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Gravity-based models for evaluating urban park accessibility: Why does localized 1 

selection of attractiveness factors and travel modes matter? 2 

 3 

Abstract 4 

Gravity-based models have been extensively utilized in urban studies for measuring geographic 5 

disparities in access to urban parks over the past several decades. However, despite methodological 6 

advancements incorporating various aspects of accessibility, there has been limited focus on the 7 

impact of variable selection (e.g., attractiveness factors) and transport modes on accessibility 8 

evaluations. This study investigates the differences in gravity-based models for assessing park 9 

accessibility based on varying assumptions about attractiveness factors and travel impedance. Semi-10 

structured interviews with local residents were conducted to identify the reasons for park visits in 11 

Shanghai. Our bivariate correlation analyses reveal that factors such as park openness and access to 12 

public transport were crucial, in addition to conventional factors identified in the literature (i.e., park 13 

size and driving accessibility). This insight led to the development of localized accessibility 14 

measurements that incorporate park inclusiveness (i.e., entrance fees and opening hours) and 15 

multimodal travel options (based on multinomial logistic mode choice models). The results indicate 16 

that the refined model produces lower and more varied accessibility levels, which can better capture 17 

accessibility gaps across different geographic contexts. This accurate and practical identification of 18 

accessibility gaps can assist local planners and decision-makers in formulating effective policies 19 

and strategies to promote equitable access to urban public parks. 20 
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1. Introduction 24 

Public parks are significant features of urban green infrastructure, which are closely associated with 25 

health and quality of life for residents by offering open green spaces that provide aesthetic, 26 

psychological, restorative, and recreational services (Kemperman and Timmermans, 2014; Weijs-27 

Perrée et al., 2017). As accessing these services requires physical use of the parks, it is crucial to 28 

ensure equitable access to urban green spaces for high-demand populations, thereby promoting the 29 

sustainable development of cities. Achieving equitable access necessitates practical and accurate 30 

measurements of urban park accessibility (Liang et al., 2023).  31 

Despite the common use of park accessibility in planning evaluations and policy analyses, it is not 32 

a universal measure. Instead, it is determined by residents' perceptions and travel habits, which are 33 

heavily influenced by local factors such as culture and economy (Dony et al., 2015; Liang and Zhang, 34 

2018; Stessens et al., 2020). However, research on accessibility assessment using localized variables 35 

is limited, and few attempts have been made to compare the results of accessibility measurements 36 

using different variables (Xing et al., 2020). In addition, recent studies suggest that accessibility 37 

measurements may vary significantly depending on the mode of transportation chosen, emphasizing 38 

the need to consider mode choice in accessibility measurements for more practical results (Dony et 39 

al., 2015; Huang et al., 2022; Wang et al., 2022; Zhou et al., 2023). 40 

This paper addresses these research gaps by demonstrating how the selection of locally-informed 41 

attractiveness factors and the consideration of multimodal travel modes can impact accessibility 42 

evaluation. We propose an improved gravity model that integrates attractiveness factors (i.e., park 43 
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size, quality, and inclusiveness) derived from local interviews on park-visiting preferences, and a 44 

multinomial logistic model that considers multiple travel modes (i.e., motorized and non-motorized 45 

modes of transport) while accounting for residents' travel behavior. Our study contributes to the 46 

existing literature on accessibility in two ways. First, we enhance the variety of methods used to 47 

measure urban park attractiveness by considering the most influential factors through semi-48 

structured interviews with local residents. Second, we incorporate a multimodal travel mode choice 49 

model, informed by previous studies on the local residents’ travel behavior, into the gravity model. 50 

These improvements offer a more realistic representation of park accessibility and highlight the 51 

significance of incorporating local perspectives into gravity-based accessibility measurements. 52 

The rest of the paper is organized as follows. Section 2 presents a review of the literature on park 53 

accessibility measurement and gravity model improvements. Section 3 describes the study area, data 54 

sources, and the three gravity models designed for making comparisons. Section 4 presents and 55 

compares the accessibility results derived from these models. Section 5 discusses the implications 56 

of the results and outlines the advantages and limitations of our proposed method. 57 

2. Improving gravity-based accessibility models 58 

2.1 Prevalent accessibility measurements  59 

Urban studies primarily employ two types of accessibility measurements: place-based (or location-60 

based) and people-based (or individual-based) (Macfarlane et al., 2021; Rad and Alimohammadi, 61 

2022; Yang et al., 2023). Place-based measures assess the geographic proximity between service 62 

providers and users, typically quantifying the spatial distance between parks and residences in urban 63 

park accessibility studies (Liang et al., 2023; Wu et al., 2017). In contrast, people-based measures 64 
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consider the individuals’ activity schedules and service operating hours but often require a detailed 65 

observation dataset that may be unavailable in many developing countries (Rad and Alimohammadi, 66 

2022). Therefore, place-based methods are more commonly employed by researchers. 67 

Methodologically, place-based accessibility measurements can be categorized into four main 68 

approaches: (1) infrastructure-based, which focuses on street and transportation network features 69 

without considering activity locations; (2) distance-based, which examines the closet facilities or 70 

those within a predetermined distance; (3) gravity-based, which evaluates accessibility by 71 

considering the distance between opportunities and the origin, incorporating impedance functions; 72 

and (4) utility-based, which characterizes accessibility as a result of the destination-transportation 73 

alternative selections based on microeconomic random utility theory (Anjomshoaa et al., 2017; Vale, 74 

2020; Vale et al., 2015).  75 

Despite the convenience and flexibility of infrastructure-based and distance-based measures, their 76 

oversimplified and arbitrary definitions may limit comprehensive analysis (Macfarlane et al., 2021; 77 

Semenzato et al., 2023). Furthermore, utility-based specifications, often represented as a linear-in-78 

parameters functions of destination attributes and travel costs with coefficients often estimated from 79 

surveys, may incorporate random components and are inherently difficult to interpret, explain, and 80 

compare independently (Vale et al., 2015). In comparison, the gravity method has gained popularity 81 

in accessibility studies due to its capacity to define individuals as having some level of access to all 82 

services (rather than imposing arbitrary cutoffs) (Guagliardo, 2004; Macfarlane et al., 2021) and its 83 

flexibility in including any service attribute deemed relevant by researchers (Macfarlane et al., 2021). 84 

Hansen (1959) first introduced the gravity-based model to urban studies, testing the accessibility 85 
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index by measuring service attributes and travel costs as follows:  86 

𝐴𝑖 = ∑ 𝐴𝑖𝑗
𝑛
𝑗=1 = ∑ 𝑆𝑗𝑓(𝑐𝑖𝑗)𝑛

𝑗=1 ; (1) 87 

where 𝐴𝑖  indicates the accessibility of population point 𝑖 ; 𝐴𝑖𝑗  refers to the accessibility from 88 

population point 𝑖 to destination 𝑗; 𝑆𝑗 equals the attractiveness factor for destination 𝑗; 𝑓(𝑐𝑖𝑗) 89 

refers to the impedance function of the generalized cost 𝑐𝑖𝑗 between point 𝑖 point 𝑗; and 𝑛 is the 90 

total number of destinations. 91 

Based on the basic accessibility measurement (Equation 1), Joseph and Bantock (1982) made a 92 

significant contribution to the gravity model by introducing a population demand adjustment factor 93 

that accounts for supply and demand factors, specifically by considering competition among 94 

potential service recipients and their respective demands, resulting a modified gravity model 95 

expressed as follows:   96 

𝐴𝑖 =
∑ 𝑆𝑗𝑓(𝑐𝑖𝑗)𝑛

𝑗=1

𝑉𝑗
;  𝑉𝑗 = ∑ 𝑃𝑖𝑓(𝑐𝑖𝑗)𝑚

𝑖=1 ; (2) 97 

where 𝑉𝑗 is the population demand adjustment factor; 𝑃𝑖 indicates the population of the point 𝑖; 98 

and 𝑚 denotes the total number of population points.  99 

The modified fundamental equation for the gravity model (Equation 2) serves as a foundation for 100 

the following discussions on attractiveness factors, impedance functions, and their combinations for 101 

comparisons. 102 

2.2 Measuring park attractiveness 103 

Hansen (1959) originally proposed that urban park accessibility should be measured using the green 104 
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space area factor as a single attraction coefficient. Subsequent studies have adopted this approach 105 

(Liu et al., 2021; Tian et al., 2021; Vîlcea and Șoșea, 2020; Wu et al., 2017). However, relying 106 

solely on area may not provide a comprehensive and accurate representation of resident demand on 107 

urban parks. Other characteristics of urban parks, such as scenery, facilities, and services, can also 108 

contribute to their attractiveness. Dony et al. (2015) evaluated the attractiveness of urban public 109 

parks based on their amenities, while Xing et al. (2020) considered various factors, including the 110 

number of playgrounds, sports fields, sports courts, walking/cycling paths, hiking trails, public 111 

swimming pools, supporting facilities, and nature-related variables (e.g., tree coverage).  112 

Accessibility is also considered as a five-dimensional concept, encompassing approachability, 113 

acceptability, availability and accommodation, affordability, and appropriateness (Levesque et al., 114 

2013; Usher, 2015). Therefore, assessing park attractiveness should involve multiple factors beyond 115 

size and quality (He et al., 2022; Sundevall and Jansson, 2020), emphasizing on factors related to  116 

inclusiveness, particularly those relevant to the local context (Liang and Zhang, 2018). For instance, 117 

previous studies have shown that park entry fees in developing countries act as a barrier for low-118 

income groups, significantly impacting their park visits (Basu and Nagendra, 2021; Lal et al., 2017; 119 

Pinelo Silva, 2021). The availability of urban parks during nighttime is another major concern for 120 

park visitors (Shan, 2020), since park visits tend to peak in the afternoon and continue until midnight 121 

(Ullah et al., 2019; Zhang & Dong, 2016). Parks that close at night may fail to provide ecosystem 122 

services to low-income groups, who often have less recreational time during daytime on weekdays 123 

compared to their wealthier counterparts. Consequently, park inclusiveness, which can be assessed 124 

by examining affordability and availability, becomes a crucial determinant of park visits. 125 
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Against this backdrop, this study will measure how the incorporation of various park attractiveness 126 

factors (e.g., affordability and availability) influences the evaluation results of urban park 127 

accessibility. 128 

2.3 Multimodal impedance function 129 

The impedance function represents the cost of overcoming spatial separation between origin and 130 

destination points in a gravity model. The choice of impedance function and the variables included 131 

can significantly affect the results of accessibility measurements (Kwan, 1998; Tahmasbi and 132 

Haghshenas, 2019). Various forms of impedance functions exist, such as (inverse) power (Chang et 133 

al., 2019; Park et al., 2021; Xu et al., 2015), exponential (Grengs, 2015; Karner, 2018), and Gaussian 134 

(Liang et al., 2023; Xing et al., 2020), as well as combinations of these functions (Vale and Pereira, 135 

2017; Xu et al., 2015). The inverse power function, defined in Equation 3, is one of the most 136 

common forms (Chang et al., 2019; Guagliardo, 2004; Tahmasbi and Haghshenas, 2019).  137 

𝑓(𝑐𝑖𝑗) =  𝑐𝑖𝑗
−𝛾

; (3) 138 

where 𝛾 is the travel friction coefficient, and 𝑐𝑖𝑗 denotes the generalized cost. 139 

The parameter 𝛾  is crucial in determining the rate at which attraction attenuates with distance 140 

(Kwan, 1998; Talen, 1998). Although the value of 𝛾  may vary based on research scope, target 141 

populations, and service types, previous research has shown that different values of the parameter 142 

and even varying impedance function forms may yield similar spatial patterns in terms of identifying 143 

locations with high and low accessibility levels (Vale and Pereira, 2017).  144 

In an impedance function, generalized costs are commonly expressed in terms of travel distance 145 
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(Talen and Anselin, 1998; Wu et al., 2017; Yu et al., 2019), travel time (Chang et al., 2019; Liang 146 

and Zhang, 2018; Park et al., 2021), and monetary cost (Bills et al., 2022; El-Geneidy et al., 2016; 147 

Li et al., 2023). Among them, travel time is widely acknowledged as a more accurate measure of 148 

generalized cost in park accessibility studies, as it better aligns with people's perceptions (Chang et 149 

al., 2019; Park et al., 2021; Vale and Pereira, 2017). Existing literature typically assumes that all 150 

residents use their designated mode of transport to access parks, whether it be driving, walking, or 151 

public transport (Liang et al., 2023; Semenzato et al., 2023; Wang et al., 2020; Xing et al., 2020; Xu 152 

et al., 2015), with driving being a common mode of transport at the regional level (Dai, 2011; Gu et 153 

al., 2017; Kong et al., 2007). However, in dense urban areas, residents often use alternative modes 154 

of transport, including walking, cycling, and public transportation. To more accurately represent 155 

travel costs, it is necessary to develop an impedance function that considers multiple travel modes 156 

based on a mode choice model. The logsum mode choice model is the most commonly used model 157 

and can be expressed in Equation 4 (Khan et al., 2022; Limanond and Niemeier, 2003; Zhou et al., 158 

2023) as:  159 

𝑃𝑖𝑗𝑘 =
𝑒

𝛽𝑖𝑗𝑘𝑿𝒊𝒋𝒌  

∑ 𝑒
𝛽𝑖𝑗𝑟𝑿𝒊𝒋𝒓𝑅

𝑟=1

   (4) 160 

where 𝑃𝑖𝑗𝑘 is the probability of choosing travel mode 𝑘 from population point 𝑖 to destination 161 

𝑗; 𝛽𝑖𝑗𝑘 is the coefficient vector of observed variables; 𝑿𝑖𝑗𝑘 is a column vector of the observed 162 

attributes of mode 𝑘; and 𝑅 is the total number of travel mode alternatives.  163 

This study will measure and compare the effects of incorporating or excluding multiple travel modes 164 

in the impedance function of a gravity model, aiming to provide a more comprehensive 165 

understanding of park accessibility.  166 
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3. Study area, data, and method 167 

3.1 Study area 168 

This study uses Shanghai as a study case. In line with the local initiative to develop a “park city”, 169 

numerous parks have been constructed in Shanghai. According to data from the Shanghai 170 

Administration Department of Afforestation and City Appearance (https://sh.lhsr.cn/), the number 171 

of public parks increased from 161 in 2014 to 406 in 2021. However, despite this overall growth, 172 

disparities in the distribution of park services persist across the metropolitan region (Fan et al., 2017; 173 

Liang and Zhang, 2018; Ullah et al., 2019).  174 

The zonal boundaries in our study align with the sub-district demarcations in Shanghai, namely 175 

jiedao, xiang, and zhen, totaling 233 zones. This alignment ensures compliance with planning 176 

regulations and facilitates comprehensive policy analysis. Each zone is represented by a transport 177 

centroid node, which signifies the location where people and economic activities tend to cluster. 178 

Due to the substantial variance in the sizes of central and suburban zones (refer to Table S1 in 179 

Supplementary Materials 1), our methodology for centroid determination varies based on the 180 

urban context. In fully developed city centers, we use the geometric centroids as the representative 181 

nodes, while for partially developed areas, we use the locations of local governments as zonal 182 

centroids (Yang et al., 2019). Building on the research by Yang et al. (2019) and Yang (2020), we 183 

define six macro-zones in the city region: the inner ring, middle ring, outer ring, near suburbs, new 184 

towns, and far suburbs. The first three macro-zones constitute the city center, while the latter three 185 

are classified as suburbs. Fig. 1 illustrates the zonal divisions in Shanghai and the distribution of 186 

urban parks. 187 
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 188 

Fig. 1. Zonal divisions in Shanghai and the distribution of urban parks. 189 

3.2 Data sources and processing 190 

We evaluate local accessibility by employing data on park information, population, and travel time. 191 

Park data were sourced from the Shanghai Landscaping and City Appearance Administrative Bureau 192 

(http://lhsr.sh.gov.cn/), which provides comprehensive details on each park's location, size, star 193 

rating, and entrance fees. The five-star rating system (ranging from 1 to 5, with 5 representing the 194 

highest quality) has been widely accepted as a comprehensive means of evaluating park 195 

attractiveness in the local context. This system considers factors such as park classification, area, 196 

facilities, security, services, landscape, scenery, maintenance, and management (Liang et al., 2023; 197 

Liang and Zhang, 2021, 2018).  198 

Population data at the sub-district level were obtained from the 2015 1% population sample survey, 199 

the latest year with zonal-level population data available. Table S2 in Supplementary Materials 1 200 

presents the descriptive statistics for population data in each sub-district and the attributes of public 201 

http://lhsr.sh.gov.cn/
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parks. 202 

We obtained travel time data between residences (represented by geometric centroids of sub-districts) 203 

and parks (represented by points of interest) using the Application Programming Interface (API) 204 

provided by Gaode Maps, one of China’s largest map services companies.1 While we acknowledge 205 

the limitation of utilizing centroids to represent relatively large sub-districts, it is currently the finest 206 

resolution available with population data in Shanghai, and we follow similar approaches employed 207 

by Ouyang et al. (2020) and Shen et al. (2017). The API used in this study provides actual travel 208 

time, distance, and cost, accounting for traffic conditions and flows of various modes of 209 

transportation, such as walking, cycling, driving, and public transport (including subways, buses, 210 

and ferries). We set the departure time from residences to parks at 3 p.m. for both a weekday (9 July 211 

2023) and a weekend (10 July 2023). This choice is based on the observation that park visits in 212 

Shanghai typically peak between 3 p.m. and 5 p.m. (Ullah et al., 2019). We employ the mean of the 213 

travel times from both the weekday and the weekend to minimize the potential impact of fluctuations 214 

in traffic conditions, thus facilitating a more generalized representation. However, it should be noted 215 

that the use of two time periods may not fully capture temporal variations in accessibility, which is 216 

one of the limitations of this study. 217 

3.3 Method 218 

3.3.1 Semi-structured interviews 219 

Evaluating the accessibility of urban parks necessitates an understanding of local residents’ 220 

 
1 For a comprehensive, step-by-step guide regarding the collection of data related to travel distance, time, 

and costs, please refer to Supplementary Materials 2. 
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preferences regarding factors that contribute to park attractiveness. For this purpose, we conducted 221 

semi-structured interviews with randomly selected local residents during the week of 12–18 April 222 

2021. Semi-structured interviews are qualitative research techniques that involve a flexible set of 223 

open-ended questions, allowing for a more conversational and exploratory approach to gathering 224 

information from participants (Bryman, 2006). This method is frequently employed in qualitative 225 

park accessibility research, as it enables researchers to gain in-depth insights into individuals' 226 

preferences and priorities for parks (Pearsall and Eller, 2020; Talal and Santelmann, 2021; Wright 227 

Wendel et al., 2012).  228 

To ensure comprehensive representation of various sociodemographic backgrounds, we conducted 229 

interviews in neighborhoods adjacent to the top ten busiest subway stations as ranked by the 230 

Shanghai Municipal Transportation Commission. We recorded 100 valid interviews and used 231 

thematic analysis—a qualitative data analysis method that involves reviewing a set of data to 232 

identify patterns and themes in the meaning of the data—to extract and summarize the data 233 

(Matthews et al., 2015; Meerow and Keith, 2021). Supplementary Material 3 summarizes the 234 

locations and the number of interviews held in each neighborhood and the representativeness of the 235 

interviewees, judging by their age and gender distributions. All interviews lasted over 30 minutes, 236 

with some extending to 45 minutes. 237 

The semi-structured interviews are centered around the following questions, with room for follow-238 

up questions and probes: (1) How often do you visit urban public parks? (2) What do you like or 239 

dislike about parks in general? (3) To what extent does the entrance fee impact your decision to visit 240 

urban public parks? If it does, why and what price would you consider to be excessively high? (4) 241 
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Do you consider whether a park is open at night before visiting? If so, what are the reasons behind 242 

your decision? (5) If you were asked to allocate points to describe the relative importance of the 243 

entrance fee and opening hours in attracting you to an urban public park, how many points would 244 

you give (with 8 points awarded for an emphasis on entrance fee, and -8 points awarded for an 245 

emphasis on opening hours? What are your rationales for assigning the points? 246 

Our findings revealed the following five attributes of parks that visitors found most appealing, listed 247 

in order of frequency of mention: (high quality) environmental aesthetics (mentioned 82 times), 248 

(sufficient) sports space (mentioned 72 times), social environment (mentioned 68 times), (short) 249 

travel distance (mentioned 60 times), and supporting facilities (mentioned 48 times). By contrast, 250 

the five factors that most commonly deterred people from visiting parks, listed in order of frequency 251 

of mention, were: (long) travel distance (mentioned 66 times), (short) opening hours (mentioned 59 252 

times), crowds (mentioned 48 times), entrance fees (mentioned 40 times), and lack of sports spaces 253 

(mentioned 34 times). These findings validate that the quality and size of a park, which were the 254 

focus of previous research, are key factors in influencing the attractiveness of urban public parks. 255 

Moreover, our findings highlight that affordability (termed as entrance fees) and availability (termed 256 

as opening hours), are also crucial factors in determining park attractiveness in Shanghai. Thus, we 257 

propose the inclusiveness index to measure affordability and availability, given their mutual 258 

significance in promoting inclusivity and addressing the needs of marginalized populations who 259 

may not have the financial means or leisure time of more affluent groups (Ezbakhe et al., 2019; Lal 260 

et al., 2017; Shan, 2020). The introduction of the inclusiveness index echoes discussions about the 261 

impacts of affordability and availability on urban park attractiveness (see Section 2.1).  262 
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Our interviews revealed that 78% of respondents considered entrance fees when deciding whether 263 

to visit parks, with 54% stating that an entrance fee of over 20 Chinese yuan/RMB 2  would 264 

discourage them from visiting. Furthermore, 72% of interviewees reported that they would consider 265 

a park’s opening hours. Therefore, we developed a method to measure inclusiveness (Table 1), with 266 

maximum values assigned to each factor based on its relative importance according to the interviews 267 

(with a mean value of 1.54 for the relative importance of entrance fee over opening hours). As an 268 

example, Gongqing Forest Park charges 15 Chinese yuan/RMB for an entrance ticket and is closed 269 

from 5 p.m. to 8 a.m.; hence, its inclusiveness score was 3 based on our methodology. 270 

Table 1. Measurements of inclusiveness of Shanghai parks based on semi-structured interviews. 271 

Factor Description Value 

Entrance fee (EF) free 3 

≤20 yuan 2 

＞20 yuan 1 

Opening period (OP) open at night 2 

close at night 1 

3.3.2 Park accessibility measurement 272 

This study aims to refine the gravity model by incorporating locally-informed attractiveness factors 273 

and considering multiple travel modes when assessing park accessibility. To evaluate the 274 

effectiveness of these improvements, three models are proposed for comparison. Model 1 (Equation 275 

5) is based on previous literature and considers only park size and quality as attractiveness factors. 276 

Model 2 (Equation 6) incorporates context-specific attractiveness factors derived from on-site 277 

interviews in Shanghai, accounting for size, quality, and inclusiveness simultaneously (see Section 278 

3.3.1). Both Model 1 and Model 2 use driving time as a proxy for travel impedance.  279 

 
2 1 RMB ≈ 0.14 USD 
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Building on Model 2, we examine the impact of transport mode on accessibility measurements by 280 

proposing Model 3 (Equation 7), which encompass multiple travel modes, including walking, 281 

cycling, public transport (e.g., buses, subways, and ferries), and driving. Model 3 integrates the 282 

multinomial logistic mode choice model to determine the share of each travel mode (Baradaran and 283 

Ramjerdi, 2011; Guagliardo, 2004; Luo and Qi, 2009) and calculate the weighted travel time to each 284 

park for accessibility measurements. 285 

Model 1: 𝐴𝑖 = ∑
𝑆𝑗∗ 𝑄𝑗

𝑇𝑖𝑗
𝛾

∗𝑉𝑗

𝑛
𝑗=1 ;  𝑉𝑗 = ∑

𝑃𝑖

𝐷𝑇𝑖𝑗
𝛾

𝑚
𝑖=1  (5) 286 

Model 2: 𝐴𝑖 = ∑
𝑆𝑗∗𝑄𝑗∗𝐼𝑗

𝑇𝑖𝑗
𝛾

∗𝑉𝑗

𝑛
𝑗=1 ; 𝑉𝑗 = ∑

𝑃𝑖

𝐷𝑇𝑖𝑗
𝛾

𝑚
𝑖=1  (6) 287 

Model 3: 𝐴𝑖 = ∑
𝑆𝑗∗𝑄𝑗∗𝐼𝑗

∑ (𝑃𝑖𝑗𝑘∗ 𝑇𝑖𝑗𝑘) 4
𝑘=1 ∗ 𝑉𝑗

𝑛
𝑗=1 ; 𝑉𝑗 = ∑

𝑃𝑖

∑ (𝑃𝑖𝑗𝑘∗ 𝑇𝑖𝑗𝑘) 4
𝑘=1

𝑚
𝑖=1 ; 𝑃𝑖𝑗𝑘 =

𝑒
𝛽𝑇∗𝑇𝑖𝑗𝑘+𝛽𝐶∗𝐶𝑖𝑗𝑘  

∑ 𝑒
𝛽𝑇∗𝑇𝑖𝑗𝑟+𝛽𝐶∗𝐶𝑖𝑗𝑘4

𝑟=1

  (7) 288 

where 𝑆𝑗 refers to the acreage of park 𝑗; 𝑄𝑗 denotes the quality index of park 𝑗, measured using 289 

a park’s star-rating in this study; 𝐼𝑗 represents the inclusiveness of park 𝑗; 𝑇𝑖𝑗 measures the travel 290 

time from 𝑖 to 𝑗; 𝑃𝑖𝑗𝑘 is the probability of using mode 𝑘 when traveling from 𝑖 to 𝑗; 𝛽𝑇 refers 291 

to the coefficient of travel time from 𝑖 to 𝑗; 𝑇𝑖𝑗𝑘 is the travel time of using mode 𝑘; 𝛽𝐶  signifies 292 

the coefficient of travel cost from 𝑖 to 𝑗; and 𝐶𝑖𝑗𝑘 is the travel cost associated with using mode 293 

𝑘. 294 

The logsum model can incorporate various variables, such as sociodemographic factors and specific 295 

variables related to different transportation modes (Huang et al., 2022; Macfarlane et al., 2021). 296 

However, due to data availability limitations, this study only considers travel time and travel cost. 297 

As utility-based parameter calibration is unfeasible with the available data, we follow Wang et al. 298 

(2022) in adopting 𝛽𝑇 and 𝛽𝐶  values of -0.0413 and to -0.0765, respectively, in the context of 299 
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Shanghai. Travel time is measured in minutes, while the travel cost for driving is expressed as the 300 

corresponding taxi fare. Public transport cost is determined in accordance with the prevailing policy 301 

in Shanghai, which sets the fare at 2 RMB for trips within 6 kilometers and increases by 1 RMB for 302 

every additional 10 kilometers of travel distance (Shanghai Municipal Development & Reform 303 

Commission, 2022). Cycling and walking travel costs are considered as 0. In addition, in the absence 304 

of empirical investigation, we adopt a value of 𝛾  of 1 following studies by Park et al. (2021), 305 

Semenzato et al. (2023), Yang et al. (2023), Yao et al. (2013), and Zhu et al. (2018). Future research 306 

may perform sensitivity analyses to validate the chosen values. 307 

3.3.3 Comparisons of different models 308 

To standardize the accessibility results for comparison purposes, we employed the linear form of 309 

the global value function (Equation 8) to normalize the raw data into a scale ranging from 0 to 1 310 

(Dony et al., 2015; Yang et al., 2023).  311 

𝑁𝐴𝑖 =
𝐴𝑖−𝐴𝑚𝑖𝑛

𝐴𝑚𝑎𝑥−𝐴𝑚𝑖𝑛
 (8) 312 

where 𝑁𝐴𝑖  is the normalized accessibility of zone 𝑖 , while 𝐴𝑚𝑎𝑥  and 𝐴𝑚𝑖𝑛  denote the 313 

maximum and minimum values, respectively, of accessibility observed across all zones within the 314 

study area.  315 

We then employed a t-test to investigate the disparities across macro-zones. Furthermore, the spatial 316 

and statistical variances of the normalized accessibility results were compared across the different 317 

models. We also included spatial statistics for local indicators of spatial autocorrelation (LISA) to 318 

further identify the spatial clustering of accessibility distribution (Anselin, 1995). The LISA values 319 
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were derived based on local Moran’s I using inverse Euclidean distance. 320 

4. Results 321 

4.1 Model comparison at the macro-zonal level 322 

Table 2 presents the normalized accessibility values derived from the three distinct models. A 323 

comparative analysis between Model 1 and Model 2 demonstrates the influence of integrating the 324 

inclusiveness factor into the gravity model. While both models generally yield similar outcomes, 325 

Model 2 exhibits higher accessibility within the macro zones located in city centers. In addition, 326 

Model 2 demonstrates a slightly larger accessibility variance at the city scale (0.22) compared to 327 

Model 1 (0.21).  328 

Further comparisons between Model 2 and Model 3 highlight the effects of incorporating the 329 

multimodal choice model into the gravity model. Overall, Model 3 produces lower accessibility 330 

values compared to Model 2. However, it yields higher accessibility within the inner ring and larger 331 

disparities between the city center and suburbs. Notably, Model 3 reveals a greater variance (0.25) 332 

in accessibility levels when compared to Model 2. 333 

Table 2. Descriptive statistics of normalized accessibility. 334 

Model Zonal category #Obs Mean (95% CI) Std.Dev Min Max 

Model 1 
       

Center 106 0.78 (0.77,0.79) 0.07 0.61 1.00  
Inner Ring 37 0.78 (0.77,0.80) 0.05 0.69 0.89  
Middle Ring 37 0.80 (0.78,0.82) 0.06 0.64 0.90  
Outer Ring 32 0.76 (0.73,0.79) 0.09 0.61 1.00 

Suburbs 126 0.47 (0.44,0.51) 0.19 0.00 0.88  
Near suburbs 33 0.66 (0.62,0.69) 0.11 0.44 0.88  
New Town 24 0.54 (0.49,0.59) 0.13 0.27 0.76  
Far Suburbs 70 0.37 (0.33,0.41) 0.17 0.00 0.71 
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Overall 233 0.62 (0.59,0.64) 0.21 0.00 1.00 

Model 2 
       

Center 106 0.80 (0.79,0.81) 0.07 0.61 1.00  
Inner Ring 37 0.81 (0.79,0.82) 0.05 0.71 0.92  
Middle Ring 37 0.82 (0.80,0.84) 0.06 0.64 0.93  
Outer Ring 32 0.77 (0.74,0.80) 0.09 0.61 1.00 

Suburbs 126 0.47 (0.44,0.51) 0.19 0.00 0.90  
Near suburbs 33 0.66 (0.62,0.70) 0.11 0.43 0.90  
New Town 24 0.53 (0.48,0.59) 0.13 0.27 0.76  
Far Suburbs 70 0.37 (0.33,0.40) 0.17 0.00 0.71 

Overall 233 0.62 (0.59,0.65) 0.22 0.00 1.00 

Model 3 
       

Center 106 0.79 (0.77,0.81) 0.10 0.50 1.00 
 

Inner Ring 37 0.88 (0.85,0.90) 0.07 0.74 1.00 
 

Middle Ring 37 0.80 (0.78,0.82) 0.07 0.78 0.82 
 

Outer Ring 32 0.69 (0.66,0.72) 0.08 0.50 0.82 

Suburbs 126 0.40 (0.37,0.43) 0.18 0.00 0.88 
 

Near suburbs 33 0.58 (0.54,0.63) 0.12 0.32 0.88 
 

New Town 24 0.45 (0.41,0.49) 0.10 0.25 0.65 
 

Far Suburbs 70 0.30 (0.26,0.34) 0.16 0.00 0.73 

Overall 233 0.58 (0.55,0.61) 0.25 0.00 1.00 

Although the findings of all three models exhibit consistent patterns, indicating a decrease in 335 

accessibility from city centers to suburbs, a more detailed analysis at the macro-zonal level reveals 336 

nuanced disparities among the models (Fig. 2).  337 

When compared to Model 1, both Model 2 and Model 3 reveal larger disparities among the macro 338 

zones. Model 3 consistently exhibits the largest accessibility variances among the macro zones, 339 

except for the difference between the new town and far suburbs. Substantial disparities are also 340 

highlighted by Model 3 between the macro zones in the city center and those in the suburbs. 341 

For accessibility level with the city center (i.e., the inner ring, middle ring, and outer ring), Model 342 

1 does not identify statistically significant differences in park accessibility between zones. In 343 

contrast, Model 2 reveals significant disparities between the middle ring and outer ring zones, while 344 

still indicating insignificant differences between the inner ring and middle ring, as well as the inner 345 
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ring and outer ring. Model 3, on the other hand, reveals statistically significant disparities between 346 

each pair of macro zones within the urban center, due to the co-determinants of park inclusiveness 347 

and multimodal transport accessibility.  348 

 349 

Fig. 2 Zonal differences of park accessibility. 350 

4.2 Model comparison at the subdistrict level 351 

Fig. 3 displays the normalized accessibility values and LISA statistics for sub-districts. The 352 

accessibility value maps derived from the three models exhibit similar spatial distribution patterns; 353 

high-high clusters are predominantly concentrated in the urban core, while low-low clusters are 354 

dispersed towards the city’s outer periphery with similar coverage. 355 

Nevertheless, the comparisons drawn between Models 1 to 3 suggest that the assumption of 356 

homogeneity regarding park inclusiveness and travel mode can lead to the overestimation of park 357 

accessibility, particularly in the inner ring area, near suburbs and new towns. Compared to Model 358 

1 and Model 2, Model 3 display a more pronounced concentration of high-high clusters towards 359 

the city center, with central zones generally displaying higher accessibility values. In addition, 360 
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Model 3 captures more localized accessibility differences, with additional low-high clusters 361 

identified in near suburbs and high-low clusters emerging in and around new towns. 362 

 363 

Fig. 3 Spatial distribution of normalized accessibility values and LISA statistics across three models 364 

The bivariate correlation analysis further corroborates the LISA-related findings (Fig. 4). The 365 

zonal-level accessibility values share similar patterns between Model 1 and Model 2, while the 366 

incorporation of park inclusiveness (Model 2) yields higher park accessibility levels for zones in 367 

the city center. The consideration of multi-mode transport (Model 3) enlarges the accessibility 368 

gaps not only across but also within subdistricts. While the overall results derived from Model 2 369 

and Model 3 exhibit a strong correlation (r = 0.94), a closer examination of the results in the inner 370 

ring (r = 0.55) and middle ring (r = 0.59) reveals considerable variance. 371 
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 372 

Fig. 4 Bivariate correlation of accessibility obtained from three models.  373 

The accessibility results obtained from the different models exhibit nuanced variations, 374 

necessitating further investigation and comparison. Fig. 5a highlights a noticeable disparity in 375 

accessibility between Model 1 and Model 2. The inclusion of the inclusiveness index leads to a 376 

slight increase in accessibility for subdistricts in Shanghai, while this increase is not consistent 377 

across all subdistricts. Specifically, the majority of subdistricts in the inner ring and middle ring, 378 

with only one outlier, experience higher accessibility in Model 2 compared to Model 1; the longer 379 

operation hours and higher quality of parks in the city center are well represented in Model 2. 380 

Conversely, new towns and far suburbs witness a decrease in park accessibility in Model 2, 381 

reflecting a larger variance in park inclusiveness between the city center and suburbs. 382 

The incorporation of the multimodal transport choices into the gravity model also has notable 383 

effects on the accessibility results (Fig. 5b). Compared to Model 2, subdistricts in the inner ring 384 

demonstrate significantly higher accessibility in Model 3 due to the well-connected public 385 

transport systems therein. However, with the distance to the city core, Model 3 displays a sharper 386 

decrease in accessibility levels. Notably, new towns are found to have the most significant drop in 387 
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park accessibility levels in Model 3, attributing to the underestimation of travel frictions based on 388 

car-only mode in Model 2. 389 

Incorporating both the inclusiveness factor and the multimodal choice model leads to more 390 

nuanced changes in the measurement of accessibility. Although the accessibility derived from 391 

Model 3 and Model 1 generally exhibits a strong correlation (r = 0.93), the correlation between 392 

accessibility results of subdistricts in the inner ring (r = 0.49), middle ring (r = 0.52), and near 393 

suburbs (r = 0.69) is lower compared to those located in other macro-zones (see Fig. 4c). Fig. 5c 394 

illustrates the changes in accessibility when comparing Model 3 to Model 1. The accessibility 395 

evaluation results tend to be similar between Model 1 and Model 3 in the middle ring area due to 396 

the off-set effects of attractiveness enhancement by incorporating park inclusiveness and travel 397 

friction growth by adding multi-mode transport options. The overall results indicate larger 398 

disparities in park accessibility between subdistricts in the city center and suburbs. 399 
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 400 

Fig. 5 Accessibility value change across three models, and distribution and mean of the change by 401 

macro-zone. 402 
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5. Discussion and Conclusions  403 

This study emphasizes the importance of incorporating context-specific attractiveness factors and 404 

localized transport modal choices into a gravity model for evaluating park accessibility. By using 405 

localized attractiveness factors (e.g., size, quality, and inclusiveness) and travel modes (i.e., 406 

multimodal choice) based on local residents' perceptions and travel habits, the improved model can 407 

better address potential biases in park accessibility evaluations. 408 

We introduced an inclusiveness index that considers park entrance fees and opening hours, weighted 409 

according to the results of the semi-structured interviews conducted in Shanghai, into the calculation 410 

of the attractiveness coefficient. Our findings show that a detailed representation of park 411 

attractiveness from a local perspective reveals larger accessibility gaps between central and 412 

suburban areas, with suburban areas generally performing worse in park inclusiveness (e.g., having 413 

more expensive entrance fees). This discrepancy could be attributed to the lower levels of public 414 

funding that suburban parks receive compared to parks in central locations, causing them to depend 415 

more heavily on entrance fees to cover maintenance costs (Wolch et al., 2014). Moreover, land use 416 

dynamics in suburban areas might favor residential or commercial development over public spaces, 417 

leading to a diminished allocation of resources for parks (Jackson, 1985).  418 

Regarding travel modes, our results suggest that focusing solely on motorized travel time may 419 

produce imprecise results across a city region, particularly one with well-connected and affordable 420 

public transport systems. The consideration of multiple transport modes reveals more pronounced 421 

differences in accessibility levels. In the case of Shanghai, the improved model better captures the 422 

unevenness in park accessibility caused by available modal choices, particularly in the inner ring 423 
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area and new towns. 424 

In summary, the improved gravity model produces lower and more variable accessibility levels than 425 

the conventional model, revealing a greater accessibility gap between the city center and suburbs, 426 

as well as within these areas themselves. Accurately assessing accessibility levels and variations is 427 

crucial for urban planning, particularly for ensuring a spatially equitable distribution of public park 428 

services. The empirical evidence from this study can inform policy-making in park planning and 429 

maintenance in several ways. First, a comprehensive understanding of park attractiveness factors 430 

and transport modal choices is vital for ensuring accurate accessibility measurements in planning. 431 

Isolated considerations of these factors can lead to biased evaluation results, limiting the 432 

effectiveness of the planning interventions. Second, localized planning interventions should be 433 

designed and implemented to improve park accessibility. For Shanghai, this may involve reducing 434 

park entrance fees in suburban areas, adjusting night-closure management policies in new towns’ 435 

parks, and improving transit connections between the center and suburbs to bridge accessibility gaps.  436 

While this study provides a more accurate representation of park accessibility by incorporating 437 

locally-informed, accessibility-related factors, several limitations should be acknowledged, along 438 

with suggestions for future research. First, the limited availability of data constrains the study’s 439 

ability to conduct more comprehensive sensitivity tests. For instance, other factors such as park 440 

safety, service facilities, and the built environment can impact park attractiveness (Liu et al., 2021; 441 

Rigolon and Németh, 2018), while heterogeneity also exists in people’s park visit and travel 442 

preferences. Future research could compare the weights of universally-adopted and local-context-443 

informed attractiveness factors, as well as calibrate multimodal travel choice models based on travel 444 
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surveys with socio-economic information (Huang et al., 2022; Wang et al., 2022). The optimal 445 

spatial units for analysis can be also explored when datasets across different spatial scales become 446 

available. Due to data availability, our study relied on subdistrict level data, which is the most 447 

detailed jurisdictional dataset we had access to. As a result, we were unable to control the size of 448 

the zones in this study. Future research seeking to delve deeper into these issues would benefit from 449 

the use of higher-resolution data, which would allow for a more precise understanding of the 450 

dynamics within each zone. Second, we selected afternoons on two days as the time periods for 451 

measuring travel time, which may not fully capture the temporal variations in accessibility. Future 452 

studies could validate the results using different time periods to analyze the temporal dynamics of 453 

accessibility more accurately. Third, although the semi-structured interviews facilitated an in-depth 454 

understanding of local residents' park visit preferences, the sample size of 100 respondents is 455 

relatively small. Future research could consider expanding the sample size and utilizing big data 456 

(e.g., location-based movement trajectories) to enhance the analysis. Comparative studies are also 457 

encouraged to explore the extent to which the localized selection of attractiveness factors and travel 458 

modes matter in cities with various socio-economic contexts. The comparison will allow for both 459 

generalizable and context-specific planning implications for improving park accessibility.  460 

  461 
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