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AABBSSTTRRAACCTT  
 

 

The wireless industry has seen exceptional development over the past few decades due to 

years of sustained military and commercial enterprise. While the electromagnetic spectrum 

is becoming increasingly congested, there is a growing tendency to strive for higher 

bandwidths, faster throughputs, greater versatility, compatibility and interoperability in 

current and emerging wireless technologies. Consequently, an increasingly stringent 

specification is imposed upon the frequency utilization of wireless devices.  

 

New challenges are constantly being discovered in the development and realization of RF 

and microwave filters, which have not only sustained but fuelled microwave filter research 

over the many years. These developments have encouraged new solutions and techniques 

for the realization of compact, low loss, highly selective RF and microwave bandpass filters.   

 

The theme of this dissertation is the realization of planar compact performance microwave 

and RF bandpass filters for wireless communication systems. The work may be broadly 

categorised into three sections as follows. 

 

The first section presents a novel compact planar dual-mode resonator with several 

interesting and attractive features. Generally, planar microwave dual-mode resonators are 

known to half the filter footprint. However, it is found that the proposed resonator is 

capable of achieving further size reductions. In addition the resonator inherently possesses a 

relatively wide stopband as the lowest spurious harmonic resonance is observed at thrice 

the fundamental frequency. Properties of this resonator, such as these and more are 

explored in depth to arrive at an accurate electrical equivalent circuit, which is used as the 

basis for high order filter design.  
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The application of these resonators in the design of bandpass filters is the subject of the 

second section. A general filter design procedure based on the equivalent circuit is 

presented to assist the design of all-pole filters. Alternatively, it is shown that generalised 

Chebyshev filters with enhanced selectivity may be developed with cross coupled resonator 

topologies. The discussions are supplemented with detailed design examples which are 

accompanied by theoretical, simulated and experimental results in order to illustrate the 

filter development process and showcase practical filter performance.  

 

The third section explores the possibility of employing these resonators in the development 

of frequency tunable bandpass filters. Preference is given to varactor diodes as the tuning 

element due to the numerous qualities of this device in contrast to other schemes. In 

particular, interest is paid to center frequency tuned filters with constant bandwidth. 

Tunable filters constructed with the dual-mode resonator are shown to have a relatively 

wide tuning range as well as significantly higher linearity in comparison to similar published 

works. In line with the previous section, experimental verification is presented to support 

and supplement the discussions.       
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11..00  IINNTTRROODDUUCCTTIIOONN  
 

 

 

 

Applications for RF and microwave bandpass filters have grown tremendously over the past 

few decades. Although usually associated with communications systems such as satellites, 

base stations and mobile phones, bandpass filters find vast ranging applications from 

scientific instrumentation to medical applications and even navigation. In fact, filters have 

evolved to become both vital and indispensible components in modern electronic systems. 

Regardless of their application, filters generally shape signals in amplitude and phase with 

respect to the signal frequency in a prescribed manner to produce an output which is more 

compliant.  

 

More commonly, a microwave filter performs a frequency band limiting operation, where 

signals outside a particular band of interest are severely attenuated. Therefore, filters enable 

the finite electromagnetic spectrum to be shared allowing a multitude of radio and wireless 

services to coexist. It is quite common for passive filters to be categorized according to their 

specific band limiting function and further classified according to the nature of its response.  

 

Over the past few decades, with the substantial growth in the number of wireless services, 

there is a growing trend towards systems with higher bandwidths, faster data rates and 

increased reliability. This continues to place an increasingly stringent requirement on 

modern filters and have triggered designers to seek new solutions to address crucial issues 

such as loss minimization, selectivity and stopband enhancement and even cost saving. 

 

While system complexity is on the rise, system size has continued to shrink thanks to 

breakthroughs such as on chip integration. This approach however proves less effective with 

filters operating especially in the RF or microwave frequencies mainly due to two reasons. 
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Firstly, it is incredibly difficult to realise lumped elements with sufficient accuracy especially 

at microwave frequencies due to parasitic effects. Integrating planar distributed filters into 

an IC may seem to be a solution. However, since the size of a distributed filter is directly 

proportional its operating wavelength, this approach may only work on a small minority of 

filters, where the operating frequencies allow filters to physically fit into an IC. Secondly, the 

quality factor of a distributed resonator is proportional to its physical size. Therefore, 

distributed IC filters suffer from severe losses which may easily impair system performance.  

 

Due to the reasons above, planar transmission line technologies such as stripline and 

microstrip have become immensely popular in the design of distributed filters. In addition, 

planar distributed filters are significantly more compact in contrast to the relatively bulky 

filters constructed in waveguide and coaxial media. Nevertheless, even with planar 

technologies, developers welcome compact filters due to cost and size saving.  

 

Yet another important trend over the years is the increase in the number of services a 

wireless system is able to offer. The shift towards systems armed with multiple 

functionalities may require such systems to operate on multiple frequency bands. For 

example, a cellular phone with internet connectivity must operate on both the GSM and 

WiFi bands. Multiband systems traditionally use a number of fixed filters, one for each band. 

However, multiband filters or even tunable or reconfigurable filters may be better suited to 

such applications primarily due to the potentially drastic size and cost saving that may be 

reaped. However, multiband and tunable filters are still the subjects of intense research due 

to limitations such as the number of passbands achievable, center frequency tuning range, 

bandwidth tuning range, and linearity in addition to the issues pertaining to fixed filters. 

 

This dissertation addresses some of the fundamental challenges facing microwave filters. As 

such, concerns including filter size, loss, selectivity and tunability are central to the theme of 

the thesis. The rest of this chapter details the aims and objectives of this investigation. This is 

followed by an overview of some significant contributions and developments from past 

research work particularly in the area of planar microwave filters not only to give a survey of 

the type of solutions available but also to serve as a basis for comparison. For better 

accessibility, an outline of the thesis is provided next with a summary of each chapter. 
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1.1 Research Objectives 
 

The central aim of the research effort is the development of enhanced planar microwave 

and RF bandpass filters for wireless communications. In particular, the investigation 

addresses some of the key challenges surrounding bandpass filters such as compactness, 

harmonic suppression and tunability. These research objectives are tackled in the following 

stages. 

 

A crucial objective of the project is the development of a novel compact planar resonator, 

which has the potential for harmonic suppression, tunability and dual-band performance. In 

this regard, several resonator structures must be investigated including open loop, quarter 

or half wave length resonators, circular or square ring based configurations, and disk or 

patch based resonators. Special preference is given to dual-mode resonator topologies since 

a single unit behaves as a pair of coupled resonators immediately allowing filter size to be 

halved. Additionally, miniaturization methods such as the slow wave approach and in 

particular the use of stepped impedances is given consideration in order to further reduce 

the resonator footprint. 

 

Once a suitable compact resonator is developed, an electrical equivalent circuit of the 

resonator, that is most compatible with standard bandpass filter prototypes, must be 

constructed and refined not only to be able to quantify principal resonator parameters of 

the structure accurately but also to later facilitate the development of a filter design 

procedure. This may be accomplished by a two pronged approach. Firstly, the basic 

equivalent circuit, which accounts for the dominant electromagnetic phenomena within the 

resonator, may be extracted from modal analysis of the unit. The model may, depending on 

the degree of parasitic effects, be refined with the aid of a full wave electromagnetic 

simulator. The model must also be able to account for any transmission zeros in the 

stopband of the resonator response, which may prove crucial in the effort to improve 

selectivity or stopband response of filters designed at a later stage.  
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The application of these resonators in the design of compact bandpass filters is the next 

objective of the investigation. The resonator equivalent circuit may be used as a basis for 

developing a filter design procedure to enable high order filters to be realized with relative 

ease. A goal of the research effort is to establish a design procedure for realizing all-pole 

Butterworth and Chebyshev filters from a direct coupled resonator topology. The option of 

obtaining a generalised Chebyshev filtering characteristic must also be investigated possibly 

by employing a cross coupled resonator approach. This may enable lower order filters to 

achieve potentially higher skirt selectivity and in some applications substitute higher order 

filters which may have unacceptable passband loss. The filter design method in this case will 

likely be based on a coupling matrix synthesis scheme. Also to be investigated is the 

potential for filter stopband improvement either in extending the stopband or in sharpening 

the selectivity by employing any transmission zeros inherent to the resonator response.  

 

The investigation then focuses on the application of these resonators in the development of 

constant bandwidth center frequency tunable bandpass filters. Growing research interest in 

this area has not only highlighted the importance of tunable filters but has also triggered the 

exploration of some very novel tunable elements. On the other hand, application of these 

elements in maximizing centre frequency tuning range, bandwidth tunability and filter 

linearity arguably sees more research interest. The aim of this investigation with regard to 

tunable filters would therefore be very much aligned with mainstream research interests. 

Filter tuning range and linearity would therefore be key parameters that must be addressed.  

In addition, the majority of tunable elements suffer from significant parasitic resistances 

which may cause undue passband loss and a noticeable degradation to filter selectivity. 

Methods of mitigating this effect can also be considered given the availability of sufficient 

resources.   
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1.2 Overview of Past Research 
 

A concise overview of some of the recent advancements to distributed planar filter theory, 

relevant to the set objectives of this investigation is presented in this section. The first sub 

section presents a survey of filter miniaturization methods and compact filter structures. 

 

 1.2.1 Compact Bandpass Filters 

 

A bandpass filter consists of a number of coupled resonators. The size of the distributed 

resonator and the number of resonators employed ultimately determines the overall filter 

footprint. Accordingly, most of the filter miniaturization techniques take measures to reduce 

either of these two quantities in order to reduce the overall physical size of the filter.   

 

The slow wave effect is a rather well established approach for resonator miniaturization [1-

1]. Essentially, the principle, as the name suggests, revolves around the reduction of phase 

velocity of the fundamental mode of a resonator. Doing so will allow the dimensions of the 

resonator to shrink in proportion to the reduced guided resonant wavelength. Retarding the 

phase velocity on a transmission line may be accomplished by either increasing the series 

inductance, L, or the shunt capacitance, C, since the phase velocity, Vp, is defined as (1.1). 

 

�� �
1

√��
 (1.1) 

 

However, in most slow wave resonators, the general preference is to augment the shunt 

capacitance since signals on higher inductive lines tend to incur more loss. On the other 

hand, stepped impedance resonators (SIRs), a concept largely derived from the slow wave 

effect, combines an enhancement of both series inductance and shunt capacitance to 

achieve a slower phase velocity [1-2]. In either case, in addition to compactness, slow wave 

resonators in general suffer less from spurious harmonics. Furthermore, the versatility of 

this method enables its application to a vast range of planar resonator structures.   
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The second, promising approach employs a special kind of resonator known as a dual-mode 

resonator. A dual-mode resonator behaves in theory as a pair of coupled resonators, so a 

single unit can substitute for two regular (single-mode) resonators. Therefore, the degree of 

success with this approach largely depends on the relative size of the dual-mode resonator. 

For example, a size reduction of 50 % may be achieved if the dual-mode resonator is 

identical in size to the single-mode resonator being replaced. As a consequence, the search 

for a miniaturized dual-mode resonator has always been at the heart of compact filter 

research, which has spawned several types of interesting structures. Some compact dual-

mode resonators found in the research literature include the open-loop resonator [1-3], 

circular ring [1-4], square loop[1-5] and patch based resonators [1-6]-[1-8]. One deterrent in 

employing these resonators is that it may not always be physically possible to establish the 

required inter-resonator coupling within a dual-mode resonator due to fabrication 

limitations for example. Another concern is the difficulty in adjusting various coupling 

coefficients independently, especially between the two resonators within the dual-mode 

unit. Consequently, many dual-mode filter designs rely on a so called non-resonating node to 

be added between every dual-mode resonator in order to help establish the exact coupling 

coefficients [1-3]. However, such a method greatly compromises the compactness of a filter. 

 

Yet another alternative in miniaturizing planar filters is to use multiple layers on a printed 

circuit board [1-9], [1-10]. Resonators that comprise the filter can be spread over the layers 

in order to save a significant amount of space. Since the multilayer approach can be applied 

to all kinds of resonators, a greater emphasis is on the resonator footprint. Therefore, this 

approach is usually combined with the selection of either slow wave or dual-mode 

resonators in order to gain maximum effect. In contrast to the single layer approach 

however, there is obviously additional complexity in the fabrication process as well as 

greater sensitivity to various tolerances.  

 

Other possible methods of filter miniaturization include the use of high dielectric constant 

substrates [1-11] or the use of lumped elements [1-12]. However, there are several 

drawbacks to these methods, including excessive loss, which make them less widely used. 
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Combline bandpass filters are by far the most structurally compact owing to the short 

circuited distributed resonators loaded with lumped capacitances [1-13]. The larger the 

lumped loading capacitance, the more compact the structure and resonators as short as λg/8 

have been employed in filter development.  Another significant advantage of this resonator 

is that spurious harmonics occur at frequencies greater than thrice the fundamental 

resonant frequency, which improves further with the size of the lumped capacitance. To 

avoid excessive loss and to minimize tolerances, designers usually opt for distributed loading 

capacitances instead of lumped elements, but this elongates the resonators to slightly less 

than λg/4. This trade off becomes necessary especially at higher operating frequencies 

where lumped elements become increasingly unusable.  

 

Another ubiquitous planar resonator topology is the open-loop resonator which comes in 

various forms ranging from square loop, circular loop, to hairpin layouts [1-14]-[1-15]. This 

type of resonator is very much renowned for its versatility in filter design, making it possible 

to achieve Butterworth, Chebyshev, and generalised Chebyshev filtering characteristics quite 

readily by selecting an appropriate coupling scheme. These resonators also benefit greatly 

when combined with SIR techniques as well as inter-digital capacitors in achieving a highly 

compact footprint [1-16], [1-17]. More recently, there has even been a report of a highly 

compact dual-mode open loop resonator [1-3]. Although these resonators are generally λg/2 

in length, the folded form enables the lengthwise dimensions to be reduced beyond λg/4. 

Unlike the combline counterparts, these resonators have the added advantage in that there 

are no short circuits. Open loop filters do however suffer more from spurious harmonics 

which appear at around twice the fundamental resonant frequency. However, several 

reported methods are available in somewhat alleviating this issue. Nevertheless, the 

incredible versatility and compactness of this kind of resonator rationalises its widespread 

use in countless planar bandpass filter applications.  
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1.2.2 Tunable Bandpass Filters 

 

Although research on tunable microwave filters was ongoing for some time, interest in this 

area has been rekindled as a result of recent technological advancements as well as the 

sharp rise in tunable filter applications especially in multi-band systems. In contrast to a fixed 

filter bank, a tunable filter has the advantage of greater functionality, significant 

compactness and higher selectivity [1-18]. While early research unravelled much of the 

theoretical aspects of tunable filter design, there have been significantly fewer efforts in 

implementation and realization of distributed tunable filters in transmission line media.  

 

Generally, center frequency tunability may be achieved by incorporating a controllable 

reactive element in each resonator comprising a bandpass filter. In theory, a center 

frequency shift may be obtained when these reactive elements are varied usually in a 

uniform fashion.  

 

The most widespread controllable tuning element is of course the semiconductor varactor 

diode, which operates as a voltage controlled capacitance when under a reverse biased 

voltage. Compared to most other tuning elements, the varactor diodes have superior tuning 

rates, compact size and operating in reverse bias allows the device to be highly power 

efficient. The relatively low device tolerances coupled with mass manufacturing capability 

had made the varactor diode a highly popular choice for tunable filter applications over the 

past two decades. Despite their widespread use, these devices suffer from relatively poor 

quality factors and tunable filters based on varactors have relatively high signal distortion 

(IIP3 around 6 dBm ~ 25 dBm) [1-19].   

 

A second, but less accessible method of tuning a filter is to employ RF micro-electro-

mechanical-systems (MEMS) [1-20], [1-21]. Essentially, a MEMS device is a voltage 

controlled actuator, and they may be used either as switches or variable capacitors. In 

contrast to varactor diodes, RF MEMS devices have much higher quality factors and 

significantly better linearity (> 40 dBm). Even through these devices have relatively slow 

switching speeds (order of microseconds), the largest deterrent to its widespread use is 

perhaps the significant reliability issues that lies with this premature technology. 
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Yet another emerging alternative is the use of ferroelectric materials. Ferroelectric devices 

such as Barium Strontium Titanate (BST) varactors behave as voltage controlled 

capacitances. Unlike the semiconductor varactor however, the capacitance is varied through 

control of the device permittivity. Although the loss, switching speeds and linearity may be 

comparable to their semiconductor counterparts, the tuning range of these devices is 

severely limited and the bias voltages required can easily reach hundreds of volts [1-22]. 

 

The tunability of combline filters has been extensively researched [1-23]-[1-25]. Tunable 

combline filters were first presented in [1-23] where a relatively high tuning range has been 

quoted (53%), with mid-band insertion loss in excess of 5 dB. The bandwidth change across 

the tuning range was restricted to around 12 %. Very similar results have been quoted in [1-

24] where a center frequency tuning range of 40 % had been achieved with the best mid-

band insertion loss of around 5 dB. A constant bandwidth, center frequency tuned, 

semiconductor varactor based combline filter has been reported in [1-25] with 

approximately 12 % tuning range where the bandwidth variation was restricted to around 

3.2 %. Active tunable combline filters have also been investigated with the tuning range in 

the region of 45 % where the active device is used primarily to compensate for filter losses 

hence to improve the quality factor [1-26]. However, linearity of varactor tuned combline 

bandpass filters is relatively poor where the IIP3 point is generally less than 20 dBm [1-26].  

 

The subject of tunable open-loop filters has not attracted as much research interest. 

Nevertheless, there has been new interest in this area recently.  Out of the published 

research literature, there are only a handful of significant publications on the topic. In 

particular, a 40 % tuning range filter has been quoted with a reasonably low passband 

insertion loss (1.5 dB – 2.5 dB) and an impressive linearity (IIP3 > 28 dBm) [1-27]. A BST 

varactor based open-loop four pole quasi-elliptic tunable filter has been reported in [1-28] 

with a 6 % tuning range and passband insertion loss ranging between 3 to 5 dB. A highly 

compact open-loop dual-mode resonator based tunable filter has been reported in [1-29] 

with a tuning range of 41 %, a bandwidth variation of 13 % and a mid-band insertion loss of 

around 2.2 dB. Although there has not been so much attention paid to filter linearity, an IIP3 

of around 20 dB may be anticipated given that varactor diodes are used in the majority of 

these experiments. 
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Research into the tunability of planar filters has spawned various other novel resonator 

configurations. An analytic design technique for the design of microstrip tunable filters has 

been presented in [1-30], where a second order tunable filter with a 25 % tuning range and 

around 8 % bandwidth variation has been demonstrated experimentally. However, this filter 

not only suffers from high mid-band insertion loss (around 7 dB) but also a noticeably poor 

selectivity due to inadequate unloaded quality factor.  A highly linear second order tunable 

filter is presented in [1-31] with a tuning range of 35 %.  The improvement to linearity was 

reportedly attained by employing a back to back varactor configuration and an IIP3 between 

22 dBm and 41 dBm had been experimentally verified. However, there is around 15 % 

variation in the 3 dB bandwidth across the filter tuning range. This was later improved in a 

subsequent publication by the same authors where the bandwidth variation has been 

narrowed to around 8 % [1-32]. 
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1.2.3 Dual-Band Bandpass Filters 

 

With the continuous introduction of new wireless services and standards such as GSM, 

WiMax, WLAN and GPS to name a few, there has been a tremendous demand for 

multifunctional wireless systems arising especially from the commercial sector. The shift in 

trend has far reaching implications for bandpass filters in wireless systems. Although the 

obvious and trivial solution is to employ filter banks, there are considerable practical 

difficulties with this approach especially with size. While a tunable filter may be an excellent 

substitution in an application where the system requires access to only one band at any 

given time, they are inappropriate in applications where simultaneous access to more than 

one band is required. This requirement can be met elegantly by multi-band bandpass filters. 

The simplest of such a filter is the dual-band bandpass filter, and recent developments on 

this topic are outlined below. 

 

The first and the most obvious method of realising a dual-band bandpass filter is the 

analytical approach. The starting point of the procedure is the low-pass prototype network, 

which is then transformed into a dual-band filter by application of the dual-band frequency 

transformation. Two dual-passband filter design techniques have been proposed based on 

this approach for the design of symmetric and asymmetric dual-band bandpass filters [1-33]. 

With the proposed methods, it was possible to obtain N/2 unique transmission zeros across 

the inner stopband for symmetric passbands while the same number of zeros appears at a 

single frequency for filters with asymmetric passbands. To prove the concept, dual-band 

filters have been constructed and verified in coaxial line technology.  

 

The second technique is to exploit the first and second resonant modes of a distributed 

resonator in realising a dual-passband filter. One way this may be achieved is to employ 

stepped impedances, which according to the impedance and length ratios, allows the second 

resonant frequency to be shifted up or down. The control of the second mode enables the 

technique to be especially effective in the design of dual-band filters where the second 

passband occurs in the vicinity of the original second resonance. The possibility of employing 

SIR methods to obtain a dual-passband filter response has been thoroughly investigated [1-

34], [1-35]. Despite its success, the placement of the second passband is relatively restricted 

since the required impedance ratios may not always be physically realizable. A second 
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drawback of this technique is the lack of transmission zeros in the inner stopband. A more 

effective approach is to load a point offset from the symmetry plane of an open-loop 

resonator, with an open circuited stub [1-36]. The length of the added stub and the degree 

of offset effectively controls the first spurious response of the resonator, which is used to set 

the second passband. This technique is not as restricted as the SIR method in that there is 

greater freedom over the choice of the second passband. In any case, when the second 

resonant mode is used in this manner to obtain a dual-band response, it may not always be 

possible to set passband bandwidths as required due to generally limited degrees of 

freedom of this approach. 

 

A third and more simplistic strategy is to cascade a wideband bandpass filter with a 

bandstop filter to produce a dual-passband response [1-37]. Theoretically, this method 

permits the realization of almost any dual-band filtering characteristic. However, when the 

passbands are widely separated, the bandpass and bandstop filters must have wide 

bandwidths and therefore suffer from poor selectivity. In addition, the cascading of 

bandpass and bandstop structures increases the overall loss as well as circuit size.  

 

Yet another method is to use open and short circuited stubs along the length of a 

transmission line [1-38]. Each stub produces a transmission zero, and the zeros may be 

placed in such a way to achieve a dual-passband with the desired centre frequency and 

bandwidth. The extension of this technique in obtaining multiband bandpass filters has been 

reported [1-39]. 

 

The fifth strategy is to use a pair of resonators tuned to the upper and lower passbands of 

the dual-passband filter. By carefully coupling these resonators in a suitable manner, it is 

possible to realise a dual-passband response [1-40]. This method is quite flexible. The use of 

two different resonators allows the external quality factors and coupling coefficients to be 

set almost independently [1-41] so to allow the two bandwidths and center frequencies to 

be readily defined according to specifications. There is also the option to split the two kinds 

of resonators between two layers of a printed circuit board to conserve space [1-42]. 
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1.3 Organization of Thesis 
 

This section summarizes the contents of the subsequent chapters to provide the reader with 

a quick glance at the material covered, where the conclusions are presented in chapter six.  

 

Chapter two of the report presents background theory relevant to the research work 

undertaken. The characterization of microstrip lines and their properties that directly impact 

filter design such as attenuation and unloaded quality factor are discussed. Coupled line 

theory is also presented here as coupled lines are employed later in achieving inter-

resonator coupling. A highlight of inverter coupled filters is presented since these prototypes 

are more suitable for microwave filter implementation. 

 

 Chapter three of the dissertation presents a highly compact dual-mode resonator 

configuration for the design of planar RF and microwave bandpass filters. The resonator is 

analysed and the existence of two unique modes of resonance is proved. Several variants of 

the dual-mode resonator, which may be suitable for different applications, are also 

presented. Equivalent electrical circuits are established for each configuration. 

 

Chapter four of the report firstly explores the application of these resonators in the 

development of all-pole Butterworth and Chebyshev filters. A filter design technique is 

proposed in order to greatly facilitate and expedite the filter design process.  Several filter 

design examples are also presented not only to supplement the discussions but to also to 

provide further guidelines and highlight the key stages of the process. The second half of the 

chapter investigates the application of these resonators in cross-coupled filters. 

Comparisons of simulated and measured results of the designed filters are presented to 

validate the arguments and to showcase performance.  

 

Chapter five investigates the application of these resonators in fixed bandwidth, center 

frequency tunable bandpass filters. Varactor diodes are used as the tuning element. 

Measures of controlling the external quality factor and the coupling coefficients are 

proposed in order to significantly restrict the variation of filter bandwidth with center 

frequency. Additionally, these filters were shown to have significantly low distortion. 
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22..00  BBAACCKKGGRROOUUNNDD  
 

 

 

 

 

Various background materials surrounding the lines of investigation of this dissertation are 

concisely covered in this section. Firstly, microstrip lines and their properties are described 

to highlight their effectiveness and limitations pertaining distributed planar filter realization. 

The significance of the unloaded quality factor of a resonator in filter design is described 

with a discussion on the same of microstrip resonators. Microstrip coupled lines, 

ubiquitously employed in a variety of bandpass filter topologies particularly for coupling 

resonators, is described. Lastly, a brief overview of inverter coupled filter prototypes is 

presented and is extended to highlight the theory of cross-coupled filters. 

 

2.1 The Microstrip Line 
 

The microstrip transmission line essentially consists of two conductors separated by some 

form of dielectric material as illustrated in Fig. 2-1. The top conductor is designated as the 

signal line while the bottom plate, which is usually several times wider, serves as the ground 

plane. The properties of these two conductors together with the dielectric filling determine 

the signal transmission characteristics of the line.    

 

Due to the exposed nature of the microstrip line, the electromagnetic fields exist not only 

within the dielectric but some also extend into the air above. As the relative permittivity of 

the material εr is almost always greater than unity, the resulting inhomogeneous interface 

cannot support a pure TEM wave between the air-dielectric interface since the fields in air 

will invariably propagate faster than the fields within the dielectric.    
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Fig. 2-1: Side on view of excited microstrip line with corresponding electric (solid lines) and 

magnetic (dashed lines) fields. 

 

The relatively weak longitudinal field components however enable a quasi-static 

approximation to be employed in characterizing the line up to a few giga hertz [2-1]. This 

approach assumes the propagation of a pure TEM mode which greatly simplifies the related 

calculations. Once the capacitance per unit length with and without the dielectric, Cd and C0 

respectively are determined, the effective relative dielectric constant, εeff, the characteristic 

impedance, Z0, phase constant, β, and phase velocity, Vp, may be computed using (2.1) - (2.4) 

respectively, where c is the speed of light in free space. 

 

 ���� � ����  (2.1) 

�� � 1
����� (2.2) 

� � 
 ������ (2.3) 

�� � 
����� (2.4) 

     

 

At higher frequencies however, the above approximations lose accuracy as conductor 

thickness, t, substrate height, h, and line width, W, begin to have a noticeable effect on the 

line parameters. Curve fitting techniques have been employed to develop more accurate 

formulations to somewhat mitigate these higher frequency effects [2-2]. Nevertheless, this 

approach is useful for hand calculations in determining line parameters approximately. 
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Full wave electromagnetic analysis methods have become the standard nowadays due to the 

widespread availability of powerful computers as well as full wave electromagnetic software 

packages. These techniques solve Maxwell’s equations, using advanced numerical methods, 

for the corresponding line parameters by applying the given boundary conditions. While 

taking into consideration all longitudinal field components as well, these calculations are 

usually performed over a number of frequencies and therefore are able to account for 

dispersive effects of the line. All in all, the full wave analysis techniques are able to provide 

significantly more accurate results by exploiting modern computing power.    

 

Microstrip lines have relatively high loss arising from conductor loss, dielectric loss and 

radiation loss. Out of these three loss mechanisms, the conductor and dielectric loss are the 

most significant.   

 

Conductors dissipate power as heat due to the finite conductance of the metal trace. 

Conductor loss is exacerbated at high frequencies due to the skin effect [2-3]. At RF and 

microwave frequencies, current is no longer uniformly distributed across the cross section of 

the signal trace. Due to eddy currents induced within the trace, signal current vanishes in the 

centre of the conductor and concentrates near the trace edges. This effectively reduces the 

cross-sectional area of the trace at high frequencies, increases the trace resistance and 

therefore also the attenuation constant of the line.  

 

Dielectric loss is due to two factors. Firstly, real dielectrics have non-zero conductivity. 

Therefore, the movement of charge between the two conductors via the dielectric is one 

source of energy loss. Atomic and molecular resonances and the heating effect brought on 

as a consequence is the second source of dielectric loss. Dielectric loss grows at a much 

greater rate with frequency than conductor loss and becomes a major concern at higher 

frequencies. 

 

Radiation loss on the other hand is caused by radiating fields inducing currents on other 

conducting bodies in the vicinity of the line.  
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Although the attenuation constant may be determined with accuracy given the exact 

knowledge of the trace geometry as well as the field distribution [2-4], the computation is 

complicated. On the other hand, methods such as the perturbation method [2-1] and 

Wheel’s incremental inductance formula [2-5], given by (2.5), may be used to determine 

conductor attenuation constant, αc, approximately,  where x is the distance into the 

conductor trace, W is the trace width and the surface resistance, Rs, is given by (2.6).  

 

  �� � ��2�����/� �����  (2.5) 

�� � ���2�  (2.6) 

 

With the widespread availability of full wave electromagnetic software, it is possible to 

extract the attenuation constants from a matched line, one at a time, from simulations using 

equation (2.7b), which may be arrived at by the simple manipulation of (2.7a), where in both 

equations, the magnitude of S21 is used rather than its decibel equivalent.   

 

|� !| � "#$%&/'() (2.7a) 

��/� � *ln |� !|.  (2.7b)

 

For example, when the conductor attenuation constant is to be determined, the condition 

that tan δ = 0 is imposed and to determine the dielectric attenuation constant, the metal 

conductivity, σ, is assumed to be infinite. The overall attenuation constant may be found by 

the summation of these different attenuation constants. The net attenuation is required to 

determine the unloaded quality factors of distributed resonators as described in the next 

section.  
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2.2 Unloaded Quality Factor 
 

The unloaded quality factor of a resonator is a crucial parameter which determines the 

feasibility of that resonator for filter implementation. Power dissipation within a resonator is 

inversely proportional to its unloaded quality factor. An ideal resonator having an infinitely 

large quality factor will not dissipate any power. In contrast, power dissipation, and 

therefore filter passband insertion loss increases as the unloaded quality factor lowers [2.6]. 

Moreover, finite quality factors cause the rounding of passband edges leading to an overall 

reduction in filter selectivity. Limitations in quality factor are especially a concern in high 

order filters since the amount of loss incurred as well as the reduction in selectivity are 

proportional to the number of dissipative resonators employed.  

 

A relatively accurate formula (2.8) for estimating the mid-band insertion loss, Li, from the 

unloaded quality factor of the i
th

 resonator, Qui, and fractional bandwidth, FBW, and filter 

order, N, is described in [2.7], where gi are the lowpass prototype element values.  

 

/0 � 4.343 4 506789:0
;

0<!  (2.8) 

 

Consequently, for the same unloaded quality factor, the mid-band insertion loss will increase 

for smaller fractional bandwidths as illustrated in Fig. 2-2 (a). Likewise, from Fig. 2-2 (b), for 

the same fractional bandwidth, it is seen that the mid-band insertion loss increases with 

lowering unloaded quality factor. It is also evident from Fig. 2-2 (c) that there is greater mid 

band loss for higher filter orders due to the use of more dissipative resonators. 

 

In passive lumped element filters, finite quality factors arise mainly due to the winding 

resistance of the inductors. However, in distributed filters, finite resonator quality factors 

result largely from the loss a signal incurs as it propagates along the transmission medium.  

 

 

 

 



CHAPTER 2                                                                                                                                                              25 

 

 

 

In the case of a microstrip medium, conductor and dielectric loss may be considered the 

most significant contributors towards loss. Although these losses may be controlled to a 

certain extent by employing low loss substrates [2-8], better conducting traces [2-9]-[2-11] 

and resonator topologies less prone to loss [2-12], [2-13], the maximum realistically 

achievable unloaded resonator quality factors are generally under 300 for copper based 

microstrip lines [2-14]. 

 

 

 

(a)                                                                          (b) 

                                     

(c) 

Fig. 2-2: Transmission of normalized Chebyshev bandpass filter. Filter transmission against 

(a) FBW, where Qu = 50 and N = 5 (b) Qu, where FBW = 100 % and N = 5 (c) N, where Qu = 50 

and FBW = 100 % 
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The attenuation constant is required to estimate the unloaded quality factor of a microstrip 

resonator. To gain insight, Fig. 2-3 plots the unloaded resonator quality factor of half 

wavelength microstrip resonators with a resonant frequency of 5 GHz, constructed on 

typical a high frequency material, against various strip impedances. The attenuation 

constants extracted from (2.7b) were used to calculate the unloaded quality factors of the 

resonators.  Reducing the strip thickness not only increases the characteristic impedance of 

the resonator but also increases losses due to the skin resistance. Therefore, the resonator 

unloaded quality factor degrades with rising strip impedance. The significance of this effect 

can be seen in Fig. 2-3, where a dramatic reduction of the quality factor can be observed. 

 

 
 

Fig. 2-3: Unloaded Q factor of microstrip λ/2 resonator for various characteristic impedances 

,where substrate = Rogers 6010LM with εr = 10.2, h = 1.27 mm with copper conductors.  

 

Since all practical resonators have some degree of internal loss, the resulting filters always 

exhibit non-zero mid-band insertion loss as well as reduced selectivity. An obvious solution 

to both these effects is to somehow achieve infinite unloaded quality factor. Intuitively, this 

implies having resonators with zero loss, which is practically impossible for passive 

resonators. In effect, if a negative resistance, which exactly cancels that of the resonator, is 

introduced, zero loss can be achieved. An active device incorporated into a resonator to 

compensate for its losses is able to do just this and an infinite unloaded quality factor may 

indeed be attained [2-15]-[2-17]. However, as with most solutions, there are tradeoffs. 

Active devices increase power consumption, introduce distortion components, degrade 

signal to noise ratio and greatly increases circuit complexity and size. 
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From Fig. 2-2 (b), it is evident that a slight increase in the mid-band insertion loss of a lossy 

filter can not only produce a flatter passband but also improve the filter selectivity. A 

solution derived from this principle, widely known as lossy filter synthesis [2-18]-[2-20], 

avoids the use of active devices altogether. Lossy elements cause the poles and zeros of a 

filter to shift slightly to the left in the S-domain. If all resonators have uniform unloaded 

quality factor, then the shift is by an amount α = ω0/Qu [2-6]. The principle behind lossy 

synthesis is to predistort the original filter poles and zeros so as to compensate for these 

shifts. For an all-pole filter, while this involves translating the poles to the right, care must be 

taken to ensure that the these are strictly confined to the left half of the S-plane. Fig. 2-4 

below illustrates the effect of loss on an ideal filter response and how predistortion to some 

degree mitigates the reduction in bandwidth and flattens the passband. Although 

predistorted filters are unable to compensate for the losses as in active filters, a purely 

passive implementation guarantees that there is no added design complexity.    

 

 

Fig. 2-4 Comparison of 5
th

 order Chebyshev filter transmission response for lossless, lossy 

and predistorted cases (where Qu = 10 for lossy and predistorted responses). 
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2.3 Microstrip Coupled Lines 
 

A pair of parallel microstrip lines, in close proximity, allows a microwave signal to couple 

from one line to another. As such, these so called coupled microstrip lines serve as basic 

building blocks of microstrip filters, where they are employed in coupling resonators. The 

cross section of a coupled microstrip line with the corresponding electromagnetic fields in 

the even and odd mode is illustrated in Fig. 2-5.  

 

 
(a)                                                                                         (b) 

 

Fig. 2-5: Side on view of field distribution of microstrip coupled lines of (a) even mode (b) 

odd mode excitation. 

 

Generally, any voltage or current excitation on the lines may be decomposed into even and 

odd components. In the even mode, signal coupling occurs via the magnetic field and in the 

odd mode this occurs via the electric field. Although in the general case, both types of field 

contribute towards coupling, they may interact in either a constructive or destructive 

manner depending on how the lines are excited [2-2]. Therefore, the coupling strength 

observed is in fact due to an interaction of these two effects. In microstrip coupled lines, due 

to the different field distributions, the even and odd mode propagate at slightly different 

phase velocities.  

 

A lumped element model for a differential element of a pair of coupled transmission lines is 

illustrated in Fig. 2-6, where L1, C1, L2 and C2 are the self inductance and shunt capacitance 

per unit length of line 1 and line 2 respectively and Lm and Cm are the mutual inductance and 

capacitance per unit length between the two lines. The terminal voltages and currents in 

general are described by the differential equations (2.9)-(2.12).  
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��!�. � /! �=!�> ? /@ �= �>  (2.9) 

�� �. � /@ �=!�> ? / �= �>  (2.10)

�=!�. � �!A ��!�> ? �@ �$�! * � (�>  (2.11)

�= �. � �@ �$� * �!(�> ? � A �� �>  (2.12)

 

 

Fig. 2-6: Lumped element circuit model of coupled transmission lines 

 

For an even mode excitation, the terminal voltages V1 = V2 = V and currents I1 = I2 = I are 

assumed. Applying these conditions to the above equations give (2.13)-(2.16), where C1 = C1g 

+ Cm and C2 = C2g + Cm are the self capacitances per unit length of the lines 1 and 2 

respectively.  

 ���. � /! �=�> ? /@ �=�> � $/! ? /@( �=�> (2.13)

���. � /@ �=�> ? / �=�> � $/ ? /@( �=�> (2.14)

�=�. � �!A ���> � $�! * �@( ���>  (2.15)

�=�. � � A ���> � $� * �@( ���>  (2.16)
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The equations below indicate that the even mode equivalent inductance is L1+Lm and L2+Lm 

while the corresponding capacitance is C1-Cm and C2-Cm for line 1 and 2 respectively. 

Therefore, the even mode characteristic impedance of line 1 may be defined by (2.17) and 

the corresponding impedance of line 2 may be similarly defined.  

 

��B�C � �/! ? /@�! * �@ (2.17)

 

A similar argument for the odd mode where the applied conditions are V1 = - V2 and currents 

I1 = - I2 yields the odd mode equivalent inductance as L1-Lm and L2-Lm and corresponding 

capacitance as C1+Cm and C2+Cm for line 1 and 2 respectively. Therefore, the odd mode 

characteristic impedance of line 1 may be defined by (2.18) and the corresponding 

impedance of line 2 may be defined likewise.  

 

�D�� � �/! * /@�! ? �@ (2.18)

 

Another key parameter especially for filter design is the coupling coefficient, defined as the 

ratio of the coupled energy to the stored energy. The normalized electric and magnetic 

coupling coefficients KE and KM are given by (2.19) and (2.20) respectively. 

 EF � �@��!�  (2.19)

EG � /@�/!/  (2.20)
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2.4 Inverter Coupled Filters 
 

As lumped elements become no longer practical at high frequencies, RF and microwave filter 

realization relies on distributed elements based on transmission lines segments. The use of 

transmission line elements however has a number of drawbacks. One in particular is that 

depending on the type of line, it may only be practically convenient to use either series or 

shunt type elements. In microstrip media for example, shunt elements are usually avoided 

since they require the use of vias on printed circuit boards.  

 

All-pole ladder filter prototype networks usually consist of an array of series and shunt 

reactive elements. For microwave filters however, due to implementation difficulties of 

either series or shunt elements, a different kind of lowpass filter prototype network is 

employed for convenience. The so called inverter coupled filter prototypes that consist 

exclusively of either series or shunt reactive elements are better suited for the design of 

distributed RF and microwave filters.  

 

Despite only employing series or shunt reactive elements, the inverter coupled prototypes 

must essentially match their lowpass ladder counterparts. Immittance inverters are used in 

inverter coupled circuits to achieve this equivalence [2-1]. The immittance inverters 

effectively allow series connected elements to behave as a shunt connect elements and vice 

versa [2-2]. Therefore, while a series connected inverter coupled network employs inverters 

to realize shunt elements, a shunt connected network uses inverters to realize series 

elements.    

 

In addition to the implementation of all-pole ladder filters, inverter coupled filter models can 

be more conveniently extended to filters where they may be non-zero coupling between 

non-adjacent reactive elements. These so called cross-coupled filters have the unique 

property of producing finite frequency transmission zeros in the filter stopband and are 

therefore widely employed in the development of filters with enhanced selectivity. 
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2.4.1 Inverter Coupled All-Pole Canonical Filter Prototypes 

 

Lumped element all-pole ladder prototype networks consist of series connected inductive 

and shunt connected capacitive elements as illustrated in Fig. 2-7, where gi are the low pass 

element values. Immittance inverters may be employed in order to avoid the use of either 

shunt or series type elements and therefore allow the same prototype to be realized with 

purely series or shunt elements as shown in Fig. 2-8 [2-2]. 

 

 

(a) 

 

(b) 

Fig. 2-7 Lowpass prototype networks for all-pole filters with (a) ladder network structure and 

(b) its dual. 

 

 

(a) 

 

(b) 

Fig. 2-8 Inverter coupled lowpass prototype networks for all-pole filters with (a) impedance 

and (b) admittance inverters. 
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In order for the lowpass ladder and inverter coupled prototypes to be equivalent, the input 

immittance looking into each circuit must be identical except for a constant scale factor. The 

input impedance of the circuits in Fig. 2-7(a) and Fig. 2-8(a), may be written as (2.21) where 

α is the impedance scaling factor and Zres1 and Zres2 are the residues.  

 

�0C � � H5� ? 1I5! ? 1I5 ? 1I5J ? �K��!
L �

MN
NO�P ? E�! 

I/Q! ? E!  
I/Q ? E J I/QJ ? �K�� RS

ST 

(2.21)

 

Equating these two impedances allows the inverter impedances Kxy to be calculated as 

(2.22a)-(2.24a), in order for equivalence to be achieved. Admittance inverter parameters Jxy 

may be calculated similarly by equating the input admittance of circuits of Fig. 2-7 (b) and 

Fig. 2-8 (b).  

 

E�! � ��P/Q!5�5!  (2.22a) E0,0V! � �/Q0/Q0V!5050V!  (2.23a) 

EC,CV! � � /QC�W5C5CV! (2.24a) 

 

The bandpass filter transformations may be applied directly to the inverter coupled 

prototypes in order to obtain filters that comprise exclusively of either series or shunt 

resonators as shown in Fig. 2-9. The impedances of the inverters are invariant under this 

transform and may be calculated by (2.22b)-(2.24b) given the bandpass element values, Lsi, 

the filter angular center frequency, ω0, and the fractional bandwidth, FBW [2-2]. 

 

E�! � ��P678�/�!5�5!  (2.22b) E0,0V! � 678��/�0/�0V!5050V!  (2.23b) 

EC,CV! � �678�/�C�W5C5CV!  (2.24b) 
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(a) 

 

(b) 

Fig. 2-9 Inverter coupled bandpass filter networks with (a) series and (b) parallel resonators. 

 

2.4.2 Cross-Coupled Filters 

 

The previous section described inverter coupled lowpass prototype filters and their 

relationship with all-pole prototype ladder networks. The resulting inverter coupled all-pole 

filter consisted of reactive elements that are only coupled to adjacent elements via 

immittance inverters. A wider class of filtering functions are generally available if there exists 

non-zero coupling between non-adjacent reactive elements.  

 

Cross-coupled filter configurations are commonly employed in realizing filters with finite 

frequency transmission zeros [2-2]. The zeros of such a filter result in better skirt selectivity 

for the same filter order compared to an all-pole filter. The maximum number of zeros 

produced is equal to the total number of bypassed reactive elements [2-21]. However, these 

zeros distort the phase response especially when placed in the vicinity of the filter passband. 

 

A widely adopted method of designing cross-coupled filters is to use computer based 

optimization in order to extract the filter parameters [2-2]. The general impedance matrix, 

[Z], of a lowpass cross-coupled n
th

 order filter consisting of series inductances, La = 1/ ωC, 

coupled through impedance inverters is given by (2.25), where ωc is the angular cut-off 

frequency, QeS and QeL are the source and load external quality factors, mxy are the 

normalized coupling coefficients and p is the complex lowpass frequency variable.  In order 

for the structure to be physically realizable, this matrix must be symmetric.  
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(2.25)

 

It is also possible define a normalized impedance matrix, [�_] as (2.26), consisting of three 

separate component matrices, where all matrices are of size (n+2) by (n+2), where [U] is an 

identity matrix but with the first and the last elements of the diagonal equal to zero, [Q] is 

matrix with all entries zero except for Q11 = 1/QeS and Qn+2,n+2 = 1/QeL, and [m] is the 

normalized coupling coefficient matrix. 

 

X�_Y � X�Y/Q � X9Y ? ^X`Y * ZX]Y (2.26)

 

The scattering parameters of the filter may then be computed from the inverse of the 

normalized impedance matrix from (2.27) and (2.28).  

 

� ! � 2 1�9�P9�W X�_Y$CV ,!(#!
 (2.27)

�!! � 1 * 29�P X�_Y$!,!(#!  (2.28)

 

Computer based optimization methods use the normalized impedance matrix in the form of 

(2.26) together with (2.27) and (2.28) in order to iteratively optimize the coupling coefficient 

matrix [m] to produce a desired filtering characteristic. Once the optimum coupling 

coefficients are determined, the inverter coupled bandpass filter network may be obtained 

by applying the bandpass frequency transformation to the series inductances, La, which may 

be used directly for microwave filter implementation. 
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Generally, a cross-coupled bandpass filter may have non-zero coupling between all 

resonators. Practically, coupling between all resonators is difficult to realize simultaneously. 

It may not be possible in most cases for example to place all the resonators within sufficient 

proximity in order to realize all the required coupling exactly.  

 

One approach in circumventing such problems is to use conventional cross-coupled 

resonator configurations such as the quadruplet or the trisection filters [2-2] as illustrated in 

Fig. 2-10. While quadruplet section produces a pair of transmission zeros since the cross 

coupling bypasses two resonators, each trisection produces a single zero since only one 

resonator is bypassed. More transmission zeros may be produced for higher order filters 

that are realized by cascading these sections. For example, an eighth order filter comprising 

of two cascaded quadruplet sections may produce up to 4 transmission zeros.   

 

                    

                                              (a)                                                                   (b) 

Fig. 2-10 Cross-coupled filter configurations with (a) quadruplet and (b) trisection filters, 

where solid and dashed lines denote direct and cross coupling respectively and dark circles 

represent reactive elements. 

 

A filter example is now presented in order to evaluate and compare the performance of a 

standard Chebyshev and generalized Chebyshev filter of the same order. The filter 

specifications are: Filter order = 4, angular equi-ripple cut-off frequency = 1 rad, passband 

ripple = 0.01 dB, terminating impedance = 1 Ω. 

 

The optimized coupling matrix for the Chebyshev and generalized Chebyshev filters are given 

by (2.29a) and (2.29b) respectively and the corresponding S-parameter response is 

illustrated in Fig. 2-11. The 4
th

 order generalized Chebyshev filter is of the quadruplet filter 

type, with non-zero cross-coupling coefficient of - 0.275 between the 1
st

 and the 4
th

 reactive 

elements. It can be seen that for the same filter order, the generalized Chebyshev filter 

offers better selectivity  
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 X]Y �
MNN
NNO

0 1.1844 0 0 0 01.1844 0 1.081 0 0 00 1.081 0 . 794 0 00 0 . 794 0 1.081 00 0 0 1.081 0 1.18440 0 0 0 1.1844 0 RSS
SST (2.29a) 

X]Y �
MNN
NNO

0 1.1844 0 0 0 01.1844 0 1.081 0 *0.275 00 1.081 0 . 958 0 00 0 . 958 0 1.081 00 *0.275 0 1.081 0 1.18440 0 0 0 1.1844 0 RSS
SST (2.29b)

 

          

                                               (a)                                                                             (b) 

 

                                                                                         (c) 

Fig. 2-11 S-parameter response of (a) Chebyshev and (b) generalized Chebyshev filters. (c) 

Comparison of the transmission response, where dotted line denotes the Chebyshev 

response. 
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33..00  DDUUAALL--MMOODDEE  RREESSOONNAATTOORR  
 

 

 

 

Network synthesis techniques allow the efficient design of a bandpass filter given the 

specification. The resulting electrical network typically consists of ideal lumped element 

resonators, which are not practical at RF and microwave frequencies. Therefore an 

additional step in the development of microwave bandpass filters is the realization of ideal 

resonators in distributed transmission line media. Distributed resonators however do not 

behave as their ideal lumped element counterparts since they suffer from limited unloaded 

quality factor and spurious harmonic resonances. Although virtually all microwave filters are 

designed around the fundamental resonance of the comprising resonators, spurious 

passbands are almost always present at integer multiples of the first passband.  

 

While a multitude of bandpass filtering functions may be realised by various coupling 

schemes [3-1], the particular frequency behaviour of the resonator may also be exploited to 

realize enhanced filters such as those with wider stopbands or multiple passbands. This is 

especially applicable to distributed resonators since there is usually some degree of control 

over their frequency behaviour. The frequency response of planar resonators may be readily 

altered by introducing various structural changes for example to shift spurious harmonics 

outwards [3-2], introduce additional transmission zeros in the stopband [3-3]-[3-5] or to 

generate a controllable second passband [3-6] and [3-7].  

 

A dual-mode resonator is one that essentially supports two modes of resonance that are 

non-harmonically related. For planar structures, resonances may occur across both 

dimensions, namely, the length and width of the transmission lines. For higher frequencies, 

there may even be resonances across the thickness of the conductor trace. However, not all 

of these resonances may be readily accessible and tuned. For example, the resonance across 
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the thickness of the conductor can only be varied by altering the thickness of the trace, 

which is impractical. The term dual-mode in this thesis strictly refers to structures with two 

modes of resonances that are not only fundamental but are also readily accessible.  

 

While N coupled single-mode resonators are required to realize an N
th

 order bandpass filter, 

only N/2 dual-mode resonators are necessary for the same filter since each dual-mode 

section behaves as a pair of coupled resonators. In addition to potential side reduction, dual-

mode resonators offer a possibility to reduce overall losses. Although compact dual-mode 

resonators such as the open-loop [3-8], circular ring [3-9], square loop [3-10] and patch 

based resonators [3-11]-[3-13] have already been proposed, there is still much research 

interest concerning the development of even more compact structures for filter realization.  

 

This section proposes a novel, extremely compact, dual-mode resonator configuration for 

planar, low footprint filter realization [3-14]. Moreover, significantly greater size reductions 

may be achieved since stepped impedance methods are also applicable to this resonator. A 

rigorous analysis of the structure and its various derivatives are presented to 

comprehensively describe the operation of the unit in its various forms and to validate the 

second order nature of the configuration. Although it is shown that the resonator is 

particularly suited for the design of Butterworth and Chebyshev all-pole bandpass filters, it is 

also possible to realize filters with finite frequency transmission zeros with improved 

selectivity. While the dual-mode resonator is shown to have a wide stop-band, with the first 

spurious response at 3f0, methods of further improving the stop-band are proposed.    

 

Insertion loss based filter design techniques, after the selection of a suitable filter order, 

generally proceed from a lumped element lowpass prototype. The procedure terminates 

with the application of impedance and frequency transformations to yield the required filter 

in lumped element form. The conversion of such a network to a distributed filter is an 

additional stage necessary in microwave filter realization, and this step is largely dependent 

on the particular transmission line and resonator structure employed. To facilitate filter 

design with the proposed dual-mode resonator, an accurate lumped element model 

connecting the various physical features to electrical parameters is presented. The model 

may be used to expedite the conversion of a lumped ladder network to a distributed filter.  
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3.1 Analysis of Dual-Mode Resonator 
 

The proposed dual-mode resonator in its most simple form is depicted in Fig. 3-1, where Z1 

and Z2 denote characteristic impedances, W1 and W2 denote line widths and θ1 and θ2 are 

the electrical lengths of the lines. In the absence of the short circuited center stub, the 

resonator is identical to the single-mode open-loop λg/2 resonator [3-15]. It will be proved 

that the inclusion of a short circuited stub along the symmetry plane effectively converts the 

single-mode resonator to a dual-mode resonator. The grounded stub is relatively short and 

therefore variations of this resonator may be obtained by folding the longer lines of length 

θ1. Although not illustrated in Fig. 3-1, the resonator may be coupled to the input and output 

ports via a direct connection, by parallel coupling or through capacitive coupling.  

 

 
Fig. 3-1 Basic layout of proposed dual-mode resonator 

 

Every excitation driving an electrical network can be separated into even and odd mode 

components and the overall response is obtained from the superposition of the two. The 

independence of the two modes permits circuit analysis to be carried out independently for 

each mode. The analysis of symmetrical networks in particular, such as that in Fig. 3-1, is 

greatly simplified from this method since complex circuits may be decomposed in to simpler 

structures. Therefore, a detailed analysis of the dual-mode resonator performed by even and 

odd mode decomposition can be found in the following sub sections. 

 

3.1.1 Analysis of Odd Mode  
 

The odd mode assumes an asymmetric excitation at the input and output ports and 

consequently enforces a virtual short circuit in the symmetry plane of the resonator. The 

short circuited stub, with characteristic impedance Z2, is bypassed by the virtual short circuit 

as it appears in parallel to it. Therefore, the odd mode equivalent resonator circuit 

configuration takes the form of that in Fig. 3-2. 
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Fig. 3-2 Odd mode resonator configuration 

 

To determine the natural modes of resonance, the following analysis is performed under 

sinusoidal steady state conditions assuming a loss less line. At any time along a planar 

transmission line, there may exist a forward and reverse travelling voltage wave and their 

corresponding current components. The superposition of the forward and reverse 

components of each type of wave yields the voltage, V(x), and current distribution, I(x), 

along the transmission line as given by equations (3.1) and (3.2), where V
+
 and V

-
 are terms 

to be determined from the boundary conditions, Z1 is the characteristic impedance and β is 

the propagation constant of the line.  

  

���� � ����	
� � ���	
� (3.1) 

��� � ���	
� � ��	
� � ���� ��	
� � ���� �	
�  (3.2) 

 

Applying the boundary conditions of the circuit in Fig. 3-2, which can be summarized as V(x1) 

= 0 and I(0) = 0, to the above equations and solving for the voltage and current distributions 

gives (3.3) and (3.4).  

���� � 2��cos ���� (3.3) 

��� � �� 2���� sin ���� (3.4) 

 

In order to obtain the modes that may exist on the line, the boundary conditions are 

enforced on these equations to eliminate V
+
 and this leads to the conclusion that any mode 

which satisfies (3.5) is a natural mode of the odd mode equivalent circuit.  

 

cos����� � cos ���� � 0 (3.5) 
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Solving (3.5) for the natural modes gives infinitely many solutions as given by (3.6), where λg 

is the guided wavelength.  

 

�� � 4��� ,    !"�#� � � 1, 3, 5 … (3.6) 

 

For filter design, only the first resonance mode (n = 1) is considered, in which case the 

electrical length of the transmission line is 90
0
.  The remaining harmonic modes damage the 

response of a filter as they ultimately produce spurious responses in the stopband. 

 

Fig. 3-3 (a) plots the magnitude of the voltage and current, for the fundamental odd mode (n 

= 1) along the odd mode resonator with normalized length and Z1 = 1. The voltage and 

current distributions along the dual-mode resonator for an odd mode excitation can also be 

visualized through Fig. 3-3 (b) and (c) respectively. It is immediately evident from Fig. 3-3 (b) 

and (c) that the odd mode experiences a virtual ground in the symmetry plane and is 

therefore not affected by the short circuited stub. While the voltage standing wave reaches 

a maximum at both open ends, the current reaches its maximum at the symmetry plane. 

 

                                                   
                (a) 

 
                 (b) 
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                 (c) 

Fig. 3-3 (a) Voltage and current distribution along odd mode resonator normalised to the 

resonator length, where Z1 = 1 (b) Full wave EM simulated charge distribution along dual-

mode resonator (c) Full wave EM simulated current distribution along dual-mode resonator. 

 

3.1.2 Analysis of Even Mode  
 

The even mode assumes the symmetrical excitation at the input and output ports and 

consequently enforces a virtual open circuit in the symmetry plane of the resonator in Fig. 3-

1. While this effectively bisects the dual-mode resonator along the symmetry plane, the 

short circuited stub is split along this plane resulting in an effective characteristic impedance 

in the even mode to be different to Z2 and is therefore denoted by Z2e. The even mode 

equivalent resonator circuit configuration takes the form of that in Fig. 3-4. 

 

 
Fig. 3-4 Even mode resonator configuration 

 

Similar to the odd mode, the even mode resonances may be determined from analysing the 

even mode equivalent resonator under sinusoidal steady state conditions. The even mode 

resonator is elongated by the short circuited stub. Lower resonant frequencies may 

therefore be expected for this mode. In order to obtain the voltage and current distributions 

as well as to quantify the natural modes, the voltage and current for each line will be solved 

separately and these will be matched at the boundary to obtain the complete solution.   
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The voltage and current along line 1 can still be expressed by (3.1) and (3.2), and applying 

the boundary condition I(0) = 0 leads to the corresponding distributions to still take the form 

of (3.5) and (3.6). Similarly, the voltages and currents along line 2 may be expressed by (3.1) 

and (3.2), where x takes values between x1 and x2. After applying the boundary conditions, 

matching the current and voltage at the x = x1 boundary and with some manipulations, it is 

possible to arrive at the voltage and current distributions along the lines as (3.7) and (3.8) 

respectively.  

���� � ( 2�� cos���� , � ) ��2�� cos ����� sin*��� � �+�,sin *���� � �+�, , �� - � -  �+ . (3.7) 

��� �
/01
02 �� 2���� sin ����, � ) ��

� 2��cos ������+sin *���� � �+�, cos *��� � �+�,, �� - � -  �+
. (3.8) 

 

The condition for resonance in the even mode is a transcendental equation (3.9) which must 

be solved graphically or numerically to obtain the supported guided wavelengths for this 

mode. 

 

�+3�� tan����� tan*���+ � ���, � 1 � �+3�� tan���� tan��+� � 1 � 0 (3.9) 

Fig. 3-5 plots the fundamental guided wavelength, computed from (3.9), normalized to the 

fundamental odd mode guided wavelength, against various impedance ratios Z2e/Z1 and line 

ratios expressed as a percentage of (x2 - x1)/x1. It can be seen that as the impedance ratio 

tends towards unity and the length of line 2 approaches zero, the guided wavelength of the 

even mode tends towards that of the odd mode. In fact, the split in the resonant frequency 

between the even and odd mode is exclusively a consequence of the short circuited stub. 

Essentially, the resonant frequency split increases with stub length and characteristic 

impedance.   
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Fig. 3-5 Supported fundamental resonant guided wavelength of even mode, normalized to 

the first order odd mode guided wavelength, plotted against the length of line 2 expressed 

as a percentage of that of line 1 for various impedance ratios Z2e/Z1. 

 

Fig. 3-6 (a) plots the magnitude of the voltage and current, for the even mode along the 

even mode resonator with normalized length, where Z1 = 1 and Z2e/Z1 = 2. There is clearly a 

noticeable difference between the current and voltage on lines 1 and 2 due to the step 

change in characteristic impedance. This is the first order voltage and current standing wave 

pattern for the even mode, and from Fig. 3-5, it is evident that the even mode resonance is 

always at a lower frequency than that of the odd mode.  

 

The voltage and current distributions along the dual-mode resonator for an even mode 

excitation can also be visualized through Fig. 3-6 (b), (c) and (d). It is immediately evident 

from the current distribution in the x direction, as illustrated in Fig. 3-6 (c), that there is a 

virtual open circuit along the symmetry plane of the resonator since there is no x-directed 

current in the center. The high current density present in both sides of the symmetry plane 

is in fact diverted to the short circuited stub as is illustrated by the y-directed current density 

in Fig. 3-6 (d). Similar to the odd mode the voltage standing wave reaches a maximum at 

both open ends as predicted. 

 



CHAPTER 3                                                                                                                                                              49 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 3-6 (a) Voltage and current distribution along even mode resonator normalised to the 

resonator length (b) Full wave EM simulated charge distribution along dual-mode resonator 

(c) Full wave EM simulated current distribution in the x direction (d) Full wave EM simulated 

current distribution in the y direction. 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3                                                                                                                                                              50 

 

 

3.1.3 Equivalent Electrical Model 

 

The development of an equivalent circuit for the proposed compact dual-mode resonator is 

a critical step towards not only gaining insight into its electrical behaviour but also applying it 

in filter design. Although the fundamental even and odd mode resonant frequencies were 

determined from circuit analysis presented in the previous section, knowledge of the 

resonant frequencies alone is not sufficient for complete characterization. In addition, 

knowledge of the external quality factor as well as the inter-resonator coupling coefficients 

are also required. While these parameters are defined by the physical structure in the 

distributed dual-mode resonator, the equivalent lumped model, comprising of inductors, 

capacitors and inverters, will bear the same information within its element values. 

 

Due to the presence of two resonant modes, it is assumed that the equivalent circuit would 

comprise of a pair of synchronously tuned resonators coupled via an immittance inverter. As 

such, there are two possible circuit implementations of the model as illustrated in Fig. 3-7 (a) 

and (b). For each model, the parameters, namely, the resonator inductance, capacitance, 

and inverter immitances must be extracted from the physical structure.  

 

To determine the parameters of the first model, the distributed resonator circuit of Fig. 3-1 

is redrawn as Fig. 3-7 (c), where the impedance looking into the short circuited stub is Zsc. 

This configuration allows an impedance inverter of value K = |Zsc|to be extracted at the 

symmetry plane of the resonator and this is equated to K2, as given by (3.10).  

 

6+ � �+tan ��+� (3.10) 

 

The reactance, Zin1 given by (3.11), near resonance behaves as a series LC resonator. 

Applying Zin1 = 0 at resonance yields the resonance condition as (3.12) from which the 

angular resonant frequency, ω0, may be determined.  

 

�78� � *�+ tan��+� � ��cot����, (3.11) 

tan���� tan��+� � ���+ (3.12) 
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The reactance slope parameter, xr, of the series distributed resonator may be derived from 

(3.11) and is found to be (3.13).  

 

�9 � ���� cosec+���� � �+�+sec+��+�2  (3.13) 

 

The reactance slope parameter can be used to quantify the series inductance, Ls, as given by 

(3.14), from which the series capacitance Cs may be found from (3.15). 

 

;< � �9=> (3.14) 

?< � 1=>+;< (3.15) 

 

 

 (a) 

 

(b) 

 

(c) 

Fig. 3-7 (a) (b) Equivalent circuits of the dual-mode resonator (c) Dual-mode resonator with 

extracted impedance inverter 
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The parameters of the second model in Fig. 3-7 (b) may be obtained in a similar fashion by 

noting that the susceptance, Yin2 given by (3.16), behaves as that of a parallel LC resonant 

circuit near resonance.  

 

@78+ � 1�� A�+ tan���� tan��+� � ���� tan���� � �+ tan��+�B (3.16) 

 

The resonant condition obtained by imposing Yin2 = 0 produces the same result given by 

(3.12) as expected. The susceptance slop parameter, xs, can be derived from the susceptance 

as (3.17) from which the resonator capacitance, Cp, and inductance, Lp, may be determined 

from (3.18) and (3.19) respectively.  

 

�C � �+2�� D�� sec+���� tan��+� � �+ sec+��+� tan������ tan���� � �+ tan��+� E (3.17) 

?F � �C=> (3.18) 

;F � 1=>+?F (3.19) 

 

Due to the equivalence of the two models, it is now possible to determine the unknown 

parameter K1 and J2 from the expressions presented above. Since the reactance looking into 

port 1 of Fig. 3-7 (a) must match the susceptance looking into port 1 of Fig. 3-7 (b), K1 must 

assume a value given by (3.20). 

6� � G�9�C  (3.20) 

 

 Imposing the condition that the split in the two resonant frequencies must be identical in 

the two models enables J2 to be formulated as (3.21). 

H+ � �96+�C (3.21) 
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In order to verify the models and the related expressions presented, the transmission 

response of the distributed resonator and the two models are compared in Fig. 3-8 (a), (b) 

and (c) , where Z1 = Z2 = 50 Ω, θ1 = 85
0
 and θ2 = 5

0
 at the center frequency with port 

terminating impedances of 5 kΩ.  

 

A very good agreement between the model and resonator response is observed not only in 

the vicinity of the centre frequency but also for a wider frequency range. The harmonic 

resonances are illustrated in Fig. 3-8 (c), but are not modelled by the equivalent circuits. 

 

     
                                            (a)                                                                             (b) 

 
(c) 

 

Fig. 3-8 Comparison of transmission response against normalized frequency between the 

two equivalent models and the distributed resonator. (a) Narrow band response (b) 

Fundamental band (c) Fundamental and first harmonic bands 
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3.1.4 Summary 
 

A comprehensive analysis of the proposed dual-mode resonator was presented in this 

section as a base for later discussions. Mathematical expressions for the voltage and current 

standing waves naturally supported by the resonator are derived. In the absence of the short 

circuited stub, the odd and even modes resonate at the same frequency and the structure 

would therefore emulate a single-mode resonator. The second fundamental resonance is 

produced as a consequence of the short circuited stub, which lowers the even mode 

resonant frequency from that of the odd.  

 

In particular, it was shown that these two resonances are indeed fundamental modes and 

are not harmonically related resonances. Also to be noted, from equation (3.6) and (3.9) is 

the fact that both the even and odd mode resonances generate second harmonics in the 

vicinity of 3f0 rather than 2f0. This is particularly desirable in microwave filter design 

especially in achieving a wider filter stopband. 

 

Dual equivalent circuits have been presented and formulations for the related electrical 

parameters have been derived. The equivalent circuits were shown to accurately 

characterize the distributed dual-mode resonator in the vicinity of its fundamental 

resonances. The models however do not account for the characteristic spurious resonances 

of the distributed resonator. 
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3.2 Excitation of the Dual-Mode Resonator 
 

The previous section detailed the theoretical resonant characteristics of the dual-mode 

resonator and presented equivalent circuit models for the resonator in an end-coupled 

configuration. In the majority of practical microstrip applications however, end-coupled 

feeding methods lack sufficient coupling strength in order to realize wideband filter 

networks. This section therefore gives an overview of two alternative, yet popular feeding 

methods that are easily adaptable and applicable to this resonator. 

 

The first method is to directly connect the resonator via a transmission line to the input and 

output ports. This method is particularly suited for high fractional bandwidth filter design 

due to the relatively strong nature of coupling that may be achieved from a direct 

connection. However, sensitivity in the exact placement of the feed line towards the 

external quality factor for narrowband filters prevents this approach from being widely 

applied in most moderate to low fractional bandwidth applications. Furthermore, since the 

resonator is shorted to ground at the symmetry plane, it is critical that there is no D.C 

voltage on the input and output ports. Presence of any D.C voltage will cause a short circuit 

and may potentially damage the transmission line as well as any external drive circuitry. 

 

The second approach is to employ parallel coupled line feeding. Although as high a coupling 

strength may not be achieved, this method is still highly suitable for narrowband filtering 

applications. The amount of coupling strength achievable with this method is highly 

dependent on the parameters of the particular microstrip employed such as substrate height 

and relative dielectric constant as well as process parameters such as minimum realizable 

gap size. Generally, substrates with lower dielectric constants and greater substrate heights 

permit stronger coupling to be achieved since this will enable a greater proportion of the 

electromagnetic field to extend from one line to the other. In contrast to the direct-coupled 

scheme, parallel coupled feeding methods cannot transmit direct current and therefore does 

not suffer from the presence of D.C voltages at the input and output ports.   
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3.2.1 Direct-Coupled Resonator Feeding 

 

The dual-mode resonator may be directly coupled to the input and output ports via a section 

of transmission line, with characteristic impedance Z0, as illustrated in Fig. 3-9 (a), where Z0 is 

also the terminating port impedance and θB is the electrical length between the center of 

the feeding line to the symmetry plane of the resonator. With the direct coupled approach, 

the external quality factor, Qe, may be adjusted simply by varying the placement of the feed 

line on the resonator.  

 

The unique frequency behaviour of the direct-coupled resonator calls for a different 

equivalent circuit model from that of the end-coupled resonator. Firstly, the open circuit 

stubs on either end of the resonator with input impedance ZinOC may be modelled with a 

shut series connected LC resonator. The equivalent circuit of the mid-section of the 

resonator is illustrated in Fig. 3-9 (b).  The lumped element model in its final form may be 

drawn as illustrated in Fig. 3-9 (c). 

 

 
(a)                     

                                                      
(b) 

 
(c) 

Fig. 3-9 (a) Directed-coupled dual-mode resonator configuration (b) Model of resonator mid-

section (c) Equivalent lumped element circuit of direct-coupled dual-mode resonator 
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The ABCD parameters, given by (3.22), of the mid-section of the resonator, illustrated in Fig. 

3-9 (b), may be equated to that of its lumped equivalent network from where it is possible to 

define the model parameters K2 and L2 as (3.23) and (3.24).  

 

IA K? DM � Ncos ��O� ��Osin��O�
� sin��O��O cos ��O� P Q 1 0� �cot��+��+ 1R Ncos ��O� ��Osin��O�

� sin��O��O cos ��O� P (3.22) 

�
STT
TUcos�2�O� � �O2�+ sin �2�O�cot ��+� � A�Osin�2�O� � *�Osin ��O�,+�+ cot ��+�B
� Asin�2�O��O � cos+ ��O�cot ��+��+ B cos�2�O� � �O2�+ sin �2�O�cot ��+� VWW

WX
  

 

6+ � 1�? (3.23) ;+ � 6+Y=>  (3.24) 

 

Since the model assumes frequency invariance of its parameters, an exact match may only 

be expected at the center frequency of the resonator. The impedance matrix parameters of 

the two circuits of Fig. 3-9 (b) may be compared to evaluate, verify and justify the use of this 

equivalent circuit. Fig. 10 plots the impedance parameters of the two circuits where ZB = Z2 = 

50 Ω, θB = 20
0
, θ2 = 2.5

0
. Corresponding model parameters were calculated to be L2 = 3.30 nH 

and K2 = 2.55 at the center frequency. 

 

        

                                            (a)                                                                               (b) 

Fig. 3-10 Comparison of (a) driving point impedance (b) transfer impedance of direct coupled 

dual-mode resonator mid-section and that of equivalent circuit 
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There is a reasonably good agreement in the driving point impedances over a wide 

frequency range from which it may be deduced that the frequency dependence of L2 is fairly 

small. The relatively strong frequency dependence of the transfer impedance, which is 

equivalent to the inverter impedance, K2, is clearly evident. For narrow-band filter design 

(FBW ~ 10 %), this variation will not present any significant error. For a FBW of 10 %, the 

maximum error in K2 within the passband is only 6.6 %. Since this error grows with FBW, it 

may be necessary to treat K2 as a frequency dependent parameter for wide-band designs. 

 

The impedance looking into the open ended line, ZinOC, with electrical length θ1 – θB, given by 

(3.25), behaves as shunt series connected LC network.  

�78Z[�=� � ����cot *���=� � �\�=�, (3.25) 

Due to the distributed nature of the line, the lumped element values are in fact frequency 

dependent. For a narrow frequency band however, a fixed inductance and capacitance 

model may still give a reasonably good agreement. It is possible to choose values of 

inductance L1 and capacitance C1, using curve fitting at two fixed frequency points, for an 

optimum match between ZinOC and the model impedance. The results can be given as (3.26) 

and (3.27). Typically, in bandpass filter design, the two frequency points may be selected as 

the two band edge frequencies, ωL and ωH. 

 

;� � =]�78Z[�=]� � =^�78Z[�=^�=]+ � =+̂  (3.26) ?� � 1=+̂;� � =^�78Z[�=^� (3.27) 

 

Fig. 3-11 compares the impedance of the open circuited transmission line section and that of 

the LC shunt model, where Z1 = 50 Ω, θ1 – θB = 67.5
0
. For purposes of illustration, the 

response of Fig. 3-11 (a) is where the two curve fitting frequency points are fL = 0.9 and fH = 

1.1 (L1 = 3.85 nH, C1 = 3.55 pF) while that of Fig. 3-11 (b) is where these two points are fL = 

0.6 and fH = 1.4 (L1 = 4.04 nH, C1 = 3.60 pF).  When the two frequency points are closer, there 

is very high accuracy near the resonant frequency, but the position of the zero is relatively 

inaccurate. Conversely, if the two points were chosen further apart, the match between the 

two impedances agree better over a wider frequency range but at the cost of accuracy near 

the center frequency, which is somewhat compromised.  
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                                    (a)                                                                                         (b) 

Fig. 3-11 Comparison of impedance against normalized frequency between open circuited 

stub and equivalent LC circuit for (a) fL = 0.9, and fH = 1.1 and (b) fL = 0.6 and fH = 1.4. 

 

In order to obtain the external quality factor, it is convenient to model the entire distributed 

resonator as a parallel LC resonator near resonance, where the susceptance, Y, and the 

susceptance slope parameter, xs, of the resonator in the odd mode are given by (3.28) and 

(3.29) respectively.  

@ � 1�� *tan��� � �O� � cot ��O�, (3.28) 

�C � 12�� _ �� � �Ocos+ ��� � �O� � �Osin+ ��O�` (3.29) 

 

The external quality factor, Qe, of the direct-coupled resonator can then be defined in terms 

of the susceptance slope parameter and the port impedance Z0 as given by (3.30), where it is 

assumed that θ1 = π/2 at resonance (for odd mode).  

 

a3 � �>�C � �>2�� _ �� � �Ocos+ ��� � �O� � �Osin+ ��O�` � �>b4��sin+ ��O� (3.30) 
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The direct-coupled dual-mode resonator produces a single transmission zero in the upper 

stopband. The transmission zero occurs at a frequency where the impedance ZinOC becomes 

zero. This occurs when the open-circuited stub, illustrated in Fig. 3-9 (a) is exactly quarter 

wavelength long. The placement of the input feeding line determines the length of the open-

circuited stub and therefore ultimately governs the position of this transmission zero. 

 

Fig. 3-12 compares the frequency behaviour between the direct-coupled resonator and its 

equivalent model, where Z1 = Z2 = 50 Ω, Z0 = 5 kΩ, θ1 = 87.5
0
, θB = 20

0
, θ2 = 2.5

0
 at the center 

frequency. From the equations above the model parameters were calculated to be L1 = 3.85 

nH, L2 = 3.29 nH, C = 3.55 pF and K2 = 2.2.  

 

                 
                                              (a)                                                                                (b) 

Fig. 3-12 Comparison of transmission response between direct-coupled distributed 

resonator and equivalent model. (a) Wideband response (b) Narrowband response. 

 

The frequency offset of the transmission zero in the model is due to the shunt LC network 

being extracted at the two frequencies 0.9f0 and 1.1f0, which makes the model more precise 

in the vicinity of the center frequency, f0, at the cost of accuracy at higher frequencies. The 

discrepancies near the center frequency, highlighted in Fig. 3-12 (b) are mainly due to the 

inverter impedance being a treated as a constant parameter in the model. 

 

 

 

 



CHAPTER 3                                                                                                                                                              61 

 

 

The direct-coupled approach allows relatively high coupling strengths, i.e. low Qe, to be 

realised in microstrip technology relatively easily and is therefore particularly suited for high 

fractional bandwidth filter design. It may not be as suitable for narrowband filter design due 

to the increased sensitivity of the external quality factor to small variations in the electrical 

length, θt. Direct-coupled feeding is also seen to introduce a single transmission zero in the 

upper stopband of the filter whose location is determined purely from the placement of the 

feed connection. Filter design with this feeding approach is relatively complicated due to the 

non-standard form of the equivalent circuit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3                                                                                                                                                              62 

 

 

3.2.2 Parallel-Coupled Resonator Feeding 

 

The second method of exciting the resonator is via parallel coupled-lines of electrical length 

of around 60
0
. Coupled-lines allow energy to be conveyed to and from the resonator 

through the mutual inductance and capacitance. Although the resonator mid-section is 

identical to the direct-coupled case, the open-ended arms either side of the mid-section are 

now coupled via parallel coupling. Fig. 3-13 illustrates this resonator configuration, where Ze 

and Zo are the even and odd mode impedances of the coupled-lines and θC is its electrical 

length at the centre frequency.  

 

 
Fig. 3-13 Parallel-coupled dual-mode resonator configuration 

 

The equivalent circuit of the resonator mid-section presented in the previous section may be 

employed here. Therefore, it is only required to find a lumped element equivalent network 

for the parallel-coupled lines. One particular approach is to use the impedance matrix and 

the corresponding T-equivalent circuit representation of the coupled lines as the starting 

point. The T-equivalent circuit as illustrated in Fig. 3.14 (a) may be redrawn as Fig. 3-14 (b) in 

order to extract an impedance inverter of value |Z12|. Since the coupled line driving point 

impedance, Z11, closely resembles that of a series LC circuit, the lumped element model may 

take the form of that illustrated in Fig. 3-14 (c). 

 

      

                      (a)                                                (b)                                                    (c) 

Fig. 3-14 (a) T-equivalent circuit with impedance matrix elements (b) T-equivalent circuit 

with extracted impedance inverter (c) Lumped coupled-line equivalent circuit. 
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The impedance matrix values of the coupled line are summarized by (3.31) and (3.32) [3-16], 

from which the inverter impedance is given by |Z12|.  

 

��� � �++ � ��2 ��3 � �c� cot �[  (3.31) 

6d � ��+ � �+� � ��2 ��3 � �c� csc �[  (3.32) 

 

The series inductance, LA, and capacitance, CA, may be extracted from the impedance 

function (3.31) by curve fitting at two angular frequency points, ωL and ωH, either side of the 

angular resonant frequency of the resonator. These points may be chosen as the band-edge 

frequencies of a bandpass filter. To this end, the formulae (3.33) and (3.34) may be used. 

 

;d � =]����=]� � =^����=^�=]+ � =+̂  (3.33) ?d � 1=+̂;d � =^����=^� (3.34) 

 

For comparison and verification of the model, Fig. 3.15 (a) and (b) plot the driving point 

impedance, Z11, of the coupled line and that of its model comprised of inductance LA and 

capacitance CA, where Ze = 60 Ω, Zo = 40 Ω and θC = 60
0
 at resonance. The corresponding 

model parameters were calculated to be LA = 3.29 nH, CA = 3.23 pF and KA = 11.5. There is 

generally a very good agreement between the driving point impedance and its equivalent 

circuit. Fig. 3.15 (c) plots the transfer impedance, equivalent to the inverter impedance KA, 

against normalized frequency. Although there is actually some frequency variation in KA, this 

will not pose a significant error in moderate to low fractional bandwidth filters, since the 

variation of the inverter impedance is relatively small over a narrow frequency range.  

 

Illustrated in Fig. 3-15 (d) is a comparison of the transmission response of the coupled line 

and its equivalent circuit. Since the model was only defined precisely at the center 

frequency, absolute agreement in the responses occurs only at this particular frequency. The 

error increases with deviating frequency primarily due to the variation in inverter 

impedance, which of course is not modelled. Nevertheless, the overall agreement in the 

transmission response is satisfactory. 
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                                            (a)                                                                                  (b) 

        
                                           (c)                                                                                   (d) 

Fig. 3-15 Comparison of driving point impedance, Z11, where (a) wide band plot (b) narrow 

band plot. (c) Comparison of inverter impedance and (d) transmission response of coupled-

line and equivalent model. 

 

The equivalent circuit of the resonator may be obtained by integrating the lumped models of 

the coupled lines and mid-section as illustrated in Fig. 3-16, which resembles an inverter 

coupled bandpass prototype network. The two synchronous resonators that comprise the 

dual-mode structure, the inter-resonator coupling coefficient as well as the input and output 

coupling coefficients are distinctly clear from this model, from which the angular resonant 

frequency of each resonator may be expressed by (3.35). 

=> � 1e?d�;d � ;+� (3.35) 
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Fig. 3-16 Equivalent circuit of parallel-coupled dual-mode resonator in inverter coupled 

bandpass prototype form. 

 

In contrast to an inverter coupled filter prototype however, the dual-mode resonator is seen 

to have an additional series connected LC resonator at each port end. This feature degrades 

the filtering response as this pair of resonators is detuned from the filter center frequency. 

However, a method of compensating for this effect, particularly effective for narrow band 

filters, is to insert an additional inductance to each port such that the total LC impedance at 

the ports is effectively zero at the center frequency and is relatively insignificant in its 

vicinity. This inductance may be realised as a section of high impedance microstrip line.  

 

For evaluation of the resonator model and verification of the related equations, Fig. 3-17 

plots the transmission response of the resonator and that of the model. The distributed 

resonator parameters were ZB = 50 Ω, Ze = 60 Ω, Zo = 40 Ω, θC = 67.5
0
, θB = 20

0
, θ2 = 2.5

0
, and 

the port impedance was 5 kΩ. The corresponding model parameters were calculated to be LA 

= 3.89 nH, L2 = 3.3 nH, CA = 3.56 pF, KA = 10.8 and K2 = 2.55. There is good agreement 

between the resonator response and that of the model near the center frequency. The error 

in the model grows for frequencies deviating from the center due to the actual frequency 

dependent nature of the model parameters. Fortunately, for moderate to narrow fractional 

bandwidth filter design, these errors are negligible.   
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                                             (a)                                                                                   (b) 

Fig. 3-17 Comparison of transmission response of parallel-coupled dual-mode resonator and 

that of the model where (a) wideband response (b) narrowband response. 

 

This model is extremely useful in bandpass filter design as it allows physical transmission line 

parameters to be estimated relatively accurately from lumped element prototype networks. 

In contrast to the direct-coupled approach, the response obtained here has an all-pole type 

characteristic. Therefore, this method is particularly suited for Butterworth and Chebyshev 

Type 1 filter design. Nevertheless, there are methods of introducing transmission zeros to 

the stopband but these will be discussed at a later stage.  
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3.2.3 Summary 

 

In order to realize purposeful filtering circuits, resonators must be coupled to the input and 

output ports of a network. Although in lumped element resonators and filters, there is 

limited choice in how the network may be excited, distributed structures may be fed in 

various different ways, where a choice is made depending on the strength of the coupling 

required. 

 

Two feeding methods have been presented for the proposed dual-mode resonator. The 

direct-coupled method was shown to be highly suitable for wide fractional bandwidth filter 

applications while the parallel-coupled approach was appropriate for moderate to low 

fractional bandwidth designs. The development of equivalent circuits in both cases was 

described and the derivations of the related equations were presented. Each model was 

validated against the dual-mode resonator by comparison of their transmission responses. In 

both cases, there was very good agreement in the transmission response near the center 

frequency, which enables these models to be employed in filter design. Although the error 

grows at higher frequencies, this is negligible for moderate to low fractional bandwidth filter 

design. 

 

The direct-coupled resonator exhibits a single transmission zero in the upper stopband and 

its position was shown to be purely dependent on the placement of the feed line. In order to 

reflect this feature, its equivalent circuit as a result is somewhat complex. In contrast, the 

parallel-coupled resonator exhibits an all-pole type response and the equivalent circuit 

resembles an inverter coupled bandpass prototype network. This enables the parallel 

coupled dual-mode resonator to be an ideal candidate for Butterworth and Chebyshev type I 

filter design.  

 

The limitations of the proposed models arise mainly from the assumption that the 

impedance inverters are frequency independent.  As a consequence, the accuracy of the 

equivalent model deteriorates gradually for filters with increasing fractional bandwidths.  

 

 



CHAPTER 3                                                                                                                                                              68 

 

 

3.3 Variants of the Dual-Mode Resonator 
 

The previous sections have presented a detailed analysis of the basic dual-mode resonator. 

While these resonators may be employed as is in bandpass filter development, there may be 

more stringent specifications that may not be met with the basic resonator. The aim of this 

section is to address some of these issues by presenting various measures to enhance and 

adapt the performance of a single resonator unit to better match a given requirement may it 

be improving stopband performance, selectivity or achieving further compactness.  

 

The first modification is to fold the resonator from a linear structure to a square form, which 

makes the resonator more compact by shortening its longest dimension. The resonator may 

be further miniaturized by extending the open ended sections inwards. For small extensions, 

the coupling between the arms of the resonator may be insignificant. However, for larger 

extensions, the capacitive type coupling will no longer be negligible and is seen to introduce 

a number of transmission zeros in the stopband of the resonator. Stepped impedances may 

also be applied in on these lines in addition to folding to greatly enhance the compactness of 

the structure.  

 

The feeding methods discussed previously are still applicable to all the variants of the dual-

mode resonator. In the discussions to follow however, little attention will be paid to direct-

coupled resonator configurations since this approach does not find much use in regular filter 

design. Although this approach may be necessary in ultra-wideband filter design, this subject 

is outside the scope of this work. 
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3.3.1 Simple Folded Resonator 

 

The open ended arms of the dual-mode resonator may be folded in order to reduce the 

overall length of the unit as illustrated in Fig. 3-18. Although structurally different from the 

linear resonator configuration, this resonator shares the same equivalent circuit of Fig. 3-16 

as well as all its related equations. There are of course additional parasitic coupling which 

occur due to increased proximity of the various lines but these are relatively weak in order 

to produce any significant effects. 

 

 

Fig. 3-18 Basic folded parallel-coupled dual-mode resonator 

 

Typically, to achieve minimum footprint, the resonator is folded into a square topology, 

which may be achieved by setting θC = 2θB, at the center frequency of the resonator. The 

resonance condition for the parallel coupled resonator may be obtained by assuming that 

the characteristic impedance of the coupled line is  e�3�c [3-17], and solving for zero 

susceptance, Yin, looking into the open ended arms of the resonator. The resonant frequency 

can therefore be determined by solving (3.36).  

 

1@78 � e�3�c � �Otan ��[� �O tan��O� � �+tan ��+��O � �Otan ��+� tan��O� (3.36) 
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3.3.2 Compact Folded Resonator 

 

In order to enhance the compactness of this structure, it is possible to extend the open ends 

with sections of microstrip line of electrical length θA as illustrated in Fig. 3-19. While the 

additional sections of microstrip line will not increase the footprint of the resonator, more 

compactness may be achieved by elongating the extensions.  

 

 

Fig. 3.19 Folded resonator with extensions to achieve compactness 

 

The model of Fig. 3-16 still applies to this form of resonator. However, the resonator 

comprises of a modified coupled line section as illustrated in Fig. 3-20 and therefore new 

formulations must be used for extracting the coupled-line equivalent circuit parameters, LA, 

CA and KA. The new driving point and transfer impedances of the modified coupled lines are 

found to be (3.37) and (3.38) respectively, where D = - jZA cot (θA).  

 

���f � ��� � �g � �������++ � ��h+ � � 2��+��i��h��i+ � �g � ����+  (3.37) 

6d � ��+f � ��i � 2��+��h�g � ���� � ��i���++ � ��h+ ���i+ � �g � ����+  (3.38) 

 

, where ZXX are the impedance matrix elements of a regular coupled line given by [3-16]: 

 

��� � �0.5���3 � �c�cot ��[� (3.39) 

��+ � �0.5���3 � �c� cot��[� (3.40) 

��i � �0.5���3 � �c� csc��[� (3.41) 

��h � �0.5���3 � �c�csc��[� (3.42) 
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Fig. 3-20 Modified coupled lines 

 

Similar to earlier discussions, a curve fitting approach can be used to extract a series 

inductance, LA, and capacitance, CA, in order to duplicate the driving point coupled line 

impedance, Z11N. The resulting formulations for the inductance and capacitance are given by 

(3.43) and (3.44).  

 

;d � =]���f�=]� � =^���f�=^�=]+ � =+̂  (3.43) ?d � 1=+̂;d � =^���f�=^� (3.44) 

 

To evaluate the modified coupled line model, Fig. 3-21 (a) compares the driving point 

impedances, where Ze = 60 Ω, Zo = 40 Ω, ZA = 50 Ω, θA = 20
0
, θC = 47.4

0
, while Fig. 3-21 (b) 

compares the transfer impedances. Model parameters for the driving point impedance were 

extracted at of 0.8f0 and 1.2f0 (LA = 3.85 nH, CA = 3.58 nF, KA = 8.62). 

 

        

                                         (a)                                                                             (b) 

Fig. 3-21 Comparison of (a) Driving point impedance (b) transfer impedance of modified 

coupled line and model. 
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Similar to the previous models, there is a good agreement in the driving point impedances 

while some frequency dependence is noticeable in the inverter impedance KA. As with the 

previous cases, this variation is not very significant in narrowband filter design.  

 

The lumped element circuit of Fig. 3-9 (b) may be used once again to model the mid-section 

of the resonator where K2 and L2 may be determined by (3.23) and (3.24) respectively. Once 

these parameters have been determined for a particular resonator structure, the equivalent 

circuit of Fig. 3-16 may be completed. In order to evaluate the model of the compact folded 

resonator, the transmission responses are compared between the resonator and its model in 

Fig. 22, where Ze = 60 Ω, Zo = 40 Ω, ZA = ZB = Z2 = 50 Ω, θA = θB = 20
0
, θC = 47.4

0
, θ2 = 2.5

0
. The 

corresponding model parameters were calculated to be LA = 3.81 nH, CA = 3.57 nF, KA = 8.62, 

L2 = 3.3, K2 = 2.55. 

 

      

                                             (a)                                                                 (b) 

Fig. 3-22 Comparison of transmission response of compact parallel-coupled dual-mode 

resonator and that of the model where (a) wideband response (b) narrowband response. 

 

A good agreement between the distributed resonator and that of the model is observed. The 

integrity of the model and the related equations are strong near the fundamental resonance 

of the resonator. Although the discrepancies are noticeable at frequencies beyond 1.3 GHz, 

these are insignificant with regard to moderate to low fractional bandwidth filter design.  
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3.3.3 Compact Folded Resonator with Capacitive Cross-Arm Coupling 

 

If the extensions to the coupled line are sufficiently long, the parasitic capacitive coupling 

between the open ended sections of impedance ZA will no longer be negligible. This parasitic 

capacitance, CINT, vanishes in the even mode since there is no current flow across the 

symmetry plane of the resonator. Therefore, this coupling has no effect on the even mode 

resonant frequency. In the odd mode however, the capacitance doubles to 2CINT, and lowers 

the odd mode resonant frequency. In addition, this coupling introduces several transmission 

zeros into the resonator response, which may be useful for enhancing skirt selectivity of a 

filter. The resonator configuration and its equivalent circuit are presented in Fig. 3-23.  

 

     

                              (a)                                                                               (b) 

 

(c) 

Fig. 3-23 (a) Dual-mode resonator with capacitive cross-arm coupling (b) Equivalent circuit 

(c) Equivalent transmission line resonator 

 

This model bears resemblance to that of the folded resonator model, with the exception of 

the additional parameters LB and CB which account for the two transmission zeros that are 

produced in the lower and upper stopbands. The resonant frequency of the resonator may 

be determined from the input impedance, ZIN given by (3.45) of the equivalent transmission 

line resonator illustrated in Fig. 3-23 (c), by applying the condition ZIN = 0. This may be 

obtained by solving (3.46), where it is assumed that ZA = ZB = ZC = Z0.   
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�kf � � A�+ tan��+� � �> D�>=?kfl tan��d��O � �[� � 1�>=?kfl � tan ��d��O � �[� EB (3.45) 

=> � 1�>?kfl _�> � �+tan ��+�tan ��d��O � �[��+ tan��+� � �> tan��d��O � �[�` (3.46) 

 

The inductance L3 may be determined by the reactance slope parameter, xr, evaluated at the 

angular center frequency ω0 as given by (3.47).  

 ;i � 12 .m�kfm= nopoq � �9=> (3.47) 

 

The susceptance slope parameter, xs, of the resonator can be found from the derivative of 

YIN with respect to ω. In addition to the inductive impedance due to the short circuit stub Z2, 

the inter-resonator inverter impedance K2 is now also a function of the capacitance CINT. The 

contributions of each toward K2 are opposite in phase and thus result in a smaller overall 

inverter impedance, given by (3.48). 

 

6+ � �+ tan��+� � �9=>?kfl�C  (3.48) 

 

Transmission zeros occur under the condition that the even mode admittance of YIN is equal 

to that of the odd mode. Solving for this condition produces (3.49), which may be evaluated 

numerically to obtain the angular frequencies of the transmission zeros that occur either 

side of the center frequency.  

 

 2=?kfl � 1�>rs���d��O � �[� � 1�> t�> � 2�+rs���+�rs���d��O � �[�2�+rs���+� � �>rs���d��O � �[�u � 0 (3.49) 
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These two frequencies may be substituted into (3.50) to calculate LB and ωB, from which CB 

may then be determined from (3.51).  

 

;O�=+ � =O+ � � =6+ � �;d � ;+ � ;i�+=6+ *=h � 2=>+=+ � =>h, (3.50) 

?O � �1;O=O+  (3.51) 

 

Due to the complicated nature of the equations especially where the line impedances are 

non-uniform and when CINT is unknown, an electromagnetic simulation based approach may 

be adopted to extract the inter-resonator coupling coefficient, M2, defined by (3.52), where 

a full wave electromagnetic simulation must be performed to obtain the even and odd mode 

resonant frequencies, feven and fodd [3-1].  

 

v+ � 6+=>;i � wcxx+ � w3y38+
w3y38+ � wcxx+ (3.52) 

 

The resonator center frequency f0 can be defined as (3.53).  

 

w> � 12be?i;i � ew3y38wcxx (3.53) 

  

These two parameters are sufficient for the purposes of bandpass filter design. In order to 

illustrate the response of this resonator, validate the model and the parameter extraction 

method, the transmission responses of the two circuits of Fig. 3-23 are compared in Fig. 3-

24. The resonator parameters may be summarized as follows: ZA = ZB = Z2 = 50 Ω, Ze = 60 Ω, 

Zo = 41.67 Ω, θA = 20
0
, θB = 20

0
, θC = 47.5

0
, θ2 = 2.5

0
 and CINT = 0.5 pF. The model parameters 

were determined by calculation to be LA = 3.81 nH, CA = 3.57 pF, C3 = 3.57 pF, L3 = 8.56 nH, LB 

= 25.3 nH, CB = - 0.234 pF, K2 = 5.96 and KA = 8.62. 
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                                           (a)                                                                                    (b) 

Fig. 3-24 Transmission response of parallel-coupled dual-mode resonator with capacitive 

coupling and that of the model where (a) wideband response (b) narrowband response. 

 

The figures above show a good agreement between the resonator and the model up to the 

second transmission zero frequency, beyond which the model response deviates 

significantly. This is acceptable for narrowband filter design, where any higher order 

harmonic resonances may be safely ignored. Although the third transmission zero in the 

stopband is not modelled, this may serve to improve the overall attenuation and enhance a 

filter’s stopband rejection.  

 

In addition to the transmission zeros, one of the interesting features of this resonator is that 

the inter-resonator impedance, K2, can be either positive or negative depending on the 

resonator parameters and CINT as given by (3.48). While the sign of coupling coefficients are 

not very important for direct-coupled filter design, the ability to realize both types of 

coupling is vital to the design of cross-coupled filters. This property of the resonator can be 

exploited in the design of cross-coupled bandpass filters.  
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3.3.3 Folded Resonators with Stepped Impedances 

 

A widely used method of enhancing compactness in resonators is to use stepped impedance 

lines since this method is applicable to all one dimensional planar resonators consisting of 

transmission line segments. Another benefit gained from employing stepped impedances is 

the control of the second harmonic resonance frequency. Depending on the kind of stepped 

impedance ratio used, the harmonics may be shifted towards or away from the fundamental 

resonance frequency. For single passband filter design, this approach is commonly employed 

in shifting the second harmonic resonances outward so as to produce a wider stopband. On 

the other hand, control of the second resonance is exploited in dual-band filter design in 

order to produce two passbands at the desired frequencies. 

 

Stepped impedances are employed in this work primarily for purposes of resonator size 

reduction rather than for dual-band filter design. For achieving size reduction, a stepped 

impedance transmission line of a particular length must in effect be electrically longer than 

its uniform impedance counterpart. Effectively, this allows a longer section of uniform 

impedance line to be replaced by a shorter segment of stepped impedance line, resulting in 

a more compact structure.   

 

Since the dual-mode resonator behaves as a λg/4 short circuited resonator, it may be 

represented as Fig. 3-25, where two distinct line impedances, Z1 and Z2 are used. Resonance 

occurs at the frequency where the input admittance, Yin, is zero and this condition may be 

written in terms of the resonator parameters as (3.54).  

 

tan���� tan��+� � ���+ (3.54) 

 

In order to understand the effect of the ratio of the stepped impedance, RZ = Z1/Z2, on the 

overall length of the resonator, the electrical lengths may be converted to physical lengths 

and normalized to the length of a uniform impedance resonator, for a fixed resonant 

frequency. The expression for the normalized resonator length, Ln, is then given by (3.55).  
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 ;8 � 2b _�� � arc tan t {|tan ����u` (3.55) 

 

 

 

Fig. 3-25 Stepped impedance λg/4 transmission line resonator 

 

Fig. 3-26 plots the normalized resonator length against θ1 for various impedance ratios RZ to 

visualize the effect of the stepped impedance on the length of the resonator and for the 

selection of the optimum θ1 to maximize size reduction. The special case where RZ = 1 is 

represents the uniform impedance resonator.  

 

 

Fig. 3-26 Normalized length of resonator against θ1 for various values of the stepped 

impedance ratio Rz 

 

From the plot, it is evident that to achieve size reduction, the ratio RZ must be less than 

unity. Therefore the aim is to have characteristic impedances such that Z2 > Z1, i.e. higher 

characteristic impedances towards the short circuited end. While theoretically, drastic size 

reductions may be achieved with an extremely small impedance ratio, a typical minimum 

practical impedance ratio realizable on microstrip technology would be around RZ = 0.25. For 

this ratio, and for θ1 ≈ 25
0
, nearly 40% length reduction may be achieved as illustrated. 
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This method may be applied to all the variants of this resonator. For example, stepped 

impedance may be applied to the resonator of Fig. 3-19 by letting ZC > ZA, where Zc = (ZeZo)
0.5

. 

The model parameters may still be determined with the same formulae presented in the 

earlier sections. In order to evaluate the performance of the model against the stepped 

impedance dual-mode resonator, Fig. 3-27 compares the transmission responses, where Ze = 

60 Ω, Zo = 40 Ω, ZA = 25 Ω, ZB = Z2 = 50 Ω, θA = θB = 20
0
, θC = 30

0
, θ2 = 2.5

0
. Model parameters 

were LA = 3.56 nH, CA = 4.03 nF, KA = 6.4, L2 = 3.3, K2 = 2.55. 

 

In addition to compactness, the first spurious resonance of a stepped impedance resonator 

is shifted further from the fundamental. This property can be seen in Fig. 3-27 (a), where the 

spurious response occurs around 3.5f0 rather than 3f0.  

 

          

                                               (a)                                                                                (b) 

Fig. 3-27 Comparison of transmission response of compact stepped impedance parallel-

coupled dual-mode resonator and that of the model where (a) wideband response (b) 

narrowband response 
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3.3.5 Summary 

 

Four variants of the dual-mode resonator have been presented in this section. The unique 

properties of each resonator configuration, which may be particularly suited for different 

filtering applications, have been described. Equivalent lumped element models for each 

resonator together with the element value extraction formulae have been presented to 

facilitate filter design based on any resonator configuration. 

 

The folded resonator topology is introduced as a means of reducing the overall dimensions 

of the resonator. Folding the resonator into a square form allows the largest overall 

dimension of the resonator to be reduced. It was shown that further compactness may be 

obtained by extending the folded arms of the resonator into the structure. In this case, 

although the inverter coupled filter model is still applicable, new formulae must be 

employed in order to account for the additional lengths of transmission line. 

 

Finally, applying stepped impedances to the dual-mode resonator was discussed. Depending 

on the nature of the impedance ratio of a resonator, it was shown that the length of the 

resulting resonator may either be shortened or elongated. In order to achieve size reduction, 

it was necessary for the impedance ratio, Rz, to be less than unity. Although greater size 

reduction is theoretically possible with smaller impedance ratios, there is a limit to the 

minimum impedance ratio achievable in microstrip technology. Nevertheless, this technique 

is useful in producing highly compact dual-mode resonators. 

 

The next two chapters describe the application of these resonators in the development of 

compact microstrip filters. While several compact filter examples are presented, the 

discussions are supplemented with simulated and experimental measurements for thorough 

evaluation. In addition, a filter design procedure is outlined to facilitate the design of 

Butterworth and Chebyshev all-pole filters employing these resonators. The possibility of 

applying these resonators in cross-coupled filter topologies is also investigated. Finally, 

constant bandwidth center frequency tunable bandpass filters using these resonators are 

presented. 
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44..00  CCOOMMPPAACCTT  MMIICCRROOSSTTRRIIPP  

BBAANNDDPPAASSSS  FFIILLTTEERRSS  
 

 

 

 

 

Essentially, a bandpass filter may be constructed from a network of coupled resonators. 

Various unique filtering functions may be obtained depending on the particular frequency 

behaviour of the resonators and also on how they are coupled. While all-pole type bandpass 

filters may be designed from a simple cascade of LC type resonators [4-1], more complex 

filters with high skirt selectivity, such as the inverse Chebyshev or elliptic function filters 

require resonators which not only produce a transmission pole but also a zero [4-2]. Usually 

it is not practical to construct these complex resonators at microwave frequencies, especially 

with distributed resonators. However, it is still possible to obtain filtering functions with 

transmission zeros using only all-pole type resonators by employing unorthodox coupling 

mechanisms. The cross-coupled filter design is a popular approach especially at microwave 

filters in obtaining generalized Chebyshev type filtering characteristics [4-3]-[4-5].  

 

This chapter focuses on the application of the dual-mode resonator, discussed in the 

previous sections, in bandpass filter design. Firstly, the development of all-pole Butterworth 

and Chebyshev bandpass filters comprising of the compact folded dual-mode resonator is 

discussed. A design method for obtaining the physical parameters of the resonator from the 

all-pole prototype networks values is outlined. The development of generalized Chebyshev 

bandpass filters with finite frequency transmission zeros is described next. It is shown that 

similar to single mode open loop resonators, the proposed dual-mode resonator may be 

readily used in cross-coupled resonator configurations to generate finite frequency zeros. 

Lastly, it is shown that the dual-mode resonators may also be configured in a concentric 

open-loop topology which will effectively allow filter size to be further cut in half. 
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4.1 All-Pole Bandpass Filter Design  
 

Butterworth and Chebyshev bandpass filters, also known as all-pole filters, have 

transmission zeros that occur at infinity. Since all-pole filters may be constructed from 

cascading standard LC type resonators, which are characteristic of the majority of distributed 

resonators, these filters are widely used at RF and microwave frequencies. While 

Butterworth filters have a maximally flat passband, Chebyshev filters achieve significantly 

better skirt selectivity by having a certain degree of tolerable pass-band ripple. Although the 

insertion loss based design of lumped element all-pole filters had been well established with 

filter tables being widely available for their design [4-6], efficient realization of these circuits 

with transmission line distributed networks at microwave frequencies is still a subject of 

great research interest. 

 

Dual-mode resonator based filters are naturally compact and generally offer the same 

fabrication simplicity as a regular microstrip single-mode filter. A number of highly compact 

dual-mode filters found in recent research include the open-loop [4-7], circular-ring [4-8] 

and square-loop [4-9] structures. There are only a few reports on the design of high order 

dual-mode filters in literature [4-10], especially using one dimensional resonators. A popular 

method of designing higher order filters is to couple dual-mode sections with non-resonating 

nodes [4-7]. However, this approach greatly compromises the compactness of the filter since 

the non-resonating node occupies a significant circuit area. Although single-mode filters such 

as the inter-digital and combline filters offer excellent size (area) reduction, they extend up 

to λ/4 in a single dimension and this may not always be acceptable for a given frequency and 

application. 

 

This section presents an all-pole filter design technique based on the compact dual-mode 

resonator, described in section 3.3.2 [4-11]. While the dual resonance of each dual-mode 

resonator unit is ideal for the design of even order bandpass filters, odd order filters may 

also be constructed by having a mixture of single and dual-mode resonators. An effective 

method of realising inverter-coupled bandpass prototype filters using the dual-mode 

resonator without employing non-resonating nodes is described. This allows for the rapid 

design of compact, low loss and high performance filters. 
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Fig. 4-1 illustrates the inverter-coupled bandpass filter prototype network which is 

commonly used as a starting point for microwave filter design, where the resonator 

inductances, Lresi, and capacitances, Cresi, are to be determined from the physical structure of 

the particular distributed resonators to be employed in the filter [4-1]. Once determined, the 

inverter impedances are then found from (4.1) - (4.3), where gi are the lowpass filter 

prototype element values, ZS and ZL are the source and load impedances respectively.  

 

��� � ����	
����������  (4.1) 

��,��� � �	
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 (4.2) 
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��������������  (4.3) 

 

It is common in microwave filters to employ identical resonators in filter design which 

effectively makes all the inductances and capacitances equal. In addition, the source and 

load terminations are typically 50 Ω.  

 

 

Fig. 4-1 Inverter coupled bandpass prototype network 

 

 

The configuration of an even order filter constructed from the dual-mode resonator is 

shown in Fig. 4-2 (a), where n resonators are coupled through asymmetric parallel coupled-

lines, with modal impedances given by Zei and Zoi. The equivalent circuit of this filter 

configuration and the parameter values, as shown in Fig. 4-2 (b), may be obtained from the 

model of the resonator and the related equations presented in Chapter 3. The resonators 

are generally designed such that they are all synchronously tuned.   
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(a) 

 

(b)  

Fig. 4-2 (a) Configuration of an n
th

 order all-pole bandpass filter based on the compact folded 

dual-mode resonator (b) Lumped element equivalent circuit of dual-mode filter 

 

4.1.1 Second Order All-Pole Filters 
 

This section presents the design of a simple second order Chebyshev bandpass filter, 

through which the filter design procedure is highlighted. The filter specifications are 

summarized in table 4-1 and the element values obtained from filter tables are g0 = 1, g1 = 

0.4489, g2 = 0.4078, g3 = 1.1008. 

 

Filter Specification 

Filter Order 2 

Response Type Chebyshev 

Center Frequency 1.0 GHz 

Fractional Bandwidth 10 % 

Passband Ripple 0.01 dB 

Source/Load Termination 50 Ω 

Table 4-1: Filter specification of 2
nd

 order Chebyshev filter 
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The first step in the design procedure is to select practical starting values for the resonator. 

The sum of the modal impedances of all the coupled lines, M, where M = Ze1 + Zo1 = Ze2 + Zo2 

= … Zen + Zon, is set according to the microstrip substrate parameters such that it is possible 

to readily realize all coupled line modal impedances in that particular substrate. In this 

particular example, M = 100 Ω. The other parameters to be initially assumed are suitable 

values for ZA, θA, θB, θC and θ2 where typically ZA = 50 Ω and θA ≈ 15
0
, θB ≈ 22.5

0
, θC ≈ 45

0
 and 

θ2 ≈ 10
0
 at the center frequency of the filter in order for the resonators to take a square like 

form. In this example, these typical values are assumed for the above parameters. 

 

Once M and θC have been selected, it is possible to determine LA and CA for all the coupled 

lines from equations (3.43) and (3.44). Notice also that the inverter impedances of the 

coupled lines, KA, may be set independently of LA and CA, since KA only depends on the 

difference between the modal impedances. In this design example, LA and CA for all coupled 

lines were calculated to be 3.072 nH and 3.365 pF respectively. The total resonator 

inductance, LT = LA + L2, can then be found from (4.4), which for this particular example was 

found to be 7.528 nH.  

 

�� � 1��!"# (4.4) 

 

It is possible then to define L2 = LT – LA which is equal to 4.456 nH in this example. The next 

step is to use equations (4.1) – (4.3) to determine the inverter impedances using LT = Lres. For 

this example, the inverter impedances were determined as K01 = K23 = 23.3 and K12 = 11.4. 

 

Subsequently, L2 and K12 may be used in equation (3.23) and (3.24) to obtain the 

characteristic impedances ZB and Z2 which were calculated to be 40.7 Ω and 46.3 Ω 

respectively for this example. 

 

Lastly, the modal impedances, Zei and Zoi, of the coupled lines may be calculated using 

equation (3.38) and the calculated inverter impedances. For this example, these parameters 

were determined to be Ze1 = Ze2 = 74.7 Ω and Zo1 = Zo2 = 25.3 Ω. 
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The de-tuned resonators at the input and output ports of the filter as illustrated through the 

equivalent circuit in Fig. 4-2 (b) contribute to the distortion of the filter response. In order to 

minimize this effect, a simple solution is to add an inductive line at each port so as to tune 

these resonators to resonate at the filter center frequency. This inductance may be realised 

relatively accurately with a short segment of high impedance line with characteristic 

impedance Zind given by (4.5), where θind is the electrical length at the center frequency. For 

this particular example, a characteristic impedance of 120 Ω was chosen where θind = 7.9
0
. 

 

���$ � �%&'(�)%�&'(�)��$�  (4.5) 

 

Fig. 4-3 summarizes the results obtained from the filter design procedure in graphical form 

illustrating the element values for the lowpass filter prototype, bandpass filter prototype, 

filter model and finally, the parameters of the distributed filter, where ZS = ZL = 50 Ω. 

 

        

                                    (a)                                                                               (b) 

 

(c) 

 

(d) 

Fig. 4-3 Element values of (a) Lowpass prototype filter (b) dual-Mode transmission line filter 

(c) model of distributed filter (d) ideal inverter coupled bandpass prototype 
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Fig. 4-4 compares the transmission and the reflection coefficients of the ideal inverter 

coupled bandpass filter, the dual-mode filter and the filter model. All three circuits show a 

reasonably good agreement near the filter center frequency of 1.0 GHz, beyond which 

discrepancies become increasingly noticeable. In particular, although the ideal prototype 

response and the filter model do not produce a second harmonic passband, its presence, at 

around 3f0, in the actual filter response degrades the rejection of the filter considerably 

especially beyond 2 GHz. The reflection coefficients of the prototype and the actual filter 

appear to agree well at the center frequency while the model response is around 4 dB off. 

 

        

                                                 (a)                                                                                         (b) 

Fig. 4-4 Comparison of simulated (a) transmission (b) reflection of ideal lumped element 

bandpass filter prototype, distributed resonator filter and equivalent model 

 

 

The overall dimensions of the second order filter stated in terms of electrical length are 

approximately 45
0
 by 45

0
. In comparison to compact filters such as open-loop single mode 

filters (electrical dimensions ~ 90
0
 by 180

0
) [4-12] – [4-14], the compact open-loop dual-

mode filter (electrical dimensions ~ 80
0
 by 80

0
) [4-15] and patch based dual-mode filters 

(electrical dimensions ~ 180
0
 by 180

0
) [4-10], [4-16] and [4-17], filters based on the proposed 

dual-mode resonator achieve a considerable size reduction. 
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4.1.2 High Order All-Pole Filters 
 

This section gives an overview of higher order filter development, from design to fabrication, 

with the proposed folded dual-mode resonator through a design example of a 4
th

 order 

Chebyshev bandpass filter. The filter specification is summarized in table 4-2. The element 

values obtained from filter tables are g0 = 1, g1 = 0.7129, g2 = 1.2004, g3 = 1.3213, g4 = 

0.6476 and g5 = 1.1008. 

 

Filter Specification 

Filter Order 4 

Response Type Chebyshev 

Center Frequency 1.5 GHz 

Fractional Bandwidth 25 % 

Passband Ripple 0.01 dB 

Source/Load Termination 50 Ω 

Table 4-2: Filter specification of 4
th

 order Chebyshev filter 

 

The selected value of M was 175 Ω for all coupled lines while ZA = 82 Ω, θC = 45
0
 and θA = 15

0
 

at 1.5 GHz. With these values, LA = 3.85 nH, CA = 1.26 pF and LT = 8.91 nH. The impedance 

inverter parameters were then determined to be: K01 = K45 = 31.4, K12 = K34 = 15.17, K23 = 

11.14. 

  

L2 was also calculated to be 5.06 nH.  Setting θB = 20
0
 and θ2 = 15

0
 at the centre frequency 

allows ZB and Z2 to be determined as 95 Ω and 56 Ω. The modal impedances of the 

input/output coupled-lines were determined from (3.38) to be Ze = 120 Ω and Zo = 55 Ω and 

those of the inter-resonator coupled lines were Ze = 100 Ω and Zo = 75 Ω.  

 

Finally, the feed lines to the filter must have an inductance of 5.06 nH and this was realised 

by employing a 110 Ω line of electrical length 25
0
. Fig. 4-5 (a) illustrates the initial and tuned 

response. Unlike the previous filter example, due to the relatively high filter FBW, the 

variation of impedance of the K12 and K34 inverters in the filter is responsible for the error in 

the initial response. Some tuning of the initial filter parameters was therefore required in 

order to compensate for these frequency effects. Tuning the design lead to following 

changes: ZB = 105 Ω, θA = 11.9
0
 and the inductive feed line impedance was increased from 

110 Ω to 125 Ω. 
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The filter was fabricated on 1.575 mm thick Rogers RT Duroid 5880 (εr = 2.2), with circuit 

board plotter LPKF C60E and measured with Agilent PNA (E8361A) network analyzer. A 

photograph of the fabricated filter, its layout and a comparison between the measured and 

full wave EM simulated results are illustrated in Fig. 4-5. 

 

       

                                              (a)                                                                                (b) 

  

                                       (c)                                                                             (d) 

Fig. 4-5 (a) Circuit simulated S-parameters of 4
th

 order filter before and after tuning (b) 

Comparison of EM simulated and measured filter S-parameters (c) Measured wideband S-

parameters and group delay (d) Photograph of fabricated filter with layout, where 

dimensions are in millimetres. 
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The measured performance of the filter is in very good agreement with the simulated 

results. A pass-band insertion loss of around 0.66 dB was observed at the measured centre 

frequency of 1.50 GHz. This may be mainly attributed to conductor losses. The measured 

bandwidth was approximately 380 MHz (FBW = 25.33%) and this corresponds well with the 

specification of 25% FBW. The first harmonic response is roughly at 4.5 GHz (3f0), which is 

another desirable characteristic of the filter. The measured return loss and group delay are 

approximately 15 dB and 3.2 ns at the filter center frequency. 

 

This filter occupies an area of approximately 36 mm by 23 mm. In addition to having dual-

mode behaviour, which effectively reduces filter area by half, each resonator corresponds to 

a λg/8 (electrical dimensions 45
0
 by 45

0
) type resonator, which makes this resonator a very 

favourable candidate for compact planar bandpass filter design.    

 

4.1.3 Second Order Generalized Chebyshev Filters 
 

This section describes a second order generalized Chebyshev bandpass filter based on the 

dual-mode resonator with capacitive cross-arm coupling. In Chapter 3, it was shown that this 

resonator is able to generate a number of finite frequency transmission zeros. These zeros 

may be used not only for enhancing skirt selectivity but also for suppressing spurious 

harmonics to some extent. The filter specification is outlined in Table 4-3 below. 

 

Filter Specification 

Filter Order 2 

Response Type Gen. Chebyshev 

Center Frequency 1.65 GHz 

Fractional Bandwidth 6.5 % 

Passband Ripple 0.1 dB 

Source/Load Termination 50 Ω 

Table 4-3: Filter specification of 2
nd

 order generalized Chebyshev filter 
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For this design, simulation based parameter extraction was employed to obtain the dual-

mode resonator parameters. The initial values for the electrical lengths of the resonator 

were chosen as θA = 35
0
, θB = 15

0
, θC = 40

0
 (90

0
 in total at the center frequency).  A uniform 

impedance of 120 Ω was assumed for the lines, except for Z2 = 95 Ω. The final dimensions of 

the filter given in Fig. 4-7 (a) correspond to these values. 

 

The lowpass prototype element values obtained from filter tables were g0 = 1, g1 = 0.8431, 

g2 = 0.6220 and g3 = 1.3554. The external quality factor and the inter resonator coupling 

coefficient, M12, were calculated from (4.6) and (4.7) respectively as 13.0 and 0.89 [4-1]. 

 

*� � �����	
 (4.6) 

+�,��� � �	
,������ (4.7) 

 

In order to physically realized M12, simulations were used to iteratively extract the coupling 

coefficient from the structure of Fig. 4-7 (a) for various lengths L1, using (3.52). The extracted 

coupling coefficient against L1 is plotted in Fig. 4-6. From the plot, it can be seen that L1 = 3 

mm will produce the required coupling coefficient. A similar approach was used for realizing 

the external quality factor as outlined in [4-1], from which the required gap width of the 

input/output coupled lines were found to be 0.3 mm.   

 

 

Fig. 4-6 Extracted coupling coefficient M12 plotted against length of short circuited stub 



CHAPTER 4                                                                                                                                                           94 

 

 

 

The dimensions together with a photograph of the fabricated filter are illustrated in Fig. 4-7, 

where L1 = 3 mm. The filter was fabricated on 1.575 mm thick Rogers RT Duroid 5880 (εr = 

2.2), with circuit board plotter LPKF C60E and measured with Agilent PNA (E8361A) network 

analyzer. The measured and full wave simulated results are illustrated in Fig. 4-8. 

 

      

                                            (a)                                                                                 (b) 

Fig. 4-7 (a) Layout of 2
nd

 order generalized Chebyshev filter with dimensions in millimetres. 

(b) Photograph of fabricated filter. 

 

          

                                             (a)                                                                                  (b) 

Fig. 4-8 Comparison of simulated and measured (a) wide band transmission response and (b) 

narrow band S-parameter response. 
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The pass-band insertion loss of the fabricated filter was approximately 0.7 dB. The measured 

center frequency was found to be approximately 1.7 GHz, where a slight frequency shift of 

around 45 MHz was observed. This may have been due to the various tolerances involved. 

The two transmission zeros closest to the pass-band are produced as a result of coupling 

between the folded arms. The harmonics of these zeros that appear at around 3f0 can be 

seen to suppress the first spurious resonance of the filter. Consequently, the filter stopband 

is extended up to the second spurious response which occurs at around 5f0 ( ≈ 8.25 GHz). 

The improvement to the filter stopband performance due to these transmission zeros is 

clear when comparing this response to that of Fig. 4-4. The dimensions of this filter are 15.3 

mm by 9.9 mm. Equivalent to a λg/10 type filter, this achieves a significant size reduction 

over other dual-mode filters.  
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4.1.4 Dual-Mode Diplexers 

 

A diplexer is a three port network which essentially consists of a pair of filters operating at 

two different center frequencies (usually at the transmission and reception frequencies of a 

transceiver) [4-19]. While diplexers are typically employed in connecting a single antenna 

with a transmitting and receiving end, the device must maintain high isolation between 

these ends. The design of a diplexer is generally a two step procedure. Firstly, it involves the 

separate design of the channel filters according to set specifications. Secondly, a suitable 

matching network at the source end must be designed such that the transmission 

characteristics of one filter are not affected by the other [4-20], [4-21]. 

 

The proposed dual-mode resonators may be readily employed in the development of 

diplexers. The filter design procedure outlined in the previous sections may be used to 

develop each channel filter accordingly. If the center frequencies of the two channel filters 

are relatively widely separated, then the requirements of the input matching network 

becomes less stringent and in some cases, the matching network may be avoided altogether. 

Since the design of matching networks is outside the scope of this work, this section 

presents a diplexer example where a matching network is not required.   

 

This section presents a second-order diplexer based on the dual-mode resonator designed 

for WiMax frequency bands at 2.4 GHz and 3.4 GHz. Since the center frequencies are 

relatively distant, a matching network is not employed. In order to simultaneously excite 

both filters from a single source, a coupled line configuration consisting of three coupled 

lines may be employed as illustrated in Fig. 4-9 (c). The source is directly connected to the 

center line. The channel filters placed on either side are excited by this line.  Although the 

center frequencies are approximately 1 GHz apart, this form of excitation will to some 

degree affect the performance of the individual filters but this may be rectified simply by 

optimization of the overall structure.    
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The filter was fabricated on 1.575 mm thick Rogers RT Duroid 5880 (εr = 2.2), with circuit 

board plotter LPKF C60E and measured with Agilent PNA (E8361A) network analyzer. The 

simulated and measured results are illustrated in Fig. 4-9 (a) and (b). The dimensions of the 

filter and its photograph are shown in Fig. 4-9 (c) and (d) respectively. There is very good 

agreement between the simulated and measured results. The measured passband insertion 

loss is better than 1 dB for both channels and the adjacent channel isolation is measured to 

be approximately 30 dB. The overall size of the diplexer is around 12 mm by 23 mm. 

 

      

                                               (a)                                                                            (b) 

        

                                              (c)                                                                             (d) 

Fig. 4-9 (a) Simulated and (b) measured S-parameters. (c) Dimensions of the diplexer in 

millimetres and (d) photograph of fabricated filter. 
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4.1.5 Summary 

 

This section has presented a filter design procedure for the development of all-pole 

bandpass filters from lowpass prototype networks. Given the lowpass prototype element 

values, the presented procedure allows the physical parameters of the resonators to be 

determined relatively quickly, with high accuracy especially for narrowband bandpass filter 

designs. It was shown that the equations still produce good approximations for the physical 

parameters for wideband filter designs, minimizing the required optimization/tuning effort.  

 

In addition to greatly facilitating and expediting all-pole filter design, the proposed design 

procedure avoids the use of non-resonating nodes in coupling dual-mode resonators and 

enables considerable circuit space conservation especially for high order filters. Avoiding 

redundant elements such as non-resonating nodes also allows for filter loss minimization.  

 

A simulation based design method for filters based on the dual-mode cross-arm coupled 

resonator was presented. This approach is adopted due to the difficulty in determining the 

cross-arm capacitance from the physical layout of the resonator. Simulation based extraction 

allows the required coupling coefficients and quality factors to be determined even for such 

a complicated structure relatively quickly and accurately thus greatly expediting the filter 

design process. 

 

Several practical filter design examples were presented to supplement the discussions and 

also to verify the design procedures. The designed filters were fabricated and tested to 

evaluate and showcase their performance. All simulated results and filter measurements 

were in good agreement.   
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4.2 Cross-Coupled Filters  
 

Although all-pole microwave filters may be conveniently realized in transmission line media, 

this type of filter generally does not offer the best skirt selectivity. In demanding applications 

where a sharp transition band is required, the only option available with all pole filters is to 

raise the filter order. Higher order filters occupy a larger circuit area. Moreover, the 

passband insertion loss of the microwave filter increases with filter order. These significant 

drawbacks associated with high order microwave filters have called for the development of 

alternative methods to achieve the required specifications with low order filters.       

 

Despite the excellent skirt selectivity offered by Elliptic and inverse Chebyshev type filters, 

they are difficult to realize with distributed microwave elements. An alternative approach, 

although not as attractive performance wise as the latter filters, widely employed with 

distributed bandpass filters in achieving a sharp transition band is to use a cross-coupled 

resonator arrangement. The success of this method in microwave filter development arises 

from the ease of realization of this type of filter.   

 

In addition to the direct coupling between adjacent resonators, cross-coupled filters employ 

non-zero couplings between non-adjacent resonators to produce a number of transmission 

zeros in the filter stopband.  The non-zero coupling between non-adjacent resonators are 

able to produce multiple signal paths between the input and output ports. By assigning the 

coupling coefficients in an appropriate manner, it is possible to have the signals converging 

at the output port to interfere destructively resulting in complete signal cancellation at 

certain frequencies.  While cross-coupled filters can generally be synthesised analytically 

based on low-pass prototype networks [4-1], a wider class of filtering functions may be 

realized through computer based optimization methods [4-18].   

 

This section describes the use of the compact folded dual-mode resonator in the 

implementation of microwave cross-coupled filter networks. While coupling matrix 

optimization is used as the foundation for filter synthesis, the equivalent circuit of the dual-

mode resonator and the related parameters facilitate the realization process.   
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4.2.1 Cross-Coupled Dual-Mode Resonator Configurations 

 

This section describes several useful configurations for achieving cross-coupled filters with 

the proposed dual-mode resonator. Fig. 4-10 (a) and (b) illustrates two resonator 

configurations for achieving source-load coupled 4
th

 order dual-mode filters, where the 

coupling scheme is summarized in Fig. 4-10 (c), and the resonators are numbered 1 to 4. 

Asymmetric resonators are employed to reduce the strength of the K14 coupling, in which 

case this coupling may be negligible. Symmetric resonators may be used but the K14 coupling 

must be considered when performing optimisation.  

 

The sign of the cross-coupling is important in order to realise finite zeros. With reference to 

Fig. 4-10, it is important to note that coupling generated from the parallel coupled line 

sections of line, KS1 and K4L, introduce a -90
0
 phase shift while coupling generated from the 

short-circuited stub, K12 and K34 introduce a +90
0
 phase shift. In both configurations KSL 

generates a -90
0
 phase shift. Since K23 and K14 have the same sign in each structure, the K14 

cross coupling is not able to produce finite transmission zeros. In contrast, the KSL and K23 

coupling is oppositely signed in each case and produce finite zeros. Structure 4-9 (a) 

generates a single pair of zeros at finite frequencies while structure 4-9 (b) generates two 

pairs. Source-load coupled filters are explored in more detail in [4-5]. 

 

             

                                                  (a)                                                                     (b) 

 

(c) 

Fig. 4-10 (a) and (b) Fourth order cross coupled filter configurations (c) Coupling scheme.  
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Fig. 4-11 presents two highly compact filter configurations for developing microstrip 

trisection and quadruplet filters. These filter configurations can be readily employed in the 

modular design of high order, low loss and compact cross-coupled bandpass filters. While 

both structures are based on the dual-mode resonator, the proposed configurations allow 

the filter size to be further reduced as much as by 50%. Compactness is achieved by inserting 

a second resonator unit within the loop of the first, allowing a pair of units to occupy the 

area of just one.  

 

The trisection filter of Fig. 4-11 (a) consists of three coupled resonators. Resonators 1 and 3 

are a product of the dual-mode resonator, while the central resonator is of single-mode 

open loop type. The cross-coupling of the filter (M13) occurs between the first and the third 

resonator and is the sum of M13P and M13N, with phases of +90
0
 and -90

0
 respectively. 

Therefore, both a positive or negative cross-coupling coefficient may be realized when 

|M13P|> |M13N|and vice versa. 

 

The generic fourth order quadruplet filter section illustrated in Fig. 4-11 (b) consists of a pair 

of coupled dual-mode resonators. In contrast to the configurations of Fig. 4-10, this 

configuration permits both positive and negative cross coupling to be established between 

resonators 1 and 4 relatively easily by appropriately setting the positive and negative type 

coupling M14P and M14N respectively.   

          

                                              (a)                                                                   (b) 

Fig. 4-11 Cross-coupled (a) tri-section filter configuration and (b) quadruplet filter 

configuration 
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The design of such cross-coupled filters may be performed by adopting the approach 

described in [4-18]. Only a brief description of the method is described here. The coupling 

coefficients are first determined either through optimization or through an equivalent 

prototype circuit. Coupling coefficients are then extracted from full-wave EM simulations for 

various physical parameters of the resonators. Finally, the desired filter coupling coefficients 

are realised by setting appropriate values for the physical parameters of the resonators, such 

as gap widths or stub lengths. It is also possible to realize some coupling, such as those 

produced by the parallel coupled lines, with the aid of equations presented in Chapter 3. 

 

4.2.2 Trisection Filters 

 

This section presents a third order trisection bandpass filter example, employing the 

configuration of Fig. 4-11 (a), in order to produce a generalized Chebyshev type response 

with a single transmission zero. The filter specification is outlined in Table 4-4. The 

normalized coupling coefficients of the filter were optimized with the aid of a computer and 

were finalized as (4.8), where the diagonal entries denote the normalized resonator de-

tuning parameters bi for the i
th

 resonator, where the cross-coupling coefficient between 

resonator 1 and 3 was determined to be 0.3.  

 

          -./ �
01
11
2 0 1.23 0 0 01.23 70.15 1.21 0.3 00 1.21 . 2 1.21 00 0.3 1.21 70.15 1.230 0 0 1.23 0 9:

::
;
 (4.8) 

 

Filter Specification 

Filter Order 3 

Response Type Gen. Chebyshev 

Center Frequency 1.0 GHz 

Fractional Bandwidth 10 % 

Passband Ripple 0.01 dB 

Source/Load Termination 50 Ω 

Transmission Zero 0.8 GHz 

Table 4-4: Third order trisection bandpass filter specification 
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Once the normalized coupling matrix is determined, the angular resonant frequencies, ωi, of 

the resonators may be computed from (4.9), where ω0 is the filter mid-band angular 

frequency and FBW is the filter fractional bandwidth, which may be used to independently 

set the natural frequencies of the three resonators [4-1].  

           
�� � �� 7�	
<� = ,��	
<��! = 42  

(4.9) 

 

From the given specifications and the optimized coupling coefficients, the resonant 

frequencies of the three resonators were determined to be 1.0075 GHz, 0.99 GHz and 

1.0075 GHz respectively. After designing the individual resonators, full wave electromagnetic 

simulations may be performed on the entire structure in order to determine the filter pole 

and zero frequencies. These frequencies may be compared to that of the trisection lowpass 

prototype in order to extract the coupling coefficients M12 and M13.  

 

A trisection lowpass prototype filter is illustrated in Fig. 4-12. The input even and odd mode 

admittance, yine and yino, are given by (4.10) and (4.11) respectively.  

 

?��� � +��!
@ A� = <� 7 +�B 7 2+�!!� = <!C 

(4.10) 

?��� � +��!@�� = <� = +�B� (4.11) 

 

Applying the transmission zero frequency condition (yine = yino) leads to the lowpass 

transmission zero angular frequency, ωLPz , as given by (4.12).  

 

��DE � 7 F<! = +�!!+�BG (4.12) 

 

The transmission pole condition of the filter is yine yino = 1. Solving for this condition under 

the assumption that M01 is negligible (weak coupling at the input and output ports) allows 

the coupling coefficient M12 to be extracted from (4.13), where ωLPp is the lowpass left most 

frequency pole.  
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 (4.13) 

 

Substitution of M12 in (4.12) enables M13 to be extracted. When using these formulae in 

extracting the coupling coefficients, the simulated pole and zero frequencies must be first 

converted into the corresponding lowpass frequencies by using the bandpass transformation 

given by (4.14). 

 

��D � 1�	
 J�%D�� 7 ���%DK (4.14) 

 

The formulae can be employed to extract the coupling coefficients M12 and M13 against the 

various physical parameters of the structure affecting these couplings (such as gap width or 

stub length) with the aid of an electromagnetic simulation package. For example, the M12 

coupling is inversely proportional to the spacing between the parallel coupled lines, S1,  of 

resonator 1 and 2 of Fig. 4-11 (a).  

 

 

Fig. 4-12 Trisection lowpass prototype filter where all capacitances = 1 F. 

 

The transmission response for a parallel coupled line spacing of 1.1 mm is illustrated in Fig. 

4-13 (a), as an example for extraction of the corresponding coupling coefficient. The 

measured pole and zero frequencies of 0.92 GHz and 0.77 GHz respectively are firstly 

converted to the lowpass frequencies via (4.14). M12 may then be determined by employing 

(4.13), and in this example was found to be 1.25. Similarly the coupling coefficient M12 may 

be found for other values of S1 as plotted in Fig. 4-13 (b), from which a coupling coefficient 

of M12 = 1.21 is realized with a line spacing of S1 = 1.1 mm for this particular design. 
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The sign of M13 determines the position of the transmission zero. This sign may be selected 

by opting for the dominant cross coupling to be either capacitive via M13N or inductive 

coupling via M13P. The length of the short circuited stub or the gap width between the open 

circuited arms of resonators 1 and 3 may be used to tune M13. Therefore, the value of 

coupling coefficient extracted can be plotted against one of these two physical parameters 

in order to determine an appropriate value. 

        

                                              (a)                                                                                (b) 

Fig. 4-13 (a) Transmission response of weakly coupled trisection filter whose dimensions are 

given in Fig. 4-14 (c). (b) Extracted coupling coefficient M12 against spacing between parallel 

coupled lines, S1, of resonators 1 and 2 of Fig. 4-11 (a). 

 

The designed filter was fabricated on 1.27 mm thick Rogers RT Duroid 6010LM (εr = 10.2), 

with circuit board plotter LPKF C60E and measured with Agilent PNA (E8361A) network 

analyzer. A photograph of the fabricated filter, its layout and a comparison of the measured 

and full wave EM simulated results are illustrated in Fig. 4-14.  

 

There is good overall agreement between simulation and measurement. The measured mid-

band insertion loss of the filter, mainly due to conductor loss, was only 0.83 dB. The low 

insertion loss is attributed to the compactness of the filter configuration, which minimizes 

the impact of the transmission line losses. The measured filter bandwidth is approximately 

equal to the specification. The fabricated compact third order trisection bandpass filter 

occupies an area of around 18 mm by 18 mm, which is almost the same as the compact 

second order filter reported in [4-15]. 
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                                          (a)                                                                                  (b) 

                

                                          (c)                                                                                (d) 

Fig. 4-14 Measured and simulated (a) transmission and (b) reflection of third order trisection 

filter. (c) Layout with dimensions in millimetres and (d) photograph of fabricated filter 
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4.2.3 Quadruplet Filters 

 

This section presents a fourth order source-load coupled quadruplet bandpass filter 

example, employing the configuration of Fig. 4-11 (b), in order to produce a generalized 

Chebyshev type response with a pair of transmission zeros. The filter specification is outlined 

in Table 4-5. The normalized coupling coefficients of the filter were optimized with the aid of 

a computer and were finalized as (4.15).  

 

          -./ �
011
112

0 1.1844 0 0 0 70.000151.1844 0 1.081 0 0 00 1.081 0 0.794 0 00 0 0.794 0 1.081 00 0 0 1.081 0 1.18470.00015 0 0 0 1.184 0 9::
::; (4.15) 

 

Filter Specification 

Filter Order 4 

Response Type Gen. Chebyshev 

Center Frequency 1.0 GHz 

Fractional Bandwidth 10 % 

Passband Ripple 0.01 dB 

Source/Load Termination 50 Ω 

Upper Transmission Zero 1.60 GHz 

Table 4-5: Fourth order quadruplet section bandpass filter specification 

 

All resonators in the quadruplet configuration are synchronous and have a center frequency 

of 1.0 GHz. The coupling coefficients above were realised in a similar fashion to the previous 

examples using simulation based extraction. The filter was fabricated on 1.27 mm thick 

Rogers RT Duroid 6010LM (εr = 10.2), with circuit board plotter LPKF C60E and measured 

with Agilent PNA (E8361A) network analyzer. A photograph of the fabricated filter, its layout 

and a comparison of the measured and full wave EM simulated results are illustrated in Fig. 

4-15. There is good overall agreement between simulation and measurement. The measured 

mid-band insertion loss of the filter, mainly due to conductor loss, was around 1.2 dB. The 

fabricated compact quadruplet bandpass filter occupies an area of around 18 mm by 18 mm, 

which is highly compact since this is almost the same as the compact second order filter 

reported in [4-15]. 
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                                         (a)                                                                                   (b) 

                    

                                     (c)                                                                                    (d) 

Fig. 4-15 Measured and simulated (a) transmission and (b) reflection of quadruplet filter. (c) 

Layout with dimensions in millimetres and (d) photograph of fabricated filter 
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4.2.4 Fourth Order Cross-Coupled Filters with Asymmetric Structure 

 

A fourth order filter example, whose specifications are outlined in Table 4-6, based on the 

source-load coupled filter of Fig. 4-9 (a) is presented to demonstrate yet another compact 

cross-coupled filter configuration with the dual-mode resonator. The optimized coupling 

coefficient matrix for the design is given by (4.16).  

 

          -./ �
011
112

0 1.184 0 0 0 70.011.184 0 1.076 0 0 00 1.076 0 0.794 0 00 0 0.794 0 1.076 00 0 0 1.076 0 1.18470.01 0 0 0 1.184 0 9::
::; (4.16) 

 

Filter Specification 

Filter Order 4 

Response Type Gen. Chebyshev 

Center Frequency 2.5 GHz 

Fractional Bandwidth 10 % 

Passband Ripple 0.01 dB 

Source/Load Termination 50 Ω 

Upper Transmission Zero 3.0 GHz 

Table 4-6: Fourth order asymmetric cross-coupled bandpass filter specification 

 

Similar to the previous designs, simulation based coupling coefficient extraction was 

employed in realizing the calculated coupling coefficients. The filter was fabricated on 

Rogers RT Duroid 5880 substrate with a relative dielectric constant of 2.2 and substrate 

thickness of 1.575 mm.  

 

The transmission and reflection parameters of the simulated and measured filter are 

compared in Fig. 4-16 (a) and (b). The mid-band insertion loss of the filter, mainly due to 

conductor loss, was around 1.0 dB. A shift of around 50 MHz is observed in the measured 

passband center frequency and this may be attributed to fabrication tolerances. This filter 

occupied an area of approximately 27 mm by 17 mm. 
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                                              (a)                                                                                  (b) 

 

(c) 

Fig. 4-16 Measured and simulated (a) transmission and (b) reflection of quadruplet filter. (c) 

photograph of fabricated filter 

 

4.2.5 Dual-Band Filter Example 

 

The most widely recognized approach to dual-band filter synthesis is to employ dual-band 

resonators. However, distributed dual-band resonators are difficult to tune and filter 

optimization is usually very time consuming. Consequently, as detailed in Chapter one, 

various other innovative methods have been developed. 

 

Theoretically, the design of such filters may be greatly simplified if single-band resonators 

may somehow be employed instead. Adopting this perspective, this section presents the 

design of dual-passband filters utilizing only single-band resonators. Dual-band performance 

is obtained by simultaneously employing cross-coupled resonator configurations together 

with asynchronous resonators.  
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Given a specification, the prototype parameters such as the coupling coefficients as well as 

the frequency detuning parameters may be found through computer based optimization. 

Generally, direct optimization could possibly lead to a large number of non-zero cross-

coupling within a filter some of which may be non-realizable. Therefore, physically simpler 

cross-coupled structures such as the quadruplet filter section of Fig. 4-10 (b) may be 

employed. In contrast to single-passband quadruplet filters presented earlier, dual-passband 

filters rely on relatively strong cross-coupling as wells as the use of detuned resonators.     

 

In order to illustrate a typical dual-passband filter realization, a second-order dual-band 

filter, whose specifications are outlined in Table 4-7 is designed. The filter is realized with the 

dual-mode quadruplet resonator configuration of Fig. 4-10 (b). The optimized coupling 

coefficient matrix for the design is given by (4.17).  

 

          -./ �
011
112

0 0.7344 0 0 0 00.7344 0 2.081 0 0.78 00 2.081 0 70.180 0 00 0 70.180 0 2.081 00 0.78 0 2.081 0 0.73440 0 0 0 0.7344 0 9::
::; (4.17) 

 

Dual-passband Filter Specification 

Filter Order 2 

Center Frequency and FBW 1.19 GHz at 2% FBW 

Center Frequency and FBW 1.47 GHz at 2% FBW 

Passband Ripple 0.05 dB 

Source/Load Termination 50 Ω 

Table 4-7: Dual-passband filter specification 

 

The coupling matrix is physically realized through optimization of the quadruplet 

configuration with the aid of an electromagnetic simulator. In this particular example, it was 

possible to achieve the desired response exclusively with fully synchronous resonators. 

Therefore the resonator detuning parameters corresponding to the diagonal entries of the 

matrix are all zero. A negative coupling coefficient of -0.180 between the second and third 

resonator was realized by the capacitive cross-arm coupling between these resonators as 

illustrated in Fig. 4-10 (b). In addition, the positive cross-coupling between resonators 1 and 

4 was realized by employing an appropriate length of short circuited stub. 
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After optimization, the designed filter was fabricated on Rogers RT Duroid 6010 substrate 

with a relative dielectric constant of 10.2 and substrate thickness of 1.27 mm. Fig. 4-17 (a) 

and (b) shows a comparison between the theoretical, simulated and measured filter s-

parameters. The layout and a photograph of the fabricated filter are illustrated in Fig. 4-16 

(c) and (d) respectively. There is excellent agreement between the theoretical and 

simulations responses. Despite the losses of around 1.8 dB in both passbands, the measured 

filter response is also seen to correspond very well, especially with regard to center 

frequencies and the locations of the transmission zeros. The measured loss is mainly 

attributed to conductor and dielectric losses and is seen to adversely affect the mid-band 

insertion loss and passband edge selectivity. 

 

       

                                           (a)                                                                                  (b) 

 

                                             (c)                                                                        (d) 

Fig. 4-17 Measured and simulated (a) transmission and (b) reflection of dual-passband filter. 

(c) Dimensions of filter in millimetres (d) photograph of fabricated filter. 
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Despite the simplicity, there are limitations of this approach in designing dual-band filters. 

Firstly, the coupling coefficients increase for wider passband separations. Narrower gap 

widths are required to realize larger coupling coefficients which may not always be possible 

due to fabrication limitations. Secondly, this approach is only suitable for designing dual-

band filters with the same fractional bandwidth for the upper and lower passbands. 

   

4.2.6 Summary 

  

This section presented several highly compact cross-coupled filter configurations comprising 

the dual-mode resonator for the development of advanced single and dual-band bandpass 

filters. While the trisection configuration comprises of a single-mode resonator embedded 

within the dual-mode resonator, the quadruplet filter configuration consists of two 

concentrically placed dual-mode resonators. These configurations are not only useful in the 

development of highly compact third and fourth order filters but are also solutions for the 

modular design of higher order cross-coupled filters [4-1]. Furthermore, the quadruplet 

configuration may also be employed in the design of dual-passband filters.  

 

The design of single and dual passband cross-coupled filters in this section was performed 

through computer based coupling matrix optimization. The design examples were 

supplemented with simulated and experimental measurements to demonstrate not only the 

theoretical but also the practical performance of such filters and also to highlight the 

compactness achieved with these configurations especially in comparison to other research 

work. The key aspects of the design process were also highlighted in the examples. 

Experimental results were in very good agreement to both design specification and 

simulated results. Furthermore, owing to the nature of the dual-mode resonator, the first 

spurious response of these filters occurs at 3f0 rather than 2f0. They are also relatively simple 

and inexpensive to fabricate compared to other popular approaches such as multilayer 

filters. 
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55..00  CCOONNSSTTAANNTT  BBAANNDDWWIIDDTTHH  

CCEENNTTEERR  FFRREEQQUUEENNCCYY  TTUUNNAABBLLEE  

BBAANNDDPPAASSSS  FFIILLTTEERRSS  
 

 

 

 

 

Exponential growth in the applications for tunable bandpass filters over the past few years 

has been fuelled not only by the increasing number of wireless services but also as a result of 

the desire to access multiple services through a single technology.  Typical applications of 

such filters are in multi-band communication systems, where a single transceiver may 

operate on multiple frequency bands. The channel bandwidth may generally differ for each 

channel, but may be identical in some applications.  

 

Compactness, tuning range and linearity are key performance measures of tunable filters. 

Miniaturised filters are always more practical in modern communication systems where 

circuit space is costly [5-1]. Filter tuning range directly impacts on the range of services the 

system is able to offer [5-2]. Low distortion is a feature that is vital in filters with high input 

powers [5-3].  

 

The most prevalent commercial filter tuning element is the varactor diode. Commercial 

viability of this device stems from the well established, highly precise manufacturing process 

yielding extremely low cost high quality units. Moreover, its performance attributes such as 

high reliability, extremely fast switching speeds, high power efficiency and great versatility in 

circuit implementations make the varactor diode the device of choice in most planar tunable 

filter applications [5-4].  
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However, one of the most significant drawbacks of varactor diodes is signal distortion. Since 

the capacitance of a varactor diode is voltage controlled, the state of the diode is always 

vulnerable to any RF signal superimposed on the D.C biasing. Consequently, all tunable 

filters employing such a device will inherently possess low linearity. This is exacerbated 

further at lower bias voltages where the R.F signal is comparable to the D.C biasing resulting 

in very severe signal distortion.     

 

Academic research on the subject of tunable planar microwave filters has seen a sharp rise 

especially over the past decade and includes [5-5]-[5-24], where various degrees of 

tunability have been quoted for various structures. A tunable filter with 45% tuning range is 

presented in [5-6] but it occupies a relatively large circuit area. A tunable open-loop filter 

with constant bandwidth is presented in [5-9] where a piezoelectric transducer (PET) was 

used for tuning. The PET had little effect on filter bandwidth and facilitated the design of the 

fixed-bandwidth tunable filter. However, only 10% tunability was achieved due to limitations 

of the PET. Tunable comb-line filters were first presented in [5-11], where 53% tunability had 

been achieved but with wide variation (12%) in absolute bandwidth and high loss (6 dB). 

 

In [5-17], a tunable filter is presented where an optimization method was used to design 

coupling structures. However, this approach cannot be adopted to design filters with 

prescribed filtering functions. Tang et al. [5-19] have recently developed a new constant 

bandwidth tunable dual-mode bandpass filter with an excellent tuning range. The proposed 

filter also produces a single transmission zero enhancing the skirt selectivity of the filter, but 

it requires three identical varactors.   

 

More recently, tunable filter linearity has also become a growing concern. Peng et al. [5-7] 

have proposed a novel constant bandwidth pin diode based reconfigurable filter with 

improved linearity, where the filter tuning range was quoted to be 35 % and a measured IIP3 

> 32 dBm. Although the losses are low (1.7 dB), the filter consumes a relatively large circuit 

area (150 mm by 150 mm) and does not allow continuous center frequency tuning.  
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A varactor diode based tunable second-order filter has been presented in [5-20] with a 

tuning range of 35%, but with a bandwidth variation of around 15 % and measured IIP3 

between 22 - 42 dBm. This kind of IIP3 variation is very typical of varactor tuned circuits 

where the varactor linearity deteriorates heavily at low reverse voltages. 

 

This chapter presents a novel highly linear second-order varactor-tuned filter, based on the 

dual-mode resonator, with constant 3 dB bandwidth. Filter equivalent circuits are re-

evaluated to describe the variation and control of coupling coefficients and quality factor. A 

resonator configuration that provides an improvement in linearity is described clearly. It is 

shown that varactor based tunable filters employing such resonators do not suffer from high 

distortion typically experienced at low bias voltages. Furthermore, it is shown that there is 

considerable linearity improvement even for higher bias voltages. These filters have the 

advantage of simultaneously achieving a high tuning range (30%), very low bandwidth 

variation (less than 4.6%) , excellent skirt selectivity, high linearity (IIP3 > 43 dBm) in addition 

to a highly compact design (30 mm by 10 mm). The proposed filters only require two 

varactor diodes with common bias voltage and do not require additional tuning elements for 

control of coupling coefficients or the input/output quality factor. As a result, these filters 

are simple to design and exhibit relatively low-loss. 
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5.1 Varactor Tuned Dual-Mode Filters 
 

Illustrated in Fig. 5-1 is the layout of the proposed second order dual-mode tunable filter 

excited through 50 Ω ports labelled 1 and 2. The filter is composed of a pair of coupled lines 

with even and odd mode impedances Ze and Zo respectively and electrical length θC. These 

are connected to the ports via inductive lines with impedance ZIND. The end of each coupled 

line is extended to produce capacitive coupling between the source and load, where CSL is 

the corresponding capacitance. A second resonance arises due to the short circuited stub 

with characteristic impedance ZD [5-26].  Two identical varactor diodes, supplied with a 

common reverse voltage, are required for tuning and the simple biasing circuit shown is 

adequate for achieving sufficient isolation. 

 

 

Fig. 5-1 Layout of dual-more varactor tuned filter 

 

When designing the filter, the varactor capacitance is assumed to be at maximum. In this 

state, the filter will operate at the lowest frequency band. Reducing the varactor capacitance 

causes the center frequency of the filter to increase. However, all electrical lengths in the 

following analysis would be referenced to the lowest operational center frequency fL for 

consistency. At fL, the electrical lengths of the lines are approximately: θC ≈ 60
0
 and θA + θB  ≈ 

30
0
. The tuning range of the filter is such that the highest passband center frequency is 

around 1.5 fL. 

 

For relatively weak source-load coupling, CSL has a negligible impact on the filter pass-band 

performance, and therefore, the analysis of transmission zeros will be deferred to a later 

section. 
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Firstly, the coupled lines may be treated as an impedance inverter with series reactance 

functions as in Fig. 2, where Z11 is the driving point impedance of the coupled lines [5-26]. 

For a fixed narrow-band filter, the inverter may be regarded as a frequency independent 

element, as was assumed in the previous chapters. In contrast, although a tunable filter may 

have a narrow pass-band, it shifts across a relatively wide frequency range and it is therefore 

necessary to consider the frequency dependence of the inverter. The frequency dependence 

of the coupled line can be incorporated into the model by employing (5.1) and (5.2). 

 

��� � �� � ���2tan ��� (5.1) 

�� � �� � ��2sin ��� (5.2) 

 

 

Fig. 5-2 Frequency dependent coupled line model. 

 

The remaining elements of the filter consisting of transmission lines with characteristic 

impedance ZA, ZB and ZD and varactor capacitance C0 can be redrawn as Fig. 5-3 (a). If short 

circuited stub ZD is now used to realise an impedance inverter, the equivalent circuit may be 

drawn as Fig. 5-3(b), where the inverter impedance KL is given by (5.3).  

�� � ��tan ��� (5.3) 

Fig. 5-3(c) illustrates the effective resonator employed in the filter. Near the resonant 

frequency, this structure can be shown to behave as a series resonator with effective 

inductance Leff and capacitance Ceff. Although the values of these elements vary with filter 

mid-band frequency, they may be assumed constant within the pass-band of a narrow-band 

filter. The varactor capacitance only modifies the effective capacitance and therefore allows 

the resonators to be tuned synchronously. 
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(a) 

 

(b) 

 

(c) 

Fig. 5-3 (a) Filter equivalent circuit (coupled line model omitted) (b) Filter circuit with 

extracted impedance inverter (c) Effective resonator employed in the filter. 

 

Constant bandwidth tunability demands firstly that the input/output quality factor Q be 

linear with frequency at least within the filter tuning range. Expressed mathematically, this 

may be written as (5.4), where k is a constant and ω0 is the angular mid-band frequency.  

� � ��� (5.4) 

Secondly, the pole separation, ∆f, must be constant, again at least throughout the tuning 

range. For narrow-band two-pole filters, it may be shown that the pole separation is 

expressed by (5.5), where fH and fL are the upper and lower pole angular frequencies 

respectively. For constant pole separation, this ratio must be fixed. 

 

∆� � ����� � ��2���   (5.5) 
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The effective resonator inductance, Leff, is a key design parameter in that it not only is 

related to the Q factor but also determines the pole separation. This inductance may be 

found from (5.6), where ZIN1(ωx) is the input impedance of the resonator of Fig. 5-3 (c) at 

angular frequency ωx with port 2 grounded. 

 

��  � ���!"���� � ���!"����
��# � ��#

 (5.6) 

 

The circuit in Fig. 5-4, obtained through narrowband approximation, may be used to 

determine the input/output Q factor of the filter. It is possible to show that the Q factor may 

be described by (5.4), where k is given by (5.7).  

 

� � $%# � |��� � ����!"�|#�
$% ' ��  �(#  (5.7) 

 

Notice that the Q factor is not a function of the varactor capacitance since the inverter KC 

has transformed this into a shunt inductance. However, due to the frequency dependent 

feeding of the resonant tank and due to the frequency dependent nature of the effective 

resonator inductance Leff, the Q factor is generally nonlinear. To improve linearity, it is 

necessary to restrict the frequency variation of k, which can be achieved by selecting an 

appropriate value for LIND. Fig. 5-5(a) plots k against resonant frequency for various values of 

LIND to illustrate the relationship graphically. The center frequency is raised by lowering the 

varactor capacitance from around 20 pF to 2 pF. 

 

 

Fig. 5-4 Equivalent circuit for extracting input/output quality factor 
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With an almost linear Q factor, the second necessary condition for ensuring constant 

bandwidth tuning is constant pole separation. As indicated by (5.5), the pole separation is a 

function of the effective resonator inductance as well as the inverter impedance KL. Due to 

the distributed nature of the resonators, the effective inductance seen by the inverter KL is 

slightly different to that defined by (5.6). It can be shown that the effective inductance seen 

by KL is given by (5.8), where ZIN2 is used instead and port 1 is grounded. 

 

��  � ���!"#��� � ���!"#���
��# � ��#

 (5.8) 

 

        

                                          (a)                                                                                 (b) 

Fig. 5-5(a) Variation of k with frequency for various inductances LIND, where Ze + Zo = 100 Ω, 

θB = 22
0
, θA = 8

0
, θC = 60

0
, θD = 5.5

0
, ZA = ZB = 50 Ω, ZD = 28 Ω where all electrical lengths are 

referenced to 1.4 GHz. (b) Variation of pole separation against frequency for various ratios 

RA, where θA + θB  = 30
0
. 

 

It can be shown that selecting an appropriate ratio, RA, of θA to θB can be employed to 

control Leff in such a way as to compensate for the frequency deviation of KL hence enforcing 

the ratio in (5.5) to be near constant. Fig. 5-5(b) plots the pole separation against resonant 

frequency for various values of ratio RA. Although a perfectly constant pole separation is not 

achieved, its variation can be restricted considerably. 
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The selectivity of the proposed filter is greatly enhanced by the pair of transmission zeros 

generated by the capacitive source-load coupling CSL illustrated in Fig. 5-1. It is possible to 

place the transmission zeros almost independently of the passband response for weak 

source-load coupling. The zero conditions may be expressed approximately as the first two 

roots of (5.9) where Zsum = Ze + Zo and Zdiff = Ze - Zo.  

 

�
�!"� � �����)*� + �%,- cot���

�� � �%,-#�!"� � ����
����01  #  (5.9) 

 

This section has presented an accurate filter model, which was analysed to identify the key 

parameters that affected tunability and bandwidth of the proposed dual-mode tunable 

filter. Methods of correcting the Q factor and fixing the pole separation have been 

described. Finally, a formula to determine the transmission zero frequencies has been 

presented. 
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5.2 Filter Distortion Analysis 
 

The varactor depletion capacitance, )�2 , is a function of the applied reverse bias voltage, Vbias, 

as well as the RF signal, VRF, as defined by (5.10), where Vj is the junction potential, m is the 

junction grading coefficient and Cj0 is the zero bias capacitance.  

 

)�2 � )3�
41 � 6718% � 69:63 ;- 

(5.10) 

 

The modulation of the depletion capacitance from the RF signal introduces distortion [5-27]. 

The most detrimental distortion products are caused by third order inter-modulation and 

will appear within the filter passband.   

 

Fundamentally, for a given input power, the amount of distortion generated from a varactor 

diode is proportional to the RF signal voltage across it. The proposed filter is able to achieve 

higher linearity than most varactor tuned filters, especially for low bias voltages, since the RF 

voltage across the varactor diode is lower for a given input power.    

 

A simple first order filter is analysed to illustrate the improvement in linearity. Fig. 5-6 

compares the proposed resonator to a typical varactor tuned series transmission line 

resonator, where C0 refers to the linear capacitance of the varactor. The capacitance of a 

typical tunable transmission line resonator arises from the varactor capacitance alone. In 

contrast, the proposed resonator has a fixed capacitance, CA, given by (5.11), arising from 

Z11, which is in series with the varactor capacitance )�2  [5-26].  

 

)< � 5√3
9����� � ��� (5.11) 

 

This series connection of the two capacitances effectively acts as a capacitive potential 

divider. The reduced overall RF voltage across the varactor diode thus gives better linearity 

for the same input power.  
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Generally, varactor diodes are mostly nonlinear under low bias voltages due to the RF 

modulation of the bias voltage being more significant and also due to the more sensitive 

nature of the capacitance at lower bias voltages. The advantage gained with the proposed 

resonator is that the action of the potential divider is most effective in suppressing distortion 

for lower bias voltages, where the distortion is normally higher. 

 

                           

(a)                                                 

        

                                              (b)                                                                   (c) 

Fig. 5-6(a) Regular series transmission line tunable resonator, Model of 1
st

 order filter with 

(b) regular tunable resonator (c) proposed tunable resonator. 

 

For a given filter specification, Leff and Ceff must be identical for the filters in Fig. 5-6 (b) and 

Fig. 5-6(c). Therefore, the effect of the potential divider on third order inter-modulation 

products is analysed using the Volterra series. The first, second and third order Volterra 

kernels describing the signals across the varactor of Fig. 5-6(c) are given by (5.12), (5.13) and 

(5.14) respectively , where A and B are given by (5.15) and (5.16) while ωs = ω1 + ω2 + ω3. 

  

A��� � )<)< � )� � �#�)�)< � �2�$*)�)<  (5.12) 

A#��, �#� � C)� � �)�)<�� � �#�# � �2$)�)<�� � �#�DA����A��#�
�)�)<�� � �#�# � )� � )<� � �2$)�)<�� � �#�  (5.13) 

AE��, �#, �E� � C)�F � )#GDC1 � �)<�%# � �2$)<�%D
6C�)�)<�%# � )� � )<� � �2$)�)<�%D (5.14) 
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F � 4JA#��, �#�A��E� � A#��, �E�A��#� � A#�#, �E�A����K  (5.15) 

G � 6A����A��#�A��E�  (5.16) 

 

The varactor capacitance coefficients Cn given by (5.17), where VT = Vbias + VRF, are such that 

the RF charge, q, stored in the varactor can be described by (5.18). 

 

)L � 1
M � 1�M! OPL)�26Q�

P6RL
S

TUVTWXYZ
 

(5.17) 

[ � )�69: � )�69:# � )#69:E
  (5.18) 

 

Fig. 5-7 (a) plots the calculated third order inter-modulation product power for a given Ceff 

and Leff, for a range of potential divider factors, β, where β = 1+ C0/ CA. The circuit of Fig. 5-

6(b) corresponds to β = 1 where CA = ∞ and β >1 corresponds to the circuit of Fig. 5-6(c) 

under a range of combinations of CA and C0 resulting in the same Ceff, so as to maintain the 

same resonant frequency. Improvement to linearity is proportional to β.  

 

Improvement to linearity however comes at a price. The series connected capacitance CA 

effectively restricts the range of effective capacitance values that may be realised with the 

tunable varactor. This directly translates to the restriction of the filter tuning range to that 

mentioned in the previous section. Fig. 5-7 (b) plots the trade off between linearity and 

tuning range for the filter, where 100% tuning range corresponds to the case with no fixed 

capacitance (i.e. CA = ∞). These results were obtained with the varactor diode model BB179 

from NXP, with a capacitance tuning range from 20 pF to 2 pF for bias voltages from 0 to 30 

V. Key varactor parameters such as Vj, Cj0 and m were found to be 1.38 V, 27.7 pF and 0.7 

respectively from the spice model for the varactor obtained from [5-28]. 
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                                       (a)                                                                            (b) 

Fig. 5-7 (a) Calculated third order intermodulation powers against potential divider factor for 

various input powers, where tone spacing is 100kHz, filter center frequency is 1.5 GHz, Leff = 

2.5 nH, Ceff  = 4.5 pF, C1 = 100 fF, C2 = 50 fF. (b) Trade off between linearity and filter tuning 

range, where the x-axis is the filter center frequency in GHz, y-axis is the available tuning 

range as a percentage, z-axis is IM3 power in dBm and Leff = 2.5 nH. 100% tuning range 

corresponds to CA = ∞. 

 

It may be necessary to better visualize the effectiveness of this technique in practical filters, 

where CA would be fixed. The linearity and β will then directly depend on the varactor 

biasing voltage and hence the resonant frequency. As an illustrative example, the third order 

intermodulation response of circuits in Fig. 5-6 are compared against resonant frequency in 

Fig. 5-8 for the following component values; Leff = 2.5 nH, CA = 8 pF, where the BB179 

varactor diode is employed as the tuning element.  

 

It is very clear from Fig. 5-8 that a typical varactor based tunable filter would suffer from 

nonlinearity effects mostly for low bias voltages, which correspond to operation at lower 

resonant frequencies. With increasing bias voltage, as expected, the third order inter-

modulation distortion product power diminishes. In contrast, under the proposed 

configuration, the inter-modulation distortion product power is smallest for lower bias 

voltages, where β is higher and gradually increases with resonant frequency as β falls. 

Overall, third order inter-modulation power has been suppressed by at least 25 dB for lower 

resonant frequencies and around 8 dB for higher frequencies.  
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Fig. 5-8 Comparison of calculated and simulated third order intermodulation power against 

filter resonant frequency for a tone spacing of 100 kHz and Pin = 10 dBm (for varactor diode 

model BB179 from NXP). 
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5.3 Experiment and Verification 
 

To demonstrate the performance of the proposed compact tunable highly linear bandpass 

filter, a microstrip prototype filter was designed and fabricated to operate between 

frequencies from 1.5 GHz to 2.0 GHz with a bandwidth of 220 MHz. The circuit was 

constructed on Rogers 6010(LM) substrate with a relative dielectric constant of 10.2 and a 

substrate thickness of 1.27 mm.  

 

Very good agreement is observed between the measured and simulated S-parameters of the 

filter, which are illustrated in Fig. 5-9. Simulations assumed a constant varactor resistance of 

0.6 Ω to model the losses [5-28]. The filter insertion loss varied from around 2.4 dB to 

around 1.6 dB. The measured tuning range was 1.45 GHz – 1.96 GHz and the 3-dB bandwidth 

was found to increase from approximately 210 MHz at 1.45 GHz to 220 MHz at 1.96 GHz as 

illustrated in Fig. 5-9 (c). A photograph of the filter is shown in Fig. 5-9 (e), where filter circuit 

size was 29 mm x 9.8 mm. 

 

       

                                             (a)                                                                                (b) 



CHAPTER 5                                                                                                                                                           132 

 

 

 

  

                                        (c)                                                                            (d) 

 

 

(e) 

 

Fig. 5-9 (a) and (b) Simulated and measured s-parameters of second order highly linear 

tunable filter for bias voltages of: 1V, 7V, 15V, 30V from left to right. (c) Measured filter 

bandwidth and insertion loss across tuning range. (d) External Q factor of filter and varactor 

Q against center frequency (e) Photograph of fabricated filter. 

 

Fig. 5-10 (a) plots the input power against the output power for the filter with a bias voltage 

of 1V and a tone spacing of 100 kHz. The measured third order input and output referred 

intercept points are as high as 43 dBm and 40 dBm respectively even under this low bias 

voltage. Fig. 5-10 (b) plots the measured input referred intercept point against the filter 

center frequency. It can be observed that linearity is best at around 1.7 GHz. Overall, the 

filter has excellent linearity. 
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Fig. 5-10 (a) Output power of fundamental tones and IM3 product against input power under 

a bias voltage of 1V and tone separation of 100 kHz. (b) Measured and simulated IIP3 against 

filter center frequency for tone separation of 100 kHz. 

 

 

5.3.1 Summary 
 

This section presented a compact highly linear fixed bandwidth tunable filter for modern 

communications systems. Methods to obtain a near linear Q factor and to achieve near 

constant pole separation have been described. A pair of transmission zeros generated from 

the source load coupling greatly enhances the skirt selectivity of the filter. The resonator 

configuration employed is shown to improve filter linearity drastically especially for low bias 

voltages, where distortion is normally strongest. A filter was fabricated for demonstration 

and verification. The filter tuning range was observed to be from 1.45 – 1.96 GHz (30%), with 

a 3 dB bandwidth variation from 210 MHz at 1.45 GHz to 220 MHz at 1.96 GHz 

corresponding to only 4.6% total bandwidth deviation. Additionally, it is shown that the filter 

exhibits an IIP3 of better than 43 dBm throughout the entire filter tuning range. The 

proposed dual-mode filters also have their first spurious response at 3f0 rather than at 2f0 so 

they suffer less from adjacent channel interference when being tuned especially towards 

higher frequency bands [5-26]. Moreover, they are also relatively simple and inexpensive to 

fabricate. 
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66..00  CCOONNCCLLUUSSIIOONN  AANNDD  FFUUTTUURREE  

WWOORRKK  
 

 

 

 

The central aim of this research effort is the development of enhanced planar RF and 

microwave bandpass filters for wireless communications. In particular, the investigation 

addressed some of the key challenges surrounding RF and microwave bandpass filters such 

as compactness, harmonic suppression and tunability with the proposal of a novel compact 

planar dual-mode resonator configuration.  

 

This dissertation has proposed a novel compact planar dual-mode resonator configuration 

for bandpass filter applications in RF and microwave communications systems. A rigorous 

analysis of the proposed transmission line dual-mode resonator was presented in order to 

prove the existence of two unique modes of resonance. An equivalent electrical model for 

the resonator was subsequently proposed in order to gather deeper insight into the 

relationship between the physical and electrical parameters. In addition to the fundamental 

resonator configuration, several variants, each with unique properties, were also presented 

as candidates for filter design applications.   

 

Application of the proposed resonators in filter design was tackled in two stages. The first 

aim was the development of all-pole Butterworth and Chebyshev filters. The form of the 

resonator was shown to be readily extendable to all-pole filter design. The development of a 

complete filter design procedure for all-pole filters, starting from lowpass prototype 

networks to the realization of distributed filter parameters, was also described. Discussions 

were supplemented with several filter design examples to highlight the key stages of the 
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design process. The effectiveness of the design method is reflected in the experimental 

results, which were observed to be in very close agreement to theory and simulations.  

 

Secondly, the application of these resonators in generalized Chebyshev bandpass filters was 

investigated. The cross-coupled filter approach was adopted for the modular design of high 

order generalized Chebyshev bandpass filters. Several highly compact cross-coupled filter 

topologies were proposed including trisection and quadruplet filter units. Source-load 

coupled fourth order filtering units were also described. The design of such filters adopted a 

simulation based parameter extraction method in order to realize the desired coupling 

coefficients. Coupling matrices may be optimized with the aid of a computer. Several cross 

coupled filter design examples were presented for each filter configuration to showcase 

their performance. The calculated filter responses were found to be in very close agreement 

to the experimentally measured results. 

 

Finally, the application of these resonators in the development of tunable filters was 

investigated, with a particular focus on highly linear constant bandwidth, center frequency 

tunable filters. Measures to control the filter external quality and coupling coefficients were 

described in order to considerably restrict the variation of filter bandwidth with center 

frequency. The varactor diode was employed as the tuning element due to its numerous 

benefits over other devices such as superior tuning speed, extremely low power 

consumption, high reliability, wide tuning range and versatility in planar circuit 

implementation. In addition to compactness, the proposed tunable dual-mode resonator 

was shown to exhibit a unique highly linear circuit configuration. Significant improvements 

to filter linearity were proved both analytically and experimentally. The theoretical results 

were in excellent agreement with experimental results. 
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6.1 Contributions of the Thesis 
 

The contributions of the research are recaptured in the following summary: 

 

1. A novel highly compact dual-mode resonator is presented for RF and microwave 

bandpass filter applications. The proposed resonator is rigorously analyzed and fully 

characterized to prove the existence of two unique modes of resonance. Several variants 

with unique properties were also proposed. Electrical equivalent circuits for each 

configuration were also established in order to fully comprehend the relationship 

between distributed and electrical parameters.  

 

2. A comprehensive filter design procedure is presented for all-pole bandpass filters to 

expedite the development process. This allows the design process to effectively 

commence from the given specification and terminate with the evaluation of the 

distributed filter parameters. Since the proposed design procedure borrows heavily from 

the established equivalent circuits of the resonators, the filter design equations are 

based on these models.   

 

3. Application of dual-mode resonators in cross-coupled filter design in order to obtain 

filters with enhanced skirt selectivity is described. To this end, several highly compact 

filter configurations were proposed. In particular, trisection and quadruplet filter 

configurations with the dual-mode resonator were presented for application in high 

order modular cross coupled single and dual passband filter design. 

 

4. Application of dual-mode resonators in varactor tunable filter design was investigated. 

The research focused exclusively on the application of the dual-mode resonator in the 

development of fixed bandwidth, center frequency tenable bandpass filters. Measures of 

constraining the variation of filter bandwidth were described and supported analytically. 

While these filters have a high tuning range, and near constant bandwidth, proposed 

filters were shown to exhibit significantly low signal distortion even under low reverse 

bias voltages. 

 



CHAPTER 6                                                                                                                                                           141 

 

 

6.2 Future Work 
 

This dissertation presented a novel highly compact dual-mode resonator for application in 

RF and microwave fixed and tunable filters. Although as many aspects of this resonator were 

investigated within the allotted time, there still remains several interesting lines of 

investigation which may possibly enable the employment of these resonators in addressing a 

broader range of filter applications. 

 

Firstly, the thesis focused on the development of bandpass filters where the input and 

output couplings where exclusively achieved through parallel coupled lines. As described 

earlier, this approach is excellent for narrow to medium fractional bandwidth filters. 

However, investigations on direct tapped coupling of the resonator may be performed to 

assess the feasibility of employing these resonators in wide or ultra-wideband filter design. 

Since the integrity of the proposed equivalent circuits is only strong under narrowband 

approximations, new equivalent circuits, possibly based on simplified transmission line 

structures must instead be employed.  

 

Secondly, the modification of the dual-mode resonator in obtaining a dual-band response is 

worthy of further investigation. This may be achieved by the addition of a pair of 

symmetrically placed open circuited-stubs either side of the short circuit plane of the 

resonator. The new dual-mode dual-band resonator must be fully characterized with its own 

equivalent circuit and filter design procedure. There may however be limitations to the kind 

of achievable transmission response at least in terms of the degree of freedom in the 

placement of the two passbands and independent control of their bandwidths. These must 

of course be fully examined.  

 

Significantly more compactness may be achieved especially for higher order filters if the 

proposed resonators were configured on multi-layer printed circuit boards. Since the 

resonator coupling mechanisms will be greatly different to that of single layer filters, these 

effects must be understood and quantified prior to dealing with multi layer filter 

applications. 
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Abstract—This paper presents a compact novel design for achieving constant bandwidth tunable filters with 

wide tuning range. A method for linearizing the Q factor against frequency is proposed. A modified coupling 

structure is introduced to compensate for variations in filtering characteristic across the theoretical 50% tuning range 

of the filter. Filter design equations are provided for designing Butterworth or Chebyshev filters. An experimental 

second order filter is demonstrated with 22.5% pass-band shift with only 3% bandwidth variation and insertion loss 

better than 3 dB. Furthermore, a third order tunable bandpass filter with tuning range of 45% and less than 5% 

bandwidth variation is illustrated through simulation and modelling to show feasibility with higher filter orders. 

There is very good agreement between theoretical and experimental results. 

Index Terms— Tunable filter, tunable resonator, open-loop resonator, constant bandwidth 

 

1.0 INTRODUCTION 

Tunable microstrip bandpass filters find numerous potential applications in current and emerging technologies. In 

particular, it may be necessary for modern wireless systems to communicate via a range of channels with identical 

bandwidths and the need for constant bandwidth tunable filters becomes apparent here. 

Recent research on tunable or reconfigurable microstrip resonators and filters include work presented in [1]-[14], 

where various degrees of tunability have been quoted for various structures. A tunable filter with 45% tuning range 

is presented in [2] but it consumes a relatively large amount of circuit area. A tunable open-loop filter with constant 

bandwidth is presented in [5] where a piezoelectric transducer (PET) was used for tuning. Apparently, the PET had 



little effect on the filter bandwidth which facilitated the design of the fixed-bandwidth tunable filter. However, only 

10% tunability was achieved due to limitations of the PET. Tunable comb-line filters were first presented in [7] 

where 53% tunability had been achieved but with wide variation (12%) in absolute bandwidth and high loss (6 dB). 

Improvements to this have been suggested in [8], but constant bandwidth was achieved for only 12.5% tuning range. 

In [13], a tunable filter is presented where an optimization method was used to design coupling structures. However, 

this approach cannot be adopted to design filters with prescribed filtering functions. 

This paper presents a compact novel design for obtaining constant bandwidth varactor tuned filters based on the 

asymmetrically coupled open-loop resonator. Not only do these filters have a wide tuning range (50%) but much 

better control of bandwidth (less than 5%) and insertion-loss may be attained compared to previous work. 

Additionally, a design method is outlined to facilitate the design of Butterworth and Chebyshev filters. Resonators 

which comprise the filter may be tuned with a single voltage. Additionally, it was found that the proposed method 

eliminates the need for tuning elements to control coupling coefficients which greatly simplifies the layout.  

The proposed filters are relatively compact and offer a good tuning range and allow an improved regulation of 

bandwidth in comparison to [2], [5], [7] and [13].  

2.0 PROPOSED TUNABLE RESONATOR 

The varactor-tuned, open-loop resonator is illustrated in Fig. 1. It consists of two sections of equal-length 

transmission lines with impedance Z2 and a pair of asymmetrically driven coupled lines with even mode impedance 

Ze and odd mode impedance Zo. The input and output feed lines with characteristic impedance Z0, are 50 Ω. 

The varactor diode consists of series resistance, inductance and the depletion capacitance C0. In practice, the 

series resistance of the varactor diode limits the quality factor of the resonator and introduces losses. This resistance 

is inversely proportional to the applied reverse voltage and, as a consequence, the diode loss will be greatest for low 

reverse voltages. The modulation of the depletion capacitance from the AC signal also introduces distortion [15]. 

For simplicity, only the depletion capacitance and series resistance are modelled; all higher order effects are not 

considered in this paper. 



                           

(a)                                                                                           (b) 

Fig.  1 (a) Layout of tunable resonator (b) Transmission line equivalent circuit of resonator 

A detailed study on fixed frequency open loop resonators may be found in [16]. However, the considerable effect 

of the inserted varactor capacitance on the open loop resonator is presented here. Illustrated in Fig. 1 (b) is the odd 

mode transmission line equivalent circuit of the resonator, whose resonant condition is found to be YIN = 0 S and it 

may be shown that the input admittance YIN of the resonator is given by equation (1), where Zo is the odd mode 

impedance of the coupled lines.  

��� � ���2	
���  tan����� � ��tan �����2��	
� tan���� � 1��������2��	
� tan���� � 1�  �� tan���� �2	
���  tan������ (1) 

Varying the reverse bias applied across the varactor changes the depletion capacitance and, as a result, causes the 

shifting of the resonant frequency of the structure, since the input admittance is a function of C0.  Fig. 2 plots the 

resonant frequency of the resonator against the varactor capacitance, where a 50% frequency shift may be observed 

starting from a lower resonant frequency of 2 GHz up to around 3 GHz, provided that the varactor is able to offer a 

sufficient capacitance ratio.  

The proposed resonator is designed such that electrical length θ1 = 600 at the lowest resonant frequency of the 

tuning range. The resonator may be tuned up to a frequency at which   θ1 = 900.  Therefore, the frequency range for 

which 600 < θ1 < 900 defines the tuning range of the resonator. The transmission line with electrical length θ2, 

usually smaller than 300 at the lowest resonant frequency, is primarily employed as an inductance.  

  



 

Fig.  2 Relationship between the resonant frequency of the tunable resonator and the varactor capacitance 

If the higher order effects of the varactor diode are ignored, the resonator may be modelled within the tuning 

frequency range fairly accurately using only linear lumped elements and inverters. Additionally, a linear model 

would facilitate constant bandwidth filter design since it allows the direct application of circuit theory. To this end, it 

is important to ensure that the model is accurate across the full tuning range of the filter. The remainder of this 

section details the derivation of a lumped element resonator model and addresses the validity of the model across the 

full tuning range. Finally, a method of linearising the input/output quality factor is described. 

The coupled lines comprising the filter has the T-equivalent circuit of Fig. 3 (a), which may be transformed into 

the circuit of Fig. 3(b) by extracting an impedance inverter and describing the driving point impedance with the 

inductance LA and the capacitance CA. The equivalent model parameters may be defined by (2) – (4) where �� is the 

lowest resonant frequency of the tunable resonator. Although the inverter impedance varies with frequency in the 

model, it may be assumed constant at the test resonant frequency for narrow band applications. Fig. 3 (c) compares 

simulated and the lumped element model response of the coupled line. The slight discrepancy in responses between 

the model and the simulated response is due to the actual frequency dependence of the parameters CA and LA. 

The transmission line of characteristic impedance Z2 may be modelled relatively accurately as an inductance LB 

and it will be shown that it is desirable to have a short high impedance line. The inductance may be determined from 

(5), where ���  is the electrical length of the line at the lowest resonant frequency of the tunable resonator. 
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(a)                                                              (b) 

 

(c) 

Fig.  3.  Coupled line models (a) Z-parameter model (b) Lumped equivalent circuit with extracted inverter (c) 

Comparison of simulated and theoretical model response of coupled ( θ1 = 600 at 2 GHz, Ze = 60 Ω and Zo = 40 Ω) 



The complete resonator model and the related parameters are obtained after assembling the equivalent circuits 

accordingly. The model depicted in Fig. 4 and summarised by equations (4), (6) and (7). The series resonator formed 

by L1 and C1, under the action of the inverters, will behave as a parallel resonant tank. The angular resonant 

frequency, 	*"+, can be directly determined from L1 and C1. The quality factor, Q, of the circuit may be determined 

from (9), where R is the source/load impedance. 

 

 

Fig.  4.  Resonator equivalent circuit 
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The Q factor of a tunable resonator must increase in direct proportion with the resonant frequency in order to 

maintain bandwidth of the resonant peak. Usually, this requires that the input and output coupling to the resonator is 

tuned in addition to tuning the resonator itself. This approach is relatively cumbersome. Certain properties of the 

proposed resonator may be exploited to inherently maintain an approximately constant bandwidth characteristic, 

thus eliminating the need for extra tuning elements as well as the adverse side effects they introduce. 

Equation (9) can be re-arranged to form an expression for the bandwidth of the resonator, as given by (10).  It can 

be assumed that the R/(πL1) and (Ze - Zo) terms are frequency independent. Under condition (11), the coefficients of 



the sine and the cosine term in the denominator will be equal and will allow the use of the identity (234�5 
672�5 � 1) to simplify the above expression into one that is frequency independent. This permits constant 

bandwidth characteristic across a frequency shift. 

∆� �  . 1!$(0 |%|��1�  |�((�	*"+�|�� � . 1!$(0 ��" � �#��41�234��(  ��"  �#��672��( 
(10) 

��"  �#� � 21 � constant bandwidth (11) 

Under this condition, a linearly varying Q factor may be achieved across the entire frequency tuning range. 

Condition (11) is easily achieved and will guarantee constant bandwidth as long as inductance L1 is frequency 

independent. L1, however, is composed of LA and LB. It was shown earlier that the frequency dependence of LA is 

negligible. Variation in LB can be tightly controlled by increasing line impedance, Z2, and reducing electrical length, 

θ2. This effectively allows the line to more accurately resemble a lumped inductance and with this measure, it is 

possible to significantly restrict the change in bandwidth.   

Finally, it should be noted that the lowest resonant frequency attainable is limited by the two capacitances of 

value CA, which appear in series with C0 to give C1. Therefore, the minimum angular resonant frequency of the 

resonator will be limited to 	:;< � =,0.5$(
�@A(
. The maximum attainable resonant frequency is 2	:;<. Constant 

bandwidth tuning is possible up to 1.6	:;< as the model parameters no longer are linear beyond this frequency. 

To illustrate the validity of the complete resonator model, Fig. 5(a) compares the simulated transmission response 

to the response of the proposed lumped model. The resonator parameters are as follows: Ze = 65 Ω, Zo= 35 Ω, Z2 = 

66 Ω, where θ1 is 600 and θ2 is 220 at 2 GHz. The simulated bandwidth varied from 193.5 MHz at 2.05 GHz to 195.5 

MHz at 2.93 GHz, which is roughly 1% change in bandwidth. The model bandwidth varied from 196 MHz at 2.06 

GHz to 194 MHz at 3.0 GHz. Generally, a good agreement is observed. 



 

Fig.  5 (a).  Comparison of simulation and theoretical model response of the resonator  

3.0 TUNABLE FILTERS 

Tunable filters may be implemented by cascading the proposed resonator. In this section, a simple second order 

tunable filter is analyzed to gain insight into the affect of tuning on filter bandwidth. Key filter parameters that affect 

the pole separation are identified and a method is proposed in order to control these as required. 

When tuning a generic filter, it is necessary not only to tune each resonator but also the inter-resonator coupling 

to regulate a fixed bandwidth. Failure to do so will cause the filter bandwidth to vary and the pass-band ripple to 

suffer. To this effect, extra-tuning elements, in addition to those present in each resonator, are necessary to tune the 

inter-resonator coupling appropriately.  

In contrast, the proposed filter can be designed to control the coupling coefficients such that the need for 

additional inter-resonator tuning elements is eliminated. This characteristic of the proposed tunable filter greatly 

simplifies the tuning process and, therefore, effectively allows an Nth order constant bandwidth filter to be tuned 

with only N identical tuning capacitors. If varactor diodes are used to realize this variable capacitance, for example, 

then all N varactors may be tuned with a common bias voltage. This property enables tuning to be a relatively 

simple procedure, which greatly improves the feasibility of the solution.   



The second order tunable filter structure and its model are illustrated in Fig. 6. The input and output are coupled 

with regular asymmetrically driven coupled lines, while the coupling between adjacent resonators employs a 

modified coupling structure presented in Fig. 7. The impedance inverter, K12, couples the resonant tanks each 

composed of inductance L and capacitance C, which may be determined from (6) and (7).  

The impedance inverters labelled K01 (equal to K23), together with L, LA and CA, affects the input/output Q factor 

of the filter and (10) may be employed to fix a desired bandwidth. Near-constant bandwidth may be achieved across 

the tuning range if condition (11) is adhered to while employing high line impedance for Z2. The pass-band may be 

tuned by varying the common DC bias voltage to the two varactor diodes. 

 

(a) 

 

(b) 

Fig.  6.  (a) Layout of second order tunable filter (b) Equivalent circuit of filter 

 

The filter may be analyzed in terms of ABCD parameters of the equivalent circuit to extract a relationship for the 

pole separation. LA and CA will have no affect on the pole separation, so their effects are not considered in the 

derivation. The ABCD parameters of the equivalent circuit, given in (12), where� � 2$  1/2
, may be used to 

evaluate the impedance matrix parameter Z21, whose poles are also the poles of the filter. Solving for this leads to 

the split angular resonant frequencies as given by (14). This result may be extended to show that the separation of 

the two resonant frequencies is given by (15). 
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The pole separation is, indeed, independent of the capacitance, C, and is fixed to a simple ratio. Since the filter 

tuning mechanism is based on capacitive tuning, it is evident that the pole separation will be constant over the tuning 

range as long as the ratio K12/L is constant. It is reasonable to assume that the resonator inductance is constant from 

previous discussions. The K12 inverter impedance is however subject to a significant frequency deviation if regular 

coupled lines were employed for inter-resonator coupling (about 15% across the tuning range), which degrades the 

bandwidth regulation of the filter. A modified inter-resonator coupling structure is thus employed, as depicted in 

Fig. 6 (a), to mitigate this frequency variation to around 5 % so to improve the filter performance. 

The proposed coupling structure depicted in Fig. 7 may also be modelled with the circuit in Fig. 3(b), except that 

the value of K, LA and CA are now described by equations (16)-(18), where �((�[\���� is the value of the driving 

point impedance of at the lowest resonant frequency. An optimum line impedance for ZN, which yields the lowest 

possible variation in K, is given by equation (21), where ��� corresponds to the electrical length of the stub at the 

lowest resonant frequency used in the filter. The proposed modification effectively lowers the frequency at which 

the inverter impedance attains a minimum to the centre of the frequency tuning range. Since the inverter impedance 

function happens to be symmetrical about the minimum, the overall variation in the inverter impedance is better 

constrained. 



 

 

Fig. 7. Proposed inter-resonator coupling structure 
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It is generally desirable to limit the electrical lengths of the added stubs below 150 to conserve circuit space. Fig. 

8 compares the variation in inverter impedance of a regular coupled line to that of the modified coupled line and 

illustrates the effectiveness of the proposed technique, where θ1 = 600 at 2 GHz, Ze = 60 Ω and Zo = 40 Ω. 



 

Fig.  8.  Inverter impedance of regular and modified coupled lines  

As an illustration of the effectiveness of the modification, taking Ze1 = 51 Ω, Zo1 = 49 Ω, Ze = 53 Ω, Zo = 48 Ω, Z2 

= 75 Ω, and θ1 = 600 and θ2 = 200 at 2 GHz and varying C0 from 0.75 pF to 8 pF, it may be seen that there is only a 

3.9 % deviation in pole separation in the whole tuning range from 2.15 GHz to 2.85, GHz as plotted in Fig. 9, for a 

weakly coupled second order tunable filter. As the deviation is quite small, it is not necessary to include additional 

tuning elements between the resonators for the adjustment of the inter-resonator coupling. Finally, it should be noted 

that, the filter model and the related approximations are valid only for narrowband filters. 

 

Fig.  9.  Simulated deviation in pole separation with centre frequency of 2nd order tunable filter  

 



Before demonstrating a few examples, design equations (22) and (23) are provided to facilitate filter design, 

where Z0 is the source/load impedance, L is the series resonator inductance as illustrated in Fig. 6 (b) which may be 

determined from (7) and B is the fractional bandwidth at the highest mid-band angular frequency of the tunable filter 

ωH [17].  
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Due to various inter-coupling within the open loop structure, as well as the reactance due to LA and CA at the 

source and load ends of the filter, these equations will not lead to a perfect initial response. The design equations 

must only be used to obtain a good first approximation to the desired specification. These values for the inverter 

impedances, in conjunction with condition (11), may be used to set the modal impedances of the coupled lines. With 

knowledge of the coupled line parameters, LA and CA may be determined and, from this, it is possible to determine 

LB =0.5(L-2LA). This value of LB can then be used to obtain values for Z2 and θ2 using equation (5). 

 

4.0 TUNABLE FILTER APPLICATIONS 

This section will describe two filter design examples where the proposed tunable resonator is employed. The first 

example details the design of a second order tunable bandpass filter, where the modelled results are compared against 

simulations and experimental measurements for assessment of the model as well as filter performance. The second 

example demonstrates a third order tunable filter design where simulated results are compared against theoretical 

results to support the discussion.  

4.1 Example A: 2nd Order Chebyshev Tunable Bandpass Filter 

 

A second-order tunable bandpass filter is designed and demonstrated. The filter was designed on a substrate of 

relative dielectric constant 2.2 and a thickness of 1.575 mm. The assumed specification required a 3-dB bandwidth 

of 160 MHz and tuning range from 2.0 GHz to 2.5 GHz. The dimensions of the filter are outlined in Fig. 10. 



Transmission and reflection parameters of the filter obtained from the theoretical model, simulations and 

experimental measurements under four different tuning capacitance values (2 pF, 4 pF, 10 pF and 20pF) are 

illustrated in Fig. 11. The varactor resistance was assumed to be 1 Ω for the purposes of simulations and filter 

modeling in order to obtain more realistic results. A photograph of the fabricated filter is illustrated in Fig. 11 (c). 

Low insertion loss (3 dB maximum) and high return loss (15 dB minimum) are observed across the tuning range. 

There is good agreement between the modeled, simulated and measured results. 

 

 

 

Fig. 10.  Dimensions in millimeters of tunable filter 

 

   

(a)                                                                (b) 



 

(c) 

 

Fig. 11.  Modeled, simulated and experimentally measured (a) Transmission parameters (b) Reflection parameters 

(c) Photograph of filter 

 

The 3-dB bandwidth of the measured filter response was 160 MHz at 2.1 GHz and 165 MHz at 2.55 GHz 

corresponding to 3% change in bandwidth. The simulated response was nearly identical, showing a 3-dB bandwidth 

of 160 MHz at 2.05 GHz and 164 MHz at 2.5 GHz.  The filtering characteristic is relatively unaltered across the 

tuning. A pass-band shift of 450 MHz is achieved experimentally and this amounts to a 22.5% overall shift.  

In this design, two varactor diodes (model number BB833E6327) in a parallel configuration were used to 

implement each tuning capacitance, primarily to reduce the losses. As a consequence, the lowest possible 

capacitance attainable from the pair was limited to around 2 pF.  It is possible to achieve a higher percentage shift of 

up to 50% with a tuning capacitance which can be tuned a lower capacitance. This is possible if a single diode is 

used, but the resulting design may exhibit extra loss especially at lower frequencies, since the series resistance of the 

varactor diode varies inversely with the varactor bias voltage. The effect of this variation is observed in the 

transmission response of the filter, with the insertion loss improving at higher passband frequencies.  There are of 

course other higher order effects due to varactor diodes on tunable filter performance and a comprehensive coverage 

of these may be found in [15].  

 

4.2 Example B: Third Order Tunable Bandpass Filter 

 

This section demonstrates a third order tunable constant bandwidth filter. Substrate parameters are the same as 

those in example A. The design specification is a third order tunable Chebyshev filter with 3-dB bandwidth of 110 

MHz, a tunable range from 2 GHz to 3 GHz and a pass-band ripple of 0.043 dB. Using (22) and (23), the 



corresponding modal impedances of the coupled lines were found to be Ze01 = Ze34 = 65.24 Ω, Ze12 = Ze23 = 54.08 Ω, 

Zo01 = Zo34 =34.76 Ω and Zo12 = Zo23 = 45.92 Ω. The other parameters were Z2 = 100 Ω, ZN = 65.8 Ω, θ2 = 160 and θN 

= 100 both at 2 GHz. These parameters were translated to microstrip line parameters using Agilent ADS. Simulation 

results are compared to theoretical results obtained from the model and are illustrated in Fig. 12, where the series 

varactor loss is assumed to be 1 Ω. The 3-dB bandwidth varied from around 107 MHz at 2.05 GHz to 112 MHz at 

2.9 GHz, corresponding to a 4.5% deviation in bandwidth across a frequency shift of 42%.  

 

           

                                                (a)                                                                                       (b) 

Fig.  12.  Comparison of simulated results against results from the filter model of third order bandpass filter, 

where C0 = 0.7 pF for higher pass-band, C0 = 1.5 pF for middle pass-band, C0 = 10 pF for lower pass-band.  

 

5.0 CONCLUSIONS 

 

Compact tunable constant bandwidth filters, with a wide tuning range, based on asymmetrically coupled open-

loop resonators, were presented. It is shown that up to 50% tuning range is available for constant bandwidth tuning, 

where variation in bandwidth can be limited to below 5%. Presented experimental results are in excellent agreement 

to theory, where the minimum return loss was better than 15 dB, maximum insertion loss was better than 3 dB for a 

22.5% tuning range. The full 50% tuning range would be possible with a high capacitance ratio varactor diode. 



Since varactors are situated across the virtual earth of the structure, sufficient RF isolation was achieved by 

employing resistors to avoid cumbersome DC bias circuitry. Compensation for correcting variations in coupling 

coefficient and Q factor is proposed so that these need not be tuned. An Nth order filter will therefore require only N 

tuning varactors simply to change the natural resonant frequencies. A design method is provided so that Butterworth 

and Chebyshev filters may be fabricated relatively quickly. Finally, higher order filters are demonstrated through 

simulation with 50% pass-band shift with around 4.5% variation in 3-dB bandwidth. The relative compactness, high 

consistent return-loss, low consistent insertion-loss, wide tuning range and excellent control of bandwidth makes 

this candidate a very practical solution.  
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Abstract—This paper presents two highly compact filter 
configurations using concentric open-loop resonators. A 
description of each filter configuration is presented, where a 
linkage between structural features and coupling coefficients is 
outlined. A third order trisection and a fourth ord er source-load 
coupled filter were designed and fabricated at 1.0 GHz, and each 
filter was shown to occupy an area of just 18 mm by 18 mm. The 
measured insertion loss of the third and fourth order filters was 
0.83 dB and 1.20 dB respectively. Moreover, these structures may 
also be cascaded to produce higher order compact filters.   

    
Index Terms—compact filter, microstrip filter, bandpass filter  

I. INTRODUCTION 

ICROSTRIP bandpass filters find extensive applications in 
low to medium power RF and microwave technology  

due to size, cost, weight, and fabrication advantages.  
 Filter miniaturisation can not only be used for realising 
compact filters. Various approaches to microstrip filter 
miniaturisation may be found in recent research work. Some 
distinctly miniature filters reported in literature include the use 
of dual-mode resonators [1]-[5], slow-wave resonators [6], 
multilayer filters [7], meandering [8], high dielectric constant 
substrates [9] and lumped element filters [9]. Slow-wave 
designs are not so practical for high fractional bandwidths 
although they offer excellent wideband response. Multilayer 
structures introduce complexity and additional tolerances to 
the fabrication process while realising lumped-elements may 
not always be practical. The idea of concentric resonators has 
been recently explored in multiband filter design [12]. 

Dual-mode resonator based filters are naturally compact and 
generally offer the same fabrication simplicity as a regular 
microstrip filter. A number of highly compact dual-mode 
filters found in recent research include the open-loop [2], 
circular-ring [3], square [4] and triangular [5] structures.  

This paper presents two highly compact filter configurations 
for developing microstrip trisection and quadruplet filters. 
Both structures are based on the dual-mode resonator, reported 
in [1]. With the proposed configurations, however, the filter 
size is effectively halved. Compactness was achieved by 
inserting concentric resonators within the loop of the dual-
mode resonator. Moreover, these filter configurations can be 
readily employed in designing high order, low loss, super 
compact microstrip filters. 
  

The authors are with the Department of Electronic, Communication and 
Software Engineering, University of Westminster, 115 New Cavendish Street, 
London, W1W 6UW, United Kingdom, E-mail: d.budimir@wmin.ac.uk 

 

II. TRISECTION FILTER CONFIGURATION 

A trisection filter consists of three coupled resonators which 
may be realised with the filter section illustrated in Fig. 1 (a). 
Resonators 1 and 3 are a product of the dual-mode resonator 
presented in [1], while the central resonator is a single-mode 
open loop structure. Although a comprehensive design 
procedure for trisection filters may be found in [9], a simple 
electromagnetic simulation based design process is outlined.  

 

 
                                   (a)                                            (b) 

 

(c) 

Fig. 1. (a) Resonator arrangement and coupling mechanism of trisection filter 
(b) Photograph of fabricated filter (c) Layout of fabricated parallel coupled 
trisection filter with dimensions in mm (via diameter = 0.6 mm). 

 
The coupling mechanism of the filter is illustrated in Fig. 1 

(a), where M13P and M13N are couplings with +900 and -900 
phase respectively. When designing third order filters, the 
identical M12 and M23 coupling coefficients result in equal 
spacing of asymmetrically driven coupled lines on either side 
of the central resonator preserving physical symmetry. MS1 
and M3L coupling coefficient is adjusted by varying the gap of 
the input output coupled lines. 

The assumed filter specification for the trisection filter is as 
follows: 1 GHz center frequency, 0.01 dB ripple, 10% 
fractional bandwidth, transmission zero located at 0.8 GHz.  
The specification may be used to compute the normalized 
lowpass prototype coupling matrix, m, from optimization, as 
given by (1), where the diagonal entries denote the normalized 
resonator de-tuning parameters bi for the ith resonator. 

Compact Filter Configurations Using 
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          � � ���
�� 0 1.20 0 0 01.20 
0.15 1.15 0.3 00 1.15 0.2 1.15 00 0.3 1.15 
0.15 1.200 0 0 1.20 0 ��

��
          (1) 

 
 Once the coupling matrix is obtained, the angular resonant 
frequencies, ωi, of the resonators may be computed from (2), 
where ω0 is the filter mid-band radian frequency and F is the 
filter fractional bandwidth. The coupling coefficients M12 and 
M13 may be extracted with the aid of an electromagnetic 
simulation package together with (3) and (4), where ωP is 
either the upper or lower radian pole frequency and ωZ is the 
transmission zero frequency of the weakly excited filter. M12 is 
inversely proportional to the coupled line spacing between 
resonators 1 and 2. The sign of M13 determines the position of 
the transmission zero. The sign may be selected by opting for 
the dominant cross coupling to be either capacitive coupling 
via M13N or inductive coupling via M13P. To this end, the 
length of the short circuited stub or the gap width between the 
open circuited arms may be used to adjust M13 precisely.  
 

�� � ��
��� � ������� � 42  (2) 

��� � ��� � ��� � � ��� � ����� � ����2 
 �� � ���! � ��  (3) 

��� � 
������ ��!  (4) 

, where ���/!� � 1� #��$/%��� 
 ����$/%�& (5) 

 
 The filter was designed and fabricated on Rogers 6010 LM 
substrate with a relative dielectric constant of 10.2 and 
substrate thickness of 1.27 mm. The layout of the filter is 
detailed in Fig. 1 (c). The transmission and reflection 
parameters of the theoretical, simulated and measured filter 
response are compared in Fig. 2. There is good overall 
agreement between simulation and measurement. The 
measured mid-band insertion loss of the filter, mainly due to 
conductor loss, was 0.83 dB. The fabricated bandpass filter is 
seen to occupy an area of around 18 mm by 18 mm.  

III.  QUADRUPLET FILTER CONFIGURATION 

The generic fourth order filter section illustrated in Fig. 3 
(a) consists of a pair of coupled dual-mode resonators 
proposed in [1]. The proposed configuration, however, 
provides significantly better size reduction and also may be 
conveniently employed in the development of high order 
cascaded quadruplet filters such as [9], since the structure 
permits both positive and negative cross coupling to be 
established between resonators 1 and 4 rather easily. 
Comprehensive analysis of the dual-mode resonator is 
presented in [1] and is therefore is not repeated here. 

 

(a) 

 

(b) 

Fig. 2 (a) Comparison of (a) theoretical and simulated (b) simulated and 
measured response of microstrip trisection bandpass filter. 

The unit is physically symmetric for fourth order designs 
due to the equivalence of M12 and M34. As illustrated in Fig. 3 
(a), the M14P and M23P introduce positive coupling while M14N 
and M23N generate negative coupling. These may be readily 
adjusted to obtain the required coupling sign and magnitude. 
Higher filter orders, such as 8 or 12 may be realised simply by 
cascading two or three such units respectively.  

A fourth order filter example is presented to demonstrate 
the compact filter configuration. The filter designed at a center 
frequency of 1.0 GHz, 0.01 dB ripple, and 10% fractional 
bandwidth employs source load coupling to generate a pair of 
transmission zeros which improves skirt selectivity. The filter 
was designed, optimized and fabricated on Rogers 6010 LM 
substrate with a relative dielectric constant of 10.2 and 
substrate thickness of 1.27 mm, where the final coupling 
coefficients are given by (6). The layout of the filter is 
illustrated in Fig. 3 (c). The S-parameters of the simulated and 
measured filter response are compared in Fig. 4. The measured 
mid-band insertion loss of the filter was around 1.20 dB. 
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                              (a)                                                    (b) 

 

(c) 

Fig. 3 (a) Resonator arrangement and coupling mechanism of quadruplet filter 
section (b) Photograph of fabricated filter (c) Layout of fabricated parallel 
coupled quadruplet filter with dimensions in mm (via diameter = 0.6 mm). 
 

 
 
Fig. 4 Comparison of simulated and measured response of microstrip fourth 
order source-load coupled bandpass filter. 
 

IV.  CONCLUSION 

 This paper has presented two highly compact filter 
configurations with concentric open-loop resonators. A 
description of the filter configurations was supported with 
filter examples for illustration and verification. The trisection 
filter and the fourth order filter were designed and fabricated 
at a centre frequency of 1.0 GHz with a measured passband 
insertion loss of 0.83 dB and 1.20 dB respectively. Each filter 
occupied an area of just 18 mm by 18 mm. Moreover, these 
filter sections may be readily cascaded to produce compact 
high order filters with low loss. 
 The trisection filter occupies approximately a third of the 
circuit area relative to a regular single mode open-loop 
configuration [6]. The third order filter proposed in [10] 
occupies roughly the same area as the trisection filters 
proposed here. However, the filters proposed in this paper 
achieve a much wider stop-band. Relative to the triple order 
bandpass filter [11], this configuration is 66 % more compact 
due to the utilization of the concentric resonator. The 
quadruplet filter configuration occupies roughly 50% of the 
area relative to filters described in [1] and [2].   
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Compact Second-Order Highly Linear
Varactor-Tuned Dual-Mode Filters

With Constant Bandwidth
Lakshman Athukorala, Student Member, IEEE, and Djuradj Budimir, Senior Member, IEEE

Abstract—This paper presents a compact highly linear tunable
second-order quasi-elliptic filter with constant 3-dB bandwidth.
The proposed filter is thoroughly analyzed to clearly describe the
filter equivalent circuit and the tuning mechanism involved. In
addition, the tunable resonator configuration employed is shown
to improve filter linearity, especially for low bias voltages where
distortion is normally stronger. A quasi-elliptic tunable filter
was designed, built, and tested for illustration and verification.
With a 3-dB bandwidth variation of only 4.6%, the filter had a
frequency coverage from 1.45 to 1.96 GHz, an insertion loss better
than 2.5 dB, and measured ���� �� dBm throughout. The
experimental results are in excellent agreement to theory and
simulations.

Index Terms—Constant bandwidth, distortion, dual mode, mi-
crostrip filter, tunable filter, varactor.

I. INTRODUCTION

T UNABLE bandpass filters are in increasing demand in
current and emerging multifunctional RF and microwave

wireless systems. Typical applications of such filters include
multiband communication systems, where a single transceiver
may operate on multiple bands. Generally the channel band-
width may differ for each channel, but in some applications, it
may be identical.

Compactness, tuning range, and linearity are key perfor-
mance measures of tunable filters. Miniaturized filters are
always more practical in modern communication systems
where circuit space is very costly. Filter tuning range has a
direct impact on the range of services the system is able to
offer. Low signal distortion is a feature that is vital in filters
operating with high input powers.

Research into tunable RF filters is growing sharply and in-
cludes work presented in [1]–[20], where various degrees of tun-
ability have been quoted for various structures. A tunable filter
with 45% tuning range is presented in [2], but it consumes a rel-
atively large amount of circuit area. A tunable open-loop filter
with constant bandwidth is presented in [5] where a piezoelec-
tric transducer (PET) was used for tuning. Apparently, the PET
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27, 2011. Date of publication July 22, 2011; date of current version September
14, 2011.
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had little effect on the filter bandwidth that facilitated the de-
sign of the fixed-bandwidth tunable filter. However, only 10%
tunability was achieved due to limitations of the PET. Tunable
comb-line filters were first presented in [7], where 53% tun-
ability had been achieved, but with wide variation (12%) in ab-
solute bandwidth and high loss (6 dB).

In [13], a tunable filter is presented where an optimization
method was used to design coupling structures. However, this
approach cannot be adopted to design filters with prescribed
filtering functions. Tang et al. [15] have recently developed a
new constant bandwidth tunable dual-mode bandpass filter with
an excellent tuning range. The proposed filter also produces a
single transmission zero enhancing the skirt selectivity of the
filter, but it requires three identical varactors.

More recently, tunable filter linearity has also become a
point of interest. Peng et al. [3] have proposed a novel constant
bandwidth p-i-n diode based reconfigurable filter with improved
linearity, where the filter tuning range was quoted to be 35%
and a measured dBm. Although the losses are
low (1.7 dB), the filter consumes a relatively large circuit
area and does not allow continuous center frequency tuning.
A varactor diode based tunable second-order filter has been
presented in [16] with a tuning range of 35%, but with a
bandwidth variation of around 15% and measured third-order
intermodulation intercept point (IIP3) between 22–42 dBm.
This kind of IIP3 variation is very typical of varactor tuned
circuits where the varactor linearity improves with increasing
reverse voltage.

This paper presents a novel highly linear second-order
varactor-tuned filter with constant 3-dB bandwidth. Filter
equivalent circuits are presented and thoroughly analyzed to
describe the variation and control of coupling coefficients
and quality factor. A resonator configuration that provides an
improvement in linearity is described clearly. It is shown that
varactor based tunable filters employing such resonators do not
suffer from high distortion normally experienced at low bias
voltages. Furthermore, it is shown that there is considerable lin-
earity improvement even for higher bias voltages. These filters
have the advantage of simultaneously achieving a high tuning
range (30%), very low bandwidth variation (less than 4.6%),
excellent skirt selectivity, high linearity ( dBm), and
a highly compact design. The proposed filters only require two
varactor diodes with common bias voltage and do not require
additional tuning elements for control of coupling coefficients
or the input/output quality factor. As a result, these filters are
simple to design and exhibit relatively low loss.

0018-9480/$26.00 © 2011 IEEE



ATHUKORALA AND BUDIMIR: COMPACT SECOND-ORDER HIGHLY LINEAR VARACTOR-TUNED DUAL-MODE FILTERS 2215

Fig. 1. Layout of dual-mode second-order tunable filter.

Fig. 2. Equivalent frequency-dependent coupled line model.

II. ANALYSIS OF PROPOSED FILTER

Illustrated in Fig. 1 is the layout of the proposed second-order
dual-mode tunable filter excited through 50- ports labeled 1
and 2. The filter is composed of a pair of coupled lines with
even- and odd-mode impedances and , respectively, and
electrical length . These are connected to the ports via induc-
tive lines with impedance . The end of each coupled line is
extended to produce capacitive coupling between the source and
load, where is the corresponding capacitance. A second res-
onance arises due to the short-circuited stub with characteristic
impedance [22]. Two identical varactor diodes are required
for tuning and the simple biasing circuit shown is adequate for
achieving sufficient isolation.

When designing the filter, the varactor capacitance is assumed
to be a maximum. In this state, the filter will operate at the lowest
frequency band. Reducing the varactor capacitance causes the
center frequency of the filter to increase. However, all electrical
lengths in the following analysis would be referenced to the
lowest operational center frequency for consistency. At ,
the electrical lengths of the lines are approximately
and . The tuning range of the filter is such that
the highest passband center frequency is around 1.5 .

Sections of the proposed tunable dual-mode filter will be
described and analyzed in this section. For relatively weak
source–load coupling, has a negligible impact on the
filter passband performance, and therefore, the analysis of
transmission zeros will be deferred to a later section.

Firstly, the coupled lines may be treated as an impedance in-
verter with series reactance functions, as in Fig. 2, where
is the driving point impedance of the coupled lines [22]. For a
fixed narrowband filter, the inverter may be regarded as a fre-
quency-independent element. In contrast, although a tunable
filter may have a narrow passband, it shifts across a relatively
wide frequency range and it is, therefore, necessary to consider
the frequency dependence of the inverter. The frequency depen-
dence of the coupled line can be incorporated into the model by
employing (1) and (2).

The remaining elements of the filter consisting of transmis-
sion lines with characteristic impedance and and
varactor capacitance can be redrawn as Fig. 3(a). If short-cir-
cuited stub is now used to realize an impedance inverter, the

Fig. 3. (a) Filter equivalent circuit without coupled lines. (b) Filter circuit with
extracted impedance inverter. (c) Effective resonator employed in the filter.

equivalent circuit may be drawn as Fig. 3(b), where the inverter
impedance is given by (3). Fig. 3(c) illustrates the effective
resonator employed in the filter. Near the resonant frequency,
this structure can be shown to behave as a series resonator with
effective inductance and capacitance . Although these
elements vary with filter midband frequency, they may be as-
sumed constant within the passband of a narrowband filter. The
varactor capacitance only alters the effective capacitance, and
therefore, allows the resonators to be tuned

(1)

(2)

(3)

Constant bandwidth tunability demands firstly that the input/
output quality factor be linear with frequency at least within
the filter tuning range. Expressed mathematically, this may be
written as (4), where is a constant and is the angular mid-
band frequency. Secondly, the pole separation, , must be
constant, again at least throughout the tuning range. For narrow-
band two-pole filters, it may be shown that the pole separation is
expressed by (5), where and are the upper and lower pole
angular frequencies, respectively. For constant pole separation,
this ratio must be fixed.

The effective resonator inductance, , is a key design pa-
rameter in that it not only is related to the factor, but also deter-
mines the pole separation. This inductance may be found from
(6), where is the input impedance of the resonator of
Fig. 3(c) at angular frequency with port 2 grounded

(4)

(5)
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Fig. 4. Equivalent circuit for extracting input/output quality factor.

Fig. 5. (a) Variation of � against frequency for various inductances � ,
where � � � � ���� � � �� � � � � � � � �� � � � ��� � � �

� � ��	� � � ��	where all electrical lengths are referenced to 1.4 GHz.
(b) Variation of pole separation against frequency for various ratios � , where
� � � � 
� .

(6)

(7)

The circuit in Fig. 4, obtained through narrowband approxi-
mation, may be used to determine the input/output factor of
the filter. It is possible to show that the factor may be de-
scribed by (4), where is given by (7). Notice that the factor
is not a function of the varactor capacitance since the inverter

has transformed this into a shunt inductance. However, due
to the frequency-dependent feeding of the resonant tank and due
to the frequency-dependent nature of the effective resonator in-
ductance , the factor is generally nonlinear. To improve
linearity, it is necessary to restrict the frequency variation of

, which can be achieved by selecting an appropriate value for
. Fig. 5(a) plots against resonant frequency for various

values of to illustrate the relationship graphically. The
center frequency is increased by lowering the varactor capac-
itance from around 20 to 2 pF.

With an almost linear factor, the second necessary con-
dition for ensuring constant bandwidth tuning is constant pole
separation. As indicated by (5), the pole separation is a func-
tion of the effective resonator inductance, as well as the inverter
impedance . Due to the distributed nature of the resonators,
the effective inductance seen by the inverter is slightly dif-
ferent to that defined by (6). It can be shown that the effective
inductance seen by is given by (8) as follows, where
is used instead and port 1 is grounded:

(8)

It can be shown that selecting an appropriate ratio of
to can be employed to control in such a way as to com-
pensate for the frequency deviation of , hence enforcing the
ratio in (5) to be near constant. Fig. 5(b) plots the pole separa-
tion against resonant frequency for various values of ratio .
Although a perfectly constant pole separation is not achieved,
its variation can be restricted considerably.

The selectivity of the proposed filter is greatly enhanced
by the pair of transmission zeros generated by the capacitive
source–load coupling illustrated in Fig. 1. The zero condi-
tions may be expressed approximately as the first two roots of
(9) where and . It is possible
to place the transmission zeros almost independently of the
passband response for weak source–load coupling.

This section has presented an accurate filter model, which
was analyzed to identify the key parameters that affected tun-
ability and bandwidth of the proposed dual-mode tunable filter.
Methods of correcting the factor and fixing the pole separa-
tion have been described. Finally, a formula to obtain the trans-
mission zero frequencies has been presented.

The methods proposed in this section were employed in de-
signing the filter presented in Section IV. For brevity, the final
filter parameters are given as nH and

(9)

III. FILTER DISTORTION ANALYSIS

The varactor depletion capacitance, , is a function of the
applied reverse bias voltage, , as well as the RF signal, ,
as defined by (10), where is the junction potential, is the
junction grading coefficient, and is the zero bias capaci-
tance. The modulation of the depletion capacitance from the RF
signal introduces distortion [23]. The most detrimental distor-
tion products are caused by third-order intermodulation (IM3)
and will appear within the filter passband.

Fundamentally, for a given input power, the amount of distor-
tion generated from a varactor diode is proportional to the RF
signal voltage across it. The proposed filter is able to achieve
higher linearity than most varactor tuned filters, especially for
low bias voltages since the RF voltage across the varactor diode
is lower for a given input power.

A simple first-order filter is analyzed to illustrate the improve-
ment in linearity. Fig. 6 compares the proposed resonator to a
typical varactor tuned series transmission line resonator, where

refers to the linear capacitance of the varactor. The capaci-
tance of a typical tunable transmission line resonator arises from
the varactor capacitance alone. In contrast, the proposed res-
onator has a fixed capacitance, , arising from , which is
in series with the varactor capacitance [22]. This series con-
nection of the two capacitances effectively acts as a capacitive
potential divider. The reduced overall RF voltage across the var-
actor diode thus gives better linearity for the same input power.

Generally, varactor diodes are mostly nonlinear under low
bias voltages due to the RF modulation of the bias voltage being
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Fig. 6. (a) Regular series transmission line tunable resonator. Model of first-
order filter with: (b) regular tunable resonator and (c) proposed tunable res-
onator.

more significant and also due to the more sensitive nature of
the capacitance at lower bias voltages. The advantage gained
with the proposed resonator is that the action of the potential
divider is most effective in suppressing distortion for lower bias
voltages, where the distortion is normally higher

(10)

(11)

For a given filter specification, and must be identical
for the filters in Fig. 6(b) and (c). Therefore, the effect of the
potential divider on IM3 products is analyzed using the Volterra
series. The first-, second-, and third-order Volterra kernels de-
scribing the signals across the varactor of Fig. 6(c), given by
(12)–(14), respectively, are shown at the bottom of this page.
The varactor capacitance coefficients is given by (15) as fol-
lows:

(15)

where , are such that the RF charge, , stored
in the varactor can be described by (18), where

(16)

(17)

(18)

Fig. 7. Calculated IM3 powers against potential divider factor for various input
powers, where tone spacing is 100 kHz, filter center frequency is 1.5 GHz,
� � ��� nH, � � ��� pF, � � ��� fF, and � � �� fF.

and . Fig. 7 plots the calculated IM3 product
power for a given and for a range of potential divider
factors , where . The circuit of Fig. 6(b)
corresponds to , where and corresponds
to the circuit of Fig. 6(c) under a range of combinations of
and , resulting in the same , so as to maintain the same
resonant frequency. Improvement to linearity is proportional to

.
Improvement to linearity, however, comes at a price. The se-

ries connected capacitance effectively restricts the range of
effective capacitance values that may be realized with the tun-
able varactor. This directly translates to the restriction of the
filter tuning range to that mentioned in Section II. Fig. 8 plots
the tradeoff between the linearity and tuning range for the filter,
where 100% tuning range corresponds to the case with no fixed
capacitance (i.e., ). These results were obtained with
the varactor diode model BB179 from NXP, with a capacitance
tuning range from 20 to 2 pF for bias voltages from 0 to 30 V.
Key varactor parameters such as and were found to
be 1.38 V, 27.7 pF, and 0.7, respectively, from the spice model
for the varactor obtained from NXP.1

It may be necessary to better visualize the effectiveness of this
technique in practical filters, where would be fixed. The lin-
earity and will then directly depend on the varactor biasing
voltage, and hence, the resonant frequency. As an illustrative
example, the IM3 response of circuits in Fig. 6 are compared

1NXP, USA, BB179 Varactor Diode SPICE Model, 2011. [Online]. Available:
http://www.nxp.com/models/spicespar/data/BB179.html

(12)

(13)

(14)
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Fig. 8. Tradeoff between linearity and filter tuning range, where the �-axis is
the filter center frequency in gigahertz, the �-axis is the available tuning range
as a percentage, and the �-axis is IM3 power in dBm and � � ��� nH. 100%
tuning range corresponds to � � �.

Fig. 9. Comparison of calculated and simulated IM3 power against filter reso-
nant frequency for a tone spacing of 100 kHz and � �� � �� dBm (for varactor
diode model BB179 from NXP).

against resonant frequency in Fig. 9 for the following compo-
nent values: nH and pF, where the BB179
varactor diode is employed as the tuning element.

It is very clear from Fig. 9 that a typical varactor based tunable
filter would suffer from nonlinearity effects mostly for low
bias voltages, which correspond to operation at lower resonant
frequencies. With increasing bias voltage, as expected, the IM3
distortion product power diminishes. In contrast, under the
proposed configuration, the intermodulation distortion product
power is smallest for lower bias voltages, where is higher
and gradually increases with resonant frequency as falls.
Overall, IM3 power has been suppressed by at least 25 dB
for lower resonant frequencies and around 8 dB for higher
frequencies.

IV. EXPERIMENT AND VERIFICATION

To demonstrate the performance of the proposed compact
tunable highly linear bandpass filter, a microstrip prototype filter

Fig. 10. (a) and (b) Simulated and measured �-parameters of second-order
highly linear tunable filter for bias voltages of: 1, 7, 15, 30 V (from left to right).
(c) Measured filter bandwidth and insertion loss across tuning range. (d) Ex-
ternal 	 factor of filter and varactor 	 against center frequency.

was designed and fabricated to operate between frequencies
from 1.5 to 2.0 GHz with a bandwidth of 220 MHz. The cir-
cuit was constructed on a Rogers 6010(LM) substrate with a
relative dielectric constant of 10.2 and a substrate thickness of
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Fig. 11. Photograph of fabricated filter (metric ruler). Reference planes are lo-
cated at the SMA tips.

Fig. 12. Output power of fundamental tones and IM3 product against input
power under a bias voltage of 1 V and tone separation of 100 kHz.

Fig. 13. Measured and simulated IIP3 against filter center frequency for tone
separation of 100 kHz.

1.27 mm. Very good agreement is observed between the mea-
sured and simulated -parameters of the filter, which are illus-
trated in Fig. 10. Simulations assumed a constant varactor re-
sistance of 0.6 to model the losses. The filter insertion loss
varied from around 2.4 dB to around 1.6 dB. The measured
tuning range was 1.45–1.96 GHz and the 3-dB bandwidth was
found to increase from approximately 210 MHz at 1.45 GHz to
220 MHz at 1.96 GHz, as illustrated in Fig. 10(c). A photograph
of the filter is shown in Fig. 11, where the filter circuit size was
29 mm 9.8 mm.

Fig. 12 plots the input power against the output power for the
filter with a bias voltage of 1 V and a tone spacing of 100 kHz.
The measured third-order input and output referred intercept
points are as high as 43 and 40 dBm, respectively, even under

this low bias voltage. Fig. 13 plots the measured input referred
intercept point against the filter center frequency. It can be ob-
served that linearity is best at around 1.7 GHz. Overall, the filter
has excellent linearity.

V. CONCLUSION

This paper has presented a compact highly linear fixed
bandwidth tunable filter for modern communications sys-
tems. Methods to obtain a near linear factor and to achieve
near-constant pole separation have been described. A pair of
transmission zeros generated from the source–load coupling
greatly enhances the skirt selectivity of the filter. The resonator
configuration employed is shown to improve filter linearity
drastically, especially for low bias voltages, where distortion is
normally strongest. A filter was fabricated for demonstration
and verification. The filter tuning range was observed to be
from 1.45 to 1.96 GHz (30%) with a 3-dB bandwidth vari-
ation from 210 MHz at 1.45 GHz to 220 MHz at 1.96 GHz
corresponding to only 4.6% total bandwidth deviation. Addi-
tionally, it is shown that the filter exhibits an IIP3 of better than
43 dBm throughout the entire filter tuning range. The proposed
dual-mode filters also have their first spurious response at
rather than at so they suffer less from adjacent channel
interference when being tuned, especially toward higher fre-
quency bands [22]. Moreover, they are also relatively simple
and inexpensive to fabricate.
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Design of Compact Dual-Mode Microstrip Filters
Lakshman Athukorala, Student Member, IEEE, and Djuradj Budimir, Senior Member, IEEE

Abstract—This paper presents a novel filter design technique for
the compact microstrip dual-mode filters. An equivalent circuit for
the single dual-mode filter section is derived to show that a single
unit behaves as a pair of coupled synchronously tuned single-mode
resonators. The equivalent circuit was linked to the inverter-cou-
pled bandpass prototype network to allow higher order filters to
be realized. A complete design example (from design to realiza-
tion) of a fourth-order Chebyshev bandpass filter is presented. It
is shown that the dual-mode resonator may be employed to de-
sign cross-coupled filters with finite frequency zeros. Two filters
are designed using optimized coupling matrix method, fabricated
and tested. Experimental and simulation results are presented to
validate the argument. Finally, it is shown that more compactness
may be achieved with narrowband filters by employing folded res-
onators.

Index Terms—Compact filters, dual-mode filters, microstrip fil-
ters, microstrip resonators.

I. INTRODUCTION

M ICROSTRIP bandpass filters have gained popularity
due to size, cost, weight, and fabrication advantages

and find extensive applications in low-power to medium-power
RF transceivers. High-performance bandpass filters having
a low insertion loss, compact size, wide stopband, and high
selectivity are essential for modern communication systems.

Various approaches to microstrip filter miniaturization are
available through recent research. Some popular miniaturiza-
tion methods reported in literature include the use of slow-wave
resonators [1], multilayer filters [2], meandering [3], high-di-
electric-constant substrates [4], lumped-element filters [4], and
dual-mode resonators [5]–[9]. Slow-wave designs are not so
practical for high fractional bandwidths although they offer
excellent wideband response. Multilayer structures introduce
complexity to the fabrication process while realizing that
lumped elements may not always be practical.

Dual-mode resonator-based filters are naturally compact and
generally offer the same fabrication simplicity as a regular mi-
crostrip filter. A number of highly compact dual-mode filters
found in recent research include the open-loop [5], circular-ring
[6], and square-loop [7] structures.

There are only a few reports on the design of high-order dual-
mode filters in literature [8], especially using 1-D resonators.

Manuscript received June 03, 2010; revised July 28, 2010; accepted August
11, 2010. Date of publication October 18, 2010; date of current version
November 12, 2010.
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Fig. 1. Layout of a dual-mode filter.

A popular method of designing higher order filters is to
couple dual-mode sections with nonresonating nodes between
resonators [5]. However, this approach greatly compromises
the compactness of the filter.

Single-mode filters such as the interdigital filter and combline
filters offer excellent size (area) reduction as they employ
quarter-wavelength resonators. However, they extend up to
in a single dimension, and this may not always be acceptable
for a given frequency and application.

This paper presents a novel filter design technique for
dual-mode filters based on the compact open-loop dual-mode
resonator [9]. An equivalent lumped circuit model is presented.
An effective method of realizing inverter-coupled bandpass pro-
totype filters using the dual-mode resonator without employing
nonresonating nodes is described. This allows for compact,
low-loss, and high-performance filters to be designed rapidly.
Selective filters with finite frequency zeros are proposed next.
Two different configurations are presented as examples that
produce two and four transmission zeros. Finally, highly com-
pact second-order filters with improved stop-band are presented
for applications where space is at a premium.

II. DUAL-MODE FILTER MODEL

The dual-mode filter shown in Fig. 1 is excited via parallel
coupling and will produce a second-order response. The feeding
to the coupled lines are usually 50- lines in the case of simple
second-order filters, but higher order filters may need additional
inductances prior to the input and output coupled lines for there
to be a good match at the center frequency. The general layout
is similar to a regular open-loop filter except for the presence of
the short-circuited stub in the symmetry plane of the structure.
This additional element is responsible for producing dual-mode
behavior.

We present here the derivation of an equivalent model for
the above structure in order to facilitate filter design. A pair of
coupled lines may be described with their impedance matrix

0018-9480/$26.00 © 2010 IEEE
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Fig. 2. (a) Coupled lines with stubs loading ports 2 and 4, (b) T-equivalent
circuit. (c) Proposed equivalent model.

elements given by

(1)

(2)

(3)

(4)

where and denote the modal impedances [15].
The loading stub of impedance not only allows for a better

match of the filter at resonance but also allows higher order fil-
ters to have better symmetry and, thus, simplifies filter design.

The impedance matrix for the coupled lines loaded asym-
metrically with open-circuited stubs of length , as shown in
Fig. 2(a), may be summarized as

(5)

(6)

(7)

Its T-equivalent circuit is shown in Fig. 2(b).

Fig. 3. Driving-point and transfer impedances of stub-loaded coupled lines and
proposed model and their phase information.

Extraction of an impedance inverter from Fig. 2(b) leads to
the representation in Fig. 2(c), where is modeled with in-
ductance and capacitance . When is zero, the circuit
corresponds to a parallel coupled filter section, in which case a
transmission-line model instead of a circuit model could have
been used.

It is possible to determine and , respectively, from

(8)

(9)

where is the driving-point impedance at angular
frequency . These elements will accurately describe the
driving-point impedance between the two chosen angular
frequencies and . These angular frequencies should
therefore be chosen such that is less than the lower passband
edge frequency and is higher than the upper passband edge
frequency to ensure the validity of the model. The impedance
of the inverter may be determined by evaluating (6) at the
midband frequency of the filter.

The impedance matrix elements of the circuit and model are
compared in Fig. 3, where , , ,

, and , at 1.5 GHz. The model parameters
were evaluated at frequencies 1 and 2 GHz. There is excellent
agreement between the circuit and model for . The frequency
dependence of is not modeled and causes the discrepancy
in Fig. 3(b). However, the variation in is small ( 10%) over
the passband of filters with fractional bandwidths less than 25%
and does not cause a significant error.
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Fig. 4. Equivalent circuit for: (a) single dual-mode filter, (b) single dual-mode
filter section with extracted inverter, and (c) for asymmetrically coupled dual-
mode filter sections.

The lines with characteristic impedance and in Fig. 1
mainly serve as inductances, and these corresponding induc-
tances and may be determined from

(10)

(11)

where is the midband frequency of the filter.
The complete equivalent circuit for the filter in Fig. 1 may

now be as depicted shown in Fig. 4(a), where . It
is possible to further extract an impedance inverter from this
circuit, which ultimately yields the model in Fig. 4(b), where

[determined from (6)] and is given by

(12)

(13)

Since and do not resonate, Fig. 4(b) corresponds to a
filter comprised of a pair of coupled identical single-order res-
onators, each resonating at a natural angular frequency given
by (12). From Fig. 4(c), it may be seen that an asymmetrically
coupled cascade of such dual-mode filter sections resembles an
inverter-coupled bandpass prototype network.

A filter design method is outlined in Fig. 5. A suitable value
for is selected initially. Fixing a value for effectively sets
an identical capacitance for all resonators and thus allows
the total inductance to be deter-
mined. Parameter must be identical for all coupled lines used
in the filter to allow all resonators to be synchronously tuned.
The value of should be chosen to allow the coupled lines to
be most conveniently realized in a given substrate. can be
selected independently of . It is also convenient to set to
around 45 and to about 15 . Although and depend
also on the relative difference in the modal impedances of the
coupled lines (i.e., ), this dependency is quite small and
can be neglected for narrowband filters.

Fig. 5. Direct-coupled filter design flowchart.

Impedance inverter parameters can be evaluated from

(14)

(15)

where is the fractional bandwidth of the filter and is the
source/load impedance. The element values may be from a
Butterworth or Chebyshev prototype circuit.

The input and output of the filter are coupled through ele-
ments and as in Fig. 4(b), which degrades the coupling.
To minimize degradation, the total series inductance is increased
to generate a transmission pole at the filter midband frequency.
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Fig. 6. Circuit simulation results for designed filter before and after tuning.

This is achieved by having inductive feed lines of inductance
equal to , as depicted in Fig. 4(c).

The limitation of the proposed model arises from the assump-
tion that the impedance inverters are frequency-independent.
Therefore, the accuracy of the equivalent model deteriorates
gradually for filters with increasing fractional bandwidths
(FBWs). For nonnarrowband filters (i.e., ), some
tuning may be necessary to refine the response.

The design procedure is greatly facilitated with the aid of a
computer. The filters presented in this paper were designed by
employing a MATLAB program, which allowed all of the filter
parameters to be determined relatively quickly given the proto-
type element values. In Section III, we will demonstrate the filter
design procedure by presenting a full design example from pro-
totype to realization.

III. DIRECT-COUPLED FILTER DESIGN EXAMPLE

Here, we demonstrates a fourth-order Chebyshev filter
designed with two direct-coupled dual-mode resonators. The
filter must have a passband at 1.5 GHz with passband ripple of
0.01 dB. An FBW of 25% was required. The prototype element
values were: , , , ,

, and .
The selected value of was 175 for all coupled lines while

82 , , and at 1.5 GHz. With these
values, 3.85 nH, and 8.91 nH.
The impedance inverter parameters were then determined to be:

, , and .
was also calculated from the and impedance in-

verter value to be 1.61 nH, and , therefore, is 3.45 nH. Setting
and at the center frequency allows and

to be determined as 95 and 56 . The modal impedances of
the input/output coupled lines were determined from (6) to be

120 and 55 and those of the inter-resonator
coupled lines were 100 and 75 .

Finally, the feed lines to the filter must have an inductance of
5.06 nH ; as mentioned earlier, this was realized by
employing a 110- line of electrical length 25 . Fig. 6 illustrates
the initial and tuned response. Fine tuning the design lead to
following changes: 105 , , and the inductive
feed line impedance was increased to 125 .

The variation of impedance of the and inverters in
the filter (modeled by the T-connected inductors and )
is responsible for the error in the initial response. varied by
around 25% across the passband, while (impedance
inverters due to coupled lines) varied only by 10%. Therefore,

had to be increased while decreasing in order to optimize
without altering the center frequency of the filter.

The filter was fabricated on RT Duroid 5880 with
and 1.575 mm. A photograph of the fabricated filter, its
layout, and a comparison between the measured and full-wave
EM simulated results are illustrated in Fig. 7.

The measured performance of the filter is in very good agree-
ment with the simulated results. A passband insertion loss of
around 0.66 dB was observed at the center frequency of the
filter. This may be mainly attributed to ohmic loss. The mea-
sured 3-dB bandwidth was approximately 380 MHz, which cor-
responds to an FBW of 25.33%. The first harmonic response is
roughly at , which is another desirable characteristic of the
filter. Due to fabrication errors, the return loss is only 15 dB.

This compact filter occupies an area of approximately 36 mm
23 mm. As well as having dual-mode behavior, each res-

onator corresponds to a -type resonator, and these features
make this resonator a very suitable candidate for compact filter
designs.

IV. FILTERS WITH FINITE ZEROS

More selective filter configurations may be developed with
the proposed dual-mode filter with the introduction of cross
coupling. Asymmetric resonators are employed to reduce the
strength of the coupling, in which case this coupling may
be negligible. Symmetric resonators may be used but the
coupling must be considered when performing optimization.

The sign of the cross coupling is important in order to realize
finite zeros. With reference to Fig. 4(b), it is important to note
that coupling generated from asymmetrically coupled sections
of line and introduce a phase shift, while cou-
pling generated from the short-circuited stub introduce a

phase shift.
Fig. 8 illustrates two configurations for the design of fourth-

order cross-coupled filters. The coupling scheme in Fig. 8(c) ap-
plies to both structures, where the solid lines denote direct cou-
pling and the dotted lines denote cross coupling. In both config-
urations, and generate a phase shift while
and generate a shift. and have the same sign
in each structure so the cross coupling does not generate fi-
nite transmission zeros. In contrast, the and coupling
is oppositely signed in each case and produce finite zeros. The
structure in Fig. 8(a) generates a single pair of zeros at finite
frequencies while the structure in Fig. 8(b) generates two pairs.
Source-load coupled filters are explored in more detail in [10].

The design of such cross-coupled filters may be performed by
adopting the approach described in [11]. Only a brief descrip-
tion of the method is described here. The coupling coefficients
are first determined either through optimization or through an
equivalent prototype circuit. Coupling coefficients are then ex-
tracted from full-wave EM simulations for various gaps between
resonators. Finally, the desired filter coupling coefficients are re-
alized by setting the corresponding gaps between the resonators.
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Fig. 7. (a) Layout of filter with dimensions in mm. (b) Photograph of filter.
(c) Comparison of full-wave EM simulated and measured responses. (d) Mea-
sured wideband response and group delay of filter.

However, with dual-mode resonators, some coupling such as
and in Fig. 8 can actually be realized with the aid of

(13).
A selective filter based on the configuration in Fig. 8(a) was

designed and fabricated. The optimized normalized coupling
coefficients are as follows: ,

Fig. 8. (a) Magnetically coupled fourth-order filter. (b) Electrically coupled
fourth-order filter. (c) Coupling scheme.

Fig. 9. Comparison of ideal response with EM simulation for cross-coupled
filter of the structure in Fig. 8(a).

, , and
. The factor was 1.59.

The design method mentioned earlier was employed together
with these optimized values to design the filter at 2.5 GHz. Fig. 9
is a comparison of the full-wave EM simulated results with the
ideal response obtained from the coupling matrix. The filter was
fabricated on RT Duroid 5880 substrate with and

1.575 mm. Fig. 10(a) compares the simulated results with
measurements. A passband insertion loss of between 0.8–1 dB
was observed in the measurements while the slight frequency
shift may be attributed to various tolerances. Generally, there
is very good agreement between the ideal, simulated, and mea-
sured results. The overall size of the filter was 27 mm 17 mm.

The structure in Fig. 8(b) produces two pairs of transmission
zeros due to a more complex source-load coupling mechanism
as illustrated in Fig. 11, where the filter block is comprised of
the circuit in Fig. 4(c). Although the coupling is present
in both structures depicted in Fig. 8, the coupling is only
present in the second structure.

A fourth-order filter based on Fig. 8(b) was designed at
2.8 GHz with the following inverter impedances: ,

, , , and
. Fig. 12(b) compares the ideal response ob-

tained from the coupling matrix with the full-wave simulated
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Fig. 10. (a) Comparison of EM simulated and measured response of filter.
(b) Photograph of the fabricated filter.

Fig. 11. Source-load coupling for the structure in Fig. 8(b).

response. There is good agreement. Discrepancies are mainly
due to parasitic coupling.

Although only fourth-order cross-coupled filters are pre-
sented here, higher order cross-coupled filters may be realized
with dual-mode resonators to satisfy more stringent specifi-
cations. Moreover, higher order cross-coupled filters may be
realized with a mixture of single- and dual-mode resonators to
improve practicality and achieve compactness.

V. NARROWBAND FILTERS

The bandwidth of these filters depends mainly on the gap be-
tween the I/O coupled lines and the length of these lines. For a
narrowband filter, the I/O coupling strength need not be as large
and therefore allows the reduction of either the I/O coupling gap

Fig. 12. (a) Layout of the filter with dimensions in mm. (b) Comparison of
ideal and EM simulated responses of the filter.

Fig. 13. Layout of narrowband dual-mode filter with dimensions in mm.

or the length of the I/O coupled lines. By performing the latter,
filter size can be reduced, but the reduction in length here must
be compensated by elongating the rest of the resonator (to main-
tain the same center frequency). To avoid an increase in size, the
extensions are folded into the resonator, as illustrated in Fig. 13.
The coupling between the folded open lines has little influence
on the bandwidth.

The modeling method illustrated earlier may be applied to the
narrowband filter above to extract the corresponding equivalent
circuit parameters. It is then possible, as before, to obtain filter
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Fig. 14. Splitting of transmission zeros for various widths� .

design equations, which will facilitate higher order filter design
problems. Here, however, we will pay attention to second-order
filters and present a filter example that demonstrates perfor-
mance and compactness.

An interesting characteristic of this second-order filter is that
it may be designed to have transmission zeros at finite frequen-
cies. The lines folded into the filter form a set of coupled lines.
Assuming that there is no coupling between these lines, there
will be exactly one useful transmission zero generated in the
upper stopband (TEM approximation). This occurs when is
90 . When there is coupling between the lines, the transmission
zero splits into two. The split widens with increased coupling
strength, and Fig. 14 illustrates the split between the two zeros
for different gap widths.

This coupling, however, also affects the odd-mode resonance
and, therefore, does not allow the zeros to be set independently.
Nevertheless, these zeros will significantly improve the perfor-
mance of the second-order compact filter, making it a suitable
candidate where space is at a premium.

A narrowband second bandpass filter with a center frequency
of 1.65 GHz and a fractional bandwidth of 13% was designed
and fabricated to illustrate compactness and performance. The
filter was fabricated on RT Duroid 5880 with and
1.575 mm. Fig. 13 shows the filter dimensions in millimeters,
while Fig. 15 illustrates the simulated and measured results.

The passband insertion loss of the fabricated filter was ap-
proximately 0.7 dB. A slight frequency shift was observed in
the measured passband, and this may be due to the various toler-
ances involved. The two transmission zeros closest to the pass-
band are produced as a result of coupling between the folded
arms. As a result, the first spurious response of the filter occurs
roughly at .

The dimensions of this filter are 15.3 mm 9.9 mm. This
is equivalent to a -type resonator and is 64% more com-
pact compared with a regular open-loop filter, which is around
37% more compact than the filters proposed in [5] and [12].
More miniaturization may be achieved for filters with lower
fractional bandwidths since the required input and output cou-
pling strength is even lower.

Fig. 15. Comparison of simulated and measured results for: (a) filter passband
and (b) filter stopband.

VI. CONCLUSION

This paper presented several filter implementation techniques
for the compact dual-mode open-loop resonator. First, an accu-
rate equivalent model for a single dual-mode section was pre-
sented to illustrate the relationship between the two degenerate
modes within a single unit. This was then extended to illustrate
how an all-pole filter may be constructed from asymmetrically
coupled dual-mode resonators without a need for nonresonating
nodes. A clear link to the inverter coupled bandpass filter proto-
type was provided so as to allow prototype filters to be realized
with ease. An example was provided to demonstrate the design
process. Experimental results were in very good agreement with
both design specification and simulated results. Cross-coupled
filters were then discussed, and focus was given to fourth-order
structures that produced two and four transmission zeros. A de-
sign procedure based on coupling coefficient extraction was out-
lined, and two cross-coupled filter examples were presented to
support the discussion. Finally, narrowband second-order filters
based on the dual-mode resonator were shown to be highly com-
pact while producing high stopband attenuation. Furthermore,
the first spurious response of these filters occurs at rather
than . They are also relatively simple and inexpensive to
fabricate.
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Compact Dual-Mode Open Loop
Microstrip Resonators and Filters

L. Athukorala, Student Member, IEEE, and D. Budimir, Senior Member, IEEE

Abstract—A novel compact microstrip dual-mode resonator and
filter are proposed. The characteristics of the dual mode resonator
are investigated. It is found that the filter response exhibits a de-
sirable stopband response where the first spurious passband nat-
urally occurs at ���. Finally, methods of miniaturizing such res-
onators and filters are discussed. The proposed structure was able
to achieve 60% size reduction.

Index Terms—Compact resonators, dual-mode filters,
dual-mode resonators, microstrip filters, microstrip resonators.

I. INTRODUCTION

M ICROSTRIP dual-mode bandpass filters (BPFs) and
diplexers are generally preferred and are used exten-

sively in low to medium power RF transceivers due to the
relative size reductions that can be obtained.

This letter presents a novel microstrip dual-mode open loop
resonator and filter. The proposed resonator may be designed as
necessary to yield to type resonators, where is
the guided wavelength. A filter example is provided for demon-
stration. This resonator/filter is more compact than the recent
dual-mode open loop resonator [1] and [10], circular ring [2],
square patch [3], square loop dual-mode resonators [4], [5] and
[9] and stepped impedance type resonators such as in [6] and
[8] and the filter proposed in [11].

The characteristics of the proposed resonator are presented in
Section II. Section III demonstrates an application. Conclusions
will be presented in Section IV.

II. PROPOSED DUAL-MODE RESONATOR

The proposed dual mode resonator shown in Fig. 1 is excited
via capacitive couplings by ports 1 and 2. The input feed lines
are kept at 50 . A single connection to ground is applied at the
symmetry plane of the resonator as shown to achieve dual mode
performance.

The line lengths , , and widths , and
determine the even and odd mode resonant frequencies. Modal
decomposition provides a deeper insight to the operation of the
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Fig. 1. Layout of proposed dual mode resonator.

Fig. 2. Equivalent odd and even mode resonators.

resonator. Illustrated in Fig. 2 are the corresponding even and
odd mode resonators assuming for now that .

The odd mode resonator is identical to that for the single
mode open-loop resonator since a virtual ground exists in the
symmetry plane. Therefore, the perturbation element has no ef-
fect on the odd mode. For the even mode resonance, the virtual
ground is replaced by a virtual open circuit. The perturbation
element is dissected and the width is split in half.

Both resonators here are of the type , where is the
guided wavelength. Dual modes result from the difference in
operating lengths of each resonator. The simplest case is when
both the equivalent resonators are of the uniform impedance
(UI) type where and . In this case, when

, the unit behaves as the conventional single mode open
loop resonator. However, when is non-zero, dual mode per-
formance can be observed. In the UI case, the respective reso-
nant frequencies can be calculated relatively simply with good
accuracy.

For the purpose of analysis, such a resonator was simulated
on a substrate of relative dielectric constant of 2.2 and thickness
0.51 mm. and to maintain
UIRs for both modes. Length of was 21 mm and the length

1531-1309/$26.00 © 2009 IEEE
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Fig. 3. Variation of modal resonant characteristics on � while � � ����.

of the perturbation element was varied to demonstrate the
variation in even mode resonance. Fig. 3 illustrates the results.

The odd mode remains unaffected due to the virtual ground
that forms in the symmetry plane while the even mode is directly
dependant on .

There are several methods that may be employed to minia-
turise the proposed resonator such as elongating the length of

and to use stepped impedance affects for miniaturisation.
Odd and even mode decomposition shows respective res-

onators to be of the form shown in Fig. 2 (assuming that
the width ). At their resonance, and

give rise to these conditions for the odd mode
resonator [7]:

(1)

and similarly for the even mode resonator

(2)

where , and refer to the electrical lengths of the sec-
tions of lengths , and respectively. and are the
characteristic impedances of the ordinary resonator section and
the added stepped impedance respectively. The lengths of the
odd and even mode resonators and are found to be
the following [7]:

(3)

(4)

where is the impedance ratio . Both of the modes will
be affected in an identical manner when the impedance ratio Rz
is varied. Fig. 4 illustrates the variation of resonator length for
various impedance ratios to illustrate size reduction.

The amount of size reduction that can be achieved is inversely
proportional to the impedance ratio Rz and is a function of .
Compact units may be obtained by having small impedance ra-
tios and having an appropriate .

Fig. 4. Resonator length with � for various values of ��.

Fig. 5. Splitting of tx. zeros with inter-arm gap � .

The resonator has two transmission zeros in the upper stop-
band which are illustrated in Fig. 5. The zeros are attributed to
the folded arms of the resonator, which generate a virtual earth
at the input/output coupling points. Tighter inter-arm coupling
widens the split between the zeros as shown.

III. DUAL MODE COMPACT BANDPASS FILTERS

A 2nd order BPF at 1.35 GHz was designed and fabricated.
Stepped impedance and folding had been employed to achieve
compactness and the overall filter size amounted to 15.8 mm
16.5 mm. This was equivalent to a type resonator and
achieves relative size reduction of 64% compared with an open
loop filter. This filter is also 37% more compact compared to that
proposed in [1] and [9] and 85% more compact than the filters in
[11]. The filter was designed on a substrate with relative dielec-
tric constant 2.2 and thickness 0.508 mm. The layout, response
and photograph of the filter are depicted in Fig. 6 and Fig. 7. The
FBW of this filter is approximately 5%. The wideband response
of the fabricated filter is illustrated in Fig. 8. The first spurious
response is at 4 GHz, which is at as expected. Simulations
and measurements are in good agreement. The higher insertion
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Fig. 6. Layout of Filter (all dimension in mm).

Fig. 7. (a) Measured and Simulated Response; (b) photograph of fabricated
filter.

loss observed in the measurement is due to tolerances involved
in the fabrication process which may be minimised with better
fabrication tools or by meticulous use of available tools.

IV. CONCLUSION

A compact dual mode open-loop resonator has been proposed
for filter applications. Operation of the dual mode resonator has
been investigated with an analysis of the even and odd mode
resonances. The resonator was shown to have two controllable

Fig. 8. Wideband response of filter.

transmission zeros on the upper stop-band. It was shown that
the filters derived from the proposed resonator are capable of
achieving significant size reduction.
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