,−ρ2

b

)
+ 2

b2

√
π

}
. (A16)

Simplifying (A16) further and rearranging the terms, the gain
Kb for xb(t) is given by

Kb =
(

2
π

) 5
2
(

∆
σ

)(a

b

)( 1
1
2−ρ2

a

){
1F1

(
1,

3
2
,−ρ2

b

)
+ψb

}
(A17)

where

ψb =
{

4
3
ρ2

b −
16
45

ρ4
b +

16
175

ρ6
b −

128
6615

ρ8
b + . . .

}
. (A18)
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Fig. 19. Chebyshev-Type-II fifth-order modulator.

Fig. 20. Simulation results for dc, sine, and two sinusoidal inputs.

In order to obtain the gain for xa(t), we proceed as in above
to get

Ka =
(

2
π

) 5
2
(

∆
σ

)(
b

a

)(
1

1
2 − ρ2

b

)

×
{

1F1

(
1,

3
2
,−ρ2

a

)
+ ψa

}
. (A19)

Noise Gains

The modified nonlinearity of the first order for a Gaussian
input to a 1-b quantizer is given by [12]

n(σ, γ)1 =

∞∫
−∞

n(y + γ)H1

( y

σ

)
q(y)dy (A20)

where H1 is the Hermite polynomial of the first order. Substi-
tuting for q(y) and n(y + γ) in (A20)

n(σ, γ)1 =
∆

σ2
√

2π

∞∫
−∞

ye−
y2

2σ2 dy =

√
2
π

∆e−
γ2

2σ2 . (A21)

The noise gain Kn in the presence of another random input with
pdf p(r) is given by [12]

Kn =
1
σ

∞∫
−∞

n(σ, r)1p(r)dr. (A22)

Here, we consider the additional random input as a combination
of two uncorrelated sinusoidal inputs. The joint pdf p(r) of
the two sinusoidal signals having amplitudes a and b, with
incommensurate frequencies, is given by [15]

p(r) =
r

πab

1
sin θ

(A23)

where

θ = cos−1

(
a2 + b2 − r2

2ab

)
. (A24)

From (A21), (A22), and (A23), we get

Kn =

√
2
π

(
∆
σ

) a+b∫
a−b

e−
r2

2σ2

( r

πab

)( 1
sin θ

)
dr. (A25)
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Changing the variable from r → θ

Kn =

√
2
π

(
∆
σπ

)
e−

a2

2σ2 e−
b2

2σ2

π∫
0

ek cos θdθ (A26)

where k = ab/σ2. Solving the integral earlier, we get the noise
gain as

Kn =

√
2
π

(
∆
σ

)
e−ρ2

ae−ρ2
bζ (A27)

where

ζ =
{

1 + ρ2
aρ2

b +
ρ4

aρ4
b

4
+

ρ6
aρ6

b

36
+

ρ8
aρ8

b

576
+ . . .

}
. (A28)
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