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Abstract 

The aim of this study was to investigate the effects of sodium bicarbonate (NaHCO3) on 4 km 

cycling time trial (TT) performance when individualised to a predetermined time to peak blood 

bicarbonate (HCO3-). Eleven male trained cyclists volunteered for this study (height 1.82 ± 

0.80 m, body mass (BM) 86.4 ± 12.9 kg, age 32 ± 9 years, peak power output (PPO) 382 ± 22 

W). Two trials were initially conducted to identify time to peak HCO3- following both 0.2 g.kg-

1 BM (SBC2) and 0.3 g.kg-1 BM (SBC3) NaHCO3. Thereafter, on three separate occasions 

using a randomized, double-blind, crossover design, participants completed a 4 km TT 

following ingestion of either SBC2, SBC3, or a taste-matched placebo (PLA) containing 0.07 

g.kg-1 BM sodium chloride (NaCl) at the predetermined individual time to peak HCO3-. Both 

SBC2 (-8.3 ± 3.5 s; p <0.001, d =0.64) and SBC3 (-8.6 ± 5.4 s; p =0.003, d =0.66) reduced the 

time to complete the 4 km TT, with no difference between SBC conditions (mean difference = 

0.2 ± 0.2 s; p =0.87, d =0.02). These findings suggest trained cyclists may benefit from 

individualising NaHCO3 ingestion to time to peak HCO3- to enhance 4 km TT performance.  

Key words: buffering, metabolic alkalosis, dosage, individual pursuit 
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Introduction 1 

Competitive cycling is reflective of high-intensity exercise, particularly in events such as the 2 

individual and team pursuit, which entails completion of a 4 km time trial (TT). The typical 3 

duration of this event ranges between 4 (world record times) and 7 min (recreational riders), 4 

and because of this, a large energy supply is provided by anaerobic glycolysis (Gastin, 2001). 5 

With such a demand an exponential accumulation of metabolites including inorganic 6 

phosphate, hydrogen ions (H+), and lactate occurs (Westerblad et al., 2002; Allen et al., 2008). 7 

Due to the inverse relationship between H+ and pH, this process causes metabolic acidosis and 8 

results in a decrease in blood and muscle pH (Allen et al., 2008). Whilst there is no singular 9 

mechanism of peripheral fatigue, perturbations to acid base balance have been implicated to 10 

inhibit enzyme activity (e.g. glycogen phosphorylase) and calcium ion (Ca2+) cross-bridge 11 

binding (Fitts, 2008, 2016). Preventative strategies such as the ingestion of nutritional 12 

ergogenic aids may therefore be beneficial to mitigate such local acid-base disturbances in 13 

active musculature (Christensen, Shirai, Ritz, & Nordsborg, 2017; Matson & Tran, 1993).  14 

 15 

Ingestion of sodium bicarbonate (NaHCO3), a known buffering agent, can reinforce acid base 16 

balance by producing a state of metabolic alkalosis (increased pH and HCO3-) (McNamara & 17 

Worthley, 2001). Increases in pH typically result in a greater efflux of H+ and lactate from 18 

active musculature into extracellular compartments, due to a greater intra-extracellular 19 

gradient, whilst elevated HCO3- can be utilised to buffer against H+ within extracellular 20 

compartments (Bishop, Edge, Davis and Goodman, 2004). The resulting effect is more work 21 

completed during exercise of high intensities, which in turn, will improve exercise capacity or 22 

performance (Bishop et al., 2004; Marx et al., 2002). It is therefore important to heighten the 23 

level of blood alkalosis via changes in pH and HCO3- prior to exercise (Gough, Deb, Sparks & 24 

McNaughton, 2017a; Jones et al., 2016). Common practice is to prescribe NaHCO3 between a 25 
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set time of between 60 and 90 mins for all participants (Carr, Hopkins and Gore, 2011; Price 26 

and Singh, 2008; Siegler et al., 2009). In a recent study, however, it was reported time to peak 27 

HCO3- occurred between 40 and 125 min (Gough et al., 2017a), with a similar variation 28 

observed in other dose-response studies (Jones et al., 2016; Miller et al., 2016). Many 29 

participants may not therefore achieve peak alkalosis at the start of exercise, which might 30 

explain, in part, the lack of an ergogenic effect of NaHCO3 supplemented at 100 min (Correia-31 

Oliveira et al., 2017) and 150 min (Callahan, Parr, Hawley & Burke, 2017) in other 4 km 32 

cycling TT studies.  33 

 34 

In response to such variation in time to peak alkalosis it is recommended that either time to 35 

peak pH or HCO3- is predetermined prior to use for an exercise bout, as this accounts for the 36 

inter-individual variation commonly observed (McNaughton et al., 2016; Miller et al., 2016; 37 

Jones et al., 2016; Gough et al., 2017c). Indeed, preliminary studies to date have displayed 38 

ergogenic benefits of NaHCO3 individualised to a predetermined peak pH in cycling 39 

performance (Miller et al., 2016; Deb et al., 2017). Gough et al. (2017a) however, recently 40 

demonstrated greater reliability of time to peak HCO3- compared to time to peak pH with 41 

Intraclass Correlation Coefficient (ICC) analysis (r =0.94 vs. 0.71). It may therefore be more 42 

appropriate to determine the effects of NaHCO3 on HCO3- responses, particularly if the athlete 43 

wishes to achieve peak alkalosis consistently. Nonetheless, no study to date has investigated 44 

the potential ergogenic effects of NaHCO3 supplementation determined by a predetermined 45 

individual time to peak HCO3- on an exercise protocol reflective of competitive cycling such 46 

as a 4 km TT.  47 

 48 

Investigations into the ergogenic effects of individualising NaHCO3 to a predetermined time 49 

to peak pH have prescribed an amount of 0.3 g.kg-1 BM (Miller et al., 2016; Deb et al., 2017). 50 
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This is likely due to early research by McNaughton (1992) reporting a dose-dependent effect 51 

on performance, with 0.3 g.kg-1 BM NaHCO3 improving total work done (TWD) to a greater 52 

magnitude than 0.2 g.kg-1 during 60 s of maximal cycling; whilst meta-analyses have also 53 

shown a meaningful effect on exercise performance following 0.3 g.kg-1 BM NaHCO3 (Peart 54 

et al., 2012; Carr et al., 2011). Despite this, there is a paucity of literature investigating the 55 

dose-dependent ergogenic effects from smaller doses of NaHCO3 on exercise performance. 56 

The greater magnitude of effect between 0.3 g.kg-1 and 0.2 g.kg-1 BM NaHCO3 reported by 57 

McNaughton (1992) for instance, was non-significant and only considered one exercise 58 

duration/intensity and participant cohort (recreationally active). Furthermore, McKenzie, 59 

Coutts, Stirling, Hoeben and Kuzara (1986) reported a negligible 0.3% difference between 0.15 60 

g.kg-1 BM and 0.3 g.kg-1 BM NaHCO3 in a cycling time to volitional exhaustion test at 125% 61 

VO2max. Based on such limited evidence, further research is warranted exploring the dose-62 

dependent effects of NaHCO3. 63 

 64 

A further concern of a 0.3 g.kg-1 BM NaHCO3 ingestion strategy is the commonly reported 65 

gastrointestinal (GI) discomfort symptoms such as stomach cramp, diarrhoea, and in extreme 66 

cases, vomiting, which can have major negative implications for exercise performance 67 

(Saunders et al., 2014; Gough et al., 2017a, 2017b). It is therefore important to maximise the 68 

potential ergogenic effect through attaining peak buffering capacity, whilst also managing the 69 

severity of (GI) discomfort. Given that smaller amounts of NaHCO3 (i.e. 0.2 g.kg-1 BM) are 70 

associated with lower instances and severity of GI discomfort (Gough et al., 2017a, 2017c), it 71 

may be prudent to suggest this amount is a better option practically to the athlete aiming to 72 

enhance their performance, as long as ergogenic benefits are still evident.  73 

 74 
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To heighten the likeliness of an ergogenic benefit and mitigate the severity of GI discomfort, 75 

0.2 g.kg-1 BM NaHCO3 individualised to a predetermined time to peak HCO3- may be suitable. 76 

Gough et al. (2017a) reported a 5.7 ± 0.9 mmol.l-1 increase of HCO3- following 0.2 g.kg-1 BM 77 

NaHCO3 using a time to peak HCO3- strategy, which is superior to the 3.9 ± 0.9 mmol.l-1 mean 78 

change reported in a meta-analysis following a standardised 0.3 g.kg-1 BM NaHCO3 dose (Carr 79 

et al., 2011). These changes in acid base balance following 0.2 g.kg-1 BM NaHCO3 are also 80 

close to the 6 mmol.l-1 increase purported to lead to an ergogenic effect on performance 81 

(Matson & Tran, 1993; Jones et al., 2016). These data combined, suggest 0.2 g.kg-1 BM 82 

NaHCO3 individualised to a pre-determined time to peak HCO3- achieves the required acid 83 

base balance changes that may improve performance, whilst also reducing the symptoms of GI 84 

discomfort. Despite this, no literature to date has investigated the dose-dependent effects (i.e. 85 

0.2 g.kg-1 vs. 0.3 g.kg-1 BM NaHCO3) on exercise performance when individualised to a 86 

predetermined time to peak HCO3-. The purpose of this study, therefore, was to investigate the 87 

effects of both 0.2 g.kg-1 BM (SBC2) and 0.3 g.kg-1 BM (SBC3) NaHCO3 individualised to a 88 

predetermined time to peak HCO3- on 4 km TT performance. We hypothesised that both SBC2 89 

and SBC3 would reduce the time required to complete the 4 km TT. 90 

 91 

Materials and Methods 92 

Participants  93 

A priori power calculation conducted using SPSS Sample Power 3 (IBM, Chicago, IL, USA) 94 

displayed a sample size of 11 would allow detection of a 3 s change with high statistical power 95 

(β = 0.80; 0.05 = α level). This set criterion was used to detect a difference between NaHCO3 96 

treatments (i.e. SBC2 vs. SBC3) and between SBC treatments and the placebo, as this is the 97 

typical difference required to determine medal positions for the men’s individual pursuit and 98 

similar events at Olympic Games (Christensen et al., 2017). Eleven male trained cyclists 99 
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therefore volunteered for this study (height 1.82 ± 0.8 m, body mass 86.4 ± 12.9 kg, age 32 ± 100 

9 years, peak power output (PPO) 382 ± 22 W) with a weekly training frequency of ≥3 times, 101 

for a total of ≥5 hours per week, and for a minimum of 2 years training experience, which was 102 

specifically in cycling. Based on these descriptors, participants met the criteria of ‘trained 103 

cyclist’ as described by De Pauw et al. (2013). Participants were also excluded if they had 104 

ingested any nutritional buffers (such as beta alanine) in the prior 6 months of the study. Ethical 105 

approval was obtained from the Departmental Research Ethics Committee and each participant 106 

provided written informed consent prior to experimental testing.  107 

 108 

Experimental overview  109 

Participants visited the laboratory on six occasions in a randomised, crossover and double blind 110 

designed study (2 x identification of peak blood HCO3-, 3 x cycling TT’s). Constraints on 111 

ingestion of alcohol and participation in any strenuous/unaccustomed exercise were in place 112 

24 hours prior to each trial. Caffeine was also prohibited 12 hours prior to any trial. Written 113 

logs of nutritional intake were taken, with intake from the first trial replicated for subsequent 114 

trials. Participants visited the laboratory in a four-hour postprandial state and trials were 115 

conducted at the same time of day to account for circadian rhythms (Reilly, 1990). 116 

Experimental trials were separated by at least three days to allow acid base balance variables 117 

to return to normal resting concentrations (Siegler et al., 2009).  118 

 119 

Identification of time to peak blood bicarbonate 120 

On two separate occasions participants ingested either 0.2 g.kg-1 BM NaHCO3 (SBC2) or 0.3 121 

g.kg-1 BM NaHCO3 (SBC3) mixed with 400 ml of water and 50 ml double strength and sugar-122 

free blackcurrant cordial to identify time to peak blood HCO3- and pH. Whilst quietly resting 123 

and seated, finger prick capillary blood samples were collected in a 100µl sodium heparin-124 
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coated glass clinitube every 10 min for analysis of blood HCO3- and pH over a 120 min period 125 

using a blood gas analyser (ABL800 BASIC, Radiometer Medical Ltd. Denmark). The highest 126 

HCO3- value was used as a determination of time to peak HCO3- and this determined the timing 127 

of ingestion for experimental trials. Supplementation of NaHCO3 was double blinded and 128 

randomised (block randomisation), as a laboratory technician outside of the research group 129 

prepared the NaHCO3. Likewise, the time to peak HCO3- was determined by researchers 130 

outside of the study and the participant was not informed of their time to peak to ensure the 131 

double blind nature of the study. For the PLA condition, a time to peak HCO3- was used from 132 

either SBC2 or SBC3.  133 

 134 

Four-kilometre cycling protocol, blood measures and perceptual measures 135 

The next visit involved a familiarisation to the 4 km cycling TT on a Velotron cycle ergometer 136 

(Velotron, RacerMate Inc., USA) interfaced with Velotron coaching software (RacerMate Inc., 137 

USA). This ergometer has displayed high test-retest reliability with excellent ICC values of 138 

between r =0.90 to 0.96, p <0.01 for mean power in TT events (Astorino, 2011; Costa, 139 

Guglielmo & Paton, 2017). Participants selected a preferred handlebar and saddle position, 140 

whilst they were also permitted to change gears freely throughout each TT using their preferred 141 

fixed gear ratios. These settings were then adopted for all subsequent trials. Strong verbal 142 

encouragement was provided throughout the TT and feedback on the distance covered and 143 

cadence was provided via the software (Stone et al., 2011), but time elapsed was blinded. Time 144 

to complete, mean power and mean speed was recorded for both the total distance and 0.5 km 145 

splits, along with heart rate (HR) every 0.5 km (Polar, T31, Finland). Blood measures for pH 146 

and HCO3- were taken pre-ingestion and post-exercise as per the previously described method. 147 

A 5µl sample for blood lactate (BLa) was also taken at the same respective time points (Lactate 148 

Pro 2, Arkray, Japan). Ratings of perceived exertion (6-20; Borg, 1982) for the whole body 149 
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(RPEO), legs (RPEL), and affective perceptions of work rate (11-point bipolar scale with +5 150 

representing ‘very good’ and -5 representing ‘very bad’) were recorded every 1 km (Thomas 151 

et al., 2015). This procedure was repeated another three times, with the exception that either 152 

0.2 g.kg-1 BM NaHCO3 (SBC2), 0.3 g.kg-1 BM NaHCO3 (SBC3) or a taste matched placebo 153 

(PLA) containing 0.07 g.kg-1 BM sodium chloride (NaCl) was ingested, after baseline measures 154 

were taken. Participants then sat quietly rested until their respective predetermined time to peak 155 

HCO3-, at which point a further blood sample was taken. Treatments were administered in a 156 

double-blind manner, and for PLA treatments, a time to peak HCO3- time frame from an SBC 157 

treatment was selected randomly by a researcher outside of the study to maintain the double-158 

blind design. Following ingestion, and up to the individuals respective time to peak HCO3-, GI 159 

discomfort was measured using a visual analogue scale (VAS) every 10 min, as per previous 160 

studies (Miller et al., 2016; Gough et al., 2017a). 161 

 162 

Statistical analysis 163 

Assessed variables were analysed using both Shapiro-Wilk tests and standard graphical 164 

methods for normality, whilst a Mauchly test was used for homogeneity and 165 

variance/sphericity.  A paired sampled t-test was used to assess the severity and time to peak 166 

GI discomfort between SBC treatments. Both mean power and speed were analysed using a 167 

repeated measures ANOVA. Otherwise, a two-way repeated measures ANOVA (e.g. condition 168 

x each 0.5 km segment/time point) was used and where either interactions or main effects were 169 

observed, Bonferroni corrected posthoc pairwise comparisons were carried out. Where main 170 

effects or interactions were observed, partial eta squared (Pη2) effect size is reported. Between 171 

treatment effect sizes (d) were calculated using the difference in means divided by the pooled 172 

SD of the compared trials (Nagakawa & Cuthill, 2007), however with a Hedge’s g bias 173 

correction to account for the sample size in this study (Lakens, 2013). All effect size 174 
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interpretations were considered as trivial (<0.20), small (0.20-0.49), moderate (0.50-0.79) or 175 

large (≥0.80) (Cohen, 1988). Intraclass Correlation Coefficients (ICC) were used to determine 176 

the reproducibility of blood metabolites (i.e. time to peak HCO3- and pH) following SBC 177 

conditions and are reported with r value and significance value (p value). Interpretation of 178 

reproducibility was determined by the respective r value with categories of poor (<0.40), fair 179 

(0.40-0.59), good (0.60-0.74) and excellent (>0.74). Data are presented as mean ± SD with 180 

95% confidence intervals (CI) unless otherwise stated. Statistical significance was set at p 181 

<0.05 and data were analysed using SPSS v22 for Windows (SPSS Inc., Chicago, IL, USA). 182 

 183 

Results 184 

Performance responses for all participants (n =11)  185 

Faster mean completion times (Figure 1) by 8.3 ± 3.4 s were observed following SBC2 (p < 186 

0.001, CI = 12.0, 4.7, d = 0.64) and by 8.6 s ± 5.2 s following SBC3 compared to PLA, 187 

respectively (p =0.003, CI = 14.2, 3.0, d =0.66). There was no difference between SBC2 and 188 

SBC3 (374.0 ± 13.3 vs. 373.7 ± 13.3 s, p =0.87, CI = -3.0, 3.7, d =0.02; Figure 1). 189 

 190 

**Figure 1 near here** 191 

 192 

A 16 ± 13 W (+5.7%) increase in mean power was observed following SBC2 (304 ± 28 W, p 193 

=0.02, CI = 2.6, 30.3, d =0.62), while in SBC3 an increase of 16 ± 15 W (+5.9%) was observed 194 

(304 ± 31 W, p =0.03, CI = 1.1, 32.9, d =0.58; Figure 2a) compared to PLA (287 ± 25 W). 195 

There was no difference between SBC2 and SBC3 (p =0.90, CI = -10.2, 9.1, d =0.01). 196 

Following SBC2, a 0.9 ± 0.6 km.h-1 (+2.4%) increase in mean speed was observed compared 197 

to PLA (38.6 ± 1.4 vs. 37.7 ± 1.1 km.h-1, p =0.008, CI = 0.2, 1.6, d =0.69). Similarly, a 0.8 ± 198 

0.6 km.h-1 (+2.0%) increase in mean speed was observed following SBC3 (38.4 ± 1.3, p =0.02, 199 
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CI = 0.1, 1.4, d =0.56), whilst there was no difference between SBC conditions (p =0.42, CI = 200 

-0.3, 0.6, d =0.14; Figure 2b).  201 

 202 

** Figure 2 near here** 203 

 204 

Performance responses for participants who suffered gastrointestinal (GI) discomfort (n =8) 205 

Despite the occurrence of GI discomfort, SBC2 improved performance by 9.0 ± 3.8 s in SBC2 206 

(p =0.001, CI = 4.5, 13.5, d = 0.68) and 8.9 ± 6.1 s in SBC3 (p =0.02, CI = 1.7, 16.2, d = 0.68) 207 

compared to PLA. Only one participant failed to improve performance (0.1 s difference vs. 208 

PLA), whilst three participants improved by less than the 3 s threshold that was set in the priory 209 

power calculation for a meaningful effect (range = 2-2.6 s improvement vs. PLA).  210 

 211 

Blood metabolite responses 212 

Absolute peak change in HCO3- from baseline was 5.5 ± 0.7 in SBC2 and 6.5 ± 1.3 mmol.l-1 in 213 

SBC3 which was not significantly different (p =0.07; d =0.92).  Peak HCO3- occurred within a 214 

range of between 40 to 110 mins in SBC2 (mean 62 ± 20 min, CV: 33%), and between 40 to 215 

100 min in SBC3 (mean 73 ± 20 min, CV: 27%; Figure 3).  216 

 217 

**Figure 3 near here** 218 

 219 

The change from baseline to the peak pH was not significantly different between SBC 220 

conditions (p =0.13, d =0.75; SBC2 =0.07 ± 0.02, SBC3 =0.09 ± 0.03). In subsequent cycling 221 

trials (i.e. 4km TT’s) good reproducibility was observed for absolute mean change from 222 

baseline in pH following both SBC2 (+0.06; ICC r =0.67, p =0.026) and SBC3 (+0.06; r =0.65, 223 

p =0.040).  Greater reproducibility was observed for absolute mean change in HCO3- however, 224 
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displaying excellent reliability in both SBC2 (+4.9 mmol.l-1; r =0.86, p =0.002) and SBC3 225 

(+5.6 mmol.l-1; r =0.88, p <0.001).  226 

 227 

In the cycling trials, a time × treatment interaction was observed for pH (p =0.048, Pη2 =0.285) 228 

whereby pH was +0.07 ± 0.02 (+0.9%) greater at time to peak (figure 4a) for SBC2 (7.46 ± 229 

0.03; p <0.001, CI = 0.09, 0.04, d =2.64) and 0.08 ± 0.02 (+1%) greater for SBC3 (7.47 ± 0.02; 230 

p <0.001, CI = 0.09, 0.05, d =3.85) compared to PLA (7.39 ± 0.02). There was no difference 231 

between SBC2 and SBC3 (p =0.69, CI = -0.3, 0.1; d =0.38). A time × treatment interaction was 232 

observed for HCO3- (p <0.001, Pη2 =0.796), with values greater following supplementation of 233 

NaHCO3 (Figure 4b). At time to peak HCO3-, SBC2 was 5.0 mmol.l-1 ± 1.0 mmol.l-1 (+17.6%) 234 

(28.6 ± 1.1 mmol.l-1; p <0.001, CI = 6.0, 4.1, d =5.22) and SBC3 was 5.9 ± 1.1 mmol.l-1 235 

(+20.0%) (29.5 ± 1.0 mmol.1-1; p <0.001, CI = 6.9, 5.0, d =6.58) greater than PLA (23.6 ± 0.7 236 

mmol.l-1). There was no difference between SBC2 and SBC3 (p =0.34, CI = -2.3, 0.6, d =0.82). 237 

 238 

Post exercise HCO3- was +1.8 ± 1.3 mmol.l-1 (+12.3%) greater for SBC2 (16.0 ± 2.2 mmol.l-1; 239 

p =0.004, CI = 2.9, 0.6, d =0.79), and +1.5 ± 1.3 mmol.l-1 (+10.9%) greater for SBC3 (15.8 ± 240 

2.7 mmol.l-1; p =0.01, CI = 2.7, 0.4, d =0.62) compared to PLA (14.2 ± 2.2 mmol.l-1). There 241 

was a main effect for treatment in HCO3- change during exercise (p <0.001, Pη2 =0.714), 242 

whereby the change in HCO3- was 3.3 ± 1.8 mmol.l-1 (+25.9%) greater following SBC2 (12.7 243 

± 2.6 mmol.l-1; p =0.001, CI = 4.9, 1.6, d =1.37) and 4.4 ± 1.7 mmol.l-1 (+31.7%) greater for 244 

SBC3 (13.8 ± 2.7 mmol.l-1; p <0.001, CI = 5.9, 2.8, d =1.78) compared to PLA (9.4 ± 2.0 245 

mmol.l-1). There was no difference between SBC conditions (p =0.59, CI = -1.2, 3.3; d =0.40). 246 

A main effect for time was observed for BLa (p <0.001, Pη2 =0.957) with all conditions 247 

displaying greater post-exercise BLa compared to pre-exercise (Figure 4c). Post-exercise, a 248 

time × treatment interaction was observed for BLa (p <0.001, Pη2 =0.577) as SBC2 was +3.7 249 
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± 2.8 mmol.l-1 (+22.5%) greater than PLA (16.1 ± 3.4 vs. 12.5 ± 2.7 mmol.l-1, p =0.006, CI = 250 

1.1, 5.8, d =1.13; Figure 4c), with SBC3 greater by +3.7 ± 2.4 mmol.l-1 (+22.7%)  (16.1 ± 3.4 251 

mmol.l-1; p =0.002, CI = 1.5, 5.8, d =1.13). No differences between SBC conditions were 252 

evident for post-exercise BLa (p =0.61, CI = -2.3, 2.2; d =0.01).  253 

 254 

*Figure 4 near here** 255 

 256 

Gastrointestinal (GI) discomfort  257 

Four participants reported symptoms of belching and stomach bloating in SBC2, compared to 258 

seven participants reporting symptoms of belching, stomach cramp, bowel urgency and 259 

diarrhoea in SBC3. There was no significant difference in severity of GI discomfort between 260 

SBC treatments (SBC2 =1.4 ± 1.5 vs. SBC3 =4.6 ± 3.6; p =0.10), although a large effect size 261 

was evident (d =0.88). Similarly, time to peak GI discomfort was not significantly different 262 

between SBC treatments (SBC2 =20 ± 24 vs. SBC =43 ± 31min, p =0.13), although revealed 263 

a large effect size (d  =0.80).  264 

 265 

Heart rate (HR), ratings of perceived exertion (RPE) and affective perceptions of work rate 266 

scale 267 

Heart rate was unaffected by NaHCO3 ingestion as no time × treatment interaction was 268 

observed (p =0.56, Pη2 =0.055). There was a main effect for time (p <0.001, Pη2 =0.977) for 269 

HR and mean data combined from all treatments displayed HR at 500m was 144 ± 3 b.min-1, 270 

compared to 171 ± 2 b.min-1 at 4 km, respectively. A main effect for time was observed for 271 

RPEO (p <0.001, Pη2 =0.849), as at 1 km RPEO was 14 ± 1 compared to 17 ± 1 at 4 km, although 272 

no time × treatment was apparent (p =0.31, Pη2 =0.109). A main effect for time was observed 273 

for RPEL (p <0.001, Pη2 =0.657), as at 1 km RPEL was 15 ± 1 compared to 18 ± 0 at 4 km, 274 
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although no time × treatment interaction was evident (p =0.73, Pη2 =0.085). Affective 275 

perceptions of work rate revealed no time × treatment interaction (p =0.38, Pη2 =0.099) or main 276 

effect for time (p =0.92, Pη2 =0.020).  277 

 278 

Discussion 279 

In agreement with our hypothesis, this study reports that both 0.2 g.kg-1 (SBC2) and 0.3 g.kg-1 280 

BM (SBC3) NaHCO3 improves 4 km TT cycling performance in trained cyclists when 281 

individualised to a predetermined time to peak HCO3-. Time to complete the time trial was 282 

2.2% faster in SBC2 and 2.3% in SBC3 compared to PLA, whilst there was also no statistical 283 

difference between SBC conditions suggesting both amounts are appropriate to enhance this 284 

type of exercise performance. Combining such performance effects with the reduced instances 285 

and severity of GI discomfort following 0.2 g.kg-1 BM NaHCO3 however, the present study 286 

findings suggest this amount may be more attractive to the athlete in a practical setting.   287 

 288 

The findings of the present study contrast that of two recent studies reporting no effect of 289 

NaHCO3 on 4 km TT performance (Callahan et al., 2017; Correia-Oliveira et al., 2017). Indeed, 290 

Callahan et al. (2017) reported a ‘possibly trivial’ effect and Correia-Oliveira (2017) reported 291 

no significant supplement interaction in ANOVA analysis following 0.3 g.kg-1 BM NaHCO3. 292 

In comparison, the present study displayed a statistically significant effect and a moderate 293 

effect size for both SBC2 and SBC3. This ergogenic effect was most likely realised due to 294 

supplementing NaHCO3 to a predetermined time to peak HCO3-, as this would have ensured 295 

peak bioavailability of HCO3- at the commencement of exercise. In particular, the increase in 296 

HCO3- following the SBC2 treatment of the present study was similar, whilst the SBC3 297 

treatment was superior, to the values reported in the aforementioned studies with 0.3 g.kg-1 BM 298 

NaHCO3 (SBC2 = 4.9 to 5.5 mmol.l-1, SBC3 = 5.6 to 6.5 mmol.l-1 vs. Callaghan et al. = +3 299 
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mmol.l-1 vs. Correia-Oliveira et al. = +5mmol.l-1). Based on this evidence, it is therefore more 300 

appropriate to identify time to peak HCO3- prior to the use in exercise to elicit ergogenic effects 301 

on performance. A consideration, however, is that identifying time to peak HCO3- presents a 302 

logistical challenge, as this would require a visit to a laboratory or access to a portable blood 303 

gas analyser. 304 

  305 

A unique finding of the present study was the lack of a dose-dependent effect on exercise 306 

performance, with SBC3 improving performance to a similar magnitude as SBC2. These 307 

findings are in contrast to McNaughton (1992), reporting 0.3 g.kg-1 BM NaHCO3 improved 308 

TWD greater than 0.2 g.kg-1 BM NaHCO3 during 60 seconds of maximal cycling compared to 309 

a placebo. The negligible 0.1% difference observed between SBC2 and SBC3 are more in 310 

agreement with the findings of McKenzie et al. (1986) reporting a 0.3% difference between 311 

0.15 g.kg-1 BM and 0.3 g.kg-1 BM NaHCO3. Individual performance responses did reveal that 312 

three participants improved to a greater extent in SBC2 compared to SBC3, whilst two 313 

participants improved to a greater extent in SBC3 compared to SBC2 based on the 3 s cut off 314 

from the prior power calculation. These data combined suggest lower amounts of NaHCO3 (i.e. 315 

0.2 g.kg-1 BM) are likely to be sufficient to enhance exercise of this duration and intensity, 316 

although athletes should trial each dose prior to use in competition to evaluate which amount 317 

of NaHCO3 provides a larger ergogenic benefit. Likewise, considering the potential for the 318 

onset of GI discomfort, athletes who are susceptible to such symptoms should conduct a 319 

risk:benefit analysis of NaHCO3 supplementation.  320 

 321 

It is purported that mitigating the severity of GI discomfort is important to obtain a performance 322 

benefit following NaHCO3 supplementation, as Saunders et al. (2014) reported a significant 323 

effect on performance only upon the removal of participants who suffered from GI discomfort. 324 
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The present study findings contrast this by reporting a significant 2.3% improvement following 325 

both SBC2 and SBC3, despite the occurrence of mild to moderate GI discomfort. Reasons for 326 

this may be due to the good tolerance of NaHCO3 in our participant cohort, although it is 327 

difficult to compare with the work of Saunders et al. (2014) as no explicit statistical analysis 328 

on GI discomfort is available. Nonetheless, there may still be a relationship between GI 329 

discomfort and performance, as for instance, participant 8 in the present study suffered from 330 

moderate diarrhoea and bowel urgency in SBC3 and no improvement in performance was 331 

observed (0.1 s). While performance in SBC2 was improved by 8.9 s in the same participant 332 

when no instances of GI discomfort occurred. Combining this finding with other investigations 333 

where participants have self-withdrawn, or have been withdrawn by the research team due to 334 

the severity of GI discomfort, the responses from NaHCO3 still warrant observation in training 335 

prior to use in competition (Gough et al., 2017a, 2017b; Jones et al., 2016). Nonetheless, 336 

smaller amounts of NaHCO3 may be an attractive solution to the athlete to reduce the severity 337 

of GI discomfort symptoms whilst still providing ergogenic effects to exercise performance.  338 

 339 

The enhancements of acid base balance following NaHCO3 are the most likely mechanism for 340 

an improved performance in the present study, as both SBC2 and SBC3 raised HCO3- and pH 341 

significantly compared PLA. An increase in extracellular HCO3- is suggested to increase H+ 342 

efflux during exercise due to the up-regulation of the lactate/H+ cotransporter, leading to 343 

increased provision of anaerobic energy contribution (Marx et al., 2002). The change in HCO3- 344 

was superior in both SBC2 (+25.9% vs. PLA) and SBC3 (+31.7% vs. PLA) whilst post-345 

exercise blood lactate was also significantly higher (~15%) in the SBC conditions. These 346 

changes in blood acid base balance and BLa are indicative of exercise at higher exercise 347 

intensities in the SBC conditions and hence, improved performance. Furthermore, between 348 

SBC conditions there were minimal differences in respect of blood metabolites changes prior 349 
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to, or during exercise. This provides an explanation why there were no dose-dependent effects 350 

on performance in the present study. 351 

 352 

Conclusion 353 

Ingestion of NaHCO3 individualised to time to peak HCO3- improves 4 km TT cycling 354 

performance in trained cyclists. Ingestion of both 0.2 g.kg-1 BM and 0.3 g.kg-1 BM NaHCO3 355 

equally increase buffering capacity and subsequently provided ergogenic benefits to exercise 356 

performance. No difference was observed between SBC conditions; therefore, athletes can 357 

plausibly use a lower amount of NaHCO3 (i.e. 0.2 g.kg-1 BM) particularly if they are susceptible 358 

to the onset GI discomfort. Future research should investigate the dose-dependent effects of 359 

both 0.2 g.kg-1 BM and 0.3 g.kg-1 BM NaHCO3 during exercise of different intensities and 360 

durations.  361 
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condition. *denotes significantly different from PLA (p <0.05). 

 

Figure 2 – Mean (±SD) cycling power (A) and speed (B) during each 0.5 km segment of the 

time trial. Significant increase (p <0.05) in SBC2 = # and SBC3 = ## compared to PLA.  

 

Figure 3 – Individual time to peak blood bicarbonate (HCO3-) following SBC2 and SBC3.  

 

Figure 4 – Mean (±SD) blood pH (A), bicarbonate (HCO3-) (B) and lactate (C) responses during 

experimental treatments. Significantly different (p <0.05) in SBC2 = # and SBC3 = * compared 

to PLA. 


