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Abstract 

Osteosarcoma (OS) is the most common bone malignancy often producing aggressive 
tumours in adolescents. OS aetiology is poorly understood, however, recent studies 
suggest OS cancers contain a small population of cancer stem cells (CSC) which initiate 
tumour growth. The cancer stem cell hypothesis describes cancers as a hierarchical 
population of heterogeneous cells. It has been proposed that CSC are at the base of this 
hierarchy and are responsible for the initiation, growth and spread of the tumour and 
pose a therapeutic challenge due to enhanced chemotherapy resistance. This project 
had three aims: identifying whether OS cell lines contain subpopulations of putative CSC, 
identifying if CSC contribute to chemotherapeutic resistance and to elucidate paracrine 
cell signals controlling OS tumour growth.  
 
Eight OS cell lines (143B, Cal72, G292, HOS, MG63, MNNG-HOS, U2OS and SaOS-2) along 
with the breast cancer cell line MCF7 have been analysed for the presence of sub-
population of cells expressing putative CSC markers (aldehyde dehydrogenase and 
CD117). The intracellular enzyme aldehyde dehydrogenase (ALDH) and tyrosine kinase 
receptor CD117 were found to be heterogeneously expressed amongst the cell lines. All 
cell lines when plated at low density could recapitulate the colony hierarchies based on 
variation in colony morphology (holoclones, meroclones and paraclones), this was 
originally observed in carcinoma cell lines and is further putative evidence a CSC 
hierarchy exists within these cell lines. ALDH expressing cells were found to be confined 
to the holoclones (in cell lines with ALDH populations comprising less than 10 % of the 
total population) indicating that putative CSCs reside within this population. All OS cell 
lines also expressed mesenchymal markers (high vimentin and CD44 expression and low 
e-cadherin expression) suggesting they are a progenitor of mesenchymal stem cells. The 
expression of CD117 was found to negatively correlate with cisplatin chemotherapy 
resistance whereas ALDH inhibition using the specific antagonist diethylaminobenzalde 
sensitised different cells lines to opposing chemotherapeutics, suggesting a 
heterogenous response of OS ALDH cells to cytotoxic compounds. 
 
All OS cells lines, except 143B and HOS, were found to secrete a paracine growth factor 
which was capable of significantly enhancing their own growth. U2OS conditioned 
media was also able to enhance the growth of the breast cancer cell line MCF7 and a 
fibrosarcoma cell line (HT1080).  Analysis of the cytokine expression profile of OS cell 
lines (HOS, MG63 and U2OS) demonstrated these cells secrete a broad range of 
cytokines associated with inflammation. The cytokine CCL-2 was identified as the 
putative OS paracrine growth factor as determined by the response to recombinant CCL-
2, receptor antagonism and CCL-2 RNA interference. Genes with altered expression in 
response to CCL-2 were associated with transcription, suggesting that CCL-2 enhances 
proliferation through its downstream effect on transcription.     
   
Overall this thesis has contributed to the field of oncology by further defining the 

populations of putative CSC within a panel of OS cell lines. In addition the identification 

of a novel OS growth factor provides a possible adjuvant therapeutic target, which could 

aid in the reduction of OS proliferation.
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1.1 Introduction to cancer 

Cancer is a broad range of diseases all with varying characteristics and prognoses, which 

are classified based upon the tissue of origin. There are the four cancer types; carcinomas 

of the epithelium, sarcomas of the connective tissue (Mackall et al., 2002), tumours of the 

nervous system (Louis et al., 2007)  and lymphomas and leukaemias which arise from the 

haematopoietic lineage (Vardiman et al., 2009, Harris et al., 1999). In order for a cell to 

become cancerous it must acquire six characteristics; chronic proliferation, evasion of 

contact inhibition, the ability to resist cell death, replicative immortality, sustained 

angiogenesis and the ability to invade surrounding tissues and metastasise to distant 

organs  (Hanahan and Weinberg, 2011). A cell which acquires these six characteristics will 

develop in to a malignant cancer, however, benign tumours can also develop if a cell 

acquires the same hallmarks excluding the ability to invade and metastasise (Lazebnik, 

2010). Benign tumours can still grow large in size but lack these most fatal aspects of 

cancer, which are often attributed to treatment complications and cancer related fatalities 

(Ford et al., 1994). 

Improvements in cancer therapy have been made since the first chemotherapeutic was 

discovered and used to induce a remission in 1947 (Farber and Diamond, 1948). The use of 

combined chemotherapy regimens in combination with surgery, has dramatically reduced 

tumour reoccurrence (Jaffe et al., 1974). However due to the toxic nature of these 

chemotherapeutics (Shapiro et al., 1998) and the enhanced risk of leukaemia following 

treatment (Curtis et al., 1992), this has led to the introduction of cancer treatments which 

have a reduced toxicity to non-cancerous cells. These targeted therapies are now able to 

distinguish cancer cells from healthy cells, using agents which inhibit the signaling networks 

required for maintenance of a malignant phenotype. These treatment strategies, even 

when used as single agents, have been found to induce high rates of tumour suppression 

and are associated with low rates of toxicity (Kantarjian et al., 2002). However, cancer is 

still a leading cause of death worldwide, predictions in 2012 estimate 14.1 million new 

cancer cases within that year and 8.2 million cancer related deaths (GLOBOCAN, 2014). This 

figure is only likely to rise with the increased proportion of elderly people within developed 
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countries (Croce, 2008), making improved cancer therapies a necessity to reduce mortality 

rates. 

1.1.1 Cancer associated mutations 

The evolution of a normal healthy cell in to an invasive tumour is often a gradual process 

which requires a number of genetic insults. Cancer driving mutations occur with either the 

loss of tumour suppressors; genes involved in regulating the cell cycle or a mutation which 

may enhance the expression of an oncogene, the result of which will force a cell to divide. 

These mutations are usually acquired somatically, however in some rare cases germline 

mutations can also predispose cells towards cancer (Gayther et al., 1997). One of the most 

common somatic mutations is the loss of the tumour suppressor P53 which occurs in up to 

50 % of head and neck, ovarian, oesophageal, colorectal and lung cancers (Jones and Baylin, 

2002). One of the first germline mutations associated with cancer to be identified was the 

tumour suppressor breast cancer 1, early onset gene (BRCA1) where individuals carrying a 

mutation causing the loss of one BRCA1 allele have an elevated risk of cancer with an 80 % 

chance of developing breast cancer and increased risk of ovarian and secondary cancers 

(Ford et al., 1994).  

The heterogenous nature of cancers is highlighted by the finding that the somatic mutation 

rate can vary from 0.001 to 400 mutations per megabase even in cancers of the same type 

(Stefanska et al., 2011).  Although mutations do play a significant role in tumour formation 

altering gene expression via epigenetic mechanisms has also been shown to be important.  

Gene silencing via methylation of CpG islands upsteam of gene promoters is commonly 

observed in the silencing of tumour suppressors such as BRCA1 (Jones and Baylin, 2002). 

Conversely regions of the genome containing oncogenes can become hypomethylated and 

this can lead to increased gene expression resulting in neoplasias (Feinberg and Tycko, 

2004). Analysis of gene methylation in liver cancer found that hypermethylated genes were 

involved in growth, angiogenesis and metastasis (Stefanska et al., 2011), which are crucial 

for cancer formation. In addition genome wide hypomethylation has been found to induce 

chromosome instability, which has been proposed as a mechanism by which cancer cells 

can gain mutations and lose heterozygosity in areas containing tumour suppressors  (Chen 

et al., 1998). 
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1.1.2 Classification of cancer 

Excluding embryonic tumours, cancers can be broadly classed in to either carcinomas, 

haematologic neoplasms, neuronal cancers and sarcomas. Carcinomas originate from 

epithelial cells, and are the most common cancer type. Lung cancer is an example of a 

carcinoma and alone is the most frequently diagnosed cancer worldwide, contributing to 

≥50 % of all cancer related deaths (Jemal et al., 2010). The high incidence of carcinomas is 

possibly a result of the large abundance of these cells as well as a consequence of their 

exposure to the external environment. Organs such as the lungs, skin and alimentary tract 

are in constant interaction with an environment frequently containing carcinogens, 

increasing the likelihood of tumour formation (Berman, 2004). Carcinomas can effect all 

organs containing epithelial or endothelial cells, therefore, comprise a diverse collection of 

cancers. In the breast for example a collection of neoplasias have been characterised which 

have distinct clinical outcomes (Vargo-Gogola and Rosen, 2007). Currently six different 

breast cancer subtypes have been identified using gene microarrays, these include normal 

breast like, basal like, epidermal growth factor 2 expressing (EGFR2 +), and the luminal 

types which are comprised of the A,B and C subtypes (Sorlie et al., 2006).  

The haematologic neoplasms more commonly called leukaemia, encompass any tumour 

arising from the haematopoietic stem cells which reside in the bone marrow. These stem 

cells give rise to all the blood cells of the body, therefore neoplasms can be either lymphoid, 

myeloid or histiocytic (Harris et al., 1999). All leukaemias can be divided in to acute and 

chronic diseases. Acute forms are charcterised by a high percentage of haematopoietic 

progenitor cells more commonly called blast cells, which have lost their ability to 

differentiate (Estey and Dohner, 2006). In contrast chronic forms contain more 

differentiated leukaemic cells, however these diseases can progress in to a blast phase, 

whereby differentiated leukaemic cells are replaced by blast cells (Sawyers, 1999). Myeloid 

leukaemias encompass neoplasias originating in either the granulocyte (neutrophils, 

basophils and eosinophils), monocytes/macrophages, megakaryocytes or mast lineage of 

cells (Vardiman et al., 2009). Although all age groups can be effected by chronic myeloid 

leukaemia on average people in their 50s are effected and the disease is usually diagnosed 

at a fairly benign phase, however this can progress to a fatal blast crisis (Calabretta and 

Perrotti, 2004, Sawyers, 1999). Acute myeloid leukaemias are characterised by the de novo 
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presentation of a blast count 20 % or greater (Vardiman et al., 2009). The build up of these 

immature myeloid cells can rapidly lead to fatal infection, internal bleeding or organ 

infiltration if left untreated (Estey and Dohner, 2006).  

Neuronal cancers include brain tumours which can be divided in to either 

medulloblastomas arising from a neuronal progenitor or astrocytoma and 

oligodendroglioma originating from a glioma precursor (Mischel et al., 2004). 

Medulloblastoma and glioblastomas (the most malignant form of astrocytoma) have an 

incidence in the US of around 10 % and are associated with poor prognosis.  Even with 

improved treatment strategies the long term (5 year) survival rate has not improved for 20 

years (Deorah et al., 2006) and in particular glioma survival rates are very poor with a 

median survival time post diagnosis of 12 – 15 months (Wen and Kesari, 2008). One issue 

that makes treating brain tumours a challenge is the effect of the blood brain barrier to 

inhibit anti-cancer drugs reaching the central nervous system. In order for treatment 

strategies to be improved it will be important to design drugs with enhanced lipophilicity 

or packaging in to liposomes (Huse and Holland, 2010).    

Sarcomas arise from the connective tissue (bone, cartilage, fat and muscle) and account for 

around 5 % of adult cancers and 20 % of paediatric cancers (Mackall et al., 2002). Classifying 

sarcomas can often be a challenge because tumours display little similarity to differentiated 

connective tissue (Henderson et al., 2005). As a consequence tumour location is often less 

important in sarcoma diagnosis, emphasis is instead placed on molecular pathology. This 

has led to sarcomas being broadly classified in to either a tumour with either a simple or 

complex karyotypic defects (Berman, 2004). Simple karyotypic sarcomas include tumours 

with a disease specific translocation giving rise to a fusion protein which plays an active 

role in tumour formation. In 85 % of Ewing’s sarcomas a fusion of chromosome 22 to either 

chromosome 2, 7, 11, 17 and 21 occurs leading to the expression of a fusion protein which 

enhances cellular proliferation (Riggi et al., 2005). In contrast, complex neoplasias contain 

extensive chromosomal rearrangements and are commonly associated with genetic 

abnormalities including the loss of tumour suppressors such as P53, murine double minute 

2 (MDM2) and especially retinoblastoma (Rb) which is commonly mutated (Wang et al., 

1995).  In some sarcomas mesenchymal precursor cells have been identified as the 
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initiating cell (Riggi et al., 2005), which is also hypothesised to be the case in other sarcomas 

such as osteosarcoma (Tang et al., 2008).  

 

1.1.3 Osteosarcoma 

Osteosarcoma (OS) describes malignancies characterised by direct formation of bone or 

osteoid tissue from tumour cells (Schajowicz et al., 1995). It primarily effects adolescents 

and has been found to have a bimodal age distribution with the highest incidence at 10 - 

19 years and a subsequent increase at >70 years (Jawad et al., 2010). In adolescents the 

peak incidence of OS has been linked to the ages of highest growth velocity (Hems, 1970). 

Although rare, OS is the most common malignant primary bone tumour with an estimated 

incidence of 1 case per 500,000 persons per year (Klein and Siegal, 2006). It has a poor 

clinical outcome, even with improved treatment strategies still only 40 - 50 % of patients 

achieve long term survival of 10 years (Bielack et al., 2002, Petrilli et al., 2006). 

OS is a collection of lesions which are classified according to their histological features and 

grade. Different tumour types produce variable quantities of cartilage matrix or fibrous 

tissue. This has given rise to three classical subdivisions: osteoblastic, chondroblastic and 

fibroblastic tumours. In reality all OS tumours contain a variety of cell types and matrices 

so classification is based on >50 % predominance of any histologic type (Klein and Siegal, 

2006). The cellular origin of OS is still unclear, the origin of an alternative sarcoma (Ewing’s 

sarcoma) has been identified as bone marrow derived mesenchymal cells (Riggi et al., 

2005). A similar cellular origin has been hypothesised in OS (Tang et al., 2008), however, 

further research is required to substantiate this theory.  To aid with the study of OS a variety 

of cell lines are available which mimic the different tumour morphologies. These cell lines 

include Saos-2 and U2OS which contain cells of an epithelial morphology, MG63 is a 

fibroblastic cell line and there are also mixed morphology cell lines such as 143B, HOS and 

MNNG-HOS (Table 1.1).    

 

 



Chapter 1. General Introduction 

24 
 

Table 1.1: Human OS cell lines. * indicates cell lines derived from HOS by Ki-ras 

transformation (*1) and by N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) treatment (*2). 

# indicates ATCC® bank line not available; cell line derived from Rochet et al 1999. 

OS Cell line Phenotype ATCC number® 

CAL 72 Epithelia # 

G-292 Fibroblastic CRL_1423 

HOS Mixed CRL_1543 

143B*1 Mixed CRL_8303 

MMNG HOS*2 Mixed CRL_1547 

U2OS Epithelia HTB_96 

MG63 Fibroblastic CRL_1427 

Saos-2 Epithelia HTB_85 

 

The aetiology of OS is poorly understood, the disease has no familial patterns and is classed 

as a complex karyotype sarcoma with a host of different genetic abnormalities observed 

within tumours (Hansen, 2002). Several common OS associated mutations include the loss 

of the tumour suppressors such as P53 and Rb (Diller et al., 1990, Miller et al., 1996). Loss 

of Rb leads to a significant increase in OS incidence (Lueder et al., 1986), with the protein 

product of Rb (pRb) promoting osteoblast cell cycle arrest and differentiation when 

dephosphorylated (Lipinski and Jacks, 1999, Thomas et al., 2001). In osteosarcoma ectopic 

expression of pRB in the OS cell line SaOS-2 was found to lead to cell senescence and 

apoptosis by inhibiting E2F transcription factors, which inhibits entry into S phase of the 

cell cycle (Tiemann and Hinds, 1998). p16ink4 is an inhibitor of cyclin dependant kinases 4 

and 6 which are involved in the deactivation of pRb via phosphorylation. OS U2OS cells 

transfected with p16ink4 become senescent (Dai and Enders, 2000) highlighting that pRb 

can be inactivated via alternative mechanisms rather than just loss of gene function. The 

activator protein 1 (AP-1) transcription factors c-fos and c-jun are commonly overexpressed 

in OS (Franchi et al., 1998) with c-fos playing an important role in osteoblast activity 

(Grigoriadis et al., 1993). When c-fos and c-jun are both overexpressed in transgenic mice 

this enhances OS formation (Wang et al., 1995), through the increased expression of genes 
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associated with proliferation and survival (Angel and Karin, 1991). When c-jun and c-fos 

form a heterodimeric protein they bind genes containing promoters with AP-1 transcription 

activation elements 25 times more efficiently than homodimeric proteins (Halazonetis et 

al., 1988), which indicates why overexpression of both these proteins can lead to 

osteosarcoma formation.  
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1.2 Stem cells and cancer 

Stem cells (SC) have the capability to undergo self-renewal and to produce progeny which 

can differentiate into separate cell lineages (Hall and Watt, 1989). The potency of a SC 

refers to how many cellular lineages it can give rise to. Totipotency describes cells with the 

greatest potency such as the zygote, with the ability to produce every cell in the body, 

whereas pluripotency refers to cells able to produce any adult or embryonic cell (Mitalipov 

and Wolf, 2009). Multipotency is a cell which can give rise to a limited number of cell 

lineages and these are found in the later stages of embryo development as well as 

throughout adult life which is why they are often referred to as adult stem cells. Adult SCs 

have been identified in a wide range of organs including the epidermis, intestine, liver, 

brain (Hall and Watt, 1989, Weissman, 2000) and two distinct populations (mesenchymal 

and haematopietic cells) found within the bone marrow (Delorme et al., 2008). Within 

these organs the SCs reside in specific niches which provide a suitable environment for a 

stem cell population and provide substrates to control their self-renewal and progeny 

production (Spradling et al., 2001). Control over SCs is vital in order for them to effectively 

fulfill their purpose of maintaining the number of differentiated cells and ensuring that any 

tissue damage can be repaired (Hall and Watt, 1989). Adult SCs use clonal succession in 

order to maintain cell populations. This is achieved by a small percentage of SCs dividing 

either asymmetrically to replenish differentiated progeny or symmetrically to produce 

daughter SCs. The remaining SCs population is dormant and acts like a reserve only dividing 

when a replacement or extra SCs are required (Abkowitz et al., 1990).  

Traditionally the stochastic model was used to describe cancer formation; this theory states 

that any cell within an organ can become tumourigenic, giving rise to a homogenous 

population of cells all with equal tumorigenicity (Odoux et al., 2008, Patel et al., 2010). 

Recent findings contradict this idea and indicate that many cancers are in fact composed 

of a hierarchical population of cells with a mutated progenitor cell driving the initiation and 

maintenance of neoplastic growth (Siclari and Qin, 2010). Mutated progenitor cells have 

been aptly named cancer stem cells (CSC), because like stem cells they have plasticity and 

divide to produce either a daughter CSC or progeny which will mature and recapitulate the 

original tumour heterogeneity (Mackenzie, 2008). Often tumours can be viewed as 

aberrant organs due to tumours containing a hierarchical organisation which reflects a 
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healthy organ (Reya et al., 2001). However it should be made clear that CSC do not 

necessarily have to arise from an adult stem cell, an alternative source of CSC could be 

differentiated cells acquiring mutations allowing them to regress and gain stem cell 

properties (Figure 1.1) (Valent et al., 2012). Therefore, a CSC does not have to originate 

from a  SC and has been defined as a cell within a cancer, which has the capacity to self-

renew and give rise to heterogenous lineages of cells that comprise a malignancy (Clarke 

et al., 2006). An important caveat of Clarke et al (2006) CSC definition proposes that a CSC 

may not be the original tumour initiating cell. A cell which initiates tumour formation may 

lack SC properties, which are acquired through additional mutations during cancer 

progression 

 

Figure 1.1: Cancer stem cell evolution model. As is found in normal stem cell populations within a 
healthy organ (top of figure) and cancer (middle and bottom of figure), stem cells can divide 
asymmetrically to produce transit amplifying cells, which will go through several rounds of division 
and differentiate to eventually become terminally differentiated cells, which can no longer divide. 
The evolution toward a malignant phenotype requires the acquisition of multiple mutations, in the 
middle of the figure either a stem cell or a de-differentiated transit amplifying cell has acquired a 
mutation which enhances its proliferation leading to clonal expansion of these cells and the 
formation of a premalignant lesion.  The accumulation of further mutations in the CSC population 
leads to the formation of multiple CSC phenotypes (bottom of figure) indicated by different CSC 
colours, these cells not only have enhanced proliferation rates but also the ability to invade the 
surrounding tissue and metastasise. Adapted from Valent et al. (2012). 
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1.2.1 Evidence supporting the cancer stem cell theory  

Observations that tumours contained a stem cell population date back to the 19th century 

when it was noted that cancers contain embryonic like cells (Askanazy, 1907). The first in 

vitro experiment proving the presence of CSC was achieved in murine myeloma cells (Park 

et al., 1971) and later in human cancers (Hamburger and Salmon, 1977). The experiments 

conducted from human myeloma patients found that only 0.001 – 0.1 % of myeloma cells 

had the ability to form colonies. Suggesting that not all cancer cells are capable of 

proliferating and only a small population of cells are responsible for myeloma growth 

(Hamburger and Salmon, 1977). An assay which was originally found to select multi-potent 

neuronal cells (Reynolds et al., 1992),  allows the formation of spherical colonies in low 

attachment serum starved conditions. This assay is now commonly used to identify 

putative CSC and has been shown to harbour cells with increased murine tumourigenicity 

in breast cancer (Zhang et al., 2008), glioblastoma (Yuan et al., 2004) and osteosarcoma 

(Rainusso et al., 2011).   

The assay now used to identify CSC is the serial transplantation of suspected CSC cells in to 

immunocompromised mice (Clarke et al., 2006), the ability of CSC to form tumours within 

a mouse model is now considered the gold standard. The first use of this in vivo technique 

was work carried out in leukaemia, separating cells according to the surface expression of 

CD34 and CD38. It was found that only cells expressing CD34 and lacking CD38 could 

recapitulate the original tumour heterogeneity in a xenotransplantation model (Lapidot et 

al., 1996, Bonnet and Dick, 1997).  

Recent studies have used lineage tracing in mouse models to study tumour formation and 

the role CSC play in tumour maintenance. This model induces tumour formation through 

either the exposure to carcinogens or using a tumour susceptible mouse. The mouse model 

is also genetically modified with a cre-lox system (Sauer, 1987) which can be used to induce 

fluorescence in specific cells, allowing cells and their progeny to be monitored. Using this 

system benign papillomas and malignant carcinomas of the squamous tissue were 

compared. Interestingly the population of benign SC mirrored the SC hierarchy in healthy 

tissue and contained a population with limited proliferative potential and another with a 

longer lifespan and increased proliferation. In contrast the malignant counterpart was 

found to contain only one population of CSC which was solely responsible for tumour 



Chapter 1. General Introduction 

29 
 

formation and had a limited potential for terminal differentiation (Driessens et al., 2012). 

A study using a similar methodology in glioblastoma identified a quiescent population of 

CSC capable of recapitulating tumour heterogeneity after chemotherapy. Interestingly 

inhibiting the growth of these quiescent CSC eradicated tumour formation after 

chemotherapy treatment (Chen et al., 2012).  

 

1.2.2 Markers of CSCs  

Cancer therapy is often hindered because CSC have a reduced sensitivity to chemotherapy, 

making relapses possible even when the vast majority of the tumour mass is removed 

(Gong et al., 2010). The ability to identify and therapeutically target CSC is crucial for 

cancers to be effectively treated. Current research has focused on the identification of stem 

cell markers in healthy tissue with the expectation that these markers will also be found in 

CSC (McDonald et al., 2009). There is no consensus on the most suitable CSC marker, 

however, varying markers have been identified for each tissue type. The markers carry out 

a range of cellular functions including cell adhesion, cryoprotection and drug effluxing 

pumps (Alison et al., 2010b). 

Xenotransplantation has also been used to prove the existence of CSC in solid tumours. 

Breast CSCs were the first to be identified based on the extracellular expression of CD44 

(Al-Hajj et al., 2003). CD44 is a member of the cartilage link protein family (Stamenkovic et 

al., 1989), which is the principal extracellular receptor for hyaluronate (Aruffo et al., 1990). 

Hyaluronan is the most abundant component of the extracellular matrix and is vital for cell-

cell and cell-matrix interactions (Almond, 2007). CD44 expression from CSC has so far been 

implicated in two roles; the activation of the transcription factor nanog which is important 

for self-renewal, pluripotency and chemo-resistance through increased expression of both 

apoptosis inhibitors and multi drug resistance proteins (Bourguignon et al., 2009).  CD44 

has been used as a CSC marker in a range of cancers (Table 1.2) and now in vivo studies 

suggest that it could also be used as a therapeutic target (Zoller, 2011). However, in somatic 

cells CD44 plays a role in maintaining homeostasis especially in the innate immune system. 

It has been found to be integral for leukocyte migration in early inflammation to non 

lymphoidal tissues (Veselska et al., 2008) and macrophage recognition and phagocytosis 
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(Vachon et al., 2006). This highlights the challenge of designing therapeutics that have the 

ability to differentiate between CD44 expression on healthy cells and CSC. One method 

which may provide some promise is the use of bispecific antibodies which bind CD44 in 

conjunction with a tumour specific surface protein.  This method has been used in a murine 

model using an antibody able to bind both CD44 and a lymphoma specific marker. This 

antibody was found to reduce lymphoma metastasis and had no effect on immune 

responses unlike an antibody targeting only CD44 (Avin et al., 2004). 

 

Table 1.2: CSC identified using a CD44 phenotype 

Tumour Antigenic phenotype Reference 

Breast carcinoma CD44, CD24- Al-Hajj et al., 2003 

Squamous cell carcinoma CD44, ESA Biddle et al., 2011 

Head and neck, prostate 

and breast carcinomas 

CD44 Harper et al., 2010 

 

Head and neck carcinomas CD44 Prince et al., 2007 

 

The intracellular enzyme aldehdye dehydrogenase (ALDH) has been used to identify SC in 

a number of cancers including liver (Ma et al., 2008), colon (Huang et al., 2009), acute 

myeloid leukaemia (Pearce et al., 2005) and OS (Wang et al., 2011). ALDH comprises a 

family of enzymes which catalyse the pyridine-dependant oxidation of aldehydes to weak 

carboxylic acids (Sladek, 2003). In humans there are 19 ALDH genes which are organised 

into 11 groups, the largest is  group 1 which comprises 6 members (Alison et al., 2010a). 

The cytosoloic enzyme ALDH1 is found in higher quantities in stem cells because it enables 

the production of retinoids which are required for early differentiation (Chute et al., 2006). 

The presence of an elevated ALDH1 activity also provides resistance to chemotherapeutic 

agents such as cyclophosphamide (Magni et al., 1996), this resistance is achieved through 

the catalytic ability of ALDH to reduce the DNA cross-linking of alkylating agents (Bunting 

and Townsend, 1996). Inhibition of ALDH has been shown in vitro to sensitise breast CSC to 

chemotherapy (Croker and Allan, 2012), however, inhibition of ALDH in human 

haematopoietic stem cells and breast cancer cell lines suggest that this not a suitable 
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therapeutic strategy. The ALDH inhibitor diethylaminobenzalde (DEAB) has been found to 

increase the spherical colony forming ability of breast cancer cell lines (Ginestier et al., 

2009) and  of the presence haematopoietic stem cells based on the phenotype CD34+CD38-

Lin-  (Chute et al., 2006). DEAB was proposed to increase the stem cell population through 

the inhibition of retinoic acid production which is required for stem cell differentiation. 

The proto-oncogene c-kit expresses the transmembrane tyrosine kinase receptor CD117, 

which binds to the ligand stem cell factor (SCF). This signaling system plays a central role in 

normal cell differentiation, proliferation and maturation (Entz-Werle et al., 2005). The 

expression of CD117 has been identified in a number of solid cancers including melanoma 

(Berdel et al., 1992), testicular cancer (Strohmeyer et al., 1991), OS (Adhikari et al., 2010, 

Entz-Werle et al., 2005) and breast cancer (Hines et al., 1995). In breast cancer CD117 was 

found to increase the growth of the breast cancer cell line MCF7 (Hines et al., 1995), 

whereas in OS CD117 expression correlates with poor chemotherapy response (Miiji et al., 

2011). Work carried out by Adhikari et al. (2010) demonstrated that OS cells expressing 

both CD117 and the mesenchymal marker Stro-1, were found to produce 

xenotransplantable tumours which had elevated chemo-resistance properties. CD117 

could provide a possible therapeutic mechanism for targeting CSC. The tyrosine kinase 

inhibitor imatinib mesylate is an antagonist of CD117 signaling and has been shown to 

decrease OS proliferation (Miiji et al., 2011), an alternative approach is the use of CD117 

blocking antibodies, which has been shown to reduce breast carcinoma growth (Hines et 

al., 1995).   

The expression of specific surface proteins and enzymes from CSC provide us with a means 

of isolating these highly tumourigenic cells. However, even cells lacking the expression of 

these markers can also produce tumours, suggesting a separate population of CSC exists 

(Adhikari et al., 2010). It has been suggested that these results are caused by differentiated 

cancer cells reverting to a CSC phenotype (Zapperi and La Porta, 2012). If true this would 

contradict the CSC hierarchy, so an alternative explanation could be the presence of 

multiple CSC phenotypes within a single tumour. An interesting study in squamous cell 

carcinoma identified two distinct CSC populations. The populations were identified via the 

expression of CD44 with either the presence or absence of epithelial specific antigen (ESA). 

Cells lacking ESA- had a migratory phenotype, whilst ESA+ cells had proliferative phenotype, 
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it was found that only ALDH expressing cells could switch between the two phenotypes 

(Biddle et al., 2011). This finding highlights the complexity of CSC identification and 

importance of fully understanding the CSC population dynamics. 

 

1.2.3 Cancer cell hierarchy 

SC have the ability to divide either symmetrically to produce a daughter SC or 

asymmetrically to produce a cell that will mature, it has been proposed that in a healthy 

state each division will produce one SC and an asymmetric progeny. The maturing progeny 

are highly proliferative and will go through several rounds of division before maturing and 

terminally differentiating (Tudor et al., 2004). This hierarchy is fundamental to the 

maintenance of healthy organs and cellular systems within the body. In cancer this 

hierarchy is also present albeit in a dysfunctional manner, tumours have been proposed to 

behave like aberrant organs with a population of stem like cells driving growth (Reya et al., 

2001).  

The hierarchy which exists within healthy tissues has been examined by seeding cells in 

vitro at clonogenic (low) densities. The initial experiments carried out by Barrandon and 

Green (1987), demonstrated that when primary epithelial cells were grown as single 

colonies three different colony types were present; holoclones, meroclones and 

paraclones. Holoclones formed very tight colonies and possessed the greatest reproductive 

capacity, paraclones were made of loosely associated cells and were able to divide very few 

times before aborting and differentiating. Meroclones had features of both colonies and 

were considered to be a transitional stage between holoclone and paraclone (Barrandon 

and Green, 1987) (Figure 1.2). CSC have also been shown to reside only within the 

holoclones, a study using the prostate cancer cell line PC3 demonstrated that only 

holoclone cells could form xenotransplantable tumours (Li et al., 2008). In addition an OS 

study has demonstrated that holoclone cells isolated from the cell line MG63 display 

enhanced tumourigenic and drug resistance properties (Lou et al., 2010).  
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Figure 1.2: Holoclone, meroclone and paraclone morphologies in the malignant cell line 

VB6 (Locke et al., 2005). 

The majority of studies examining the role of hierarchical organisation of cells within cancer 

utilise cell lines (Li et al., 2008, Wang et al., 2011), however, working with cells in an in vitro 

system has inherent limitations. Genomic comparison of over 50 breast cancer cell lines 

with primary breast cancer tissues has demonstrated that although the genomes were 

similar, the cell culture conditions were attributable for an increased number of high copy 

aberrations (Neve et al., 2006). Maintaining cells in an artificial environment alters cellular 

phenotypes but often the impracticalities of in vivo work make cell lines the most suitable 

option (Joseph and Morrison, 2005). Evidence suggests that cancer cell lines have the same 

hierarchical organisation (Locke et al., 2005) and include stem cells which express markers 

of stemness (Wang et al., 2009) as well as being able to induce tumour formation in 

NOD/SCID mice (Wang et al., 2011). In addition cell lines have been used to study CSC in a 

wide variety of cancers including breast (Hwang-Verslues et al., 2009), liver (Ma et al., 

2008), colon (Deng et al., 2010) and OS (Wang et al., 2010); making them a useful 

alternative to circumvent the impracticalities of working in vivo. 

 

1.2.4 Epithelial to mesenchymal transition 

The process of epithelial to mesenchymal transition (EMT) plays an integral role during 

embryo development with the most significant EMT event occurring when epithelial cells 

transition to mesenchyme and condense to become the mesoderm and endoderm (Hay, 

2005). EMT is initiated by the disaggregation of epithelial cells followed by a change in 
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cellular morphology. Epithelial cells are defined as polarised because they have a basal 

surface which is bound to the underlying basement membrane and an apical membrane 

surface which is unattached (Hay, 2005). Upon initiation of EMT the polarised cell releases 

matrix metalloproteases which degrade the attachments to the basement membrane. This 

allows detachment of the cell followed by multiple biochemical changes including the 

expression of transcription factors, cytoskeletal rearrangement and changes in surface 

protein expression to acquire a motile mesenchymal phenotype (Kalluri and Weinberg, 

2009).  

EMT and the associated reverse process of mesenchymal to epithelial transition (MET) have 

been identified in three distinct biological settings. The first outlines the formation of 

mesenchymal cells required for embryogenesis, the second is in response to tissue damage 

or inflammation. In order to repair tissue mesenchymal cells are recruited to regenerate 

the tissue and this process is halted once inflammation ceases. The third setting is found 

only in neoplastic cells which have acquired specific genetic and epigenetic changes which 

allow them to undergo EMT. Once tumour cells acquire this ability to migrate and survive 

outside their cellular niche, an EMT cancer cell can enter the lymphatic or blood vessels in 

order to disseminate throughout the body (Friedl and Wolf, 2003). The transcription factor 

nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) has been shown to be 

integral for EMT. NFκB plays an important role in apoptosis resistance (Webster and 

Perkins, 1999) and acquisition of mesenchymal properties in mammary epithelial cells 

(Huber et al., 2004). Huber et al (2004) also demonstrated that inhibition of NFκB in human 

mesenchymal cells reverted them to an epithelial morphology, highlighting the 

requirement of NFκB for maintaining a mesenchymal morphology. 

In order to protect somatic cells from neoplastic growth the aberrant activation of 

oncogenes results in senescence (Kalluri and Weinberg, 2009). Transcription factors over-

expressed in cancer cells undergoing EMT have been implicated in escape from senescence, 

allowing tumour progression to continue (Ansieau et al., 2008). EMT associated 

transcription factors include twist 1 and 2 (Ansieau et al., 2008), slug (Thiery, 2002), snail 

(Ren et al., 2011) and zeb1 and 2 (Ahmad et al., 2011). The mechanism by which these 

transcription factors are up regulated is unclear, however the acquisition of mutations and 

epigenetic modifications as a tumour progresses is a likely mechanism (Kalluri and 
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Weinberg, 2009). Tumour associated stroma may also promote EMT through the 

expression of transforming growth factor β (TGFβ) and epidermal growth factor (EGF). Both 

growth factors have been shown to increase the expression of EMT transcription factors 

and enhance tumour progression toward EMT (Thiery, 2002). Along with the up regulation 

of specific transcription factors there are several phenotypic changes which are indicative 

of EMT, with loss of e-cadherin arguably the most common marker of EMT. E-cadherin is a 

homophilic calcium dependent cell-cell adhesion protein (Takeichi, 1995), and loss of this 

protein allows cells to acquire a migratory phenotype (von Schlippe et al., 2000). Loss of e-

cadherin has also been correlated with an increase in tumour grade and worse prognosis 

(Umbas et al., 1994).  

An alternative marker which is gained as a result of a mesenchymal phenotype is the 

cytoskeletal protein vimentin. The presence of increased vimentin in cancer cell lines has 

been linked with enhanced invasiveness (Sommers et al., 1994, Salvatori et al., 2012).  In 

order for a tumour cell to metastasise it must also undergo the reverse process of 

mesenchymal to epithelial transition (MET). The reason for a cell undergoing MET at a 

specific site is attributed to the favourable local environment provided by this secondary 

organ (Thiery, 2002, Kalluri and Weinberg, 2009). The exact mechanism by which MET 

occurs is not fully understood, however, bladder cancer studies have demonstrated that 

fibroblast growth receptor 2IIc (FGFR2IIc) is up regulated on metastatic cells and crucial for 

the reacquisition of an epithelial phenotype (Chaffer et al., 2006). This finding highlights 

the chemotactic effect particular organs may have on metastasing cells, and the potential 

therapeutic application of targeting these cellular receptors. 

 

1.2.5 Cancer stem cells and epithelial mesenchymal transition 

In order for a cancer cell to metastasise to distant parts of the body it must not only acquire 

the ability to migrate but also to colonise and self-renew. Evidence now suggests that 

undergoing EMT may in fact transform a cell in to a stem cell. The transcription factors 

Twist and Snail have both been found to induce EMT (Yang et al., 2006, Cano et al., 2000). 

Mani et al (2008) has demonstrated that both the ectopic expression of both Twist and 

Snail in differentiated human mammary epithelial cells (HMEC) reverted epithelial cells to 
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a fibroblastic phenotype with enhanced self-renewal properties and increased expression 

of EMT markers. This effect was also observed in V12-HRas oncogene transformed HMECs 

and led to an increase in the presence of CSC and tumourigenic potential of the cells (Mani 

et al., 2008).   

The homebox transcription factors nanog and oct4 both play important roles in inducing 

pluripotency of differentiated cells (Okita et al., 2007) and have been shown to play a role 

in cancer EMT. Lung adenocarcinoma in vitro experiments demonstrated that expression 

of oct4 and nanog enhanced the migration and expression of EMT associated proteins 

(Chiou et al., 2010). The ability of CSC to switch between proliferative and migratory 

phenotypes has been studied in oral squamous cell carcinoma. ALDH+ CSC had the ability 

to switch from a migratory to a proliferative epithelial phenotype (Biddle et al., 2011). 
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1.3 Osteosarcoma chemotherapy treatment 

OS chemotherapy strategies comprise a range of different chemotherapeutic 

combinations. Common treatment regimes include a combination of doxorubicin and 

cisplatin with or without the following agents: high dose methotrexate, ifosfamide or 

etoposide (Anninga et al., 2011). Radiotherapy is only used for patients with inoperable OS 

tumours (Jawad et al., 2011). The use of these drugs in pre and post-operative 

chemotherapy has improved OS long term survival to 66%, however this figure has not 

improved for 20 years (Jawad et al., 2011).  The emergence of multi-drug resistant tumours 

is hindering improvement in long term survival (Bruland and Pihl, 1997) and highlights why 

tumour response to pre-operative chemotherapy is the most important prognostic factor 

(Bielack et al., 2002). Tumours often rapidly acquire resistance mechanisms to 

chemotherapeutics, which is highlighted by the majority of research focusing on resistance 

mechanisms following discovery of a new chemotherapeutic (Kelland, 2007). Recent OS 

research has identified a number of drug resistance mechanisms which vary depending 

upon the drug target. Understanding these mechanisms will be important in identifying the 

targets of future therapies as adjuvants which increase OS chemotherapy response will 

enable the toxicity of drugs regimes to be reduced and maximize the effectiveness of 

treatment strategies.         

 

1.3.1 Doxorubicn resistance 

The anthracycline antibiotic doxorubicin has been used to treat osteosarcoma for the last 

50 years (Singal and Iliskovic, 1998) and was first isolated from the bacteria Streptomyces 

peucetius. The cell killing action of anthracylines is debatable but the following mechanisms 

have been suggested; DNA intercalation, generation of free radicals leading to DNA 

damage, DNA binding and alkylation, DNA crosslinking, inhibition of DNA unwinding or 

strand separation, a direct cell membrane effect and inhibition of topoisomerase II 

mediated DNA damage (Minotti et al., 2004). 

When investigating doxorubicin resistance in OS, it has been found that seven genes were 

down regulated including P53 (Rajkumar and Yamuna, 2008). The loss of the tumour 
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suppressor P53 has previously been identified as a mechanism for OS doxorubicin 

resistance (Tsang et al., 2005). In response to DNA damage the wild type P53 induces 

apoptosis through the activation of Bax homodimers resulting in outer membrane 

mitochondrial pore formation and release of cytochrome C which leads to the caspase 

cascade and apoptosis (Fan et al., 2005, Li et al., 1999). In OS loss of P53 resulted in 

doxorubicin resistance due to an inability to activate caspase 3 in response to DNA damage 

(Tsang et al., 2005). Bcl-2 is commonly up-regulated in OS has been identified as a means 

of overcoming doxorubicin apoptosis by reducing the formation of Bax-Bax homodimers 

(Zhao et al., 2009). The nucleolar protein neuroguidin/CANu1 is also upregulated in tumour 

cells and provides OS cells (with a functional p53) a mechanism for doxorubicin resistance 

(Park et al., 2011a). Although the pathway through which neuroguidin/CANu1 signals is 

unclear it has been found to inhibit p21, which is activated by p53 in response to 

doxorubicin DNA damage and stabilize Bcl-2 (Figure 1.3). 

 

Figure 1.3: Doxorubcin (Dox) resistance mechanisms. Dox induces apoptosis through the action of 
p53 in response to DNA damage, however OS cells with mutated p53 are unable to activate the 
apoptotic caspase cascade or Bax homerdimersation which leads to outer mitochondrial membrane 
pore formation. OS cells with functional p53 have been found to resist dox DNA damage through 
the action of neuroguidin/CANu1 (CANu1). CANu1 inhibits p21 and stabilises Bcl2, inhibiting cell 
cycle arrest and Bax homodimerisation.   
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1.3.2 Platinum based by chemotherapy resistance 

The platinium based chemotherapeutics include cisplatin and the less toxic alternative 

carboplatin, which exert tumour cell apoptosis by becoming intracellularly activated 

allowing them to covalently bind to DNA and form adducts (Kelland, 2007). The resistance 

of both cisplatin and carboplatin is based on three mechanisms: impeding the influx of drug 

in to a cell, improved DNA adduct repair (Kelland, 2007) and detoxification of the activated 

intracellular drug (Meijer et al., 1990).  

In OS cell line research suggests tumour cells decrease the intracellular quantities of 

platinum based drugs not through efflux but by reducing membrane permeability (Martelli 

et al., 2007). The membrane changes in OS have yet to be identified, however 

rearrangements in membrane mobile lipids confer reduced permeability in breast cancer 

(Santini et al., 2001). Mutated P53 has also been suggested as a means of cisplatin 

resistance, tumours with a wild type P53 have increased sensitivity to cisplatin than 

mutated counterparts (Martelli et al., 2007). Tumour cells are able to overcome DNA 

adduct formation via mutations in genes involved with DNA mismatch repair. Loss of these 

proteins inhibits cells from identifying DNA damage and undergoing apoptosis (Aebi et al., 

1996), in OS loss of the mismatch repair protein PMS2 has been found to induce cisplatin 

resistance in the cell line U2OS (Perego et al., 1999). The antioxidant glutathione and has 

been linked with intracellular cisplatin detoxification (Siddik, 2003). Activation of 

intracellular cisplatin through aquation allows cytosolic glutathione to carry out cisplatin 

detoxification in a reaction facilitated by glutathione S transferases. Clinical data shows that 

OS tumours expressing a high glutathione S-transferase P1 (GSTP1), had a significantly 

higher relapse rates and worse clinical outcome (Pasello et al., 2008). 

 

1.3.3 Methotrexate resistance 

The de novo synthesis of DNA relies on the reduction of folic acid via the enzyme 

dihydrofolate reductase (DHFR) to synthesise purine, pyrimidine and methionine (Hagner 

and Joerger, 2010). DNA synthesis is crucial for cell survival therefore targeting this process 

through the use of structural analogs of folate is a useful strategy in cancer therapy. One 

of the earliest antifolate drugs and still in use today is methotrexate (MTX). It was first used 



Chapter 1. General Introduction 

40 
 

to treat acute leukaemia over 60 years ago (Farber and Diamond, 1948) and causes cell 

death through inhibition of DHFR (Assaraf, 2007). Resistance to antifolate drugs has 

become a common problem in cancer treatment (Assaraf, 2007) with different tumours 

using alternative mechanisms (Bertino et al., 1996). Two common mechanisms of OS MTX 

resistance is the down-regulation of the folate receptor (FR), present in 65% of tumours, 

and over expression of the enzyme DHFR (Guo et al., 1999). Over expression of DHFR has 

been attributed to the gene Rb which is frequently altered in OS (Section 1.1.4). pRb 

negatively regulates the expression of E2F transcription factors which increase the 

expression of cell cycle proteins such as DHFR (Li et al., 1997). However OS cell line evidence 

contradicts this observation, DHFR expression was actually found to be increased in the Rb 

negative cell line SaOS-2. This in vitro study found MTX resistance to be independent of 

DHFR expression and instead relied on down regulation of FR (Serra et al., 2004).       

The gene C-MYC is the only gene consistently gained in MTX resistant OS cell lines 

(Hattinger et al., 2003). Inhibition of C-MYC expression reduced resistance to MTX, (Scionti 

et al., 2008), the mechanism through which c-myc signals is unknown and appears to 

produce contradictory effects depending on the chemotherapeutic drug as elevated 

expression of C-MYC increased sensitivity to cisplatin (Xie et al., 2006).  

A novel approach to investigating MTX resistance is to study the mRNA translational 

properties of micro RNAs (miRNA). Song and colleagues (2010) studied colon and OS cell 

lines and identified miR-215 conferred reduced MTX sensitivity through G2 cell cycle arrest. 

MTX can only target cells in the S phase so G2 arrest provides complete MTX resistance. It 

was hypothesized that miR-215 exerts its action by targeting the G2/M checkpoint 

regulator denticleless protein homolog (DTL) with inactivation of DTL preventing the 

ubiquitination of p53 allowing increased activation of p21 and consequently G2 cell cycle 

arrest occurs (Song et al., 2010).  

 

1.3.4 Cancer stem cells and chemotherapy resistance 

CSC have been found to have a reduced sensitivity to chemotherapy and have been 

attributed to relapses even when the vast majority of the tumour mass is removed (Gong 
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et al., 2010). In OS chemotherapy exposure has been found to enrich for CSC highlighting 

their ability to withstand higher drug concentrations (Tang et al., 2011). Several 

mechanisms have been identified which confer OS CSC chemotherapy resistance and 

include the expression of the ATP-binding cassette transporter ABCG2 which has been 

found on 60 – 90% of OS CSC (Adhikari et al., 2010). It is hypothesized that this transporter 

allows cells to efflux drugs reducing the opportunity of chemotherapies to interact with 

their intracellular targets. The enzyme aldehyde dehydrogenase (ALDH) which carries out 

the detoxification of aldehydes to weak carboxylic acids (Sladek, 2003), has also been 

suggested as a mechanism through which CSC detoxify chemotherapeutic agents (Honoki 

et al., 2010). Although not observed in OS, increased DNA repair could also be used to 

overcome drug induced apoptosis. Upon cisplatin exposure head and neck carcinoma stem 

cells have been found to increase time spent in the G2 phase of the cell cycle allowing an 

increase of cell cycle checkpoint proteins to be expressed, which aid in the repair of DNA 

damage (Harper et al., 2010). MTX resistance in colon CSC is linked with their 3 fold higher 

expression of miR-215, which enabled cells to spend an increased amount of time in G2, 

protecting against MTX apoptosis (Song et al., 2010).   
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1.4 Cell signaling networks  

Cells within the body are tightly controlled by interaction with external stimuli during 

development and throughout the lifespan of an organism. This control is mediated via 

signaling molecules (ligands), which interact with extracellular receptors allowing 

intracellular signal transduction to proceed to the nucleus or cytoskeleton. The spatial 

location of a ligand releasing cell to the affected cell will determine the type of signaling, 

therefore there are four types of signaling; autocrine (acts on cell of origin), paracrine 

(secretion acts upon cells in close proximity) endocrine (ligand is released systemically), or 

juxtacrine, (ligand remains membrane bound and can interact with the receptor on an 

adjacent cell) (Singh and Harris, 2005) (Figure 1.4). The range of responses one receptor 

can activate is often diverse, for example the epidermal growth factor receptor has been 

found in vitro to play a role in cell proliferation, differentiation, de-differentiation and 

apoptosis depending upon the which signal transduction pathway is utilised (Fischer et al., 

2003, Singh and Harris, 2005).  

 

Figure 1.4: Autocrine, paracrine, endocrine and juxtacrine signalling mechanisms. A 
signaling molecule (orange oval) is produced from a cell and interact with a receptor in four 
possible mechanisms. Either autocrinally whereby it is released from a cell and binds to a 
receptor upon the same cell, alternatively it may bind paracrinally to a cell in the local 
environment. Endocrine signaling involves the signaling molecule being released 
systemically allowing it to reach a distant site in the body. Juxtacrine signaling does not 
involve the release of a growth factor, instead the molecule remains attached to the cell 
which presents it to a neighbouring cell.     
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1.4.1 Signalling networks in healthy bone 

Bone is a rigid organ which is dynamic in terms of its ability to remodel and is required to 

do so during development, maintenance and repair (Boyle et al., 2003). The cells 

responsible for bone formation are the mesenchymal stem cells (MSC), these multipotent 

cells have the ability to differentiate in to the bone forming cells, osteoblasts which can 

secrete osteoid before fully differentiating to become osteocytes (Pittenger et al., 1999). 

MSCs reside within the bone marrow endosteal region (Mendez-Ferrer et al., 2010) and 

also the bone marrow perivasculature (Shi and Gronthos, 2003). Bone resorption is critical 

for maintaining bone mass and the osteoclast (a tissue specific macrophage) is able to 

degrade bone. To ensure that bone resorption is balanced with bone formation tight 

signaling controls are required (Friedenstein et al., 1966). 

One signaling molecule which has been identified in the control of bone development and 

acts via an autocrine/paracrine signaling pathway is Wnt. Wnt ligands bind to the 

transmembrane domain frizzled receptor family and require LRP5/6 co-receptors for 

intracellular signal transduction (Guo et al., 2007, Tamai et al., 2000). Signals can lead to 

several different intracellular cascades: the canonical pathway leading to stabilization of β-

catenin and activation of target gene genes; Wnt/Ca2 pathway activates Ca2 dependent 

enzymes (calmodulin-dependent protein kinase II and protein kinase C) (Kühl et al., 2000); 

and the JNK pathway (Thorpe et al., 2000). MSCs have been shown to differentiate in to 

osteoblasts after activation of Wnt10b and signal transduction via the canonical pathway 

(Bennett et al., 2007). Osteoblasts are reliant on Wnt signaling for proliferation, mice 

lacking LRP5 have been shown to have decreased bone mass due to a reduced proliferation 

of osteoblast precursors (Kato et al., 2002), which is mirrored in humans lacking a 

functional LRP5 gene (Gong et al., 2001). Control over Wnt signaling has also been shown 

to effect osteoblast apoptosis and differentiation. Loss of secreted Wnt inhibitor frizzled 

related protein 1 has been shown to increase bone mass, which was attributed to a 

decrease in osteoblast apoptosis and increase osteoblast differentiation to osteocytes. 

Interestingly this was only observed in mice after they had acquired a peak bone mass, 

suggesting that this control mechanism is activated to limit bone density in only 

differentiated bone forming cells (Bodine et al., 2004).  
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Osteoclast bone resorption is an essential process for bone remodeling during 

development and also for the release of important minerals during starvation. RANK 

(receptor activator of nuclear factor κ B) is an important receptor crucial for 

osteoclastogenesis and responds to the ligand RANKL which is secreted by osteoblasts 

(Yasuda et al., 1998b). Activation of osteoclast RANK leads to rapid actin cytoskeletal 

rearrangements and enhanced bone resorption (Burgess et al., 1999). In order to control 

osteoclast activity the receptor osteoprotegrin (OSP) inhibits osteoclastogenesis. 

Interestingly it is expressed by both osteoblasts and thyroid cells suggesting it acts via 

paracrine and endocrine pathways (Yasuda et al., 1998a). OSP mechanism of 

osteoclastogenesis inhibition is directly related to RANKL, OPG is a soluble decoy receptor 

which binds RANKL and competes with RANK. Therefore, reducing RANK ability to activate 

osteoclasts (Schoppet et al., 2002), which is highlighted by overexpression of OSP leading 

to decreased osteoclast differentiation and osteopetrosis (Simonet et al., 1997)    

 

1.4.2 Influence of the microenvironment upon cancer 

Tumours are unable to self-sustain and require external signals to maintain their malignant 

properties (Spaeth et al., 2009). The tumour microenvironment has been identified as the 

source of these stimuli and therefore plays an important role in tumour progression. A 

seminal study carried out in breast cancer identified that, when grown in 3D culture, 

reducing β1 integrin activation was sufficient to revert malignant cells to a normal 

phenotype (Weaver et al., 1997). Cancer progression has also been found to heavily rely on 

a complex cytokine signaling network between both neighbouring tumour cells and 

supporting tissues (Mueller and Fusenig, 2004). Cytokine signaling in breast cancer has 

been observed to originate from distant sites in the body such as the bone marrow. One 

such pathway identified in breast cancer found tumour release of IL-6 recruited bone 

marrow derived MSCs to the tumour site. MSCs were found to enhance the growth of the 

breast cancer in response to IL-6 through the release of CXCL7, which created a positive 

feedback loop perpetuating tumour progression (Liu et al., 2011). Cytokines have also been 

secreted autocrinally to enhance tumour progression, one such factor secreted factor is 

the glycolytic enzyme phosphoglucose isomerase (PGI). In response to hypoxia tumour cells 
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secrete PGI which autocrinally acted upon breast cancer cells to increase cell motility 

(Funasaka et al., 2007). 

 

1.4.3 Osteosarcoma signaling networks 

Work carried out by Fawdar (2010) identified that holoclonal cells from the OS cell line HOS 

secrete paracrine factors which supports holoclone formation and the growth and 

migration of paraclonal cells. In the absence of media conditioned by HOS holoclones the 

paraclone cells undergo several rounds of division before undergoing cell death. 

Conversely, in the presence of holoclone conditioned media the paraclonal cells proliferate 

and in the parental cell line an increase in holoclone formation was observed. In addition 

to these observations HOS paraclone cells were also found to migrate towards holoclonal 

colonies, indicating that HOS holoclones secrete paracrine factors which are required for 

HOS paraclone growth, migration and also holoclone formation in the parental cell line. 

Although the paracrine factor responsible for these findings was never established OS cell 

lines have been found to secrete PGI which promotes migration. PGI is only released by 

cancer cells (Niinaka et al., 2010, Ahmad et al., 2011) and has been found to up regulate 

the expression of TGF-β which has been implicated in the acquisition of a mesenchymal 

phenotype. Interestingly silencing of PGI in OS caused the cell line MG63 to differentiate 

and lose its malignant properties (Niinaka et al., 2010), highlighting a potential novel target 

for OS treatment.  

 

1.4.4 CCL2 expression in cancer 

The chemokine CCL2 (also known as monocyte chemotractant protein MCP-1) is a 13 kDa 

protein, the gene maps to chromosome  17q11.2 and it has been found to signal via the G-

protein coupled receptor CCR2  (Deshmane et al., 2009).  It was initially of interest because 

of its potent monocyte chemotractant properties (Matsushima et al., 1989) and has also 

been found to play an important role in bone development and in particular osseus 

metabolism (Graves et al., 1999). Osteolysis was found to occur through osteoblast 
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secretion of CCL2 which recruits monocytes, however, normal osteoblasts do not express 

CCL2 unless stimulated with IL-1 (Williams et al., 1992).  

CCL2 expression has been implicated in cancer growth and progression. Breast cancer 

studies have demonstrated CCL2 expression from cancer associated fibroblasts, enhances 

the presence of breast cancer stem cells (CSC) (Tsuyada et al., 2012) and potential to 

metastasis (Nam et al., 2006, Youngs et al., 1997). Prostate cancer research has also 

demonstrated that tumour cells may migrate to the bone due to enhanced expression of 

CCL2, however in this case the CCL2 originates from bone marrow endothelial cells (Loberg 

et al., 2006). In vivo CCL2 neutralisation significantly reduces prostate tumour proliferation, 

and expression of the CCL2 receptor correlates with cancer progression and metastasis 

(Loberg et al., 2007). An autocrine response to CCL2 has also been observed, multiple 

myeloma cells were found to have an enhanced CCL2 expression in response to TNFα. This 

enhanced expression of CCL2 was proposed to increase metastasis to the bone via 

transendothelial migration (Johrer et al., 2004). Osteosarcoma studies have found that the 

cells do secrete CCL2 (Grigolo et al., 1999) and this expression was attributed to aid tumour 

progression through the recruitment of cancer associated macrophages (Graves et al., 

1989).  

CCR2 signal transduction is not fully understood, however, one pathway which seems to be 

indispensable for signaling is via phosphatidyl-inositiol-3-kinase (PI3K). This pathway was 

found to be indispensable for both monocyte chemotaxis and prostate cancer proliferation 

(Terashima et al., 2005, Loberg et al., 2006). A downstream response of CCR2 signaling in 

breast cancer is up-regulation of notch, which has been found to play a pivotal role in 

renewing CSC (Tsuyada et al., 2012). 

 

1.4.5 IL-8 expression in cancer 

IL-8 is a member of the CXC chemokine family and was originally identified as a monocyte 

derived neutrophil chemotactic factor (Yoshimura et al., 1987). In humans IL-8 binds with 

high affinity to the G-protein coupled receptors CXCR1 an CXCR2 (Park et al., 2011b), and 

has been found to induce angiogenesis in endothelial cells by activation of the Rho and Rac 
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signaling pathways (Li et al., 2003). Due to IL-8 having a potent chemotractive effect on 

neutrophils it plays an important role in the initiation of acute inflammatory responses. 

Therefore its overexpression has been attributed as a causative agent in pathologies such 

as dermatitis, arthritis and immune complex type glomerulonephritis (Harada et al., 1994).  

Aberrant IL-8 expression has been documented in tumours. Melanoma cells were the first 

neoplastic cells identified to express IL-8 and it was hypothesised to enhance tumour 

growth and progression (Zachariae et al., 1991). IL-8 has now been found to be expressed 

by a range of cancers including breast, colon, gastric, melanoma, pancreatic and B-cell 

chronic lymphocytic leukaemia (Lippitz, 2013). The expression of IL-8 from such a variety 

of cancers indicates it has profound role to play in tumour progression, colon cancer cells 

have been observed to increase proliferation in response to IL-8 (Lee et al., 2012), in breast 

cancer it has been found to not only enhance invasiveness (Freund et al., 2003) but also 

the presence of ALDH+ CSC (Ginestier et al., 2010). CSC in breast cancer were found to have 

a significantly enhanced expression of CXCR1, when these cell lines were treated with 

recombinant IL-8 this was found to enhance the ALDH+ population of cells and increase 

mammosphere formation (Charafe-Jauffret et al., 2009). This finding has been investigated 

further by Singh  et al (2013) using patient derived tumours ex vivo, IL-8 concentration of 

metastatic fluid and pleural effusions correlated directly with mammosphere forming 

ability of tumours. IL-8 was found not to act in an autocrine loop, suggesting that 

surrounding stroma are responsible for the IL-8 secretion. IL-8 was found to signal via a 

pathway also utilized by human epidermal growth receptor 2 (HER2) (Singh et al., 2013). 

HER2 has been successfully targeted to treat breast cancers overexpressing HER2 using the 

humanised antibody trastumuzumab (Piccart-Gebhart et al., 2005), therefore CXCR1/2 

inhibitors (e.g. Repertaxin) may provide useful treatments in trastumuzumab resistant 

tumours. 

 

1.4.6 Targeted cancer therapeutics 

The reliance of cancer cells upon particular growth factors and signaling pathways enables 

tumour cells to be specifically targeted with therapeutics. Many of these overactive 

pathways and signaling molecules are also present in healthy tissues often making some 
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treatments impractical due to high toxicity levels, however, this has not stopped the 

development of effective adjuvant therapies. One endocrine pathway which has been 

effectively targeted is the reliance of breast cancer cells on estrogen receptor activation 

(Howell et al., 1997). The pro-drug tamoxifen is an antagonist of the estrogen receptor. In 

patients with a high risk of breast cancer the long term administration of tamoxifen was 

found to reduce breast cancer incidence by 50 % (Fisher et al., 1998). Another receptor 

which is commonly targeted in breast cancer treatment is the epidermal growth receptor 

2 (HER2). This receptor has been implicated in the evolution of breast and gastric cancers 

(Baselga and Swain, 2009), with 20 % of breast cancer patients over expressing the receptor 

(Owens et al., 2004). Treatment with trastuzumab inhibits signal transduction via HER2 and 

post chemotherapy was found to significantly enhance disease free survival (Piccart-

Gebhart et al., 2005). 

One of the most successful targeted therapies is imatinib mesylate which is a potent 

inhibitor of the tryrosine kinase ABL, platelet derived growth factor receptor and cKIT 

(CD117) (Ren, 2005). Imatinib has been successfully used to treat both chronic myeloid 

leukaemia (CML) and gastrointestinal stromal tumours (GIST) due to the presence of 

constitutively active mutant tyrosine kinases. The presence of the tyrosine kinase fusion 

protein BCR-ABL in CML and constitutively active CD117 in GIST allows imatinib to target 

these tumours and inhibit growth (Corless et al., 2011, Deininger et al., 1997). Currently no 

adjuvant therapies targeting OS signaling pathways exist, however, potential growth 

factors have been identified.  Existing anticancer drugs may also provide some benefit for 

OS treatment, the expression of CD117 has been correlated with a poor chemotherapy 

response. In addition it was found that the use of imatinib could reduce the growth of the 

OS cell line MG63 and at high doses reduce migration (Miiji et al., 2011). Suggesting 

imatinib may provide some benefit in OS treatment, however further clinical trials will be 

required to prove this.  
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1.5 Thesis aims 

OS CSC were recently described in OS cell lines (Adhikari et al., 2010, Wang et al., 2011).  

The main aim of this project is to extend their work by characterising the population of CSC 

which reside within a heterogeneous panel of OS cell lines. A more complete understanding 

of the OS CSC will enable the hierarchical organisation of OS cells to be further understood. 

The observation that OS CSC are more resistant to chemotherapeutics (Tang et al., 2011), 

will be utilised in an attempt to enrich CSC. Gaining an understanding of the phenotypic 

properties of these chemotherapy resistant cells could provide a mechanism for accurately 

determining an OS response to therapy. OS cell lines have been observed to secrete a factor 

which promoted growth of paraclonal colonies (Fawdar, 2010). An additional aim of this 

project will be to characterise this factor which will provide a significant insight in to the 

paracrine cell communication which occurs in OS. The ability to target this factor will also 

be investigated as possible means to inhibit OS growth. 

 

In order to investigate these aims, the main objectives will be to: 
 
 
1) Characterise putative CSC populations present within OS cell lines. Using a panel of 

seven OS cell lines and one breast cancer cell line to act as a comparison to carcinoma, 

cell lines will be screened for a range of CSC markers. Cell lines will also be tested for 

the presence of the colony hierarchies identified by Locke et al (2005), and the ability 

of the cell lines to form sarcospheres will also be assessed.  

 

2) Identify if CSC contribute to osteosarcoma chemotherapeutic drug resistance. LD50 

for three chemotherapeutics (cisplatin, doxorubicin and methotrexate) will be 

determined for the panel of cell lines. Through exposure to a sub-lethal concentration 

of chemotherapy, CSC will be enriched due to their enhanced resistance to 

chemotherapeutics. These CSC enriched cell lines can then be tested for the presence 

of CSC markers and tumuorigenic properties.  
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3) Characterise paracrine cell signalling used to control osteosarcoma growth. The 

presence of secreted growth factors will be identified for the panel of cell lines. Cell 

lines can then be profiled for cytokine expression to identify candidate factors, which 

can then be further analysed via supplementation of the paracrine factor, gene 

expression knockdown and receptor inhibition.



Chapter 2. Materials and Methods  

51 
 

  

 
 
 
 
 

Chapter 2 
Materials and Methods 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2. Materials and Methods  

52 
 

2.1 Materials 

Unless otherwise, stated all reagents, chemicals and stains were obtained from Sigma 

Aldrich® (Dorset, UK). Tissue culture reagents were obtained from Lonza® (Slough, UK) 

unless stated otherwise. Antibodies used for CSC marker expression assessment, 

identifying EMT status and analysing the receptors CXCR1, CXCR2 and CCR2 are listed in 

table 2.4. Primers used in the assessment of CCL-2 gene knockdown were purchased from 

Invitrogen (Paisley, UK).  

 

2.2 Cell lines 

The OS cell lines used within in this study include 143B, Cal72, G292, HOS, MG63, MNNG-

HOS, OSS9-1, U2OS and SaOS-2 (Table 2.1). All these cell lines were derived from bone 

tumours and banked by ATCC (American Type culture collection); Cal72 (Rochet et al., 1999) 

and OS99-1 (Gillette et al., 2008) were the only exceptions which were generous gifts. Cal72 

was obtained from Professor Adrienne Flanagan and Dr Nadege Presneau (The Cancer 

Institute, University College London). OS99-1 was obtained from Dr Sheila M. Nielsen-Preiss 

(Montana State University, US). The OS cell lines 143B and MNNG-HOS are derivatives of 

HOS via Ki-ras transformation for 143B (Hensler et al., 1994) and N-methyl-N’-nitro-N-

nitrosoguanidine (MNNG) exposure (Rhim et al., 1977) (Table 2.1). The sarcoma cell lines 

HT1080 (Fibrosarcoma), SKLNS1 (Leiomyosarcoma) and RDES-1 were a kind gift from Dr 

Nadege Presneau (Cancer institute, UCL) and the adenocarcinoma cell line MCF7 was a kind 

gift for Dr Miriam Dwek (University of Westminster). HEK293T cells were used for lentivirus 

packaging and were a generous gift from Dr Alastair Barr (University of Westminster). 
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Table 2.1: Osteosarcoma cell lines utilised within study. * Indicates cell line derived from 

HOS by either Ki-ras (*1) or MNNG (*2). # Indicates cell line not banked by ATCC®, cell line 

instead derived by #1 (Rochet et al., 1999) or #2 (Gillette et al., 2008). 

Cell lines Source ATCC® number 

143B*1 13 year old, female CRL-8303 

Cal72 10 year old, male #1 

G292 9 year old, female CRL-1423 

HOS 13 year old, female CRL-1543 

MG63 14 year old, male CRL-1427 

MNNG-HOS*2 13 year old, female CRL-1547 

OSS9-1 11 year old, female #2 

U2OS 15 year old, female HTB-96 

SaOS-2 11 year old, female HTB-85 

  

 

 2.2.1 Cell culture  

All cell lines were cultured in Dulbecco’s modified eagles media (DMEM) (4.5 g/L glucose 

with ultraglutamine® and phenol red) supplemented with 10 % foetal bovine serum (FBS) 

(Biosera®, Sussex, UK) (Complete media). When thawing cells from liquid nitrogen, vials 

were quickly defrosted in a 37 °C water bath, washed in 5 ml of complete media and seeded 

in to suitable culture flask. Cells were maintained in a 37°C incubator (Binder APT.line™ 

C150) and media changes were made every 3 days. Antibiotics were used when specified 

using antibiotic-antimycotic (Invitrogen®: 100 x stock, 10000 units/ml penicillin G sodium. 

10000 µg/ml streptomycin sulphate and 25 µg/ml amphotericin). 

 

2.2.2 Passaging cell lines 

Upon reaching the required confluency (70-90 %) cells were passaged or frozen for storage. 

When passaging, cells were washed once with Dulbecco’s phosphate buffered saline (DPBS) 

(free from calcium and magnesium), detached by exposure to 0.25 % trypsin and 0.038 % 

EDTA (Invitrogen®) for 3 mins at 37 ºC and the trypsin-EDTA neutralised with complete 

media. Cells were centrifuged at 1000 rpm for 3 mins (IEC CL30 centrifuge, Thermo 
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scientific®), cell pellet re-suspended in complete media and seeded into a fresh tissue 

culture flask. Depending upon the cell line, cells were passaged at a ratio of either at 1:3, 

1:6 or 1:9. When freezing cells were re-suspended in FBS containing 10 % DMSO and kept 

at -80 °C for 24 hours prior to storage in liquid nitrogen.  

 

2.2.3 Cell line trypsinisation and counting  

In order to prepare cells for seeding at specific densities cells were grown to 70 – 90 % 

confluency, complete media was removed and cells were washed once with DPBS (free 

from calcium and magnesium). Cells were detached from the culture vessel by exposure to 

0.25 % trypsin and 0.038 % EDTA (Invitrogen®) for 3 mins at 37 ºC and the enzyme 

neutralised with complete media. Cells were centrifuged at 1000 rpm for 3 mins (IEC CL30 

Centrifuge, Thermo scientific®), cell pellet re-suspended in complete media and cell 

concentration was assessed using a minimum of four haemocytometer cell counts in 

duplicate.        

 

2.2.4 Spherical colony assay 

OS cell lines and MCF7 were assessed for their ability to form primary and secondary 

spherical colonies in ultra-low attachment plates (Corning, Birmingham, UK). Growth media 

used was comprised of 2 ml serum free DMEM containing antibiotics/antimycotics, 20 

ng/ml epidermal growth factor (EGF), 20 ng/ml basic fibroblast growth factor (bFGF) 

(PreproTech®, London, UK) and B27 supplement (Invitrogen®). In order to test the effect of 

recombinant IL-8 (BioLegend®, London, UK) and CCL-2 (BioLegend®) on sarcosphere 

formation 9 ng/ml of IL-8 or 36.4 mg/ml CCL-2 was supplemented in to the media and 

freshly added every 3 days throughout the experiment.   

In order to assess colony formation, cell lines were trypsinised, counted (Section 2.2.3) and 

seeded at 1052 cells/cm2 ultra low attachment plate. Fresh 20 ng/ml bFGF, EGF and B27 

were added to cells every 3 days throughout the assay. After 7 days primary spherical 

colony images were captured and spherical colonies were collected and centrifuged at 

1000 rpm for 3 mins. Washed with 2 ml DPBS and centrifuged (1000 rpm for 3 mins) and 

exposed to trypsin-EDTA for 5 mins at 37 °C. Prior to neutralising trypsin-EDTA with 

complete media trypsinised cells were aspirated and ejected 10 times with a 1000 µl 

pipette to dissociate cells, then centrifuged (1000 rpm for 3 mins). Media was removed and 
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in a volume of 200 µl cells were re-suspended and counted using a haemocytometer. To 

ensure the majority of cells seeded were single cells, cells were only used if single cells 

comprised ≥ 95 %.  210 cells/cm2 were seeded in to a low attachment plate and grown for 

7 days to form secondary sarcospheres. Colony size was assessed using an eyepiece 

graticule and colonies ≥ 40 µM were counted. Colony size of primary sarcospheres was 

estimated using Imagej. Sarcosphere forming efficiency (SFE), was calculated using the 

following equation: 

 

𝑆𝐹𝐸 (%) =  (
𝑁𝑜.  𝑜𝑓 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑠𝑎𝑟𝑐𝑜𝑠𝑝ℎ𝑒𝑟𝑒𝑠

𝑁𝑜. 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑠𝑒𝑒𝑑𝑒𝑑
 )  𝑋 100 

 

 

2.2.5 Soft agarose assay 

OS cell line anchorage-independent growth has been previously assessed using the soft 

agarose assay (Fawdar, 2010), using the same methodology as Fawdar (2010) anchorage- 

independent growth has been assessed. A 2 % agarose solution was prepared by diluting 

6 % autoclaved low melting point agarose (dissolved in DPBS) in complete media 

(containing antibiotic/antimycotic) and maintained as a liquid by incubating at 55 ºC. The 

2 % agarose was further diluted in complete media to make 0.6 % of which 2 ml was used 

as the base layer and set for 30 mins at 4 ºC. Cells were trypsinised, counted (Section 2.2.3) 

and 10000 cells were seeded in 2 ml of 0.35 % agarose. This formed the middle layer of the 

assay, which was set for 30 mins at 4 ºC and then incubated at 37 ºC. The following day 2 

ml of complete media (containing antibiotic/antimycotic) was added to wells and changed 

every 3 days for up to 15 days. Colony formation was monitored throughout the 

experiment and assessed after 12 or 15 days using an eye piece graticule. Due to the larger 

size of MG63 colonies, U2OS colonies ≥ 85 µM and MG63 colonies ≥ 170 µm were counted. 

For the assessment of CCL-2 and IL-8 upon soft agarose colony formation CCL-2 (36.4 ng/ml) 

or IL-8 (9 ng/ml) were added to the middle 0.6 % agarose layer and top media layer of the 

assay. 
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2.3 Chemotoxicity analysis 

2.3.1 Assessment of median lethal doses in response to chemotherapeutics and DEAB 

Cells were trypsinsied and counted (Section 2.2.3), seeded at 15625 cells/cm2 in a 96 well 

plate (BD falcon, Oxford, UK) and allowed to attach for 24 hours. After which media was 

removed and replaced with media containing either cisplatin (0 - 100 µM), doxorubicin (0 

- 3 µM) or DEAB (0 - 800 µMol) for 48 hours. For methotrexate (0 - 3 µM) cells were exposed 

for 5 days. Cells were quantified by adding 100 µl of 1 mg/mL thiazolyl blue tetrazolium 

bromide (MTT) (dissolved in complete media) which was added directly to cells and 

incubated for 1 hour (except SaOS-2, where a 2 hour MTT incubation was used) at 37 °C. 

MTT containing media was removed and replaced with 50 µl of dimethyl sulfoxide (DMSO), 

absorbance was measured at 530 nm on a microplate reader (Sunrise, TECAN™) using 

softmax® pro. MTT reduction (% of control) was calculated using the following equation: 

(
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 (530 𝑛𝑚)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑏𝑙𝑎𝑛𝑘 (0µ𝑀)𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒(530 𝑛𝑚)
) × 100 

LD50 values were calculated using a linear regression of drug concentration against cell 

viability. 

 
2.3.2 Clonogenicity of chemotherapy treated cells 
 
Cell lines were seeded at 15625 cells/cm2 and allowed to attach and grow for 24 hours after 

which media was removed and replaced with media containing either cisplatin (0 - 100 µM) 

or doxorubicin (0 - 3 µM) for 48 hours. The incubation period was extended to 5 days for 

methotrexate (0 - 3 µM). After drug exposure cells were trypsinised and counted (Section 

2.2.3) and re-seeded at low density (2 - 4 cells/cm2). Cells seeded at low density were grown 

for 14 days then washed with 5 ml DPBS, stained for 10 mins in 0.5 % crystal violet 

(dissolved in 100 % methanol) and washed 3 times with water. Prior to staining the first 30 

colony hierarchies were randomly observed using an inverted microscope (Inverso 3650) 

and recorded. Colony size and number was assessed using the image processing software 

ImageJ, all colonies were measured.  
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2.3.3 Combined DEAB and chemotherapy exposure 
 
Cells were trypsinsied and counted (Section 2.2.3), seeded at 15625 cells/cm2 in a 96 well 

plate (BD falcon, Oxford, UK) and allowed to attach for 24 hours with the cell line specific 

DEAB LD50 concentration. DEAB media was removed and replaced with complete media 

containing a DEAB LD50 and either cisplatin, doxorubicin or methotrexate LD50. Cisplatin 

and doxorubicin exposed cells were exposed for 48 hours and methotrexate for 5 days. 

Cells were quantified by adding 100 µl of 1 mg/mL thiazolyl blue tetrazolium bromide (MTT) 

(dissolved in complete media) which was added directly to cells and incubated for 1 hour 

at 37 °C. MTT containing media was removed and replaced with 50 µl of dimethyl sulfoxide 

(DMSO), absorbance was measured at 530 nm on a microplate reader (Sunrise, TECAN™)   
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2.4 Paracrine growth experiments 

2.4.1 Conditioned media collection 

For the collection of conditioned media each cell line was allowed to reach confluency in a 

cell culture dish (55 cm2). The media was replaced with 10 ml complete media which was 

harvested after either 24, 48 or 72 hours. Conditioned media was filtered using 0.2 µM 

filter (Millipore, Abingdon, UK) and stored at -20 °C. All conditioned media was diluted 1:1 

in complete media when used as a growth media.  

  

2.4.2 Conditioned media effect on colony formation 

In order to establish whether conditioned media effects cell growth each cell line was 

seeded in triplicate in 55 cm2 growth area dishes at a cell density which produced 

approximately 100 colonies (2 - 4 cells/cm2) after 8 - 15 days. Cells were grown in either 

the presence of conditioned media or non-conditioned media (complete media). Media 

was changed every 3 days and growth examined by staining after 8 - 15 days depending 

upon the cell line. Cells were stained for 10 mins in 0.5 % crystal violet (dissolved in 100 % 

methanol) and washed 3 times with water. Prior to staining the first 30 colony hierarchies 

were randomly observed using an inverted microscope (Inverso 3650) and recorded. 

Colony size and number was assessed using the image processing software ImageJ, all 

colonies were measured.  

 

2.4.3 96 well growth assay 

In order to assess the enhanced growth rates from exposure to conditioned media HOS and 

U2OS. Cells were seeded at either 125 cell/cm2 (HOS) or 156 cell/cm2 (U2OS) in to a 96 well 

plate in a volume of 100 µl, different cell densities were used to produce the same 

confluency of 80 % for both HOS and U2OS. After 8 – 9 days, 100 µl of 1 mg/ml MTT was 

added directly on to cells and incubated at 37 ºC for 1 hour, after which, media was 

removed and replaced with 50 µl DMSO and plate absorbance was read at 530 nm on a 

microplate reader (Sunrise, TECAN™) using softmax® pro.  Absorbances of a cell line tested 

in conditioned media or cytokine supplemented media was compared to the MCF7 

conditioned media absorbances to assess statistically significanct growth enhancement.        
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2.4.4 CXCR1, CXCR2 and CCR2 receptor antagonist experiment 

Antagonising Antibodies for CXCR1 (Clone 42705) (R&D systems®, Abingdon, UK) CXCR2 

(Clone 48311) (R&D systems®) and a small molecule CCR2 antagonist (RS 504393) (R&D 

systems®) were diluted in either complete media, U2OS or MG63 72 hour conditioned 

media. U2OS and HOS cells were trypsinised (Section 2.2.2) and seeded at either 125 

cell/cm2 (HOS) or 156 cell/cm2 (U2OS) in to a 96 well plate and grown for 9 days. To assess 

cell growth 1 mg/ml MTT was added directly to cells and incubated at 37 ºC for 1 hour, after 

which, media was removed and replaced with 50 µl DMSO, plate absorbance was read at 

530 nm on a microplate reader (Sunrise, TECAN™) using the software softmax® pro.         
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2.5 Cytokine expression 

2.5.1 Cytokine array 

Assessment of the cytokine profile of 72 hour conditioned media was achieved using a 

cytokine array (R&D systems, Abingdon, UK). The array was tested according to the 

manufacturers instructions. To summarise, membranes were blocked with kit buffer for 1 

hour whilst 700 µl of conditioned media was incubated with a cocktail of detection 

antibodies. Blocking buffer was removed from membranes and replaced with sample-

antibody cocktail and incubated overnight on a rocking shaker. Membranes were washed 

with wash buffer 3 times for 10 mins each, incubated with streptavidin-HRP for 30 mins 

and washed with kit wash buffer. Chemiluminescence was analysed using an EZ-ECL kit 

(Geneflow, Lichfield, UK). Membranes were exposed for 10 mins before developing X-ray 

film (Kodak®, Hemel Hempstead, UK).  

 

2.5.2 CCL-2 and IL-8 ELISA 

To determine the IL-8 and CCL-2 concentration of conditioned media, samples were 

analysed by antibody sandwich ELISAs (BioLegend®) following manufactures instructions. 

To briefly summarise the samples were diluted either 1:2, 1:10 or 1:40 in the provided assay 

buffer and 50 µl added to plates along with an equal volume of assay buffer. For all 

incubation periods plates were incubated shaking (185 rpm) at room temperature. Plates 

were washed using 300 µl wash solution per well 4 times and blotted dry on absorbent 

paper. To develop the assay 100 µl substrate solution was added to each well and incubated 

in the dark for 15 mins before the addition of 100 µl stop solution (1 M sulphuric acid). 

Once reaction was stopped plate absorbance was read at 450 nm and 570 nm on a 

microplate reader (Sunrise, TECAN™) using softmax® pro. Data analysed by subtracting 

absorbances at 570 nm from absorbances at 450 nm, all samples and standards were tested 

in triplicate and concentrations were calculated from the linear regression analysis of the 

standard curve. 
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2.6 CCL-2 RNA gene interference 

In order to achieve stable CCL-2 knockdown the pLKO.1 vector was used which is a 

derivative of the third generation self-inactivating lentiviral vector 

pRRLSIN.cPPT.PGK/GFP/WPRE (Dull et al., 1998). This vector contains a human U6 

promoter to drive expression of shRNA and human phosphoglycerate kinase promoter 

(hPGK promoter) for puromycin resistance (PurR) gene expression for selection of 

transduced cells (Moffat et al., 2006) (Figure 2.1). Three separate plasmids were used for 

lentiviral packaging in HE293T cells which contained the packaging genes Gag, Pol, Rev and 

protein coat gene Vsv-G to minimise potential plasmid recombination and creation of 

replication competent viruses (Root et al., 2006). The RNAi consortium (TRC) was 

established to create shRNA libraries with multiple constructs for over 15,000 genes 

(Moffat et al., 2006). Using the TRC library five CCL-2 shRNA constructs were selected to 

identify potential shRNA with effective gene knockdown upon U2OS cells (Table 2.2) 

 

 

 
Figure 2.1: Diagram of pLKO.1 vector map used for the RNA interference of CCL-2. Image 
was taken from Thermo scientific TRC shRNA user manual (Dharmacon, 2014). 
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Table 2.2: shRNA lentiviral sequences used to assess stable knockdown of CCL-2 in U2OS 
cells. shRNA sequences were established by the RNAi consortium (TRC) and distributed by 
Thermoscientific®. 
 

Thermo scientific® clone ID Antisense sequence 

RHS3979-201738552 TAAGGCATAATGTTTCACATC 

RHS3979-201738553 TATTGGTGAAGTTATAACAGC 

RHS3979-201738554 ATTCTTCTATAGCTCGCGAGC 

RHS3979-201738555 AATGGTCTTGAAGATCACAGC 

RHS3979-201738556 TTATAACAGCAGGTGACTGGG 

 

 

2.6.1 Transforming bacterial competent cells 

Packaging vectors were transformed into competent cells (XL1-blue competent cells) 

(Invitrogen®) by mixing 1 µl of plasmid DNA (packaging plasmids PL1, PL2 and pVSVG 

(Invitrogen®) with a vial of competent cells and incubated on ice for 5 mins. Competent 

cells were heat shocked at 42 ºC for 1 min, incubated on ice for 5 mins followed by addition 

of 250 µl SOC buffer (2 % tryptone, 0.5 % yeast extract, 8.6 mM NaCl, 2.5 mM KCl and 10 

mM MgCL2) and 1 hour shaking at 37 ºC (200 rpm) to transform cells. 

 

2.6.2 Plasmid preparation 

TRC lentiviral shRNA (Thermo scientific®) constructs were received as bacterial stocks. 

Bacterial frozen stocks were streaked on to an agar plate containing 100 µg/ml carbenicillin, 

incubated overnight at 37 ºC. 3 - 5 colonies were picked in to 6 ml of 2 x LB broth (LB-Lennox 

broth 20 g/L, peptone 10 g/L and yeast extract 5 g/L all from fisher) and incubated at 37 ºC 

for 16 hours with shaking (200 rpm).  Cultures were centrifuged at 3000 rpm for 10 mins, 

supernatant was discarded then plasmid extracted from the pellet using PureLink® quick 

plasmid miniprep kit (Invitrogen) according to the kit instructions. DNA was quantified 

using the nanodrop 1000 spectrophotometer (Thermo scientific) and stored at - 20 ºC.    

 

2.6.3 CCL-2 stable knockdown 

U2OS CCL-2 knocked-down was achieved using lentiviral transduction, packaging of 

lentiviruses and U2OS transduction was carried out at St George’s University (London, UK) 
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under their GM licence. HEK293T cells were used to package the vectors when grown to 

80 % - 90 % confluency in a T25 flask. In a DNA free eppendorf 1.5 µg of pL1, pL3 and 

lentiviral construct were mixed with 1.09 µg pL2 and 23 µl polyethylenimine (PEI) along 

with 341 µl of 0.15 M NaCl. This mixture was vortexed and incubated at room temperature 

for 10 mins.  The mixture was added to HEK293T cells at 80 - 90 % confluent in complete 

media and the media changed after 24 hours. After 48 hours of transfection the media 

contained packaged lentiviral particles at which point the media was collected, centrifuged 

at 4000 rpm for 10 mins and supernatant added to U2OS cells at 70 - 80 % confluency in a 

T25 flask. After 24 hours exposure the virus containing media was removed and cells were 

allowed to recover for 48 hours in fresh complete media. Transduced cells were 

transported back to the University of Westminster and exposed to 1.25 µg/ml puromycin 

(Fisher), to select for cells stably expressing the plasmid. Plasmids which conferred 

knockdown included the following the antisense sequence TTATAACAGCAGGTGACTGGG 

(RHS3979-201775815) and TAAGGCATAATGTTTCACATC (RHS3979-201738552) (Table 2.2).    
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2.7 Gene expression analysis 

2.7.1 RNA extraction 

Total RNA was extracted from cell lines using purelink RNA kit (Life technologies, Paisley, 

UK) following the manufacturers protocol. To summarise the procedure, 1 x 106 cells were 

harvested from a 70 – 90 % confluent T25 flask (except for RNA extracted Illuimina micro 

array gene analysis, U2OS cells were seeded at 36 cells/cm2 in a 55cm2 growth area and 

grown for 7 days before collecting RNA) and re-suspended in 600 µl kit lysis buffer 

containing 1 % 2-mercaptoethanol. Cells were homogenised by passing 10 times through a 

21 gauge needle. The homogenate was then centrifuged at 2600 x g for 5 mins, supernatant 

mixed with an equal volume of 70 % ethanol and transferred to a spin cartridge and 

centrifuged at 12000 x g for 15 seconds. Flow-through was discarded and the spin cartridge 

washed 3 times with kit washing buffers and membrane allowed to dry by centrifugation 

at 12000 x g for 15 seconds. RNA was eluted using 30 µl RNAase free water which was 

incubated (on the column) at room temperature for 1 min, and eluted by centrifuging at 

12000 x g to collect in an RNAase free eppendorf tube.  RNA was quantified using a 

Nanodrop 1000 spectrophotometer (Thermo scientific) and stored at -80 ºC.      

 

2.7.2 Reverse transcription 

Reverse transcription (RT) was performed using the QuantiTect reverse transcription kit 

(Qiagen®, Crawley, UK). 1 µg of the collected RNA was used in each reaction, which involved 

a 2 min incubation at 42 ºC with the genomic DNA wipeout buffer. The RNA was then mixed 

with the kit buffers containing the reverse transcriptase and primers, incubated at 42 ºC for 

15 mins followed by 3 mins at 95 ºC.  DNA concentration was quantified using a Nanodrop 

1000 spectrophotometer (Thermo scientific) and stored at -20 ºC 

 

2.7.3 Quantitative real time PCR 

Quantitative real time PCR was performed on the Qiagen rotor geneQ™ using the rotor 

gene kit SYBR green (Qiagen®). A typical 25 µl reaction was set up using the following 

reagents: 100 ng of template DNA, 1 µM of forward and reverse primers and 1x Qiagen 

rotor gene master mix containg DNA polymerase, dNTPs and MgCl2. The PCR conditions 

used were an initial activation of 95 ºC for 5 mins followed by 35 cycles of 95 ºC for 5 seconds 

and 60 ºC for 10 seconds. A melt curve was also used to assess the primer annealing 
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temperatures. Reverse transcribed cDNA was tested in triplicate and normalised using 18s 

rRNA. Primer sets used: CCL2, 5’ AAGATCTCAGTGCAGAGGCTCG 3’ (forward primer) and 5′-

TTGCTTGTCCAGGTGGTCCAT-3′ (reverse primer); and 18S rRNA, 5′-

CGCGGTTCTATTTTGTTGGT-3′ (forward primer) and 5′-CCCTCTTAATCATGGCCTCA-3′ 

(reverse primer).  

 

2.7.4 Gene microarray 

U2OS cells were seeded at 36 cells/cm2 in a 55cm2 growth area and grown for 7 days before 

collecting RNA (Section 2.7.1). RNA was prepared for microarray analysis using the Illumina 

Total prep-RNA amplification kit (Invitrogen®). To summarise briefly 500 ng mRNA was 

added to master mix (dNTPs, T7 oligo(dT) primer, RNase inhibitor and Array Script) and 

incubated at 42 ºC for 2 hours for reverse transcription. Second strand cDNA was 

synthesised by incubating the reverse transcribed RNA with DNA polymerase, dNTPS and 

RNAase for 2 hours at 16 ºC. Biotinylated cRNA was then produced by incubating with 

Biotin-NTP, T7 RNA polymerase and reaction buffer for 4 – 14 hours at 37ºC. cRNA was then 

eluted and hybridised to the Illumina Sentrix array for analysis.  
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2.8 Flow cytometry 

2.8.1 Extracellular antibody staining 

Cells were trypsinsed upon reaching 70 - 90 % confluency and stained using antibodies for 

the surface markers CD44-phycoerythrin (PE) (Miltenyl biotech®, Surrey, UK) or e-cadherin-

fluroescein isothiocyanate (FITC) (BioLegend®, Cambridge, UK). Prior to staining cells were 

counted using a haemocytometer and diluted in ice cold DPBS and 1 % FBS to 5 x 105 cells 

per sample. Centrifuged at 2000 rpm for 5 mins and re-suspended in 100 μl 1% FBS and 

incubated with the appropriate concentration of primary antibody (1:100) on ice for 15 

mins in the dark. Following antibody incubation cells were centrifuged at 1000 rpm for 3 

mins and washed with 1 % FBS 3 times and re-suspended in 0.5 ml 1% FBS. For all antibodies 

tested a corresponding isotype control conjugated to the same fluorescent detector was 

used to assess non-specific binding with all cell lines tested in triplicate (Table 2.3). 

 
Table 2.3: Comparison of primary antibodies used for assessment of cell marker 
expression in flow cytometry. Staining antibodies had specificity for protein marker and all 
control antibodies had no specificity to human proteins. All antibodies were either raised 
in mouse or rabbit. (Miltenyl biotech®, Surrey, UK), Santa cruz (Heidelberg, Germany), 
Abcam, R&D systems (Abingdon, UK), BioLegend (London, UK). 
 

Protein marker Staining 
antibody origin, 

isotype 
conjugate 

Antibody 
supplier 

Control 
antibody origin, 

isotype 
conjugate 

Control 
antibody 
supplier 

CD44 Mouse IgG2b 
(PE) 

Miltenyl Mouse IgG2bκ 
(PE) 

BioLegend 

CD117 Mouse, IgG1κ 
(APC) 

BioLegend Mouse, IgG1κ 
(APC) 

BioLegend 

E-cadherin Mouse, IgG1κ 
(Alexa fluor® 

488) 

BioLegend Mouse, IgG1κ 
(Alexa fluor® 

488) 

BioLegend 

Vimentin Rabbit, IgG 
polyclonal 

(unconjugated) 

Santa cruz Rabbit, IgG 
polyclonal 

(unconjugated) 

Santa cruz 

CXCR1 Mouse, IgG2A 
(unconjugated) 

R&D systems Mouse, IgG2a 
(unconjugated) 

BioLegend 

CXCr2 Mouse, IgG2a 
(unconjugated) 

R&D systems Mouse, IgG2a 
(unconjugated) 

BioLegend 

CCR2 Mouse, IgG2a 
(unconjugated) 

BioLegend Mouse, IgG2a 
(unconjugated) 

BioLegend 
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2.8.2 Intracellular antibody staining 

Cells were trypsinsed upon reaching 70 - 90 % confluency, then 1 x 106 cells fixed in 100 µl 

BD cell fix (BD Biosciences ®, Oxford, UK) and incubated for 15 mins. 500 µl of 1% BSA 

(diluted in DPBS) was added directly on to fixed cells then centrifuged at 2000 rpm for 5 

mins and washed with a further 500 µl of 1% BSA. Cell membranes were then permeabilised 

with 200 µl 0.1% triton (diluted in DPBS) incubated in the dark for 10 mins followed by 

centrifugation (2000 rpm for 5 mins) and washed once with  500 µl 1% BSA. Cells were re-

suspended in 100 µl 1% BSA FC blocker (Miltenyi Biotec, Surrey, UK) with appropriate 

antibody and incubated for 15 mins in the dark. Three 1 ml 1% BSA washes were used to 

remove any unbound antibody, followed by re-suspension in 100 µl 1% BSA and incubation 

with secondary antibody (1:200) for 15 mins (Table 2.4). Finally cells were washed twice 

and re-suspended in 1 ml 1% FBS for flow cytometry analysis. 

 

Table 2.4: Antibodies used to stain for CSC markers, epithelial or mesenchymal status and 
expression of cytokine receptors. *Indicates co-incubation of antibody with Fc receptor 
blocker. All primary antibodies monoclonal and raised in mouse, except for the vimentin 
antibody which was polyclonal and raised in rabbit. Secondary antibodies were polyclonal 
and raised in goat. Dako (Cambridge, UK).  
 

 

Antibody 

Antibody 

conjugation 

Dilution Source 

1º 2º 1º 2º 1º 2º 

CD44 PE  1:100  Miltenyl  

CD117 APC  1:100  BioLegend  

E-

cadherin 

FITC  1:100  BioLegend  

Vimentin*  FITC 1:100 1:200 Santa 

Cruz 

Dako 

CXCR1*  FITC 1:100 1:200 R&D 

systems 

Abcam 

CXCr2*  FITC 1:100 1:200 R&D 

systems 

Abcam 

CCR2  FITC 1:100 1:200 BioLegend Abcam 
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2.8.3 Aldehyde dehydrogenase staining (ALDH) 

ALDH reconstitution was carried out according to manufacturer’s instructions. Cells were 

stained for ALDH using the ALDEFLUOR kit (Stem cell technologies®, Genoble, France), after 

trypsinisation and counting (Section 2.2.3), cells were diluted in kit buffer to 5 x 105 cells 

per 500 μl sample.  Next 2.5 μl of the ALDH activated reagent was mixed with the sample 

and 250 μl was immediately removed and mixed in a separate tube with 2.5 μl of the ALDH 

inhibitor diethylaminobenzaldehyde (DEAB) to act as a negative control. Samples were 

incubated at 37 °C for 50 mins, centrifuged at 2000 rpm for 5 mins and re-suspended in 0.5 

ml ALDH buffer and analysed using the flow cytometer.  

 

2.8.4 Living cell discrimination 

In order to distinguish between live and dead cells, propidium iodide (PI) or Live/dead 

staining kit (Invitrogen®) was used when PI conflicted with the emission spectra of the 

fluorescent detector.  PI was used at 1 μg/μl and incubated with a sample after antibody 

staining and 15 mins prior to flow cytometric analysis. PI can only interact with dead cell 

DNA producing an emission spectra detected by the PE channel, allowing cells positive for 

PE to be removed during data analysis. 

The reconstitution of the live dead kit was carried out according to manufacturer’s 

instructions. Briefly, live dead staining was undertaken either before fixation or after 

antibody staining of non-fixed, cells were centrifuged at 2000 rpm and re-suspended in 0.5 

ml DPBS and stained with the activated reagent (1:1000) on ice in the dark for 30 mins. 

After staining cells were washed once in 0.5 ml DPBS and re-suspended in 1 % FBS (diluted 

in DPBS). The near IR channel live dead kit binds only to dead cell amines producing an 

emission spectra detected by the APC-cy7 channel, allowing these cells to be removed 

during analysis. 

 

2.8.5 Flow cytometric analysis 

For each sample a total of 10,000 cells were counted on a CyAn™ ADP flow cytometer 

(DakoCytomation) and data was analysed using the summit v4.3 software. Cell lines were 

gated according to an unstained sample and lasers were adjusted accordingly. Unstained 

cells were used to set gates for cell size and internal complexity, dead cells were removed 

along with doublets (two cells passing past the laser at once).  
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2.8.6 CSC marker expression of chemotherapy treated cells 

Cell lines were seeded at 15625 cells/cm2 and allowed to attach and grow for 24 hours. 

After which media was removed and replaced with media containing either cisplatin (0 - 

100 µM) or doxorubicin (0 - 3 µM) for 48 hours. Methotrexate (0 – 3 µM) was exposed to 

cells for 5 days, cells were then trypsinised and stained for either CD117 (Section 2.8.1) or 

ALDH (Section 2.8.3). 

 

 

2.8.7 ALDH cell density expression 

Cell lines were seeded at 15625 cells/cm2 and allowed to attach for 24 hours, after which, 

media was removed and replaced with complete media for 5 days, cells were then 

trypsinised and stained for ALDH (Section 2.8.3). 
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2.9 Confocal microscopy 

Cells were seeded at 1050 cells/cm2 on to 10 mm diameter circular cover slips (Fisher®) for 

3 – 5 days. Upon colonies reaching a suitable size cover slips were washed once with 500 

µl DPBS and for ALDH stained simultaneously using To-pro-3 (1:800) (Invitrogen), Aldefluor 

kit stain (1:400), and CD44 antibody (1:80) (BD sciences) diluted in ALDEFLUOR kit buffer. 

Coverslips were stained for 37 ºC for 50 mins, then washed 3 times in ALDEFLUOR buffer 

and mounted with 50 % glycerol (diluted in ALDEFLUOR buffer) and analysed immediately. 

For the ALDH control sample DEAB (1:50) was added in to the staining buffer to inhibit 

ALDH fluorescence. 

CD117 and e-cadherin antibodies were used to stain colonies grown upon coverslips, prior 

to antibody staining cells were fixed in 400 µl 4 % paraformaldehyde. After fixation 

coverslips were washed with 400 µl DPBS, blocked in 7 % casein (diluted in DPBS) with 

RNAase (1:100) for 30 mins at 37 ºC. Washed 3 times in DPBS and stained for 1 hour in the 

dark (antibodies diluted 1:50 in 7 % casein), then washed with 3 times with DPBS and 

stained with To-pro-3 (1:1000) for 30 mins at room temperature in the dark. Cells were 

washed 3 times with DPBS and mounted in 70 % glycerol (diluted in DPBS) and analysed 

using the confocal microscope (Leica).  
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3.1 Introduction 

Osteosarcoma is defined as a cancer of the connective tissue origin which is characterised 

by the production of the bone matrix osteoid (Schajowicz et al., 1995). In most cases OS 

arises within the medullary cavity of the metaphysis of a growing long tubular bone, 

however rarer cases occur upon the bone surface, within the cortex or even in an 

extraskeletal site. High grade OS cancers are most commonly found within the meduallary 

region of the bone, whilst surface OS lesions are often lower grade and occur in patients at 

least a decade later than common OS lesions (Klein and Siegal, 2006). OS primarily affects 

adolescents (Jawad et al., 2011) and it has been found that patients with OS are significantly 

taller, it was suggested that this observation may be linked to rapid growth of bones during 

puberty (Cotterill et al., 2004) (section 1.1.3).  

Stem cells are responsible for the growth and maintenance of organs within the body 

(section 1.2). A similar hierarchical formation of cells has now been identified within many 

cancers including leukaemias (Bonnet and Dick, 1997) and solid tumours (Al-Hajj et al., 

2003), through the identification of CSC which are attributable for the initiation and growth 

of tumours. Based on the expression of mesenchymal stem cells marker Stro-1 and the 

transmembrane tyrosine kinase receptor CD117, OS CSC have been identified using the 

gold standard technique of xenotransplantation (Section 1.2.2). Stro-1+ CD117+ positive 

cells sorted from cell lines (KHOS-NP and MNNG-HOS) and primary cells (BCOS) were able 

to serially form tumours and had an elevated resistance to chemotherapeutics (Adhikari et 

al., 2010). Based on the use of one OS cell line (OS99-1) CSC have also been identified using 

xenotransplantation of cells expressing the intracellular enzyme ALDH (Wang et al., 2011). 

These findings suggest that potentially even within one cancer type multiple CSC markers 

may exist, however, the studies undertaken by Adhikari et al 2010 and Wang et al 2011 

utilised different procedures to assess the tumourigenicity of potential CSC. Therefore, the 

different markers of OS CSC identified by the groups may reflect differences in the 

methodologies used and not phenotypic differences, which highlight the need to utilise 

consistent protocols on a wide range of cell lines.  

An alternative method to identify CSC, which is not based on the expression of surface 

proteins, is the identification of the colony hierarchies (Locke et al., 2005, Li et al., 2008) 
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(Section 1.2.3). In the OS cell line MG63 holoclonal cells have been found to have enhanced 

drug resistance and sarcosphere forming efficiency (Lou et al., 2010). Identifying the 

presence of holoclonal cells in a range of OS cell lines would provide further evidence that 

CSC reside within sarcomas. The ability to identify the expression of CSC markers within 

these colonies would provide further evidence of the proteins which distinguish OS CSC. 

OS has a very poor prognosis which is often attributed to the presence of secondary 

tumours (Yen, 2009), 90 % of OS metastasic tumours occur in the lungs (Jeffree et al., 1975). 

Pulmonary secondary lesions pose a significant risk to patient health, halving long term 

survival (5 years) from 80 % to 40 % (Wu et al., 2009). In order for a cancer cell to colonise 

a distant site and form a secondary tumour it must first detach itself from surrounding cells, 

surivive anoikis and transition through the circulatory system (Simpson et al., 2008). The 

role of the microenvironment has been found to play a crucial role in providing cells with 

suitable cues to evolve in to a metastatic cell (Glinskii et al., 2003). The acquisition of 

migratory properties is based upon epithelial to mesenchymal transition EMT which is 

integral in embryo development (Hay, 2005) and cancer progression (Thiery, 2002) (Section 

1.2.4). The ability of a metastatic cell to colonise a new site and form a secondary tumour 

indicates this cell must have stem cell properties. Evidence now suggests that expression 

of EMT transcription factors converts cells to a CSC phenotype (Mani et al., 2008) (section 

1.2.5). In OS the phenotype of metastatic cells is not well defined, understanding the EMT 

status of commonly used OS cell lines will help to further characterise this cancer. 
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Aims 

CSC from different cancer types often have unique markers which are specific to that 

cancer type, in OS ALDH and CD117 have been utilised to identify CSC, in contrast, in 

carcinoma CSC research CD44 is a commonly used marker. Published research using 

commercially available OS cell lines often focus on only a single CSC marker. Characterising  

a panel of 8 OS cell lines for a range of CSC markers will provide more robust evidence that 

putative CSC are present within these cell lines. In addition understanding whether these 

cell lines contain cells which have a mesenchymal or epithelial phenotype, will help to build 

up a picture of the nature of OS. The specific objectives of this study which will be tested 

using a panel of 8 OS cell lines (Table 1.1) and the breast cancer cell line MCF7 as a control, 

are as follows: 

 

 Comparison of the CSC marker profiles of ALDH, CD44 and CD117. 

 Analyse the expression of the epithelial marker e-cadherin and mesenchymal 

marker vimentin. 

 Identification of the colony hierarchies based on the presence of holoclones, 

meroclones and paraclones. 

 Use fluorescent microscopy to identify what colony hierarchies (holoclones, 

meroclones and paraclones) contain cells expressing CSC markers; ALDH, CD44 and 

CD117.  

 Analyse the ability of cell lines to form spherical colonies in non-attachment 

conditions. 

 Through immunostaining of spherical colonies formed in non-attachment 

conditions the presence of cells expressing CSC markers (ALDH, CD44 and CD117) 

will be assessed. 
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3.2 Expression of cancer stem cell markers 

3.2.1 ALDH staining optimisation 

The cancer stem cell marker ALDH was previously used to identify cancer stem cells in OS 

(Wang et al., 2011) using the ALDEFLUOR kit (Stem cell technologies®, Genoble, France) 

(section 1.2.2). To determine if ALDH activity varied in OS the enzyme activity was 

measured in seven OS cell lines and MCF7. In order to obtain accurate measurements of 

ALDH the flow cytometry assay (Section 2.8.3) was used along with the following analysis.  

Firstly data was collected from only single cells by gating the pulse width parameter (Figure 

3.1), any cells above or below this were removed to exclude any doublets (two cells passing 

through the lasers at the same time) or debris. Cells were stained with propidum iodide (PI) 

so only living cells were analysed based on PE-texas red fluorescence. Due to the FITC 

fluorescence of ALDH stained cells interfering with the PE-texas channel of PI stained cells. 

A gate was used to include all the low expressing PE-Texas red cells and FITC expressing 

cells for both control (figure 3.2.A) and ALDH stained (Figure 3.2.B), this was used to identify 

all living and highly expressing ALDH cells. Finally, in order to identify the percentage of 

cells expressing ALDH the stained cells were compared to cells to which the ALDH inhibitor 

diethylaminobenzaldehyde (DEAB) was added (Figure 3.3). ALDH stained cells exceeding 

the FITC fluorescence of the DEAB inhibited cells were calculated as the ALDH positive 

population.  

 

 

 

 

Figure 3.1: Removal of two cells (duplets) passing through the flow cytometer laser at 
once. A gate (R1) was placed over the majority of cells with the same pulse width (cell 
width), to ensure only cells of a similar size were included in the analysis. Image is an 
example of HOS pulse width analysis. 
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(A)      (B) 

Figure 3.2: Optimisation of live/dead cells in ALDH staining. Propidium iodide was used to 
stain dead cells which could be detected using the PE channel. Due to FITC fluorescent cells 
(ALDH expressing cells) interfering with PE fluorescence detection, dead cells were 
removed by using a gate (R2) which would include all the cells expressing low levels of PE 
texas red for both DEAB control (A) and ALDH positive (B). Cells with a PE fluorescence 
corresponding to living cells were included in the gate (R2). Any cells outside this gate were 
considered dead and not included in the analysis. Image is an example of dead cell removal 
of HOS cells and is representative of 3 images. 
 
 
 

 

Figure 3.3: Analysis of ALDH positive population. The DEAB inhibited cells (green) were 

compared to the ALDH stained cells (red) (the example shows HOS stained cells (n=1). 

Comparison of stained cells to non-stained cells was used to calculate the percentage of 

ALDH positive cells. Representative of 3 images. 
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3.2.2 Analysis of ALDH expression in OS cell lines and MCF7  

The OS cell lines along with MCF7 were stained for ALDH to assess the percentage of cells 

expressing this putative CSC marker. The expression was heterogeneous ranging from 0.90 % 

in SaOS-2 to 60.60 % in HOS. The cell lines 143B and G292 also contained relatively large 

populations of 12.20 % and 9.60 % ALDH positive cells respectively. 143B contained a 

significantly larger (p <0.05) ALDH population than Cal72, MG63, MNNG-HOS and U2OS.  

The remaining cell lines all contained a similar sized population ranging from 2.13 % to 

3.30 %, the epithelial breast cancer cell line containing 3.26 %. 

 

 

 

Figure 3.4: Evaluation of the percentage of ALDH positive cells (ALDH+) in OS and MCF7 
cell lines. The HOS cell line contains a significantly larger population than all cell lines and 
143B was significantly larger than Cal72, G292, MG63, MNNG-HOS and U2OS, and G292 
(*p <0.05, **p <0.01Tukey’s post hoc analysis) of ALDH positive cells, when compared to 
all other cell lines. Each cell line was tested in triplicate and data presented as mean and 
standard deviation. 
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3.2.3 CD117 staining optimisation 

The CD117 tyrosine kinase receptor has been used to identify CSC in OS (Adhikari et al., 

2010) and has been associated with poor chemotherapy response (Miiji et al., 2011). In 

order to accurately identify CD117 expression, the flow cytometry assay outlined in the 

methods section (Section 2.8.5) was used along with the following analysis. Duplets were 

removed from analysis as in the ALDH staining procedure (Figure 3.1), PI was used to stain 

for dead cells. Data from living cells was captured by gating the PE low stained cells to 

include only living cells (Figure 3.5). Evaluation of CD117 expressing cells was calculated by 

comparing the isotype control stained antibody fluorescence with the CD117 antibody 

stained cells (Figure 3.6). Stained cells exceeding the control cell fluorescence were 

calculated as the CD117 positive population.  

 

Figure 3.5: Gating of dead cells using PE channel. Cells were stained with PI, a gate (R2) 
was created to include only cells which had a low PE fluorescence and any cells outside of 
this gate were considered dead and excluded. Image is an example of dead cell removal in 
143B cells.  

 

Figure 3.6: Evaluation of the percentage of CD117 positive cells in the cell line 143B. Cells 
stained for CD117 using a CD117 specific monoclonal antibody (IgG1,κ) conjugated to the 
fluorophore APC, isotype control IgG1,κ APC conjugated antibody with no  affinity for 
human cells. The isotype control stained cells (red), were compared to the CD117 stained 
cells (blue). Comparison of stained cells to isotype control cells was used to calculate the 
percentage of CD117 positive cells. Example shown is a representative of three images. 
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3.2.4 Analysis of CD117 expression in OS cell lines and MCF7 
 

The presence of CD117 has only been tested in one commonly used OS cell line, U2OS 

which was found to contain 0.6 % CD117 positive cells (Tang et al., 2011). The majority 

(65 %) of clinical tumour samples are positive for CD117 (Entz-Werle et al., 2005) so 

identifying if this marker is also expressed in a panel of OS cell lines is of interest. Using the 

method outlined in 3.2.3 all cell lines except 143B (6.40 %) contained less than 1 % of cells 

expressing CD117, Cal72 and HOS contained populations of 0.93 % and 0.77 % respectively 

and the remaining low expressing cell lines contained negligible populations less than 0.1 %. 

U2OS contained 0.008 % CD117 expressing cells, which was smaller than population 

reported by Tang et al., (2011). MG63 and MCF7 contained no CD117 positive cells and 

143B contained a significantly larger population than all other cells lines of 6.40 % (Figure 

3.7). 

 
Figure 3.7: Evaluation of the percentage of cells expressing CD117 in OS and MCF7 cell lines.  143B 
contains a significantly larger population (**p <0.01 Tukey’s post hoc analysis) of ALDH positive 
cells, when compared to all other cell lines. Results presented as mean and standard deviation. Each 
cell line tested in tripicate. 
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3.2.5 Analysis of CD44 expression in OS cell lines and MCF7 

Carcinoma cells with increased expression of the adhesion protein CD44 have been shown 

to comprise putative CSC with enhanced tumourigenicity (Harper et al., 2010). Cells 

expressing CD44 and lacking CD24 have been identified as CSC in breast cancer using a 

xenotransplantation model (Al-Hajj et al., 2003). All cell lines were screened for CD44 using 

a PE labelled antibody and dead cells identified using live dead stain (Invitrogen). An isotype 

and fluorophore (PE) matched antibody was used as a control and used to identify the 

percentage of cells expressing CD44, using the same analysis approach as CD117 expression 

(Figure 3.5 and 3.6). OS cell lines tested express CD44, HOS cell lines contained the smallest 

population of 69 % whilst G292, MG63, MNNG-HOS and SaOS-2 all contained over 99% of 

cells CD44 positive. The epithelial breast cancer cell line MCF7 contained only 4.9 % of cells 

expressing CD44. 

 

 

Figure 3.8: Evaluation of the percentage of cells expressing CD44 in OS and MCF7 cell lines. All 

cell OS cell lines contained a high proportion of CD44 positive cells in contrast MCF7 contained a 

significantly smaller population than all cell line and HOS was significantly smaller than 143B, 

G292, MG63, MNNG-HOS and SaOS-2 (**P <0.01 Tukey’s post hoc analysis). All results tested in 

triplicate. Results presented as mean and standard deviation. 
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3.3 Analysis of expression of mesenchymal and epithelial markers in OS cell lines and 

MCF7 

The process of EMT has been found to play an integral role in cancer progression, once a 

cancer cell has acquired the ability to migrate and invade surrounding tissues this can lead 

to metastasis. The calcium dependant cell-cell adhesion protein e-cadherin (e-cad) is a 

marker of an epithelial phenotype. Loss of e-cad is characteristic of a cell adopting a 

migratory mesenchymal phenotype  (von Schlippe et al., 2000), loss of e-cad is often 

associated with increased expression of the protein vimentin (vim), which is a type III 

intermediate filament protein highly expressed in mesenchymal cells (Steinert and Roop, 

1988). In carcinoma the de novo expression of vimentin is associated with the acquisition 

of a mesenchymal phenotype and enhanced invasiveness (Sommers et al., 1994). 

All cell lines were screened for both e-cad and vim using either a fluorescently labelled e-

cad antibody or a primary vim antibody followed by a fluorescently labelled secondary 

antibody. Flow cytometry was used to detect cell fluorescence and analysis was carried out 

on 1 x 104 cells, dead cells were removed by counter staining with PI for e-cad stained cells 

or live dead stain (Invitrogen®) for vim staining. Each labelled population was compared to 

an isotype control and where appropriate fluorescent label matched antibody. Overlay 

histograms were produced and the increase in fluorescence was determined using the 

same analysis approach as CD117 expression (Figure 3.5 and 3.6). 

All OS cell lines contained low levels of e-cad expression (≤ 0.22%), U2OS was the only cell 

which contained no e-cad positive cells. 143B had the largest population of 0.22 %, whilst 

the remaining cell lines all contained negligible populations below 0.06%. MCF7 contained 

a significantly larger population of 66.9 % which reflects the epithelial phenotype of this 

cell line (Figure 3.9).  

In the OS cell lines vim was highly expressed ranging from 90 % – 98 % of cells vim positive. 

MG63 and U2OS had the lowest average expression at 90 and 92 % respectively.  SaOS-2 

expressed it to the highest level at 98 %, whilst the remaining cell lines varied between 94 

– 97 %. In accordance with the epithelial nature of MCF7 it contained a very low level of 

vim expression with only 0.15 % expressing the protein (Figure 3.10). 
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Figure 3.9: Evaluation of cell lines expressing e-cadherin in OS and MCF7 cell lines. All OS 
cell lines contained only a small population (< 0.22 %) of e-cadherin positive cells, in 
particular U2OS contained no e-cadherin expression. MCF7 contained a significantly larger 
population of e-cadherin expressing cells (**p <0.01 Tukey’s post hoc analysis). Results 
tested in triplicate and presented as mean and standard deviation. 

 

Figure 3.10: Evaluation of cell lines expressing vimentin in OS and MCF7 cell lines. All OS 

cell lines contained large populations vimentin positive cells, MG63 contained the smallest 

population of 90 % and SaOS-2 the highest at 98 %. MCF7 cells had a significantly smaller 

population of cells expressing vimentin. (**p <0.01 Tukey’s post hoc analysis). Results 

tested in triplicate and presented as mean and standard deviation. 
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3.4 CD44 and epithelial and mesenchymal marker co-expression analysis 

 
3.4.1 Optimisation of method used to assess CD44 and e-cadherin expression  
 
Using a system to detect both CD44 and either e-cad or vimentin allows the presence of a 

double positive population to be analysed according to their epithelial status. Further tests 

will be required to identify whether these double positive cells represent a CSC population. 

In order to identify cells positive for CD44 along with an epithelial marker, a PE labelled 

CD44 antibody was used simultaneously with either a FITC labelled e-cad antibody or 

primary vimentin antibody followed by a secondary FITC antibody. All cell lines were gated 

for live cells using live dead stain (Invitrogen®) and pulse width to remove doublets as 

stated in the ALDH analysis procedure (Figure 3.1). In order to identify the populations of 

cells expressing CD44 and e-cad control antibodies were used which matched according to 

antibody isotype and fluorescent label but have no specificity to human cells. Accurate 

measurement of CD44 and e-cad analysis was achieved by using quadrants to identify the 

population sizes. In order to have a consistent placement of the quadrant it was firstly 

placed on the control cells so the top two quadrants (R4 and R5) included between 0.5 % - 

0.14 % (Figure 3.11 A) control cells. Once the quadrant placement had been fixed it was 

then overlaid on to the CD44 and epithelial marker stained cells and the populations 

quantified (Figure 3.11 B).  
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A             B 

Figure 3.11: Evaluation of CD44 and e-cadherin populations in OS and MCF7 cell lines. A) 
U2OS control cells (stained with isotype control), quadrant placed so regions R4 and R5 
include between 0.5 - 0.14 % of cells. The quandrant position obtained from A was then 
overlayed on to CD44 and e-cadherin U2OS stained cells (B). Y axis represent CD44 
expression and x axis represents e-cadherin expression. Each quandrant is used to assess 
the frequency of the following populations; R4 = CD44+ e-cad- stained cells; R5 = CD44+ e-
cad+ stained cells; R7 = CD44- e-cad+ stained cells and R6 CD44- e-cad-. Image representative 
of 3 images of HOS cells. 

 

 

 

3.4.2 Characterisation of CD44/e-cadherin phenotypes in OS cell lines and MCF7 

Four CD44/e-cad phenotypes were present based on cells either being double positive for 

both markers, single positive for a marker or double negative. In OS the CD44+/e-cad+ 

double positive populations were relatively small and varied from 0.1 % (143B) to 1.2 % 

(G292) (Figure 3.12.A). In contrast the CD44+/e-cad- single positive cells comprised the 

largest populations ranging from 99 % (SaOS-2) to 68 % (HOS) (Figure 3.12.B). The CD44-/e-

cad+ single positive phenotype was the least common and present in only Cal72 (0.005 %), 

HOS (0.003 %) and MNNG-HOS (0.26 %) (Figure 3.12.C). Due to the small size of the Cal72 

and HOS populations, these could in fact be an artefact caused by non-specific binding of 

antibodies to the cells. The presence of cells lacking both CD44 and e-cad (CD44-/e-cad-) 

forms the most variable population ranging from 0 % (MNNG-HOS) to 31 % (HOS) (Figure 

3.12.D). As a consequence  of MCF7 epithelial phenotype it has a large population of 
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CD44/ecad+ single positive cells which comprise 31 % (Figure 3.12.C) and also the largest 

population of CD44+/e-cad+ double positive cells (3.8 %) found in all cell lines tested (Figure 

3.12.A). In contrast to the OS cell lines, the smallest population of MCF7 was found within 

the CD44+/e-cad- population (1.1 %) (Figure 3.12.B) and largest within the double negative 

cells (CD44-/e-cad-) (63.7 %) (Figure 3.12.D). In order to clarify the markers expressed by 

each cell line, the CD44/e-cad phenotypes have been summarised within table 3.1.  
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(A) CD44+/e-cad+     (B) CD44+/e-cad-   

  

(C) CD44-/e-cad+     (D) CD44-/e-cad-  

  

Figure 3.12: Evaluation of CD44 and e-cadherin expression in OS and MCF7 cell lines. A) frequency 

of cells positive for both CD44 and e-cad expression (CD44+/e-cad+ cells) MCF7 contains a 

significantly smaller population than all cell lines. B) frequency of cells positive for CD44 expression 

and negative for e-cad (CD44+/e-cad-), MCF7 contains a significantly smaller population than all cell 

lines, HOS contains less than all OS cell lines, Cal72 and U2OS contain a smaller population than 

143B, G292, MG63, MNNG-HOS and SaOS-2. C) frequency of cells negative for CD44 expression and 

positive for e-cad (CD44-/e-cad+), MCF7 contains a significantly larger population than all cell lines. 

D) frequency of cells negative for CD44 expression and negative for e-cad (CD44- /e-cad-), MCF7 

contains a larger population than all cell lines, HOS contains a larger population than 143B, G292, 

MG63, MNNG-HOS and SaOS-2, U2OS contains a larger population tha SaOS-2. All results tested in 

triplicate and presented as mean and standard deviation. *p = <0.05, **p = <0.01 (Tukey’s post hoc 

analysis). 
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Table 3.1. CD44/e-cadherin phenotypes in OS cell lines and MCF7. Cell line CD44/e-cad 

populations presented tested in triplicate and presented as mean percentage values and 

standard deviation (S.D). 

 

Cell line 

CD44/e-cadherin populations (S.D) 

% of cells 
expressing 

CD44+/e-cad+ 

±S.D 

% of cells 
expressing 

CD44+/e-cad- 

±S.D 

% of cells 
expressing 

CD44-/e-cad+ 

±S.D 

% of cells 
expressing 

CD44-/e-cad-

±S.D 

143B 0.10 ± 0.09  98.30 ± 2.10 0.00 ± 0.00 1.60 ± 2.01 

Cal72 0.21 ± 0.07 83.41 ± 4.40 0.005 ± 0.005 16.38 ± 4.41 

G292 1.15 ± 0.61 98.30 ± 1.20 0.00 ± 0.00 0.55 ± 0.75 

HOS 0.36 ± 0.31 68.26 ± 6.81 0.003 ± 0.005 31.38 ± 7.20 

MG63 0.50 ± 0.42 96.43 ± 5.00 0.00 ± 0.00 3.06 ± 5.23 

MNNG-HOS 0.18 ± 0.12 99.43 ± 0.21 0.26 ± 0.11 0.00 ± 0.00 

U2OS 0.21 ± 0.08 83.14 ± 5.74 0.00 ± 0.00 16.66 ± 5.75 

SaOS-2 0.50 ± 0.09 99.46 ± 0.13 0.00 ± 0.00 0.04 ± 0.03 

MCF7 3.81 ± 2.37 3.81 ± 0.47 31.34 ± 12.46 63.72 ± 15.24 
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3.4.3 Characterisation of CD44/vimentin phenotypes in OS cell lines and MCF7  

Four CD44/vim phenotypes were present based on cells either being double positive for 

both markers, single positive for a marker or double negative. In the OS cell lines tested the 

majority of cells were present within the CD44+/vim+ double positive population with little 

very little variation present, population sizes ranged from 91 % (HOS) to 99 % (SaOS-2) 

(Figure 3.13.A). In contrast greater variability was observed in CD44+/vim- populations 

which ranged from 0.5 % (MNNG-HOS) to 4.7 % (143B) (Figure 3.13.B). Except for Cal72 

which contained a population of 2.5 % of  CD44-/vim+ cells, the remaining OS cells lines 

contained a small percentage of CD44-/vim+ cells ranging from 0.01 % (SaOS-2) to 0.9 % 

(U2OS) (Figure 3.13.C). The double negative CD44-/vim- phenotype was variable between 

OS cell lines. Ranging from 5.6 % (U2OS) to 0.09 % (SaOS-2) and making up a relatively small 

percentage of OS cells. In contrast MCF7 contained a large proportion (95.8 %) of these 

cells (Figure 3.14.D). The remaining MCF7 cells were mostly composed of CD44+ vim-/cells 

(3.5 %) (Figure 3.14.B) and to a lesser extent CD44-/vim+ (0.39 %) (Figure 3.13.C) and 

CD44+/vim+ cells (0.27 %) (Figure 3.13.A). In order to clarify the markers expressed by each 

cell line, the CD44/vim phenotypes have been summarised within table 3.2. 
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(A) CD44+/vim+     (B) CD44+/vim-  

 

(C) CD44-/vim+     (D) CD44-/vim-  

 

Figure 3.13: Evaluation of CD44 and vimentin expression of OS cell lines and MCF7. A) frequency 

of cells positive for both CD44 and vimentin expression (CD44+ vim+ cells), MCF7 contains a 

population smaller than all cell lines, SaOS-2 contains a larger population than 143B, Cal72, HOS 

and U2OS. B) frequency of cells positive for CD44 expression and negative for vimentin (CD44+ vim-

), 143B contains a significantly larger population than Cal72, MNNG-HOS and SaOS-2. C) frequency 

of cells negative for CD44 expression and positive for vimentin (CD44- vim+), Cal72 contains a 

significantly larger population than all cell lines. D) frequency of cells negative for CD44 expression 

and negative for vimentin (CD44- vim-), MCF7 contains a significantly larger population than all cell 

lines, HOS and U2OS contain larger populations than 143B, G292, MG63, MNNG-HOS and SaOS-2. 

All results tested in triplicate and presented as mean and standard deviation, *p = <0.05, **p = 

<0.01 (Tukey’s post hoc analysis). 
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Table 3.2: CD44/e-cadherin phenotypes in OS cell lines and MCF7. Cell line CD44/e-cad 
populations presented tested in triplicate and presented as mean percentage values and 
standard deviation (S.D). 

 

Cell line 

CD44/vimentin populations (%) 

% of cells 
expressing 
CD44+/vim+  

±S.D 

% of cells 
expressing 
CD44+/vim- 

±S.D 

% of cells 
expressing 
CD44-/vim+ 

±S.D 

% of cells 
expressing 
CD44-/vim- 

±S.D 

143B 92.60 ± 4.02 4.66 ± 3.86 0.96 ± 0.60 1.71 ± 0.26 

Cal72 92.38 ± 1.40 0.26 ± 0.37 2.54 ± 1.15 4.83 ± 0.27 

G292 96.16 ± 1.03 1.79 ± 1.29 0.24 ± 0.14 1.82 ± 0.99 

HOS 91.14 ± 1.85 1.76 ± 0.56 0.54 ± 0.20 6.56 ± 1.98 

MG63 97.04 ± 1.54 1.09 ± 0.56 0.15 ± 0.15 1.72 ± 1.88 

MNNG-HOS 98.03 ± 1.39 0.51 ± 0.49 0.18 ± 0.10 1.28 ± 0.72 

U2OS 92.75 ± 3.43 0.81 ± 0.73 0.89 ± 0.70 5.55 ± 2.53 

SaOS-2 99.45 ± 0.29 0.44 ± 0.34 0.01 ± 0.01 0.09 ± 0.09 

MCF7 0.27 ± 0.12 3.50 ± 0.87 0.39 ± 0.17 95.84 ± 0.97 
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3.5 Identification of the colony hierarchies within OS cell lines and MCF7 
 

The colony hierarchies identified by Locke et al (2005) represent the cellular heterogeneity 

present within both healthy tissues and tumours (Section 1.2.3). The identification of the 

tightly packed holoclonal colonies indicates the presence of putative CSC, meroclonal 

colonies (colonies containing features of both holoclones and paraclones) encompass a 

more mature population which will transiently divide before giving rise to the terminally 

differentiated paraclones (loose irregular colonies). All OS cell lines and MCF7 included in 

this study were able to recapitulate the three colony phenotypes (Figure 3.14) when 

seeded at low density (2 – 4 cells cm2) and cultured for 7 – 14 days. The appearance of the 

holoclones differed between each cell line, but all displayed tightly packed cells with a 

smooth boundary of cells encasing the colony. The holoclonal shape was predominantly 

round or oval shape and was observed in the majority of cell lines (143B, HOS, MNNG-HOS, 

G292, U2OS, SaOS-2 and MCF7). In contrast Cal72 and MG63 displayed holoclones with a 

more angular shape with Cal72 holoclones almost square in shape, whilst MG63 had 

angular projections. Meroclones were a mixture of the holoclone morphology with cells 

beginning to migrate from the colony, OS paraclonal colonies were composed of a 

dispersed population of cells; often cells would become totally detached from one another. 

The only exception was U2OS and Cal72 which tended to contain clusters of cells still bound 

together. MCF7 paraclones were not as dispersed as the OS colonies and were composed 

of clusters of cells which had migrated a short distance.    
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Figure 3.14: Continued overleaf 
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U2OS 
(Epithelial, 

osteosarcoma, 
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SaOS-2 
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14 days) 
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(Epithelial, 

breast 
adenocarcinoma, 

12 days) 
 
 

 
  

Figure 3.14: Colony hierarchies present within each cell line. Holoclone, meroclone and 
paraclone phenotypes from all cell lines when seeded at a density to produce 100 colonies 
per 55 cm² (seeding density varied from 2 - 4 cells per cm² depending upon the cell line) 
after 7 – 14 days of growth. Images representative of 4 images per hierarchy. Scale bar 
represents 100 µM.  
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3.6 Presence of cells expressing CSC markers within colony hierarchies 

Prostate cancer holoclones have been shown to contain CSC based on the expression of 

CSC markers (Li et al., 2008) providing a useful method of separating highly tumourigenic 

population of cells from their non tumourigenic counterparts. MG63 holoclones are 

reported to have enhanced clonogenicity and express elevated levels of CD133 (Lou et al., 

2010). A similar observation has been observed in head and neck carcinoma holoclones 

which have increased levels of the putative CSC marker CD44 (Harper et al., 2010). The 

analysis of OS colony hierarchies for expression of the putative OS CSC markers (CD117 and 

ALDH) has not been determined, therefore identifying whether these cells are restricted to 

one hierarchy will give an indication of whether these cells function as CSC.   

In order to investigate the location of CSC expressing cells within the colony hierarchies, 

cells were seeded at low density (26 cells/mm2) and grown on 12 mm circular coverslip for 

3 - 4 days, allowing the colony morphologies to form. Cells were fixed with 

paraformaldehyde when staining for CD117 or CD44 and e-cad, however, due to ALDH 

being an intracellular enzyme, only living cells could be used for analysis. In this case an 

antibody ALDEFLUOR staining mixture was prepared and stained in a short time (50 mins) 

at 37 ˚C to minimise cell disruption. Upon mounting coverslips in 50 % glycerol (diluted in 

ALDEFLUOR buffer) slides were kept on ice and analysed immediately. Due to the high 

expression of CD44 within all OS cell lines this antibody was used as membrane marker to 

identify the location of membranes within the images. To ensure fluroescently labeled cells 

were not the result of non-specific antibody interactions, isotype and fluroescent labelled 

matched antibodies were also used to stain cell to assess antibody specficity, ALDH was 

also inhibited with DEAB (Appendix I). 

 

3.6.1 Location of ALDH expressing cells within OS cell lines and MCF7 colony 

hierarchiesFig 

According to flow cytometry the OS cell lines 143B, G292 and HOS all contain populations 

of ALDH expressing cells > 10 %, whilst the remaining OS cell lines all contained populations 

< 10 % (section 3.2.2). It was found that  ALDH positive cells within the colony hierarchies 

are not restricted to holoclones in cell lines containing > 10 % ALDH+ cells (as determined 
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by flow cytometry).  The cells lines 143B, G292 and HOS all contained ALDH positive cells 

within the three colony morphologies.  143B  colony hierarchies (Figure 3.15.1) contain 

ALDH positive cells in meroclones and paraclones, however the holoclone situated in the 

centre of the image contains no ALDH positive cells, a similar finding was also observed in 

G292 (figure 3.15.2) and HOS (figure 3.15.3). Cell lines with low ALDH expression MG63 

(2.14 %) and SaOS-2 (3.4 %) contain ALDH positive cells which only reside within the 

holoclones, however, there are also holoclones present which lack any ALDH positive cells 

(figure 3.15.2 and figure 3.15.5). ALDH positive cells are present within MCF7 colonies but 

due to the low expression of CD44 it made identifying the colony morphologies difficult 

(figure 3.15.6), although, MCF7 ALDH cells appear restricted only to the densely packed 

holoclone like colonies.  

 

 

 

 

Figure 3.15: Continued overleaf 
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Figure 3.15: Colony morphologies containing ALDH positive cells OS cell lines and MCF7. 

Cell lines (143B (1), G292 (2), HOS (3), MG63 (4), SaOS-2 (5) and MCF7 (6) were seeded on 

coverslips (1050 cells/cm2) and grown for 3 - 5 days to form suitable sized colonies. ALDH 

expression was demonstrated by dual-colour fluoresence, coverslips were co-stained with 

To-pro-3 (blue nuclei), PE labelled CD44 antibody (red membrane) and ALDH using the 

ALDEFLUOR reagent (green putative CSC). (A) ALDH expressing cells, (B) CD44 expressing 

cells, (C) nuclei and (D) overlay of all 3 markers. ALDH positive colony circled. Image 

representative of at least 4 images. 
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3.6.2: Location of CD117 expressing cells within colony hierachy  of 143B 

According to the flow cyotmetry results 143B contained the largest population of CD117 

cells (6.4 %) (Figure 3.7), therefore would make the most suitable cell line to identify where 

these cells reside within the colony hierachies. When tested at a low density (1050 

cells/cm2) 143B contained very few cells expressing CD117, positive cells stained very 

weakly and were found around the outer the membranes of small holoclones (Figure 3.16). 

When 143B was allowed to reach a higher density (80 – 90 % confluency) the presence of 

CD117 increased. The high density meant colony hierachies were unidentifiable, however, 

CD117 expression was localised to very small sites on each cell and was present to the 

periphery of a colony, producing a speckled appearance around the colony edge (Figure 

3.17). 

 

Figure 3.16: Colony morphologies containing CD117 positive cells in 143B at low density. 

Demonstrated by dual-colour fluoresence, 143B cells (1050 cells/cm2) were grown for 3 days then 

stained with To-pro-3 (blue nuclei), PE labelled CD44 antibody (red membrane) and FITC labelled 

CD117 antibody (green putative CSC). (A) CD117 expressing cells, (B) CD44 expressing cells, (C) 

nuclei and (D) overlay of all 3 markers. CD117 positive colony circled. Image representative of at 

least 4 images. 
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Figure 3.17: Colony morphologies containing CD117 positive cells in 143B at high density. 

Demonstrated by dual-colour fluoresence, 143B cells (2100 cells/cm2) were grown on 

coverslips for 3 days then stained with To-pro-3 (blue nuclei), PE labelled CD44 antibody 

(red membrane) and FITC labelled CD117 antibody (green putative CSC). (A) CD117 

expressing cells, (B) CD44 expressing cells, (C) nuclei and (D) overlay of all 3 markers. Image 

representative of at least 4 images. 
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3.6.3: Location of CD44 and e-cadherin expressing cells within colony hierachy 

The presence of cells co-expressing CD44 and e-cad within the OS cell lines were rare. G292 

had the largest population of co-expressing cells (1.15 %) when analysed using flow 

cytometry and was the only OS cell line found to contain cells expressing both markers. OS 

CD44+ e-cad+ cells were identified within paraclones (Figure 3.18.1) and meroclones (Figure 

3.18.2) of G292. In contrast MCF7 contains heterogenous expression of both CD44 and e-

cad in the colony hierarchies, cells which were highly expressing both CD44 and e-cad were 

found in the centre of holoclones, whilst cells only expressing CD44 were identified in 

paraclonal cells (Figure 3.18.3). 
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Figure 3.18: Continued overleaf 
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Figure 3.18: Colony morphologies containing CD44 and e-cad positive cells in G292 and 

MCF7. G292 (Images 1 and 2) and MCF7 (3) were grown on coverslips (1050 cells/cm2) for 

4 days. CD44/e-cad expressing cell were demonstrated by dual-colour fluoresence, 

coverslips were stained with to-pro-3 (blue nuclei), PE labelled CD44 antibody (red 

membrane) and FITC labelled e-cadherin antibody (green). (A) E-cadherin expressing cells, 

(B) CD44 expressing cells, (C) nuclei and (D) overlay of all 3 markers. Arrow indicates a cell 

highly expressing both e-cadherin and CD44. Image representative of at least 4 images. 
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3.7 Evaluation of sarcosphere forming ability of OS cell lines and MCF7 

Growing cells within serum starved low attachment conditions was originally used to select 

neuronal multipotent stem cells (Reynolds and Weiss, 1992). This technique has also been 

used to study stem cells within cancers. In osteosarcoma the spherical colonies produced 

in non-adherent conditions are termed sarcospheres, have increased expression of the 

stem cell transcription factors Nanog and Oct 3/4 as well as mesenchymal markers (Gibbs 

et al., 2005). In breast cancer spherical colonies were found to have enhanced ability to 

form xenotransplantable tumours, demonstrating the enrichment of CSC within these cell 

populations (Grimshaw et al., 2008). 

In this study cell lines were tested by seeding cells single cells at 10,000 cells/non-adherent 

6 well plate, and grown in the presence of 20 ng/ml bFGF and EGF along with B27 

supplement, which was replenished every 3 days throughout the experiment (Section 

2.2.4). After 7 days colony size was assessed before passaging sarcospheres and re-seeding 

at 210 cells/cm2 and growing for a further 7 days after which colony size and number were 

assessed. When counting sarcospheres only colonies ≥ 40 µM were included.  

The appearance of the sarcospheres was markedly different to mammospheres produced 

by MCF7, which were produced under the same conditions as sarcospheres. In general OS 

primary sarcospheres did not have the classical spherical shape with smooth appearance. 

They were less uniform in shape and often visibly composed of clusters of cells, the uneven 

shape is most apparent in Cal72 and MG63 which are clearly composed of a colony of cells 

giving it a rougher appearance. In contrast MCF7 produced large spherical colonies with an 

almost smooth appearance making identifying individual clusters of cells challenging 

(Figure 3.19). 

After the cells had been passaged and grown for a further 7 days to form secondary 

sarcospheres, the sarcospheres in all cell lines except 143B and MNNG-HOS were visibly 

smaller in size. Cal72, HOS and U2OS produced no colonies greater than 40 µM, the only 

cells present were single cells, which had failed to  divide. The secondary colonies produced 

by 143B and MNNG-HOS were more irregular in shape than the primary sarcospheres 

(Figure 3.9).  
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Figure 3.19: Continued overleaf. 
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breast 
adenocarcinoma) 

 
 

 
  

 

Figure 3.19: Images of sarcospheres produced from OS cell lines and MCF7. Primary 

sarcospheres grown for 7 days and secondary sarcosphere grown for a further 7 days post 

primary sarcosphere passage. Images representative of 12 images. Scale bar represents 

100 µM. 
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3.7.1 Evaluation of primary sarcosphere sizes in OS cell lines and MCF7 

All cell lines tested were able to produce primary sarcospheres after the initial 7 days of 

growth and images were taken from four parts of each well, allowing sarcosphere size to 

be analysed (Section 2.2.4). Sarcosphere sizes present within each image could then be 

assessed using ImageJ. In addition during the passage of sarcospheres cell counts were 

made, making it possible to assess the number of living cells present within each cell line. 

Comparison of primary spherical colony formation indicated that growth rates were 

variable across the cell lines. All cell lines were compared to one another and Cal72, G292 

and U2OS produced significantly smaller colonies than MCF7 (Figure 3.20). When 

comparing the number of living cells present at this stage of the experiment U2OS had the 

lowest number of 3000 cells, which indicates that 70 % of the cells had died since seeding 

(Figure 3.21) and suggests that the majority of U2OS cells are undergoing cell death in 

response to the low-attachment conditions. All other cell lines had a significant increase in 

living cells when compared to U2OS. Although Cal72 and HOS had a significantly elevated 

number of cells compared to U2OS, they still contained less living cells cells than the 10000 

seeded, suggesting they are also unsuited to the sarcosphere assay conditions. MNNG-HOS, 

SaOS-2 and MCF7 contained the most living cells with a total of 30000 cells (Figure 3.21). 
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Figure 3.20: Analysis of primary sarcosphere sizes in OS cell lines and MCF7. Sarcosphere 

size assessed using ImageJ. Statistical significance calculated using Tukey’s post hoc 

analysis, by comparing all samples to one another, Cal72, G292 and U2OS were found to 

be significantly different when compared to MCF7 (* p <0.05, ** p <0.01). Cell lines tested 

in triplicate and presented as mean and standard deviation. 

 

 

Figure 3.21: Analysis of number of cells present after passage of primary sarcospheres. 

Statistical significance calculated using Tukey’s post hoc analysis, all cell lines compared to 

one another, Cal72, HOS and U2OS contain significantly less cells than SaOS-2 and MCF7, 

U2OS also contains significantly less cells than MNNG-HOS (* p <0.05,  **p <0.01). Cell lines 

tested in triplicate and presented as mean and standard deviation. 
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3.7.2 Evaluation of secondary sarcospheres in OS cell lines and MCF7 

After sarcospheres had been passaged and grown for a further 7 days (secondary 

sarcospheres), sarcosphere sizes were again analysed using ImageJ. In addition sarcosphere 

forming efficiency (SFE) was assessed using the equation outlined in the methods section 

(Section 2.2.4). Both SFE and colony size, although variable between cell lines, produced a 

similar result when comparing SFE (%) and colony size of the same cell line. Cal72, HOS and 

U2OS produced no spherical colonies, G292 produced the lowest SFE of 0.62 % and one of 

the lowest colony sizes of 0.27 (relative units) so was used for comparison with other cell 

lines to assess a statistical increase in colony formation (Figure 3.22.A). 143B and MNNG-

HOS both had significantly larger colonies and enhanced SFE compared to G292, the 

remaining cell lines MG63, SaOS-2 and MCF7 had similar SFE of 1.3 %, 0.95 % and 0.9 % 

respectively (Figure 3.22.B). 
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(A) Sarcosphere size 

 

(B) Sarcosphere forming efficiency 

 

Figure 3.22: Analysis of cell line relative sarcosphere sizes of and sarcosphere forming 

effciency (SFE) of secondary sarcospheres. A) Analysis of relative sarcosphere sizes, B) 

Analsis of SFE of secondary sarcospheres. Statistical significance calculated by using Tukey’s 

post hoc analysis comapring all samples, G292, MG63, SaOS-2 and MCF7 were significantly 

smaller than 143B and MNNG-HOS (*p <0.05, **p <0.01). All results repeated in triplicate 

and presented as mean and standard deviation. 
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3.7.3 Correlation of CSC marker expression with sarcosphere forming efffciency 

Pearson’s correlation coeffcient was used to identify if the populations of cells expressing 

CSC markers analysed using flow cytometry (Section 3.2) correlated with increased 

spherical colony formation (Table 3.3). Analysis consisted of comparing either primary 

sarcosphere size against CSC marker expression or secondary sarcsosphere forming 

efficiency compared to CSC marker expression. CD117 has been identified specifically as an 

OS CSC marker, therefore MCF7 was excluded from this analysis.  

Primary sarcosphere forming ability correlated poorly with the expression of all CSC 

markers tested (ALDH, CD117 and CD44). CD44 expression when analysed as a sole marker 

produced a negative correlation of -0.66, CD44+/e-cad- cells produced a positive 

correlation of 0.67. CD117 had the closest relationship with formation of secondary 

sarcospheres, however this was a weak correlation of 0.58 (Table 3.3).  

 

Table 3.3: Pearson correlation coefficient analysis of primary or secondary spherical 

colony formation with CSC marker expression. Cell lines included in analysis were 143B, 

Cal72, G292, HOS, MG63, MNNG-HOS, U2OS SaOS-2 and MCF7. Due to CD117 not being an 

established breast CSC marker, MCF7 was not included in CD117 analysis. No statistical 

significance was observed. 

Cancer stem cell marker Primary sarcospheres Secondary sarcospheres 

ALDH 0.10  -0.25 

CD117 0.21 0.58 

CD44 -0.66 0.40 

CD44+ / e-cadherin+ 0.67 -0.08 

CD44+ / e-cadherin- -0.08 0.44 
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3.8 Presence of ALDH and CD117 expressing cell within sarcosphere colonies 

To identify whether sarcospheres contained cells expressing OS CSC markers (ALDH and 

CD117) secondary sarcospheres from 143B were stained for these markers. 143B was 

selected because of the ability of this cell line to form robust sarcospheres. Cell membranes 

were identified using CD44 along with To-pro-3 for nuclei. The ALDH stain must be used on 

living cells so all sarcosphere staining procedures were conducted upon non-fixed cells. 

 

3.8.1 ALDH expression within 143B sarcosphere 

ALDH expressing cells were found within all sarcospheres analysed and the number of cells 

expressing ALDH increased in proportion with sarcosphere size. The smallest 143B 

sarcosphere analysed (Figure 3.23.1) contained several ALDH positive cells which were 

located mainly in the centre of the sarcosphere. The intermediate sized sarcosphere 

contained ALDH positive cells which were spread throughout the colony (Figure 3.23.2), 

whilst the sarcosphere largest in size contained regions either positive or negative for ALDH 

(Figure 3.23.3). The lower half of the largest sarcosphere contained the highest proportion 

of ALDH positive cells whilst the upper left side contained almost no ALDH positive cells, 

suggesting that ALDH cells may aggregate together as colonies grow larger. 
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Figure 3.23.1: Cells expressing ALDH within a small 143B sarcosphere. Description below 

(3.22.3). 

 

 

Figure 3.23.2: Cells expressing ALDH within a intermediate sized 143B sarcosphere. 

Description below (3.32.3). 
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Figure 3.23.3: Cells expressing ALDH within a large 143B sarcosphere. Figures 3.30.(1,2 
and 3) Demonstrated by dual-colour fluoresence, 143B sarcospheres were co-stained with 
to-pro-3 (blue nuclei), PE labelled CD44 antibody (red membrane) and ALDH using 
ALDEFLUOR reagent (green). (A) ALDH expressing cells, (B) CD44 expressing cells, (C) nuclei 
and (D) overlay of all 3 markers. Each image representative of 2 images. 

 

3.8.2 CD117 expression within 143B sarcosphere 

143B sarcospheres were tested for the expression of the CSC marker CD117, when 

sarcospheres were co-stained with CD44 no cells CD117 cells were identified. To ensure 

that CD44 antibodies fluoresence were not masking the presence of CD117 positive cells, 

sarcospheres were tested without CD44. CD117 staining was identified in only two 

colonies, a single cell stained positively in a large colony (Figure 3.24.1) and the cell surface 

of a single cell in a small collection of cells (Figure 3.24.2) was also weakly stained for 

CD117. The rarity of CD117 cells sarcosphere is in stark contrast to monolayer 143B cells 

when analysed using flow cytometry contained a population of 6.4 % (Figure 3.7).  
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Figure 3.24.1: Cells expressing CD117 within a 143B sarcosphere. Description below 

3.30.2. 

 

Figure 3.24.2: Cells expressing CD117 within a 143B sarcosphere. Demonstrated by dual-
colour fluoresence, 143B sarcospheres were co-stained with to-pro-3 (blue nuclei) and FITC 
labelled CD117 antibody (green). (A) CD117 expressing cells, (B) nuclei and (C) overlay of 
the markers. Images representative of 1 image. 
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3.9 Discussion 

CSC identification has been made possible through the isolation of cells expressing 

extracellular proteins such as CD44 (Al-Hajj et al., 2003), CD117 and the intracellular 

enzyme ALDH (Wang et al., 2011) (Section 1.2.2). Within breast carcinoma ALDH expressing 

cells have been found to have enhanced tumourigenic properties with the potential to self-

renew and re-capitulate tumour heterogeneity (Ginestier et al., 2007). In this study ALDH 

was found to be heterogeneously expressed in OS cell lines (0.9 % – 61 %).  The HOS cell 

line had 61 % of cells expressing ALDH and would therefore be predicted to have a high 

number of putative CSC and the greatest tumourigenic capabilities compared to other OS 

cell lines.  

 

Although OS cells are notoriously difficult to grow via xenotransplantation and often fail to 

form tumours (Jia et al., 1999), HOS has been identified as non-tumourigenic in a mouse 

model, whereas 143B and MNNG-HOS were tumourigenic (Luu et al., 2005). This 

contradicts the predicted tumourigenicity of HOS based on ALDH expression, therefore, 

ALDH expression may not represent a CSC marker in OS. In breast cancer cell lines selecting 

ALDH expressing cells does not universally select for cells with enhanced clonogenicity 

(Hwang-Verslues et al., 2009). In melanoma ALDH positive and negative cells had an equal 

ability to form spherical colonies and xenograftable tumours. Interestingly ALDH negative 

cells could only self-renew, whilst ALDH positive cells could differentiate in to ALDH 

negative and recapitulate the original ALDH expression profile (Prasmickaite et al., 2010). 

Although the ability of a CSC to recapitulate the original tumour heterogeneity is a 

fundamental CSC property (1.2.1), melanoma mouse models now suggest that most 

tumourigenic CSC populations are only able to self-renew (Held et al., 2010).  

 

The tyrosine kinase receptor CD117, has previously been found to be an OS CSC marker 

(Adhikari et al., 2010) and associated with a poor chemotherapy response (Miiji et al., 2011). 

Analysis of CD117 in the OS cell lines demonstrated that it was heterogeneously expressed. 

The majority of cell lines (G292, MNNG-HOS, U2OS and SaOS-2), all contained populations 

below 0.02 % and, due to the extremely small size of these populations it is possible that 

they are in fact just an artefact of cellular background fluorescence or non-specific antibody 
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binding. U2OS was found to have one of the smallest CD117 populations of 0.008 %, which 

is smaller than the 0.6 % observed by Tang et al., (2011). Their study used a different CD117 

detection method and co-stained with the mesenchymal marker STRO-1, which could 

account for the discrepancy between findings. MG63 was the only OS cell line with no 

CD117 expression. In contrast to MG63, 143B contained a significantly larger population of 

CD117 cells than all other cell lines. HOS contained the second largest CD117 population, 

interestingly 143B is derived from the HOS cell line via Ki–ras+ transformation  (Hensler et 

al., 1994), which has thus resulted in the up-regulation of CD117.  

 
Carcinomas with increased expression of the adhesion protein CD44 have been shown to 

comprise CSC with enhanced clonogenicity (Harper et al., 2010). OS formation occurs in a 

genetically manipulated mouse model (APC+/min and P53+/tm1), in which the tumour 

suppressors APC and P53 are mutated.  Knockout of CD44 in this mouse model did not 

affect tumour formation but did reduce OS metastasis when tested in a small sample of 

mice (24 mice) (Weber et al., 2002). The reliance of cancer upon CD44 for migration is 

supported by the finding that a bi-specific anti-CD44 antibody reduced tumour growth and 

metastasis of the B cell lymphoma cell line 38C-13 in NOD/SCID mice  (Avin et al., 2004). 

Due to the importance of CD44 for non-malignant cellular functions (Camp et al., 1993), bi-

specific CD44 antibodies which also target tumour specific tumour antigens are important 

to circumvent any impact upon healthy cells. In this study the expression of CD44 across all 

OS cell lines was high with CD44 expressing cells ranging from 69 % (U2OS) to 99 % (SaO-

S). The high levels of CD44 indicate that the OS cell lines tested would have a propensity to 

migrate and metastasise, additionally, MSC also highly express CD44 (Lee et al., 2004), 

therefore, the similar expression level of OS and MSC could indicate that OS arises from an 

MSC progenitor. The high expression of CD44 in cell lines is consistent with the findings in 

the literature, in which a high proportion of U2OS, MG63 and SaOS-2 cells were found to 

express CD44 when analysed using flow cytometry (Gillette et al., 2004, Tirino and 

Desiderio, 2008). In contrast MCF7 had a significantly lower expression of CD44 (4.9 %), this 

small population may include an MCF7 population with enhanced tumourigenic properties. 

MCF7 CD44 expressing cells have been shown to have an increased tumourigenicity and 

migrative capabilities (Yan et al., 2013), in addition, oncogene transformed human 

mammary epithelial cells and the breast cancer cell line MCF10A, contain a population of 
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cells with a mesenchymal phenotype and express CD44+ (Morel et al., 2008). Therefore, the 

expression of CD44 in breast cancer, may be associated with the acquisition of a 

mesenchymal phenotype as malignant cells undergo EMT and acquire the ability to 

metastasise.  

 
In addition to CD44, cells were simultaneously stained for the cell to cell adhesion protein 

e-cadherin (e-cad). E-cad has been used as a marker to identify cells with an epithelial 

phenotype and decreased expression has been linked to increased cancer aggressiveness 

(Siitonen et al., 1996). In all OS cell lines expression of e-cad was low or in the case of U2OS 

absent. In contrast the breast cancer cell line contained a large population of e-cad 

expressing cells (66.9 %). E-cad is expressed by epithelial cells (Damsky et al., 1983) and 

loss of this protein is associated with the acquisition of a mesenchymal phenotype (von 

Schlippe et al., 2000) (Section 1.2.5). Therefore, e-cad expression in MCF7 confirms the 

epithelial phenotype of this cell line and conversely its absence in OS cell lines is further 

evidence of their mesenchymal phenotype. Cell lines were also analysed for the 

mesenchymal marker vimentin (vim), all OS cell lines highly expressed the protein with over 

90% of the population expressing this marker. This is consistent with a study staining SaOS-

2 which found that this cell line highly express vim (Veselska et al., 2008). Interestingly OS 

cell lines with an epithelial morphology (Cal72 and SaOS-2) all highly expressed vim with 

SaOS-2 containing a larger population than the fibroblastic cell lines (G292 and MG63). 

Therefore OS cells with an epithelial morphology may have elevated expression of 

mesenchymal markers compared to the fibroblastic cells types. Vim is a marker associated 

with mesenchymal stem cells (Potapova et al., 2004), the high expression of vim in the OS 

cells lines is further suggestive evidence that they originate from a mesenchymal stem cell 

(MSC) progenitor. MSC have been identified as the cellular origin of alternative sarcomas 

such as Ewings’s sarcoma (Riggi et al., 2005). Due to the potential of OS tumours to 

demonstrate multi-lineage differentiation (adipocyte, chondrocyte and osteoblast) (Klein 

and Siegal, 2006) the cellular origin of OS has been hypothesised as MSC (Tang et al., 2008), 

however no conclusive evidence is currently available.  Human MSC have been found to 

initiate in vivo OS like tumours when genetically transformed with telomerase, simian virus 

40 large T antigen and H-Ras. Although these tumours replicated the complex genomic 

rearrangements of OS they were devoid of bone matrix and failed to invade cortical bone, 
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which was possibly due to the genetic alterations used to manipulate the MSC (Li et al., 

2009). Published data has found MCF7 cells to be negative for vim expression (Uchino et 

al., 2010), in this study MCF7 cells were found to contain a small population of vim 

expressing cells (0.15 %). This may represent a true population of vim positive cells, 

however the low expression level could also be attributed to non-specific antibody binding 

or due to Uchino et al (2010) using microscopy to analyse immunofluorescence.  

 
To analyse the epithelial or mesenchymal characteristics of the CD44 populations, each cell 

line was co-stained for CD44 along with either e-cad or vim. Using this technique four 

different populations were identified. Using e-cad as an example, the populations included 

cells positive for both markers (CD44+/e-cad+), a population positive for CD44 only (CD44+ 

/e-cad-), cells expressing e-cad only (CD44-/e-cad+) and negative for both markers (CD44-

/e-cad-). The phenotype CD44-/e-cad+ were rare in OS and observed in only Cal72, HOS and 

MNNG-HOS. This result was in contrast to MCF7 which contained 31 % of cells expressing 

e-cad (CD44-/e-cad+) and the largest population (3.8 %) of CD44+/e-cad+ expressing cells. 

This is consistent with published data, where a large proportion (40 %) of MCF7 cells have 

been found to express e-cad (Vermeulen et al., 1995). Interestingly OS cells expressing e-

cad were found mainly in the CD44 population, apart from G292 these CD44+/e-cad+ 

expressing cells were rare comprising only 0.1 % – 0.5 % of cells. This phenotype could 

represent a more proliferative and less migratory CSC population than CD44+/e-cad- cells. 

Work carried out in squamous cell carcinoma found that there were in fact two separate 

CSC phenotypes present. One is migratory and associated with CD44 expression and 

reduced epithelial marker expression, the other is highly proliferative and associated with 

expression of CD44 and epithelial markers such as e-cad (Biddle et al., 2011). However, 

further tests will be required to confirm this in the migratory and proliferative properties 

of CD44+/e-cad+ and CD44+/e-cad- cells. 

 

The majority of OS CD44 cells also expressed vim (CD44+/vim+), OS cell lines contained a 

CD44+/vim+ population between 91 – 99 %. Vim has been found to be up-regulated in 

primary OS compared to benign bone tumours (Li et al., 2010) and in breast cancer 

enhanced vim expression  was found to correlate with enhanced occurrence of metastasis 

(Domagala et al., 1994). In addition sarcomas lacking CD44 are unable to metastasise 
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(Weber et al., 2002), therefore this population of CD44+/vim+ could be hypothesised to 

have enhanced migratory capabilities to all other CD44/vim phenotypes.     

 

The presence of the colony hierarchies within cell lines is further putative evidence of the 

presence of CSC. Holoclones have been found to contain CSC (Li et al., 2008) and were 

identified within all the cell lines along with meroclones which comprise an amplifying 

population of cells and the terminally differentiated paraclones. The OS holoclones 

displayed the classic densely packed arrangement of cells and excluding MG63 and Cal72 

all holoclones were circular or oval in shape. Cal72 displayed more of an angular holoclone 

which was more rectangular in shape, whilst MG63 did display rectangular holoclones it 

also contained a unique holoclonal shape which contained pointed projections, making it 

form a star like shape. This unique MG63 holoclone still fulfilled all the holoclone criteria; 

tightly packed cells of a uniform size with a smooth layer of cells surrounding the colony 

(Locke et al., 2005). The paraclones formed by the OS cell lines were often composed of 

cells which were often highly dispersed and each cell would often independently migrate. 

This was especially true of the fibroblastic (MG63 and G292) and mixed (143B and HOS) OS 

cells lines, and suggests that these cell lines may be more prone to migration due to the 

ability of these cells to rapidly detach from one another and travel large distances apart. It 

has been shown that 143B which has a mixed morphology is able to migrate 2.7 times faster 

than the epithelial SaOS-2 (Rainusso et al., 2011), suggesting that OS cell lines containing 

fibroblastic cells may have enhanced migratory abilities.  In vitro the OS cell lines are 

categorised in to either epithelial, fibroblastic or a mixture of both cell types, however, 

whether this morphology has any clinical relevance is unclear. Epithelioid osteosarcomas 

do occur and are characterised by poorly differentiated cancers, which demonstrate 

characteristics of carcinomas such as gland formation (Klein and Siegal, 2006), however, it 

has not been specified whether cell lines with a epithelial morphology were initiated from 

epithelioid OS tumours (Rochet et al., 1999). In carcinoma the acquisition of a fibroblastic 

morphology is indicative of a cancer cell undergoing EMT (Mani et al., 2008), an opposing 

process may occur in OS in which cells acquire an epithelial phenotype.  In a case study of 

one epithelial OS tumour, OS cells were found to acquire an epithelial phenotype, which 

was attributed to tumour progression and increased intra-tumour heterogeneity (Kramer 

et al., 1993).  
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The presence of cells expressing the putative CSC markers (ALDH, CD117 and CD44) in the 

colony hierarchies were identified using confocal microscopy when cells were grown at low 

density. OS cell lines, which according to flow cytometry express high levels of ALDH (≥ 

10 %), were found to contain ALDH expressing cells not only in the holoclones. This 

contradicts the hypothesis that ALDH and holocolones represent the CSC populations. In 

G292, HOS and 143B the ALDH expressing cells were present in all the colony hierarchies. 

These highly expressing ALDH cell lines often contained clusters of cells all positioned 

adjacent to one another with high ALDH expression. Wang et al., (2011) found that the 

morphologically uncharacterised OS cell line OS99-1 contained a large population of ALDH 

expressing cells (45 %) and was able to form xenograftable tumours. However, the 

presence of ALDH positive cells in all hierarchies suggests either that ALDH or the colony 

hierarchies are not CSC identification methods in these highly expressing OS cell lines. 

Alternatively it is possible that ALDH expression is a dynamic state with cells switching 

between two phenotypes. Although a rare event, melanoma ALDH- cells taken from 

primary tumours, have been found to differentiate in to ALDH+ cells when transplanted in 

to NOD/SCID mice (Prasmickaite et al., 2010).  

 

In 143B, G292, MG63 and SaOS-2 holoclones were present which lacked the presence of 

any ALDH positive cells. These holoclones could represent the evolution of a holoclone to 

a meroclone, whereby cells go through a phase of transient amplification. Whether OS 

ALDH expressing cells initiate holoclone formation is unknown, the prostate cancer cell line 

PC3 is able to produce holoclones and the colony hierarchy replicates that observed by 

Locke et al (2005). However, PC3 cells either ALDH+ or ALDH- can give rise to holoclones and 

ALDH expression could be switched on and off. Interestingly paraclones were found to 

contain the largest proportion of ALDH expressing cells with holoclones containing 

predominantly ALDH low expressing cells. It was hypothesised that although ALDH 

expressing cells have enhanced clonogenicity, ALDH expression may be transiently 

switched on and off accounting for ALDH- cells giving rise to ALDH+ cells. In addition the 

high expression in paraclones may be unrelated to self-renewal, suggesting that based on 

proliferation two populations of ALDH expressing cells may be present (Doherty et al., 

2011). The lack of ALDH expression in holoclones within all OS cell lines indicates that a 
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similar pattern of transient ALDH expression may also be occurring, therefore further 

research is required to investigate the ability of OS ALDH- cells to form holoclones. 

 

Analysis of CD117 expression within the colony hierarchies at low density proved 

challenging, even 143B with the largest CD117 positive population (according to flow 

cytometry) contained very few CD117 expressing cells. When CD117 positive cells were 

identified the expression level was very low and it was restricted to cells from very small 

holoclones and small patches within large meroclones. A contrasting expression profile was 

observed when 143B was grown to a higher confluency (80 %), at these higher cell densities 

CD117 expression was increased and could be identified throughout a colony but localised 

to small sites upon each cell membrane. This increase in CD117 expression suggests that 

cell density may play a role in protein expression. It has been found that high grade primary 

OS tumours which express CD117 have staining within a large number of cells throughout 

the tumour samples. In clinical samples of 20 OS tumours that were tested for CD117, 

expression ranged from 5 % – 90 % (Sulzbacher et al., 2007), which is much greater than 

the 0.075 – 6.36 % observed in OS cell lines when tested at 70 – 90 % confluency. Therefore, 

in vitro cell culture conditions may lead to a down-regulation of CD117, whereas the 

tumour environment may provide appropriate signals to enhance CD117 expression. The 

lack of this environment when growing cells in vitro could explain the rarity of these cells 

observed during confocal microscopy analysis. In order to identify if tumour environment 

does affect CD117 expression, the assessment of CD117 expression from tumours formed 

from OS cell lines in vivo would be an important experiment. 

 

Colony hierarchies were also co-stained for CD44 and e-cad, these CD44+/e-cad+ cells 

proved to be rare and were only identified in G292 colonies. According to flow cytometry 

analysis G292 contains the largest CD44+/e-cad+ population, however, the lack of these cells 

in other OS cell lines suggests their presence may be affected by either the low cell density 

required for identification of the colony hierarchies or the fixation required for antibody 

staining. For cell fixation an optimum concentration for paraformaldehyde is 

recommended at 0.5 – 1 % (Van Ewijk et al., 1980). Although 4 % paraformaldehyde has 

been reported as a cell fixative of breast cancer and OS cell lines with no adverse effect on 

protein structure (Chambon et al., 2003, Fawdar, 2010). It is possible that the 4 % used 
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within this study is damaging the CD44 and e-cad proteins which is attributing to the lack 

of cells positive for these markers.  

 

OS holoclones have been identified as highly proliferative whereas paraclones will divide 

several times before undergoing cell death (Fawdar, 2010). G292, CD44+/e-cad+ cells were 

found within large merclones and paraclonal colonies, suggesting it does not represent a 

CSC marker. The level of e-cad expression from both of these cell types was very low and 

contained one positive cell within each colony hierarchy. MCF7 cells produced 

heterogenous staining for CD44 and e-cad. MCF7 cells CD44+/e-cad+ positive were found 

within holoclonal colonies, whilst CD44+/e-cad- cells were associated with paraclonal 

colonies. Cells expressing high levels of CD44 (CD44high) and low levels of CD24 (CD24low) 

have been identified as breast CSC (Al-Hajj et al., 2003). Further characterisation of these 

breast cancer CD44high/CD24low cells found they expressed low levels of e-cad and had 

undergone EMT (Mani et al., 2008). The presence of CD44+/e-cad- cells within paraclones is 

putative evidence that breast CSC which have undergone EMT have a paraclonal 

morphology. This finding contradicts the colonal hierarchy, however it is plausible if EMT 

CSC do exist in vitro they must acquire an ability to migrate. A migrating CSC must be detach 

itself from a colony which is indicative of a paraclone morphology.          

 

Neuronal cells with the ability to form spherical colonies in low attachment serum starved 

conditions have been identified as multipotent stem cells (Reynolds et al., 1992). In general 

the appearance of OS sarcospheres is not a classic spherical colony as was produced in 

MCF7. Mammospheres are frequently spherical in shape with a smooth appearance, in 

contrast sarcospheres were irregular in shape and individual cells could be clearly defined. 

Primary sarcospheres were present in all cell lines, whereas secondary sarcospheres could 

not be grown in Cal72, HOS or U2OS. It has been found that mammospheres can be 

passaged only 5 times before growth was inhibited. This inhibition was attributed due to 

an increase in cell senescence (Dey et al., 2009). All OS cell lines had smaller sized secondary 

sarcospheres compared to primary sarcospheres, therefore, a senescence mechanism 

could also be occurring in OS cell lines but at a significantly quicker rate in Cal72, HOS and 

U2OS. 143B and MNNG-HOS both had a significantly greater sarcosphere forming efficiency 

and size than all other cell lines, which has been replicated in published data (Rainusso et 
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al., 2011). Rainusso et al 2011, found that 143B and MNNG-HOS produced significantly 

larger sarcospheres than MG63, SaOS-2 and U2OS. 143B and MNNG-HOS are both derived 

from the HOS cell line and have been transformed using N-methyl-N’-nitro-N-

nitrosoguanidine (MNNG-HOS) and Ki-ras for 143B. These transformed cell lines were 

found to be highly tumourigenic and metastatic when grown within a mouse model, in 

contrast HOS was unable to form tumours (Luu et al., 2005). The ability of 143B and MNNG-

HOS increased tumourigenicity and sarcosphere forming ability suggests that these cell 

lines harbour a larger population of CSC.  

 

To identify whether CSC marker expression correlated with sarcosphere forming ability 

Pearson’s correlation coefficient analysis was used. This analysis produced the strongest 

positive correlation (0.67) when correlating CD44+/e-cad+ expression with primary 

sarcosphere size. However, cells CD44+/e-cad+ correlated poorly with secondary 

sarcosphere size (-0.08), in which CD117 expression had the strongest correlation (0.58). 

CD117 has been demonstrated to be an OS CSC marker (Adhikari et al., 2010), therefore OS 

CD117 expressing cells may have enhanced sarcosphere forming abilities. Although the lack 

of a statistically significant correlation between these two factors makes this conclusion 

questionable.  

 

Sarcospheres were stained for the presence of cells expressing CD44, ALDH and CD117 

using confocal microscopy. All sarcospheres tested expressed CD44 on the membrane of 

all cells so was used to define cell membranes. ALDH positive cells were present within all 

sarcospheres tested, the number of cells expressing ALDH was found to increase as colonies 

grew larger. ALDH expressing  MG63 cells are able to survive anoikis and  have a higher 

sarcosphere forming ability than ALDH negative cells (Honoki et al., 2010), therefore, a CSC 

which is able to generate more ALDH expressing cells will be able to grow in to a larger 

sarcosphere. In the largest sarcosphere observed highly expressing ALDH cells were found 

to cluster in groups, CSC have been found to reside within a tumour niche which provides 

appropriate signals to maintain a stem cell phenotype (Iwasaki and Suda, 2009). It could be 

possible that as a sarcosphere grows larger the ALDH expressing cells cluster together and 

form a niche in order to maintain their ALDH positive phenotype.  

 



Chapter 3. Results  

125 
 

As was observed with OS cells grown as a monolayer, CD117 cells in sarcospheres were 

very rare and not present within the majority of sarcospheres. CD117 has been identified 

as an OS CSC marker (Adhikari et al., 2010) and OS CSC have an enhanced ability to form 

sarcospheres (Rainusso et al., 2011). Therefore, the lack of CD117 expressing cells within 

the sarcospheres suggests that it may not be expressed by OS CSC within the panel of cell 

lines tested. CD117 has been found to be expressed in 20 % of OS cancers and over 

expression of CD117 has no impact on prognosis (Sulzbacher et al., 2007). This finding 

suggests that the use of CD117 as a CSC marker may be restricted to a small subset of OS 

tumours which are not included in the cell lines analysed within this study.   

 

In order to further characterise OS cell lines for the presence of putative CSC, each cell line 

has been screened for the ability to form the colony hierarchies, expression of putative CSC 

markers, epithelial and mesenchymal markers and the ability to form sarcospheres in low 

attachment conditions. This study has demonstrated that the colony hierarchies identified 

by Locke et al (2005) are also replicated in all the OS cell lines tested, in contrast putative 

OS CSC markers (ALDH and CD117) are heterogeneously expressed across the cell lines. The 

expression of these markers did not correlate with an enhanced ability to form 

sarcospheres, suggesting that cells expressing these proteins are not CSC. This finding is 

supported by cells highly expressing ALDH (> 10 % subpopulation), containing ALDH 

positive cells within paraclones and meroclones. In addition holoclones were identified 

which lacked ALDH expressing cells, indicating that ALDH expression may be transient and 

could potentially be switched on and off as has been observed in the prostate cancer cell 

line PC3 (Doherty et al., 2011). Clinical OS tumours have a higher level of CD117 expression 

when compared to the cell lines tested in this study, an increase in CD117 expression was 

observed when increasing cell density in vitro therefore the tumour microenvironment may 

increase CD117 expression. The carcinoma CSC marker CD44 was highly expressed in all OS 

cell lines in addition to the mesenchymal marker vimentin, both markers are also highly 

expressed in mesenchymal stem cells, highlighting the mesenchymal phenotype of OS cells 

in vitro. Furthermore a population of CD44+/e-cad- cells were identified which produced a 

positive correlation with primary sarcosphere forming ability. This suggests that this 

population may be enriched in CSC, however, further evidence is required to confirm the 

tumourigenicity of these cells.
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4.1 Introduction  

In the last 30 years improvements have been made in the treatment and management of 

OS tumours. Despite the toxic nature of chemotherapeutics they form the core 

therapeutics of any OS treatment strategy. A standard treatment program utilises the DNA 

intercalating agents cisplatin and doxorubicin  with either the dihydrofolate reductase 

antagonist methotrexate, alkylating agent ifosfamide or the topoisomerase inhibitor 

etoposide (Anninga et al., 2011) (Section 1.3). In addition to chemotherapy, surgery also 

provides an invaluable tool for improving relapse free survival. It has been reported that 36 

% of patients who had surgical removal of metatstatic OS tumours were relapse free after 

3 years, compared to 0 % of patients who did not have surgery (Ferrari et al., 2003). The 

poor survival rate of metastatic OS is often due to the chemo-resistant nature of secondary 

tumours (Yen, 2009), which is highlighted by prognoses being largely based upon pre-

operative response to chemotherapy (Bielack et al., 2002).  

The platinum based chemotherapeutics which include cisplatin (cis), were discovered by 

accident 40 years ago when platinum electrodes were being used to subject cells to 

electromagnetic radiation (Rosenberg et al., 1965). The products identified were used to 

treat sarcoma growth within mice, which resulted in marked tumour regression (Rosenberg 

and Vancamp, 1969). The mechanism by which OS resists the toxic effect of 

chemotherapeutics varies depending upon the mode of action.   Platinum based 

chemotherapeutics cause cell apoptosis upon intracellular activation, they covalently bind 

to purine DNA bases forming DNA adducts resulting in the activation of a number of signal 

transduction pathways including DNA repair, cell cycle arrest and apoptosis (Kelland, 2007). 

Some cancers are intrinsically resistant to cis (Perego et al., 1999) due to a number of 

different mechanisms including reduced membrane permeability (Santini et al., 2001), 

mutated P53 (Martelli et al., 2007) and loss of DNA mismatch repair proteins (Perego et al., 

1999) (Section 1.3.2).  

The dihydrofolate reductase (DHFR) inhibitor methotrexate (MTX) was one of the earliest 

chemotherapeutic agents to be identified as a result of work carried out by Sidney Farber, 

who initially trialed folic acid as a possible leukaemic treatment. This led to an acceleration 

of disease progression and the first realisation that a folic acid antagonist may be of use, 
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the subsequent use of MTX led to temporary leukaemia remission (Farber et al., 1948). 

Resistance to MTX can occur via different mechanisms, which include acquisition of 

enhanced DHFR expression or decreased expression of folate acid receptors, which reduces 

the ability of MTX to enter the cell (Guo et al., 1999)  (Section 1.3.4).  

Doxorubicin (dox) represents the anthracycline class of chemotherapeutics which is 

commonly used to treat OS (Singal and Iliskovic, 1998). Anthracyclines have the widest 

spectrum of activity against human cancers, only a few tumour types are unresponsive 

(Weiss, 1992). Dox intercalates with the DNA, however the mechanism by which it evokes 

cell death is debatable. Resistance to dox has been observed in cells with the loss of the 

cell cycle regulator P53 or enhanced expression of the protein Bcl2 which forms Bcl2-Bax 

homodimers. This stabilisation of Bax increased apoptosis through Bax induced 

cytochrome  c release in to the cytoplasm (Zhao et al., 2009) (Section 1.3.1).  

In breast cancer CSC pose a specific therapeutic challenge based on their enhanced 

resistance to chemotherapy allowing tumours to re-grow even when the majority of 

differentiated cells are removed (Gong et al., 2010) (Section 1.3.4). Putative CSC within OS 

cell lines have been found to have an enhanced cisplatin and doxorubicin resistance 

(Honoki et al., 2010). These cells had elevated expression of ALDH, which was suggested as 

a mechanism for the observed resistance due to  due to the detoxification capabilities of 

ALDH  (Honoki et al., 2010). OS cells expressing the CSC marker CD117 have also been found 

to have enhanced doxorubicin resistance due to drug efflux through enhanced expression 

of ATP binding cassette transporters  (Adhikari et al., 2010). The elevated resistance of OS 

CSC to chemotherapeutics therefore represents a possible mechanism of enriching a CSC 

population. In breast cancer this has been found to occur during patient chemotherapy 

programs, in which CSC are enriched within tumours post chemotherapy treatment 

(Creighton et al., 2009). In vitro data now suggests that OS putative CSC can also be 

enriched using MTX in the U2OS cell line  (Tang et al., 2011). This approach provides a 

method for isolating CSC without having to sort cells based on the expression of specific 

markers thus enabling the phenotype of drug resistant cells to be characterised within a 

heterogenous population of cells. 
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Aims 

To test the sensitivity of a range of OS cell lines to three chemotherapeutics (cisplatin, 

doxorubicin and methotrexate). Based on the median lethal doses (LD50) of each cell line, 

a short exposure to the chemotherapeutic will be used to enrich a drug resistant population 

of cells. The expression of CSC markers, clonogenicity and stem cell properties will be tested 

in the drug treated populations.  The contribution of ALDH to chemo-resistance in the OS 

cell lines will be assessed using the ALDH inhibitor diethylaminobenzaldehyde (DEAB). The 

specific objectives which will be tested on a panel of OS cell lines and MCF7 are as follows: 

 

 Establish the LD50 for cisplatin, doxorubicin and methotrexate. 

 Select a population of drug treated cells using methotrexate, cisplatin and 

doxorubicin at sub-lethal doses. 

 Analyse the expression of OS CSC markers (ALDH and CD117) in drug treated cells.  

 Test the growth rates of methotrexate treated cells. 

 Test the sarcosphere forming efficiency of MG63 methotrexate treated cells. 

 Establish the LD50 of the ALDH inhibitor diethylaminobenzaldehyde  (DEAB)  

 Analyse if DEAB exposure enhances chemotherapeutic sensitivity of selected cell 

lines in response to methotrexate, cisplatin and doxorubicin. 
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4.2 Chemotherapy sensitivity of OS cell lines and MCF7 

Commonly used OS treatment regimes incorporate the chemotherapeutics cis, dox and 

MTX (Anninga et al., 2011) (Section 1.3). To analyse the sensitivity to these 

chemotherapeutic agents, cell lines were grown in increasing concentrations of the drugs 

and cell viability assessed using an MTT assay (Section 2.3.1). Cis and dox were exposed to 

cells for two days, MTX which took longer for cell death to be observed was exposed for 

five days. In order to establish the median lethal dose (LD50) for a chemotherapeutic agent, 

linear regression analysis of each dose response curve was used to identify the drug 

concentration which killed 50 % of cells (Table 4.1).  All cell lines exhibited varying 

sensitivities to the chemotherapeutic agents (Figure 4.1. A, B, C, D, E and F), in response to 

cisplatin (Figure 4.1B). U2OS demonstrated the greatest resistance to cis with the highest 

LD50 of 18 µM and 143B the lowest (0.38 µM) (Figure 4.1B). Cell lines with the greatest LD50 

to doxorubicin (Figure 4.1 C and D) did not correlate with the highest LD50 for cisplatin.  For 

example MG63 had the largest dox LD50 of 0.76 µM and SaOS-2 with the lowest of 0.15 µM 

(Figure 4.1D). Interestingly SaOS-2 had an opposing resistance to MTX with the largest LD50 

(0.09 µM) and HOS the lowest (0.02 µM) (Figure 4.1 E and F).  
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(A) Cal72 – MCF7 

 

(B) MG63 – 143B 

 

Figure 4.1: Continued overleaf 
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(C) Cal72 – MCF7 

 

 

(D) MG63 – 143B 

 

 

Figure 4.1: Continued overleaf 
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(E) Cal72 – MCF7 

 

(F) MG63 – 143B 

Figure 4.1: Dose response curves for Cisplatin (A and B) and Doxorubicin (C and D) and 
methotrexate (D and E) dose response curves for OS cell lines and MCF7. Concentration 
range of 0 -50 µM was used for cisplatin, 0 - 3 µM for doxorubicin and methotrexate 0 - 3 
µM. Cisplatin and doxorubicin were incubated with cells for 48 hours and methotrexate for 
5 days. Each experiment was repeated in triplicate in 3 separate experiments (n=3 
independent replicates), results are presented as mean and standard error. 
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Table 4.1: Comparison of cisplatin, doxorubicin and methotrexate median lethal doses 
(LD50) in OS cell lines and MCF7. Statistical significance calculated by comparing to MCF7, 
*p = <0.05, **p = <0.01 (Tukey’s post hoc analysis). LD50 presented as average 
concentration and standard error (Std error) 
 

Cell line Cisplatin LD50 (µM) 
± Std error 

Doxorubicin LD50 
(µM) 

± Std error 

Methotrexate LD50 
(µM) 

± Std error 

143B 3.8 ± 0.73 ** 0.47 ± 0.06 0.05 ± 0.004 

Cal72 8.6 ± 0.37 * 0.36 ± 0.09 0.06 ± 0.004 * 

G292 13.0 ± 1.80  0.65 ± 0.15 0.08 ± 0.004 ** 

HOS 10.1 ± 1.05 *  0.34 ± 0.01 0.02 ± 0.001 

MG63 15.0 ± 1.89 0.76 ± 0.42 0.08 ± 0.006 ** 

OS99-1 10.5 ± 0.67 0.59 ± 0.04 N/A 

U2OS 18.0 ± 1.53 0.46 ± 0.02 0.03 ± 0.003 

SaOS-2 14.0 ± 3.61 0.15 ± 0.11 0.09 ± 0.007 ** 

MCF7 16.5 ± 2.20 0.57 ± 0.18 0.03± 0.001 
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4.3 Clonogenicity assessment of cisplatin and doxorubicin treated cells in selected OS cell 

lines and MCF7  

To identify if cis and dox exposure enriches for a CSC population with enhanced clonogenic 

properties. The following cell lines, U2OS, MG63, MCF7 and HOS were chosen because each 

OS cell line represents one of the different OS morphologies (U2OS is epithelial, MG63 is 

fibroblastic and HOS is mixed). MCF7 was included for comparison to a commonly used 

epithelial carcinoma cell line. Each cell line was exposed to a concentration equivalent to 

their LD50 (Table 4.1), after exposure to these drugs for 2 days cells were seeded at a low 

density (2.4 – 3.8 cells/cm2) and grown for up to 12 days. No colonies were present, 

suggesting that the exposure to these drugs at an LD50 concentration caused all the cells to 

undergo cell death. The LD50 concentration of cis and dox was halved to equal the LD25 

concentration, again cells were exposed for two days and seeded at a clonal density but no 

colonies formed. After being exposed for 48 hours to cis and dox LD25 the appearance of 

each cell line was consistent with the cell morphology prior to drug addition.  Except for 

MCF7 each OS cell line had undergone some growth in the presence of cis and dox, which 

was apparent with the increased cell density after 48 hours (Figure 4.2).  

To establish if cell communication is important for cell line recovery post drug treatment, 

U2OS and MG63 cells were seeded cells at a higher density (1 in 4 passage) post 48 hour 

drug treatment. Interestingly both cell lines when re-seeded at high density the drug 

treated cells had a fibroblastic appearance (Table 4.3 and table 4.4). In the case of U2OS 

(Figure 4.3) and MG63 (Table 4.4), after cis exposure these cells would undergo some 

growth but growing colonies were characterised with dendrite-like structures connecting 

cells to one another. These colonies stopped growing after 9 days. U2OS (Figure 4.3) and 

MG63 cells (Figure 4.4), did not form any colonies after dox exposure. Surviving cells were 

very large in size and had a fibroblastic morphology, often with long dendrite-like structures 

extending from the cells but would not form colonies.  
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Cell line 

  

Prior to drug addition 48 hrs Cis LD25  

exposure 

(10 – 18 µM) 

48 hrs dox  LD25 

exposure 

(0.34 – 0.76 µM) 

 

HOS 

   

 

MG63 

   

 

U2OS 

   

 

MCF7 

   

 

Figure 4.2: Appearance of OS cell lines and MCF7 after 48 hours of cisplatin or doxorubicin 
LD25 exposure. Representative of 4 images, scale bars represent 100 µm. 
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Chemotherapeutic 3 days recovery 6 days recovery 

 

Cisplatin 

  

 

Doxorubicin 

  

 

Figure 4.3: U2OS cells exposed to LD25 of either cisplatin or doxorubicin. Cells exposed to 
drugs for 48 hours then passaged and re-seeded at high density (1 in 4) and allowed to 
recover in the absence of drug. Representative of 4 images, scale bar represents 100 µm. 

 

 

Chemotherapeutic 3 days recovery 6 days recovery 

 

Cisplatin 

  

 

Doxorubicin 

 
 

 

Figure 4.4: MG63 cells exposed to LD25 of either cisplatin or doxorubicin. Cells exposed 
to drugs for 48 hours then passaged and re-seeded at high density (1 in 4) and allowed to 
recover in the absence of drug. Representative of 4 images, scale bar represents 100 µm. 
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4.4 Analysis of putative CSC marker expression in cisplatin and doxorubicin treated cells 

in selected OS cell lines and MCF7 

To identify if 48 hour exposure of cis and dox led to enhanced expression of cancer stem 

cell markers (ALDH, CD117 and CD44). Cells were exposed for 48 hour to LD25 drug 

concentration, after which cells were labelled with CSC marker antibodies (CD117 or CD44) 

or substrates (ALDH) and analysed using flow cytometry (Section 2.8).  

 

Both cis and dox possessed auto-fluorescence which interfered with the phycoerythrin (PE) 

channel of the flow cytometer, this made the analysis of these markers utilising PE 

fluorescence inaccurate. Uptake of both cis and dox by all cell lines tested resulted in an 

increase in the PE fluorescence of the cells. In order to set a baseline PE fluorescence which 

can be used to identify the increase in PE fluorescence, an unstained population was 

compared to a stained population to identify an increase (Section 3.2). However due to the 

increased fluorescence of cis and dox treated cells this led to the baseline  PE fluorescence 

of the unstained cells to be increased (Figure 4.5.B), which is evident when comparing to a 

normal population of non-drug treated cells (Figure 4.5.A). This increased PE background 

fluorescence is important for either PI staining (when distinguishing live from dead cells) or 

identifying CD44 positive cells, hence making analysis of these markers inaccurate. This 

masking effect is evident when comparing CD44 populations observed in untreated cells 

(68.6 %), which was reduced in cis treated (6.4 %) and dox treated cells (2.64 %) (Table 4.2). 
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(A)       (B) 

Figure 4.5: Auto-fluorescence of doxorubicin and cisplatin exposed cells detected by flow 

cytometry analysis in HOS cell line. HOS cells untreated (A) or treated with LD50 

concentration of doxorubicin (B). This experiment was tested in once in for both cis and 

dox exposure. 

 

Table 4.2: Identification of CD44 positive populations of HOS cells when comparing 

untreated cells with cis and dox exposed cells. Untreated cells tested in triplicate, cis and 

dox LD50 treated cells tested once. 

Marker Untreated Cis LD50 

(10.1µM) 
Dox LD50 

(0.34µM) 

CD44 (%) 68.6 ± 6.8 6.4 2.64 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4. Results  

140 
 

4.5 Growth rates of methotrexate exposed cell in selected OS cell lines and MCF7 

The dihydrofolate reductase inhibitor MTX, has been previously used to enrich putative CSC 

in the OS cell lines U2OS and MG63 (Tang et al., 2011). Tang et al (2011) was able to enrich 

putative OS CSC based upon exposure to 100 ng/ml and 300 ng/ml MTX for 5 days with 

surviving cells having increased clonogeneicity and sarcosphere forming ability compared 

to untreated cells. The LD50 of the OS cell lines tested ranged from 20 nM to 80 nM (Table 

4.1), based on the cell MTX sensitivities two concentrations were chosen, 5 nM was 

selected because all cell lines could form colonies after 5 days exposure and also 50 nM to 

identify if an increased MTX concentration would more efficiently enrich drug resistant 

cells. The concentrations utilised by Tang et al (2011) equated to 220 nM (100 ng/ml) and 

660 nM (300 ng/ml), these concentrations were tested but no cells survived after 5 days of 

MTX exposure. 

Images taken of the cells after 5 days of MTX exposure (Figure 4.6) show that at 5 nM MTX 

all cell lines (HOS, MG63, U2OS and MCF7) grew at a similar rate to the untreated cells (0 

nM) and had reached 100 % confluency after 5 days. At 50 nM MTX cell growth was reduced 

in HOS, MCF7 and U2OS which all displayed below 30 % confluency, in contrast MG63 

growth rate was least effected reaching approximately 95 % confluency. Interestingly a 

common feature of cells which had grown in 50 nM MTX was the acquisition of a 

fibroblastic appearance with the presence of dendrite-like structures connecting cells 

together.  

After the cells had been exposed to 5 nM and 50 nM MTX concentrations they were 

passaged and seeded at a clonal density (2.4 – 3.8 cells/cm2). Colonies were allowed to 

form in the absence of MTX for 14 days (media was changed every 3 days), after which 

colonies were stained using crystal violet and size assessed using ImageJ® (Figure 4.7). 

Growing HOS and U2OS in 50 nM MTX resulted in no colony formation, whilst the MG63 

and MCF7 formed colonies in both MTX concentrations. Interestingly no significant change 

in colony size was observed in response to 5 nM and 50 nM MTX, suggesting that the cell 

lines (HOS, MG63, U2OS and MCF) treated with MTX have the same growth rates as the 

untreated cells (Figure 4.7). 
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Cell line 
(phenotype, 
cancer type) 

0 nM 5 nM MTX 50 nM MTX 

HOS 
(mixed, OS) 

 
 
 
 

 

 

 

MG63 
(Fibroblastic , 

OS) 
 
 

  
 

 

U2OS 
(Epithalial, 

OS) 
 
 

 
 

 

MCF7 
(Epithelial, 

Breast 
carcinoma) 

    

 

Figure 4.6: Images of OS cell lines (HOS, MG63 and U2OS) and MCF7 in response to 

methotrexate exposure at 0, 5 and 50 nM. 15625 cells/cm2 were seeded images taken 

after 5 days of MTX exposure. Representative of 4 images, scale bar represents 100 µm. 
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Figure 4.7: Assessment of colony size of HOS, MG63, U2OS and MCF7 exposed to MTX 

concentrations (0, 5 and 50 nM). Cells were seeded at 15625 cells/cm2 and grown in the 

presence of methotrexate for 5 days before seeding at a clonal density (2.4 – 3.8 cells/cm2) 

and growing for a further 14 days (Section 2.3.2). Colony size assessed using ImageJ. Results 

tested in triplicate and data presented as mean and standard deviation. Statistical 

significance assessed using Tukey’s post hoc analysis for 0, 5 and 50 nM treated cells for 

each cell line. No statistical significance observed.  
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4.6 Presence of putative cancer stem cells in methotrexate treated OS and MCF7 cells 

lines 

OS CSC have been found to have an enhanced resistance to chemotherapeutics (Adhikari 

et al., 2010) (Section 1.3), and the colony hierarchies (holoclones, meroclones and 

paraclone) have been shown to contain CSC within the holoclones from a prostate cancer 

cell line (Li et al., 2008). Holoclones are therefore at the base of this cellular hierarchy and 

can give rise to rapidly amplifying meroclones which will eventually terminally differentiate 

and become paraclones (Section 1.2.3). The identification of holoclones, therefore provides 

a method for identifying putative CSC without the requirement for analysis of surface or 

intracellular CSC protein markers. Although in chapter 3 of this thesis, it was shown that OS 

cell lines highly expressing ALDH contain these ALDH+ cells within all three colony 

hierarchies (Section 3.6.1), which could indicate that CSC may reside within all colony 

hierarchies.    

The colony hierarchy frequency present after MTX treatment was assessed by exposing 

cells to MTX for 5 days. Cells were then re-seeded at a clonal density and grown for 14 days 

in the absence of MTX, after which colony hierarchies were assessed (Section 2.3.2). Due 

to the sensitivity of HOS and U2OS to MTX no colonies survived at 50 nM MTX in HOS and 

less than 10 colonies were present in MCF7. HOS was the only cell line to have a statistically 

significant change, which resulted in a reduction in holoclones present in 5 nM MTX 

compared to 0 nM MTX (Figure 4.4). No change in colony hierarchy frequency was observed 

in response to MTX in the cell lines MG63 (Figure 4.8.B), U2OS (Figure 4.8.C) and MCF7 

(Figure 4.8.D). MCF7 50 nM MTX exposed colonies were not included in the analysis due to 

less than 30 colonies being present (Figure 4.8.D). 

 

4.6.1 Cancer stem markers expressed by methotrexate treated cells 

MTX treated cells were also analysed for the expression of CSC markers (ALDH and CD117). 

Cells (15625 cells/cm2) were seeded and allowed to attach for 24 before addition of MTX. 

After short term exposure to MTX (5 days) cells were harvested and stained for the markers 

and analysed by flow cytometry (Section 2.8.6). HOS which contains the largest population 

of ALDH cells (60.6 %) according to flow cytometry (Section 3.2.2), had a significantly 
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greater population of ALDH cells at all MTX concentrations compared to the other cell lines 

tested (Figure 4.9.A). However, HOS was the only cell line which did not have an increase 

in ALDH expression in response to 5 nM MTX, suggesting that the ALDH positive cells in 

HOS are not MTX resistant. In contrast MG63, U2OS and MCF7 had an increase in the 

percentage of ALDH positive cells in response to 50 nM MTX (figure 4.9.B). MG63 was the 

only cell line to have a significant enrichment in ALDH expressing cells at 5 nM MTX, 

suggesting that ALDH positive cells have enhanced MTX resistance compared to cells 

lacking ALDH expression in MG63 and to a lesser extent U2OS and MCF7.    

MTX exposure altered the expression of CD117 in both MG63 and U2OS, in the absence of 

MTX neither cell line expressed CD117, however, in response to MTX both cells were found 

to express the cell surface receptor (Figure 4.10). Exposure to 5 nM MTX resulted in MG63 

cells containing a CD117 population of 0.45 %, whereas U2OS contained 0.05 %. Increasing 

the concentration to 50 nM led to an increase in CD117 expression in U2OS, whilst in MG63 

a decrease of cells expressing CD117 was observed (Figure 4.10). 
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 (A) HOS     (B) MG63 

 

 

` (C) U2OS     (D) MCF7 

  

Figure 4.8: Analysis of the frequency of the colony hierarchies in methotrexate treated 

HOS, MG63, U2OS and MCF7 cells. HOS (A), MG63 (B), U2OS (C) and MCF7 (D) cells were 

seeded at 156 cells/mm2 and grown in the presence of methotrexate (0, 5 or 50 nM)  for 5 

days before seeding at a clonal density (2.4 – 3.8 cells/cm2) and growing for a further 14 

days. Colony hierarchy was assessed by counting the first 30 colonies prior to crystal violet 

staining. No colonies were present in 50 nM MTX of HOS or U2OS cells. Results tested in 

triplicate. Significance calculated using Tukey’s post hoc analysis (p = <0.05), MCF7 50 nM 

treated cells not included because less than 30 colonies were present. 
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Figure 4.9: Presence of ALDH expressing cells in MG63, U2OS ansd MCF7 MTX treated 

cells. A) ALDH expression of HOS, MG63, U2OS and MCF7 after 5 days exposure to MTX (0, 

5 and 50 nM).  HOS had a significantly larger proportion of ALDH cells at all concentrations. 

Tukey’s post hoc analysis *** = <0.0001. B) ALDH expression of MG63, U2OS and MCF7 in 

response to MTX (0, 5 and 50 nM). Significance calculated using Tukey’s post hoc analysis, 

* = <0.05, ** = <0.01 and *** < 0.001 . Analysis compared to 0 nM MTX ALDH populations. 

Samples tested in triplicate. 

 

Figure 4.10: Presence of CD117 expressing cells in MG63, U2OS and MCF7 MTX treated 

cells. CD117 expression of MG63, U2OS and MCF7 after 5 days exposure to MTX (0, 5 and 

50 nM).  Significance calculated using Tukey’s post hoc analysis, * = <0.05. Experiment 

tested in triplicate. 
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4.7 Effect of cell density on ALDH expression in selected OS cell lines and MCF7 

Exposure to 50 nM MTX enriched ALDH expressing cells in the following cells lines; MG63, 

U2OS and MCF7 (figure 4.5.B). To obtain this result cells were seeded at high density (15600 

cells/cm2), allowed to attach for 24 hours before adding the MTX for 5 days and then 

analysing ALDH expression. At MTX concentrations of 0 nM and 5 nM, cells would have 

reached 100 % confluency at the time of ALDH analysis, however, the 50 nM MTX treated 

cells had a reduced growth rate so confluency would be 90 % in MG63 and < 30 % in the 

remaining cell lines (HOS, U2OS and MCF7). Therefore an important experiment is to 

ensure that cell density is not affecting the expression of the CSC markers. To test this 

MG63 and MCF7 cells were seeded at 1310, 5240 and 21000 cells/cm2 so that cells grown 

for 6 days at different densities could be compared for ALDH expression. ALDH was 

monitored after 6 days because this reflected the incubation time utilised in the MTX 

treated ALDH expression experiment (Section 2.8.7).  

 

In both MG63 and MCF7 ALDH expression was found to be significantly lower (p = <0.01) 

in the highest seeding densities (21053 cells/cm2) (figure 4.11A and B), MG63 was found to 

have a reduced expression at 5263 cells cm2 (figure 4.11.A). Therefore at higher cell 

densities the presence of ALDH positive cells is reduced. Suggesting that the increase in 

ALDH expression observed in response to 50 nM MTX may be a result of the MTX 

decreasing growth, which decreases cell density leading to enhanced ALDH expression.  
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 (A) MG63 

 

 (B) MCF7 

 

Figure 4.11: Analysis of effect of cell density upon ALDH expression. A) MG63 or B) MCF7 

cells were seeded at either 1316, 5263 or 21053 cells/cm2, grown for 5 days and the tested 

for ALDH expression. Significance calculated by comparing to 12500 cells using Tukeys post 

hoc analysis, *p<0.05 ** p < 0.01. Results tested in triplicate. Data presented as mean and 

standard deviation. 
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4.8 Correlation of cancer stem cell marker expression with chemotherapeutic resistance 

in osteosarcoma cell lines and MCF7 

OS cells expressing either CD117 or ALDH, have been sorted using flow cytometry and were 

reported to have an enhanced chemotherapeutic resistance (Honoki et al., 2010, Adhikari 

et al., 2010). However, whether the expression of these markers in an unsorted population 

of cells correlates with in vitro chemotherapy resistance is absent within the literature. In 

order to identify if the expression of the CSC markers ALDH and CD117 correlates with an 

enhanced chemotherapeutic resistance, the LD50 from OS cells lines (except OS99-1) and 

MCF7 were compared with the population sizes  expressing the CSC markers identified 

using flow cytometry to see if a correlation existed (section 3.2). Both linear regression and 

Pearsons’s correlation coefficient were used to assess the correlation between the two 

variables.  

Correlating CSC marker expression with LD50 concentrations for all chemotherapeutics 

tested produced a negative correlation (Figures 4.12 – 4.17). Pearson’s correlation 

coefficient analysis confirmed that increased putative CSC marker expression is related to 

increased sensitivity to chemotherapeutic treatment, in particular CD117 expression 

produced a strong negative correlation with cisplatin (-0.70) (Figure 4.11), which was 

supported by producing a statistically significant negative Pearson’s correlation of -0.84 

(Table 4.3). ALDH expression produced weak negative correlations with all drugs tested (cis, 

dox and MTX), however, according to Pearson’s correlation none were statistically 

significant. 
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Figure 4.12: Linear regression analysis of cell line (143B, Cal72, G292, HOS, MG63, U2OS, 

SaOS-2 and MCF7) cisplatin LD50 concentration against ALDH expression. The correlation 

coefficient (R2) is 0.01 and Pearson’s correlation coefficient of -0.31. 

 

 

 

Figure 4.13: Linear regression analysis of cell line (143B, Cal72, G292, HOS, MG63, U2OS, 

SaOS-2 and MCF7) doxorubicin LD50 concentration against ALDH expression. The 

correlation coefficient (R2) is 0.06 and Pearson’s correlation coefficient of -0.24. 
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Figure 4.14: Linear regression analysis of cell line (143B, Cal72, G292, HOS, MG63, U2OS, 

SaOS-2 and MCF7) methotrexate LD50 concentration against ALDH expression. The 

correlation coefficient (R2) is 0.25 Pearson’s correlation coefficient of -0.50. 

 

 

 

Figure 4.15: Linear regression analysis of cell line (143B, Cal72, G292, HOS, MG63, U2OS, 

SaOS-2 and MCF7) cisplatin LD50 concentration against CD117 expression. The correlation 

coefficient (R2) is 0.69 and a spearmanns rank correlation coefficient of -0.84. 
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Figure 4.16: Linear regression analysis of cell line (143B, Cal72, G292, HOS, MG63, U2OS, 

SaOS-2 and MCF7) doxorubicin LD50 concentration against CD117 expression. The 

correlation coefficient (R2) is 0.006 and Peasron’s correlation coefficient of -0.07. 

 

 

Figure 4.17: Linear regression analysis of cell line (143B, Cal72, G292, HOS, MG63, U2OS, 

SaOS-2 and MCF7) methotrexate LD50 concentration against CD117 expression. The 

correlation coefficient (R2) is 0.016 and Pearson’s correlation coefficient of -0.013. 
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Table 4.3: Pearson’s correlation coefficient of cell lines CSC marker expression and 

chemotherapy LD50. The cell lines 143B, Cal72, G292, HOS, MG63, U2OS, SaOS-2 and MCF7 

were correlated for the expression of cancer stem cell markers (ALDH and CD117) against 

the LD50 concentrations of the chemotherapeutic agents cisplatin, doxorubicin and 

methotrexate (** = p < 0.01). 

Chemotherapeutic ALDH CD117 

Cisplatin -0.31  -0.84** 

Doxorubicin -0.24 -0.07 

Methotrexate -0.50 -0.13 
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4.9 Sarcosphere forming ability of MG63 methotrexate exposed cells 

Growing cells in serum starved low attachment conditions allows spherical suspension 

colonies to form which are enriched in stem cells (Reynolds et al., 1992). This technique 

was used by Rainusso et al., (2011) to study OS CSC and it and they reported that cells with 

an enhanced sphere forming ability also have enhanced tumourigenicity. 

If MTX treatment enriches for CSC we would predict to see an increase in enhanced 

sarcosphere formation. To test this, the cell line MG63 was chosen for its ability to form 

secondary sarcospheres (Section 3.7) and the enrichment of ALDH and CD117 expressing 

cells in response to MTX (figure 4.9 and 4.10). MG63 cells were seeded at a high density 

(15600 cells/cm2), allowed to attach for 24 hours before being treated with MTX for 5 days, 

after which cells were passaged and seeded (1052 cells/cm2) in to the serum starved low 

attachment conditions. After 7 days primary sarcosphere size was assessed from 5 images 

of each well using ImageJ, passaged and seeded (210 cells/cm2) and grown for a further 7 

days to form the secondary sarcospheres. Secondary sarcospheres were assessed by 

counting all sarcospheres ≥ 40 µm and calculating the sarcosphere forming efficiency (%) 

(MG63 MTX treated sarcosphere assay procedure summarized in figure 4.18). 
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MG63 cells seeded at high density (15600 cells/cm2) 

 

Media changed and replaced with MTX containing media (0, 5 and 50 nM)  

 

MTX treated cells seeded at 1052 cells/cm2 in serum starved low attachment conditions 

 

Primary sarcosphere size assessed then passaged and re-seeded at 210 cells/cm2 serum 

starved low attachment conditions 

 

  Secondary sarcosphere forming efficiency assessed 

Figure 4.18: MG63 methotrexate treated sarcosphere assay procedure. 

 

The appearance of primary sarocpsheres when treated with 5nM was similar to untreated 

cells, the colonies were of an oval shape with a rough appearance. Cells treated with 50 nM 

MTX also formed primary sarcospheres and also had a rough appearance but more irregular 

in shape. These cells did not produce the oval shape observed in the lower concentrations. 

Secondary sarcospheres across all the concentrations had the same appearance, they were 

observed to be smaller in size than the primary sarcospheres and had an irregular shape 

(Figure 4.19). 

MG63 cells treated with 5nM MTX were found to have an increased primary sarcosphere 

size compared to untreated sarcospheres (Figure 4.20). This increase in sarcosphere size 

suggests that exposing OS cells to 5 nM MTX enriches a population of cells with a higher 

growth rate in low attachment conditions. In contrast cells exposed to 50 nM MTX had no 

change in colony size, suggesting that the increased concentration negates the effects 

caused by 5 nM. Analysis of secondary sarcospheres demonstrated that no change in 

sarcosphere size was observed in either 5 nM or 50 nM MTX (Figure 4.21). The lack of any 

24 hours 

5 days 

7 days 

7 days 
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change suggests that the effect of 5 nM MTX upon primary sarcospheres may be a transient 

effect which is lost upon passage.  The cell line U2OS was also assessed for sarcosphere 

forming efficiency in response to 0 nM, 5 nM and 50 nM MTX, however, no secondry 

sarcospheres were present in all concentrations suggesting that MTX exposure does not 

enrich U2OS cells with the ability to grow in low attachment conditions. 
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Figure 4.19: Images of MG63 sarcospheres in response to methotrexate exposure (bar = 
100 µM). Images representative of 4 images. 
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Figure 4.20: Analysis of primary sarcosphere size in MG63. Five images per well were 

analysed using ImageJ. 5 nM MTX treated cells contained significantly larger colonies. 

Significance calculated by comparing each treatment sarcosphere size using Tukey’s post 

hoc analysis (*p = <0.05), 5 nM sarcospheres significantly larger than 0 nM and 50 nM. 

Results tested in triplicate and presented as mean and standard deviation. 

 

 

Figure 4.21: Analysis of secondary sarcosphere forming efficiency. Sarcosphere forming 

efficiency was calculated by counting all spheres ≥ 40 µM and dividing this by the number 

of cells seeded. No significant difference was observed (Tukey’s post hoc analysis). Results 

tested in triplicate and presented as mean and standard deviation. 
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4.10 Effect of ALDH inhibition on methotrexate sensitivity upon selected OS cell lines and 

MCF7 

ALDH has been identified as not only a OS CSC marker (Wang et al., 2011) but also as a 

mechanism to enhance chemo-resistance (Honoki et al., 2010) (Section 1.3.4). The ALDH 

specific inhibitor  diethylaminobenzaldehyde (DEAB) has been used  in vitro to sensitise 

breast cancer cells to chemotherapeutics (doxorubicin and paclitaxel) and radiation (Croker 

and Allan, 2012). To identify if DEAB also sensitises OS cell lines to chemotherapeutics the 

toxicity of DEAB was first assessed to obtain LD50 concentrations for each cell line. The cell 

lines HOS, MG63, U2OS and MCF7 were selected because the OS cell lines represent each 

morphology (fibroblastic, epithelial and mixed) and MCF7 for comparison to a commonly 

used epithelial breast cancer cell line. DEAB LD50 were assessed by exposing cells seeded at 

high density (15600 cells/cm2) to DEAB for 2 days then assessing cell death using an MTT 

assay (Section 2.3.1).  

 

MG63 had the highest DEAB LD50 whilst MCF7 had the lowest (Table 4.4). Interestingly 

sensitivity to DEAB did not correlate with the level of ALDH expression in each cell line 

(Table 4.9) as HOS which had the highest ALDH expression was not the most effected by 

DEAB. This suggests that the ALDH population size does not dictate DEAB sensitivity.  No 

enhancement in drug sensitivity upon HOS, U2OS and MCF7 was observed when a DEAB 

concentration equivalent to the LD50
 for each cell line was combined with MTX at an LD25. 

In contrast, a reduction in MG63 cell viability was observed when comparing exposure to 

DEAB and MTX against MTX and a vehicle control (ethanol) (Figure 4.23). This observation 

suggests that the ALDH cells in MG63 may have an elevated MTX resistance, however the 

reduction is small and extending the length of time exposed to MTX and DEAB may enhance 

this effect. Cisplatin and doxorubicin co-exposure with DEAB experiments were only tested 

in HOS and U2OS, however, each drug effected cell lines in different ways. Cis and DEAB 

co-exposure caused a reduction in U2OS cell viability (figure 4.24), whilst dox co-exposure 

reduced HOS cell viability. This indicates that the ALDH cells from U2OS are attributing to 

cis resistance, whilst HOS ALDH are dox resistant (figure 4.25). This finding implies that 

ALDH populations within different OS cell lines are resistant to different drugs.  
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Figure 4.22: DEAB dose response curve of HOS, MG63, U2OS and MCF7. Cell lines were 

grown for 2 days in DEAB, before assessing cell number using an MTT assay. Linear 

regression was used to DEAB LD50 for each cell line. Results tested in triplicate in three 

separate experiments (n = 3 independent replicates). Data presented as mean and standard 

error. 

 

Table 4.4: DEAB LD50 concentrations and percentage of cells expressing ALDH HOS, MG63, 

U2OS and MCF7. Percentage of cells expressing ALDH was assessed in section 3.2.2. 

Statistical significance calculated using Tukey’s post hoc analysis (**p = <0.01) and 

comparing all cell lines to one another. HOS has statistically larger ALDH expressing 

population than MCF7, MG63 and U2OS. No significant difference was observed when 

comparing DEAB LD50 concentrations. 

Cell line DEAB LD50 µMol 
± Std error 

% of cells expressing 
ALDH   

± Std deviation 

HOS 94.03 ± 19.14 60.60 ± 9.67 ** 

MG63 115.83 ± 63.56 2.14 ± 0.14 

U2OS 87.25 ± 12.58 2.13 ± 0.78 

MCF7 81.30 ± 7.78 2.36 ± 0.35 
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(A) HOS      (B) MG63 

  

 (C) U2OS      (D) MCF7  

Figure 4.23: Cell sensitivity to MTX LD25 and DEAB LD50 in HOS, MG63, U2OS and MCF7. 

The cell lines A) HOS, B) MG63, C) U2OS and D) MCF7 were exposed to their specific DEAB 

LD50 concentration and MTX LD25 concentration. Ethanol was used to as a vehicle control 

for the DEAB. Significance calculated using Tukey’s post hoc analysis (*p =0.05 and **p 

=<0.01).  Each result was tested in triplicate in three separate experiments (n = 3), data 

presented as mean and standard error.  
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(A) HOS     (B) U2OS 

Figure 4.24: Cell sensitivity to cis LD25 and DEAB LD50 in HOS and U2OS. The cell lines A) 

HOS and B) U2OS were exposed to their specific DEAB LD50 concentration and cis LD25 

concentration. Ethanol was used as a vehicle control for DEAB. Significance calculated using 

Tukey’s post hoc analysis (*p = <0.05, **p = <0.01).  Each result was tested in triplicate, 

data presented as mean and standard deviation.  

 

 (A) HOS     (B) U2OS 

Figure 4.25: Cell sensitivity to dox LD25 and DEAB LD50 in HOS and U2OS. The cell lines A) 

HOS and B) U2OS were exposed to their specific DEAB LD50 concentration and cis LD25 

concentration. Ethanol was used as a vehicle control for DEAB. Significance calculated using 

Tukey’s post hoc analysis (*p = <0.05, **p = <0.01).  Each result was tested in triplicate, 

data presented as mean and standard deviation.  
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4.11 Discussion 

OS cell lines were tested for their sensitivity to three commonly used OS 

chemotherapeutics, the drugs cisplatin (cis), doxorubicin (dos) and methotrexate (MTX). 

Cell lines demonstrated differing sensitivities depending upon the drug used, which is 

attributed to the mechanism of toxicity utilised by the drug and mutations present within 

each cell line, conferring either resistance or susceptibility (Holohan et al., 2013). In 

response to the DNA intercalating agent cis U2OS had the highest LD50 of 18 µM, which is 

consistent with published data in which U2OS was found to have a cis LD50 of 17.6 µM 

(Martelli et al., 2007). Interestingly Martelli et al (2007) also found that having a wild type 

p53 conferred greater resistance than a mutant copy. p53 status may be relevant as MCF7 

(Fan et al., 1995) and U2OS with the largest cis LD50 were the only cell lines with wild type 

p53, the remaining cell lines contain a mutant copy and in particular, G292, MG63 and 

SaOS-2 completely lack endogenous P53 (Chen et al., 1990, Chandar et al., 1992). 

Functional P53 has been found to protect against cis cell death by repairing cis induced 

DNA lesions (Fan et al., 1995). Interestingly Fan et al (1995), identified that an operational 

G2 checkpoint compensates for loss of p53 by providing a mechanism to repair drug 

induced DNA lesions. 143B has the lowest cis LD50 of 3.8 µM it expresses a mutant P53 

(Mohseny et al., 2011, Ottaviano et al., 2010) and is also the most rapidly dividing OS cell 

line (Fawdar, 2010), therefore, loss of P53 function and decreased G2 checkpoint may be 

accounting for its elevated sensitivity to cis. 

 

p53 status may also contribute to resistance to the DNA intercalating agent Dox but using 

an opposing mechanism to cis resistance.  Dox DNA damage in cells with wild type p53 

induces apoptosis through activation of the caspase cascade with activation of Bax leading 

to outer membrane pore formation and release of cyotochrome C (Katiyar et al., 2005). In 

OS, loss of p53 leads to doxorubicin resistance due to an inability to activate caspase 3 in 

response to DNA damage (Tsang et al., 2005). Results presented in this chapter showed 

that MG63 had the highest dox LD50 and lacking endogenous p53 (Chandar et al., 1992) 

supports this finding, however, MCF7 and U2OS with the third and fifth highest dox LD50 

and functional P53 do not support this hypothesis. The protein Bcl-2 is commonly up-

regulated in OS and has been identified as a means of overcoming doxorubicin apoptosis. 
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This occurs through inhibition of cytochrome C release and reducing the formation of Bax-

Bax homodimers which insert in the outer mitochondrial membrane which leads to pore 

formation in response to DNA damage. Inhibiting Bcl-2 in MG63 has been found to sensitise 

cells to dox treatment (Zhao et al., 2009). The nucleolar protein neuroguidin/CANu1 is 

upregulated in U2OS and provides increased doxorubicin resistance (Park et al., 2011a). 

Although the pathway through which neuroguidin/CANu1 signals is unclear it has been 

hypothesised to inhibit p21 and stabilize Bcl-2, therefore up-regulation of Bcl-2 maybe one 

mechanism through which U2OS can resist dox even with the presence of a wild type P53 

gene. 

 

SaOS-2 was the most resistant to the dihydrofolate reductase (DHFR) inhibitor MTX, 

producing a MTX LD50 of 0.09 µM and HOS had the lowest LD50 of 0.02 µM. Two common 

mechanisms of OS MTX resistance is the down regulation of the folate receptor (FC) present 

in 65% of tumours and over expression of the enzyme DHFR (Guo et al., 1999). Over 

expression of DHFR has been attributed to a gene frequently altered in OS, retinoblastoma 

(Rb). Rb negatively regulates the expression of E2F transcription factors which increase the 

expression of cell cycle proteins such as DHFR (Li et al., 1997). SaOS-2 has a defective copy 

of Rb (Ory et al., 2007), whilst in contrast HOS and U2OS with the lowest MTX LD50 both 

have functional Rb (Serra et al., 2004), therefore, loss of Rb and up-regulation of DHFR 

could be one mechanism for enhancing OS MTX resistance. However, other factors such as 

down regulation of the folate receptor in Rb negative cells have also been found to be 

important in MTX resistance (Serra et al., 2004). 

 

Following chemotherapy treatment breast cancers have been shown to be enriched in cells 

expressing CSC markers (Creighton et al., 2009), which suggests that CSC have enhanced 

resistance to chemotherapeutics. In order to identify if cis or dox exposure led to an 

enrichment of cells with enhanced clonogenicity, the colony formation of U2OS, MG63, 

U2OS and MCF7 in response to cis or dox LD50 exposure was assessed. Due to the toxicity 

of the LD50 concentrations no colonies formed, reducing the concentration to an LD25 also 

produced no colonies due to cell death. The reason for this observation may be related to 

cis and dox causing cell death via DNA intercalation. Therefore, cell death is delayed until 

cell division occurs and the LD50 concentrations obtained from the dose response curves 
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overestimate the number of living cells. Allowing cells to recover from cis and dox exposure 

before assessing the cell death could have been used to minimise this effect. Another factor 

which may be important for cell resistance to chemotherapeutics is interaction with 

surrounding cells. It was found that after cells were exposed to cis and dox and re-seeded 

at high density, colonies would survive for a short period (9 days) if they made contact with 

surrounding cells. Surviving cells had a fibroblastic morphology with dendrites connecting 

cells to one another. A similar observation has been observed OS cell lines in response to 

MTX treatment, whereby the surviving cells had a fibroblastic appearance and were 

characterised by the presence of dendrite-like structures (Tang et al., 2011).  

 

Cis and dox exposure enhanced the PE auto-fluorescence of treated cells, making analysis 

of CSC markers impractical because this change in cell appearance would mask that of cells 

stained with fluorophores and dyes utilising the PE channel. Flow cytometry analysis of 

either CD44 expression of the presence of dead cells (based on propidium iodide staining) 

was inaccurate, as both the CD44 PE conjugated antibody and prodidium iodide required 

the PE channel for analysis. As a consequence the flow cytometry analysis of cis and dox 

treated cells was abandoned. 

 

MTX has been successfully used to enrich a population of putative OS CSC with enhanced 

clonogenicity and CD117 expression in U2OS and MG63 cell lines (Tang et al., 2011). The 

same experimental design was used in section 4.4, where cells were exposed to MTX and 

then re-seeded at low density. The concentration of MTX used by Tang et al (2011) of 660 

nM and 220 nM, formed no colonies so a concentration of 5 nM and 50 nM was used 

instead. The reason for this discrepancy is unknown, MTX was sourced from the same 

supplier, therefore, MTX batch variation could be contributing to this observation although 

unlikely. The appearance of cells which survived in 50 nM MTX had a fibroblastic 

appearance as observed by Tang et al (2011) in response to high (220 nM and 660 nM) MTX 

concentrations. However, only MCF7 and MG63 produced colonies in the 50 nM MTX, and 

no difference in colony size was observed across the MTX concentrations. This suggests 

that the MTX treated cells have the same growth rates as untreated cells. The colony 

hierarchies can be used to assess the presence of putative CSC through the identification 

of holoclones (Li et al., 2008). Using this method MTX treated cells were compared to 
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identify if exposure increased the presence of putative CSC. Across all cell lines tested no 

significant increase in holoclones or any other hierarchy was observed suggesting that MTX 

is not selecting for a specific colony hierarchy. Within HOS a decrease in holoclones was 

observed in response to 5 nM MTX, this indicates that HOS holoclones have an enhanced 

sensitivity to MTX. Holoclones have been identified to contain CSC in the prostate cancer 

cell line PC3 (Li et al., 2008), if CSC also reside in HOS holoclones, this could account for this 

cell line having the lowest MTX LD50 because MTX induced loss of CSC would inhibit HOS 

growth and survival. If this hypothesis is correct it would indicate that ALDH is not a CSC 

marker in HOS, because ALDH+ cells were present in all three colony hierarchies (Section 

3.6.1).  

 

The study by Tang et al (2011) found that MTX treated U2OS cells had an increased 

expression of CD117 and stro-1 and additionally ALDH expression has been found to confer 

MTX resistance (Takebe et al., 2001). To identify if exposure to MTX enriched for expression 

of these putative CSC markers after MTX treatment, cells were stained for CSC marker 

expression and analysed using flow cytometry. CD117 expression was enhanced in both 

U2OS and MG63 as neither cell line expressed the protein without MTX, whereas both 5 

nM and 50 nM MTX treament led to the emergence of a CD117 population. In MG63 the 

CD117 population was largest at 5 nM with 0.45 % of cells expressing the marker and then 

significantly decreased at 50 nM to 0.02 %. U2OS contained a CD117 population of 

approximately 0.1 % at both 5 and 50 nM. Possible mechanisms through which OS CD117 

expressing cells resist chemotherapeutics is via increased expression of ATP binding 

cassette transporters. This has been identified in OS and has been implicated in the efflux 

of chemotherapeutics and development of tumours with multi-drug resistance in CD117 

expressing cells (Adhikari et al., 2010).  

 

ALDH expression was increased 20 fold in HOS at all concentrations of MTX compared to 

other cell lines, which reflects the large population of ALDH expressing cells present within 

HOS (section 3.2.2). HOS was the only cell line which did not have an increase in ALDH 

expressing cells in response to MTX. This suggests that either HOS ALDH expressing cells do 

not have enhanced MTX resistance or alternatively the high ALDH expression observed in 

HOS (Section 3.2.2) may be due to its deregulated expression, therefore, is unable to be 



Chapter 4. Results  

166 
 

elevated in response to chemotherapeutics. In contrast MG63, U2OS and MCF7 all had an 

increase in ALDH expression at 50 nM MTX, with MG63 also presenting an increase at 5 nM 

MTX. Therefore ALDH expression in these cell lines appears to be related to MTX resistance. 

ALDH has been proposed to confer chemotherapeutic resistance in OS via drug 

detoxification, enhanced DNA repair mechanisms and overexpression of cell membrane 

drug efflux transporters (Honoki et al., 2010).  

 

The observed increase in ALDH expression in response to MTX appears to be a result of the 

experimental design. Cells were seeded at a high density (15600 cells/cm2) allowed to 

attach for 24 hours before MTX was added to cells and exposed for 5 days, cells at low 

concentrations of MTX would become over confluent, to test whether this over confluency 

effects ALDH expression cells were seeded at a range of densities and then grown for 6 

days before analysing ALDH expression. In both MG63 and MCF7 cell lines increasing 

density was found to decrease ALDH expression. Interestingly MG63 had lower expression 

at 5263 cells/cm2, whilst MCF7 did not, which may represent the faster rate of MG63 

division which allows it to become confluent at the lower cell density. This observation also 

occurs when OS cell lines are murine xenotransplanted, as a dramatic reduction in ALDH 

expression is observed in the resulting in vivo derived tumours than the original cell line 

(Wang et al., 2011). The decrease in ALDH expression was attributed to the change in 

growth conditions during xenotransplantation, however, the results in this chapter suggest 

that cell density is also a contributing factor. At high cell density ALDH expression is 

decreased, the mechanism by which ALDH expression is controlled could be via a cytokine 

network. In breast cancer IL-8 signaling via phosphoinositide 3-kinase has been found to 

enhance the presence of ALDH expressing CSC (Singh et al., 2013). Targeting IL-8 could 

therefore provide a mechanism to target CSC (Ginestier et al., 2007). 

 

To assess whether MTX exposure could increase the presence of putative CSC, a 

sarcosphere assay was used to test the sphere forming ability of MG63 after MTX exposure. 

MG63 was selected because of its ability to form secondary sarcospheres (section 3.7.2) 

and the enrichment of both ALDH and CD117 expressing cells in response to MTX. In OS 

cell lines increased sarcosphere forming ability correlated with enhanced tumourigenic 

capabilities in vivo (Rainusso et al., 2011). The sarcosphere assay therefore provides a 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CC0QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPhosphoinositide_3-kinase&ei=tQUrU4jKMca5hAekuIHQDQ&usg=AFQjCNGp0NYanEgwP0UJT6M18HSZ8Dxmrg&bvm=bv.62922401,d.ZG4
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method for identifying if the increased expression of CSC markers is related to an increased 

presence of putative CSC. Results from the previous chapter demonstrate that large 

sarcospheres contained a higher proportion of cells expressing the putative CSC marker 

ALDH (Section 3.8.1), which indicates that ALDH expressing cells may drive sarcosphere 

growth. Images taken of primary sarcospheres from cells treated without MTX and 5 nM 

MTX, demonstrated both conditions produced sarcospheres with the same spherical rough 

appearance, however 50 nM treated cells produced less regular sarcospheres shapes which 

were not spherical. MG63 has been found to contain a heterogenous population of cells all 

with varying tumourigenicities, drug resistance and holoclonal morphologies (Lou et al., 

2010). Therefore, the change in shape of 50 nM MTX sarcospheres could reflect the 

selection of a particular MG63 drug resistant subpopulation. MTX 5 nM treated MG63 cells 

produced larger primary sarcospheres than 0 nM and 50 nM MTX treated cells. This 

observation suggests that exposure at 5 nM MTX enriches spherical colony forming cells, 

however the same effect is not observed at 50 nM MTX. Upon passage of these 

sarcospheres and subsequent growth of secondary sarcospheres, the presence of 

increased spherical colony formation was lost and both 5 nM and 50 nM MTX treatments 

resulted in similar sarcosphere formation. Tang et al (2011) found that 220 nM and 660 nM 

MTX treatment also led to increased sarcosphere formation of MG63 cells, however, only 

primary colony formation was assessed. Therefore, MTX may transiently increase the 

presence of sarcosphere forming cells, which is lost upon passage and growth of secondary 

sarcospheres. OS cell lines have been demonstrated to contain putative CSC which are 

quiescent (Rainusso et al., 2011), in breast cancer mammospheres can only be passaged 5 

times before growth is inhibited through quiescence (Dey et al., 2009). Passaging of MG63 

sarcospheres, therefore, may lead to CSC cells undergoing quiescence which could account 

the reduction in sarcosphere forming efficiency in 5 nM MTX treated secondary 

sarcospheres.   

 

MTX 5 nM treated MG63 cells not only had enhanced primary sarcosphere formation but 

also increased expression of CD117 and ALDH. Both CD117 and ALDH have been implicated 

in OS CSC and enhanced drug resistance (Adhikari et al., 2010, Wang et al., 2011, Honoki et 

al., 2010), therefore the expression of these markers within the cell lines may correlate 

with drug resistance. This hypothesis was tested using Pearson’s correlation coefficient cell 
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line LD50 concentrations were correlated with CSC marker expression (ALDH and CD117) 

(section 3.2). CD117 expression correlated weakly with dox and MTX, but produced a 

strong negative correlation with cis, suggesting that CD117 expression is not related to drug 

resistance. This poor correlation may be related to highly expressing CD117 cell lines such 

as 143B not displaying resistance to these drugs. To explore this hypothesis 143B with the 

highest CD117 according to flow cytometry analysis expression (6.36 %) (Section 3.2.3) was 

removed from analysis, which produced weaker correlations and produced Pearson’s 

correlations closer to 0 for all chemotherapeutics. CD117 expressing cells from this cell line 

appeared to be more sensitive to the drug exposure, therefore producing low LD50 values. 

CD117 expression correlated weakly with dox nd MTX LD50, therefore, CD117 expressing 

cells are susceptible to cis but not dox or MTX, indicating that CSC could be targeted using 

specific drugs. Cell line ALDH expression correlated with a weak negative correlation with 

cell line LD50 for all drugs tested, no statistical significance was observed for any of the 

correlations, suggesting increased cell line ALDH expression has no impact upon 

chemotherapeutic resistance.  

 

ALDH expression has been demonstrated to enhance chemotherapeutic resistance (Honoki 

et al., 2010), the mechanism by which ALDH isoenzymes provide chemoresistance has not 

been fully elucidated for all ALDH isoenzymes. ALDH enzymes detoxify aldehyde 

compounds, which may be common drug resistance mechanism to all ALDH enzymes 

(Moreb et al., 2012). In the human corneal cell ALDH3A1 is also localised to the nucleus and 

in response to DNA damage has been found to inhibit cell division and promote cell survival 

(Pappa et al., 2005). It is unclear if all ALDH enzymes are involved with cell cycle control, 

however, if so this may indicate that ALDH enzymes are intricately involved with 

chemoresistance. The hypothesis that ALDH positive cells are more resistant to 

chemotherapy can be tested using the specific ALDH inhibitor DEAB, which has been 

identified as a competitive inhibitor of ALDH1 and ALDH2 enzymes (Moreb et al., 2012). 

This procedure has been successfully used by Crocker and Allan (2012), they exposed 

ALDH+/CD44+  breast cancer cells and found that this sensitised them to dox and the mitosis 

inhibitor paclitaxel (Croker and Allan, 2012).  To analyse whether DEAB has the same effect 

in OS cell lines the toxicity of DEAB for the selected cell lines (HSO, MG63, U2OS and MCF7) 

was identified. The LD50 for DEAB identified MG63 as the most resistant with an LD50 of 



Chapter 4. Results  

169 
 

115.83 µMol and MCF7 as the least with an LD50 of 81.30 µMol. Interestingly ALDH 

population size did not reflect sensitivity to DEAB, HOS with the largest population of ALDH 

positive cells > 60 % (Section 3.2.2) was not the most susceptible to DEAB with the second 

largest DEAB LD50 of 94.03 µMol. In comparison MG63 with one of the smallest ALDH 

populations (2.14 %), was most resistant to DEAB. The Aldefluor kit is a pan ALDH detection 

kit. Therefore, the specific ALDH detected is not known ,however, it would be of interest to 

analyse if OS cell lines express the same ALDH isoforms and whether different isoforms are 

responsible for OS chemotherapy resistance. 

 

To identify if ALDH expression through DEAB sensitised cell lines to chemotherapeutics, OS 

cell lines and MCF7 were exposed to their DEAB LD50 concentration in combination with 

the chemotherapuetic LD25. When combining DEAB with MTX an increase in cell death was 

only observed in MG63, no increase in cell death was observed in the remaining cell lines 

(HOS, U2OS and MCF7). Suggesting that only MG63 ALDH cells comprise a MTX resistant 

population of cells. When co-incubating DEAB with cis or dox (DEAB + cis/dox) the OS cell 

lines responded differently. HOS ALDH cells were sensitive to dox, whilst U2OS to cis, 

suggesting that the ALDH cells present within each OS cell line may be sensitive to a 

different drug. The CSC phenotype within cancer subtypes or even the same subtype is not 

uniform (Visvader and Lindeman, 2008), within breast cancer cell lines ALDH was not found 

to be a marker of increased tumourigenicity in all cell lines tested (Hwang-Verslues et al., 

2009).  Breast CSC have also been found to be more sensitive than the bulk population of 

cells to cyclophosphamide, treatment with this drug reduced the ALDH population of cells 

and led to reduced tumour formation (Zielske et al., 2010). These findings highlight the 

highly variable nature of CSC within the same cancer types and different responses they 

can have to specific drugs. 

 

A limitation of DEAB exposure as a mechanism for reducing the presence of putative CSC, 

is the affect DEAB has upon the balance between CSC division and differentiation. Assuming 

ALDH expressing cells are CSC, treating them with DEAB may not be an efficient mechanism 

for reducing the CSC population. Breast cancer studies have demonstrated that treating 

cell lines with DEAB actually increases the CSC population, this finding appears 

counterintuitive but could be explained due to ALDH being a requirement for early 
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differentiation. Therefore inhibition of this enzyme results in the inhibition of 

differentiation and an increase in the size of the CSC population (Ginestier et al., 2009).   

 

To summarise the findings of this chapter OS cell lines display heterogenous sensitivities to 

the chemotherapeutic agents (cis, dox and MTX) and P53 status may be a determining 

factor. Functional P53 may protect against cis conversely P53 loss may contribute to dox 

resistance. Previous studies have demonstrated that MTX exposure enriches cells with CSC 

properties (Tang et al., 2011), results from this chapter show that MG63 cells treated with 

5 nM MTX have an increased primary sarcosphere proliferation rate. In response to MTX 

treatment both U2OS and MG63 increased expression of the putative CSC markers CD117 

and ALDH. The increased ALDH expression was found to be attributed to increased cell 

density and not MTX in MG63 and MCF7. To further examine the role ALDH plays in 

chemotherapeutic resistance the ALDH inhibitor DEAB was combined with LD25 

concentrations of cis, dox and MTX. In response to DEAB MG63 was sensitised to MTX, 

U2OS to cis and HOS to dox. This finding highlights that the ALDH expressing cells within 

different OS tumours are sensitive to different classes of chemotherapeutics.  
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5.1 Introduction 

The development and maintenance of all cells within every organ of the body is tightly 

regulated by a complex network of protein signaling molecules (ligands) (Orsi and Tribe, 

2008). These ligands are recognised by cell membrane spanning receptors, which allow 

signal transduction to occur upon ligand receptor interaction. The location of the cell which 

releases the ligand will dictate the type of cell signaling, therefore four types of signaling 

can occur; autocrine, juxtacrine, paracrine and endocrine (Singh and Harris, 2005) (Section 

1.4).   

Bone is a highly specialised tissue which plays a crucial role in internal support and 

maintaining calcium homeostasis (Weiner et al., 1999). Bone is composed of three cell 

types; osteoblasts which can regulate the mineralisation of bone and are found near the 

bone surface along with osteoclasts which are responsible for bone resorption. Osteoblasts 

can differentiate to become osteocytes which are found within the bone interior, these 

cells are responsible for the synthesis of the bone matrix and to a lesser extent bone 

resorption (Bilezikian et al., 2008). Therefore, signaling networks within bone are focused 

on ensuring bone resorption and synthesis is balanced. For example Wnt ligands have been 

found to affect bone density in mice through their effect on osteoblasts (Bodine et al., 

2004), whereas osteoblasts have been found to release RANK which increases osteoclast 

bone resorption (Burgess et al., 1999) and osteoprotegerin which inhibits this process 

(Schoppet et al., 2002) (Section 1.4.1).  

Cell signaling that stimulates cell proliferation is a common mechanism by which cancer 

cells promote growth. Cancer cells have been found to utilise a variety of signaling 

mechanisms (section 1.4.2). Holoclones from the OS cell line HOS have been found to 

secrete a paracrine factor which helps support the growth of paraclonal cells, which 

suggests that differentiated OS cells are reliant upon progenitor cells for survival, however 

the identity of this factor was never established (Fawdar, 2010). A number of cytokines 

involved in tumour progression have been identified in OS including 

phosphoglucludingcose isomerase (PGI), which has been found to enhance migration and 

growth of the cell line MG63 (Niinaka et al., 2010) (Section 1.4.3). Hepatocyte growth 
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factor, which is released by several OS cell lines (Cal72, MG63 and SaOS-2) has been 

hypothesised as a mechanism to promote the aggressive nature of OS tumours (Rochet et 

al., 1999). 

 

Aims 

HOS holoclonal cells have been shown to secrete a paracrine factor which supports the 

growth and survival of paraclones (Fawdar, 2010), however, the cytokine network 

responsible for this observation was not established. In order to elucidate the cytokines 

responsible for OS growth a panel of OS cell lines will be used to analyse media conditioned 

by the cell lines (cell line conditioned media) for the presence of growth factors. 

Conditioned media with growth enhancing properties will be screened for the presence of 

candidate proteins. The specific objectives of this study which will be tested upon a panel 

of 8 OS cell lines and the breast cancer cell line MCF7 as a control, are as follows: 

 Assessment of OS cell lines and MCF7 proliferation rates in response to conditioned 

media taken from the same or different cell lines. 

 Identification of candidate growth factors through the cytokine expression analysis 

of growth enhancing conditioned media. 

 Analysis of the expression profile of candidate growth factors from cell lines. 
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5.2 Paracrine signaling in OS cell lines and MCF7 in response to 24 hour conditioned 

media 

To assess whether the OS cell lines utilised paracrine signalling to enhance growth, each 

cell line was grown at low cell density in the absence and presence of its own conditioned 

media (conditioned media was collected after 24 hours exposure to confluent cells) 

(Section 2.4.1). Upon reaching a suitable colony size (approximately 1 - 2 mm) colonies 

were fixed and stained with crystal violet and colony size was assessed using ImageJ 

(Section 2.4.2). The majority of OS cell lines produced a significant increase in colony size 

in response to conditioned media (Figure 5.1), however, 143B, HOS, and MCF7 did not 

respond to their conditioned media whereas MG63 produced the largest increase in colony 

size in response to its own conditioned media.  

 

To determine if the paracrine effect is unique to each cell line the conditioned media from 

a selected cell line was tested upon another. The media from two cell lines which 

responded with an increase in colony size (U2OS and MG63) were compared with a non-

growth enhancing conditioned media (HOS and MCF7) in the following cell lines; MG63, 

U2OS, HOS and MCF7. U2OS and MG63 conditioned media produced equal growth 

enhancement in responsive cell lines (MG63 Figure 5.2.A and U2OS Figure 5.2.B). U2OS 

media was found to evoke a significant increase in growth of the previously unresponsive 

HOS cell line (Figure 5.2.C) and also in MCF7 (Figure 5.2.D), suggesting that U2OS secretes 

a growth factor which is common to other OS cell lines and also the unrelated MCF7 cells. 

In all OS cell lines tested MCF7 conditioned media had no effect on colony formation, 

suggesting that it lacks the expression of a growth enhancing factor. Interestingly, HOS 

conditioned media, which did not enhance growth of HOS and MCF7, produced an increase 

in growth in MG63 and U2OS (Figure 5.2.A and 5.2.B). This Indicates that HOS may produce 

low levels of a growth factor which may only be detected by MG63 and U2OS. 

 



Chapter 5. Results  

175 
 

 

Figure 5.1: Average colony size of OS cell lines and MCF7 exposed to either conditioned 

(collected after 24 hours exposure to confluent cells) or unconditioned media. Only 143B, 

HOS and MCF7 did not respond to their conditioned media and had no significant increase 

in colony size. All OS cell lines and MCF7 tested have been analysed by measuring colony 

size using ImageJ®.  Data presented as mean and standard deviation, n=3 (* = 0.05, ** = 

0.005 ***= 0.0005; unpaired T-test). 
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(A) MG63               (B) U2OS 

  

 

(C) HOS                                    (D) MCF7     

  
 
     
     
Figure 5.2: Response of HOS, MG63, U2OS and MCF7 cells to 24 hour conditioned media 
from growth increasing and non-growth responsive conditioned media. MG63 (A), U2OS 
(B), HOS (C) and MCF7 (D) cell lines tested using unconditioned and conditioned media from 
each cell line to assess the growth enhancement of each cell line. Colony size was assessed 
using ImageJ. Data presented as mean and standard deviation (n=3), significance calculated 
by comparing to MCF7 conditioned colony size (* = <0.05, ** = <0.01; Tukey’s post hoc 
analysis). 
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5.3 Assessment cell density during 24 hour media conditioning for HOS, MG63, U2OS and 
MCF7 cells 
 
The cell density during the conditioning of the media was assessed in order to determine if 

the growth enhancement of conditioned media from MG63 and U2OS (Figure 5.2) was 

related to an increased number of cells at confluency. After 24 hours of conditioned media 

collection (Section 2.4.1) HOS, MG63, U2OS and MCF7 cells density was assessed through 

cell trypsinisation and counting using a haemocytometer. It was found that MCF7 

contained a higher density of cells compared to the OS cell lines (Figure 5.3). The OS cell 

lines all contained similar cell densities, suggesting that the number of cells present is not 

responsible for the variation in growth enhancing properties of conditioned media.    

 

 

 
 

 

 

Figure 5.3: Cell density of HOS, MG63, U2OS and MCF7 for 24 hour conditioned media 
collection. Cell lines were grown under the same conditions as used for conditioned media 
collection. After reaching confluency media was changed and after 24 hours cell density 
was assessed. Data presented as mean and standard deviation (n=3), significance 
calculated by using Tukey’s post hoc analysis and comparing OS cell lines to MCF7 (p ** = 
< 0.01). 
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5.4 Analysis of paracrine growth signaling in sarcoma cell lines 

To identify if non-osteosarcoma sarcoma cell lines express and respond to paracrine growth 

factors, conditioned media from three different sarcoma cell lines was compared to U2OS 

conditioned media (which enhanced growth in all cell lines tested (Figure 5.2)). The 

sarcoma cell lines selected were HT1080 (fibrosarcoma), SKLNS1 (leiomyosarcoma) and 

RDES-1 (Ewing’s sarcoma). Each was tested with its own conditioned media and U2OS 

conditioned media, however, RDES-1 cells detached from the growth surface making 

colony size assessment impractical due to absence of colony formation. HT1080 cell 

conditioned media was found to produce a greater increase in its own colony size 

compared to U2OS conditioned media (Figure 5.4.A) indicating that it also expressed a 

growth factor, therefore, media from this cell line was also used to test on SKLNS1. 

Interestingly no significant increase in colony size was observed in SKLNS1 cells in response 

to U2OS or HT1080 but its own conditioned media increased colony size (Figure 5.4.B). 

RDES-1 conditioned media did not produce an increase in growth in U2OS cells suggesting 

it does not produce a paracrine growth factor, however HT1080 and SKLNS1 produced an 

equivalent increase in colony size when compared to U2OS conditioned media (Figure 

5.4.C).  
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   (A) HT1080 cells             (B) SKLNS1 cells 

 

    

     (C) U2OS cells 

 

Figure 5.4: Growth response of sarcoma cell lines (HT1080 and SKLNS1) and U2OS to 
conditioned media from U2OS and sarcoma cell lines. HT1080 cells (A), SKLNS1 cells (B) 
and U2OS cells (C) were tested with conditioned media form the same cell line and 
alternate cell lines to identify growth effected by the conditioned media. All sarcoma cell 
lines tested have been analysed by measuring colony size using ImageJ. Results tested in 
triplicate (n=3), data presented as mean and standard deviation. Statistical significance 
calculated by comparing to unconditioned colony size (* = <0.05, ** = <0.01 Tukey’s post 
hoc analysis). 
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5.5 Analysis of U2OS cell confluency and cell exposure time upon the growth enhancing 

properties of conditioned media  

Conditioned media was collected from U2OS cells once they reached approximately 100 % 

confluency (Section 2.4.1), however, this method does not take in to consideration exact 

cell densities. Therefore, to identify if cell density may contribute to variation in the growth 

potential of the conditioned media, media was collected from confluent cells and lower 

confluencies (70 and 90 %). U2OS cells were selected because this cell line produces a 

robust paracrine growth response in previous experiments (Figure 5.2 and 5.4). Results 

show that conditioned media from U2OS cells at 70 % and 90 % did not significantly alter 

the colony size compared to 100 % conditioned media, indicating that although a lower 

concentration of paracrine growth factors may be present in the lower confluencies this 

has no discernible impact on growth rates (Figure 5.5). The length of time in which the 

media was exposed to confluent U2OS cells was also tested to identify if increased time of 

conditioned media cell exposure affected colony growth rates. Media which had been 

exposed to U2OS cells for longer periods was found to produce significantly larger colonies 

(Figure 5.6).  
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Figure 5.5: Growth effect of U2OS conditioned media taken after 24 hours exposure to 

U2OS cells at 70, 90 and 100 % confluency. Conditioned media collected from U2OS cells 

at 70, 90 and 100 % produced colonies of an equivalent size. U2OS colony size analysed 

using ImageJ®. Results tested in triplicate, data presented as mean and standard deviation. 

No significant difference observed (Tukey’s post hoc analysis). 

 

 

 

Figure 5.6: Growth effect of U2OS conditioned media collected from confluent U2OS cells 
after 24, 48 and 72 hours. Compared to 24 hour U2OS conditioned media, media taken 
from cells after 24 and 72 hours produced significantly larger colonies. U2OS colony size 
has been assessed using ImageJ®. Results tested in triplicate, data presented as mean and 
standard deviation, significance calculated by comparing to unconditioned colony size (* = 
<0.05, ** = <0.01 Tukey’s post hoc analysis). 
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5.6 Paracrine signaling in OS cell lines and MCF7 in response to 24 hour and 72 hour 

conditioned media 

Conditioned media taken from U2OS cells after 72 hours produced a greater enhancement 

of colony size compared to 24 hour conditioned media (Figure 5.6), therefore, 72 hour 

conditioned media from the cell lines HOS, MG63, U2OS and MCF7 was analysed to identify 

if it also had altered growth enhancing properties compared to 24 hour conditioned media.  

Compared to MCF7 conditioning both MG63 and U2OS cells responded with increased 

colony size in response to MG63 and U2OS conditioned media at 24 and 72 hours (Figure 

5.7.A and figure 5.7.B), HOS conditioned media increased MG63 colony size to the same 

size at 24 and 72 hours of conditioning and U2OS cells only responded to 24 hour HOS 

conditioned media. As was observed in 24 hour media HOS and MCF7 cells had increased 

colony size in response to U2OS 72 hour conditioned media, however, this was not a 

significant increase for U2OS 72 hour conditioned media due to 72 hour MCF7 conditioned 

media also increasing HOS and MCF7 cell growth (Figure 5.7.C and 5.7.D). In contrast to 24 

hour conditioned media, 72 hour MG63 conditioned media resulted in the largest colony 

sizes in HOS cells. This suggested that after 72 hours of MG63 media conditioning the 

concentration of a particular growth factor, had increased to a level which was capable of 

enhancing the colony size of HOS.      
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 (A) MG63                 (B) U2OS 

   

  (C) HOS                          (D) MCF7 

   

Figure 5.7: Response of HOS, MG63, U2OS and MCF7 cells to 24 hour and 72 hour 
conditioned media. MG63 (A), U2OS (B), HOS (C) and MCF7 (D) tested using unconditioned 
and conditioned media from each cell line to assess the growth enhancement of each cell 
line. All cell lines tested (MG63, U2OS, HOS and MCF7) have been analysed by measuring 
colony size using ImageJ®. Average unconditioned colony size was subtracted from 
conditioned colony. Data presented as mean and standard deviation, n=3, significance 
calculated by comparing to MCF7 colony size (* = <0.05, ~ = <0.01; Tukey’s post hoc 
analysis). 
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5.7 Analysis of the growth response of U2OS and HOS cells to 72 hour conditioned media 
within a 96 well assay 
 
A 96 well growth assay was developed due to the large quantities of media required for the 

colony formation assays (55 cm2 growth area) and to minimise any inaccuracies associated 

with manually measuring colonies to assess growth. This assay used minimal volumes of 

media (100 µl), which allowed the number of replicates for each condition to be increased 

and cell growth to be assessed by measuring the well absorbance following staining with 

MTT (Section 2.4.3). To analyse the growth response in a 96 well assay, 72 hour conditioned 

media from MG63, U2OS, HOS and MCF7 was tested upon U2OS and HOS cells. As was 

observed in the colony formation assay (Figure 5.7) U2OS and MG63 conditioned media 

increased the growth rate of U2OS cells using the 96 well assay, however, HOS conditioned 

media had no impact upon growth (Figure 5.8.A). HOS cells only responded with increased 

growth to U2OS conditioned media (Figure 5.8.B) using the 96 well assay, which is in 

contrast to the colony formation assay, where it was observed that MG63 conditioned 

media also increased HOS growth (Figure 5.7.C). These results demonstrate that although 

a 96 well assay format may be less sensitive to growth responses, it provides an efficient 

assay for the assessment of growth in response to conditioned media. 
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      (A) U2OS 

 

 

                       (B) HOS 

 

Figure 5.8: Response of HOS and U2OS cells to 72 hour conditioned media from HOS, 
MG63, U2OS and MCF7 in a 96 well assay. To assess the practicality of a 96 well 
conditioned media assay U2OS (A), and HOS (B) cells were tested using unconditioned 
(complete media) and 72 hour conditioned media from HOS, MG63, U2OS and MCF7 to 
assess the growth of each cell line. All cell lines tested (MG63, U2OS, HOS and MCF7) have 
been analysed by staining cells with MTT and measuring absorbance at 530 nm. Data 
presented as mean and standard error, each sample tested 16 times in three separate 
experiments (n= 3 independent replicates), significance calculated by comparing to MCF7 
conditioned colony size (* = <0.05, ** = <0.01 Tukey’s post hoc analysis). 
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5.8 Assessment of colony hierarchy frequency in response to conditioned media in HOS, 
U2OS and MCF7 cells 
 
The colony hierarchies identified by Locke et al., (2005) have been used to identify prostate 

CSC in the cell line PC3, through the isolation of cells from the holoclonal morphology (Li et 

al., 2008) (Section 1.2.3). In OS MG63 holoclones possess enhanced clonogenicity and 

proliferated more rapidly (Lou et al., 2010). Based on these findings it could be 

hypothesised that the increased colony size in response to U2OS conditioned media (Figure 

5.7), could be due to a paracrine factor which is maintaining cells in a holoclonal 

morphology. To test this hypothesis cell lines (HOS, U2OS and MCF7) were seeded at a 

clonal density (2 – 4 cells cm2) and exposed to 24 hour conditioned media (from HOS, MG63, 

U2OS and MCF7 cells) for 9 – 14 days (approximately 100 colonies would form per plate), 

after which the first 30 colony hierarchies from each plate were recorded using an inverted 

microscope (Section 2.4.2).  

 

An observation which was consistent in all three cell lines tested (HOS, U2OS and MCF7) 

was an increased paraclone frequency in response to MCF7 conditioned media (Figure 5.9). 

MCF7 conditioned media also caused a decrease in meroclone formation in both HOS and 

MCF7 (Figure 5.9). In response to MG63 conditioned media HOS cells responded with a 

decrease in holoclone frequency (Figure 5.9.A), the same response was not observed in 

U2OS, which contained an enhanced frequency of holoclones and meroclones in response 

to its own conditioned media as well as HOS and MG63 conditioned media (Figure 5.9.B). 

In addition, these same conditioned media (HOS, MG63 and U2OS) also produced 

enhanced colony formation in U2OS (Figure 5.7), therefore, U2OS appears to respond to 

paracrine factors from these cell lines which enhance the presence of holoclonal and 

meroclonal colonies. 
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(A) HOS 

 

       (B) U2OS 

 

       (C) MCF7 

 

Figure 5.9: Colony hierarchy frequency in response to 24 hour conditioned media in HOS, 
U2OS and MCF7 cell lines. After exposure to conditioned media 30 colony hierarchies were 
recorded in HOS (A), U2OS (B) and MCF7 (C) cell lines. Data presented as mean and 
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standard deviation, n=3, significance calculated by comparing to unconditioned colony 
frequency (* = <0.05, ** = <0.01 Tukey’s post hoc analysis). 
 

5.9 Cytokine profiling of HOS, MG63, U2OS and MCF7 72 hour conditioned media 

Cytokines have been found to increase proliferation in carcinomas (Westley and Rochefort, 

1980, Loberg et al., 2007), sarcomas (Li et al., 2011), leukaemia (Digel et al., 1989) and 

neuroblastoma (Airoldi et al., 2004). In order to identify candidate cytokines proteins which 

may confer enhanced growth in OS cell lines and MCF7, 72 hour conditioned media from 

HOS, MG63, U2OS and HOS were analysed using a human cytokine profiler (Section 2.5.1). 

The array detects 36 different cytokines which are commonly used in cell signaling 

networks. U2OS and MG63 conditioned media were selected because U2OS consistently 

produced increased growth in all cell lines tested and MG63 media enhanced growth in 

U2OS and MG63 cells (Figures 5.7). It was predicted therefore that the conditioned media 

from both of these cell lines will contain a growth factor that is not present in MCF7 

conditioned media (as this did not produce growth enhancement). The response to HOS 

conditioned media consistently produced growth enhancement in U2OS and MG63, never 

in HOS and inconsistently in MCF7 (Figures 5.7). These findings suggest that although HOS 

may express a growth factor it may be at a lower concentration than MG63 and U2OS.  

Based on the observed growth promoting effects of the conditioned media, cytokines 

which could be considered candidate growth factors must be present within MG63 and 

U2OS, absent within MCF7 and weakly expressed in HOS.  The cytokine array identified two 

proteins which fulfilled this criteria. Both IL-8 and CCL-2 were expressed in U2OS and MG63 

media, weakly in HOS and absent in MCF7 (Figure 5.10). Analysis of the pixel density of the 

each spot identified in the cytokine array confirmed the expression profile of CCL-2 and IL-

8, with MG63 producing a pixel density above 6000 for IL-8 and CCL-2 and U2OS produced 

pixel densities of 4977 for IL-8 and 5637 for CCL-2 (Figure 5.11). HOS conditioned media 

contained lower concentrations and produced pixel densities of 336 for IL-8 and 263 for 

CCL-2 and neither proteins were detected in MCF7 conditioned media (5.11). MCF7 

conditioned media was found to contain less proteins within its conditioned media 

compared to the OS cell lines (Figure 5.11). All cell lines expressed IL-5, IL-23, macrophage 

inhibitory factor (MIF), serpin E1 and RANTES (also known as CCL-5). HOS was found to 
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secrete the greatest number of cytokines, but the majority were only present at low 

concentrations which is evident because of the low relative pixel density (< 500) of each 

spot (Figure 5.11).   

 

(A) MG63 

 

(B) U2OS 

 

(C) HOS 

 

(D) MCF7 

 

   

Figure 5.10: Images of the cytokine array of HOS, MG63, U2OS and MCF7 72 hour 
conditioned media.  Using R&D systems human cytokine profiler (Cat no. ARY005), 72 hour 
conditioned media from MG63 (A), U2OS (B), HOS (C) and MCF7 (D) was tested and exposed 
on to X-ray film for 10 mins before developing. Red rectangle denotes IL-8 location and blue 
trapezium denotes CCL-2 location, all cytokines are spotted on to the array in duplicate.   
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Table 5.1:  Position of cytokines in cytokine array used in figure 5.10. 

 

 



Chapter 5. Results  

191 
 

Table 5.1: Continued overleaf 
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Figures 5.11: Densitometry analysis of cytokines present on the cytokine array of HOS, 

MG63, U2OS and MCF7 72 hour conditioned media. Cytokines which were present in the 

cytokine array from MG63, U2OS, HOS and MCF7 72 hour conditioned media were tested 

for pixel density using ImageJ. In order to normalise all cytokine spots with background 

staining, the pixel density of the blot around each spot was analysed and the total 

background pixel density was averaged and subtracted from each positive result, to 

calculate the relative pixel density.  Data presented as mean and standard deviation, n=2. 
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5.10 Expression profile of CCL-2 and IL-8 from sarcoma cell lines and MCF7 

The cytokine array (Figure 5.10) identified the proteins IL-8 and CCL-2 as candidate growth 

promoting factors in OS conditioned media. Commercially available ELISA kits for IL-8 and 

CCL-2 (BioLegend®) (Section 2.5.2) were used In order to establish the concentration of the 

cytokines within 24 hour and 72 hour conditioned media (Appendix II). 

The pattern of IL-8 expression as measured by ELISA did not correlate with the conditioned 

media growth enhancement observations (Figure 5.12.B). 143B cells which was found not 

to produce an enhanced colony sizes in response to its own conditioned media was found 

to secrete more IL-8 than HT1080, SKLNS1 and U2OS (Figure 5.13), which all produced 

conditioned media which increased colony size (Figure 5.12.B). Both 24 hour and 72 hour 

conditioned media from MG63, U2OS, HOS and MCF7 were reciprocally tested upon each 

cell line to identify if the growth enhancing properties of each conditioned media were 

observed in the other cell lines (Figure 5.7). U2OS 24 hour conditioned media was found to 

be the most growth enhancing media when compared to MG63 and enhanced the growth 

of all cell lines tested, whereas MG63 conditioned media had no effect on HOS or MCF7 

(Figure 5.7). U2OS 24 hour and 72 hour conditioned media IL-8 concentration is statistically 

lower than MG63, which would therefore indicate that IL-8 is not a growth factor (Figure 

5.14). This is supported by Pearson’s correlation coefficient analysis of IL-8 concentration 

with the change in colony size in response to a cell lines conditioned media. This produced 

a positive correlation of 0.6, however, this correlation was not statistically significant (Table 

5.2). 

CCL-2 expression was found to more closely resemble the observed growth responses to 

conditioned media. When comparing 24 hour conditioned media to the non-growth 

responsive media from 143B, it was found that all cell lines which responded with increased 

growth to their media (Figure 5.12.A) (Cal72, G292, MG63, HT1080, SKLNS1, U2OS and 

SaOS-2) contained elevated concentrations of CCL-2 compared to non-growth enhancing 

media (Figure 5.15). When analysing the 24 hour and 72 hour conditioned media of MG63 

and U2OS 24 hour conditioned media was found to contain an elevated concentration 

compared to MG63 media (Figure 5.16). As U2OS 24 hour conditioned media was found to 

enhance colony growth in all cell lines tested, whereas MG63 was unable to in HOS and 
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MCF7 (Figure 5.7), this is consistent with the growth responses observed. Interestingly 72 

hour MG63 media contained elevated quantities of CCL-2 compared to U2OS (Figure 5.16), 

HOS and MCF7 conditioned media contained a significantly lower concentration of CCL-2 

than MG63 conditioned media at 24 and 72 hours. Correlating colony growth increases 

with CCL-2 24 hour conditioned media concentration also supports CCL-2 as a candidate 

growth factor, producing a statistically significant positive correlation of 0.67 (Table 5.2).  

 

 

Figure 5.12: Analysis of CCL-2 and IL-8 concentration of conditioned media from sarcoma cell lines 

and MCF7 and the growth response of each cell line to its conditioned media. The concentration 

of CCL-2 (A) and IL-8 (B) was assessed upon 24 hour conditioned media using a commercially 

available ELISA. The change in growth rate was assessed by identifying the change in colony size of 

unconditioned colonies compared to conditioned colonies. Data presented as mean and standard 

deviation (n = 3). Statistical significance calculated by comparing to MCF7 IL-8, CCL-2 concentration 

or change in colony size (Tukey’s post hoc analysis, ~p = <0.01) 
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Figure 5.13: Concentration of IL-8 in 24 hour conditioned media from sarcoma cell lines 
and MCF7. A commercially available IL-8 ELISA was used to assess IL-8 concentration. 143B 
conditioned media had no growth enhancing effect (Figure 5.1), therefore was used for 
comparison to identify statistically significant changes in IL-8 expression. Data presented as 
mean and standard deviation, n=3, significance calculated by comparing to 143B IL-8 
concentration (* = <0.05, ** = <0.01 Tukey’s post hoc analysis). 
 

 

Figure 5.14: Comparison of IL-8 concentration of 24 hour and 72 hour conditioned media 
from MG63, U2OS, HOS and MCF7. A commercially available IL-8 ELISA was used to assess 
IL-8 concentration. Statistical significance was calculated by comparing to MG63 24 and 72 
hour IL-8 concentration. Data presented as mean and standard deviation, n=3, significance 
calculated by comparing to MG63 IL-8 concentration (** = <0.01 Tukey’s post hoc analysis). 
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Figure 5.15: Concentration of CCL-2 in 24 hour conditioned media from sarcoma cell lines 
and MCF7. A commercially available CCL-2 ELISA was used to assess CCL-2 concentration. 
143B conditioned media had no growth enhancing effect (Figure 5.12.A), therefore was 
used for comparison to identify statistically significant changes in CCL-2 expression. Data 
presented as mean and standard deviation, n=3, significance calculated by comparing to 
143B CCL-2 concentration (* = <0.05, ** = <0.01 Tukey’s post hoc analysis). 
 
 
 

 

Figure 5.16: Comparison of CCL-2 concentration of 24 hour and 72 hour conditioned 
media from MG63, U2OS, HOS and MCF7. A commercially available CCL-2 ELISA was used 
to assess CCL-2 concentration. Statistical significance was calculated by comparing 24 hour 
CCL-2 concentration to MG63 24 hour and 72 hour concentration. Data presented as mean 
and standard deviation, n=3, significance calculated by comparing to MG63 CCL-2 
concentration (* = <0.05, *** = <0.0005 Unpaired T-test). 
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 (A) CCL-2        (B) IL-8 

  

Figure 5.17: Linear regression analysis of CCL-2 or IL-8 concentration of OS cell lines and 

MCF7 24 hour conditioned media against colony size change in response to growth in 

conditioned media. CCL-2 (A) and IL-8 (B) data presented as mean values, all conditions 

tested in triplicate. 

 

 

Table 5.2: Pearson’s correlation coefficient of sarcoma cell lines and MCF7 colony size 

change in response to auto conditioning with either CCL-2 or IL-8 24 hour conditioned 

media concentration. Pearson’s correlation coefficient was calculated using graph pad (* 

= p <0.05). 

 CCL-2 
(P value) 

IL-8 
(P value) 

Pearson’s correlation 

coefficient 

0.67 
(0.04)* 

0.60 
(0.15) 
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5.11 Discussion 

In order to identify if OS cell lines and MCF7 secrete a paracrine growth factor, conditioned 

media from each cell line was used to assess its impact on colony formation. The OS cell 

lines Cal72, G292, MG63, U2OS and SaOS-2 all responded with increased colony size in 

response to their conditioned media, indicating that these OS cell lines secrete a paracrine 

factor which increases growth. Although this factor may enhance cell proliferation, its role 

in protection against apoptosis has not been established. Therefore, the paracrine factor 

can only be described as increasing growth, which is the net cellular gain after cell death 

and proliferation. 143B, HOS and MCF7 do not release or respond to a paracrine signalling 

molecule. In the subsequent experiment two cell lines which responded with increased 

growth (U2OS and MG63) were compared with two cell lines which did not respond (MCF7 

and HOS). The results indicate that the unresponsive cell line HOS could be encouraged 

grow in the presence of U2OS and MG63 conditioned media, this increase was statistically 

significant in response to U2OS conditioned media indicating it has a greater ability to 

enhance growth. This finding demonstrates that OS shares a common paracrine signalling 

factor, which is supported by the finding that HOS enhanced the growth of MG63 and U2OS 

cells. The inability of HOS conditioned media to enhance its own proliferation suggests that 

it may be less responsive to the growth factor in comparison to MG63 and U2OS.  

 

In this chapter OS conditioned media (U2OS) was found to evoke a significant increase in 

the growth of the breast cancer cell line MCF7, which suggests that the paracrine signalling 

factor released by U2OS may have an effect on multiple cancer types. MCF7 cellular 

proliferation has been demonstrated to increase in response to SDF-1 which is released by 

cancer associated fibroblasts (Orimo et al., 2005). No cell line tested responded with 

increased growth to MCF7 conditioned media, therefore, this cell line does not secrete a 

growth factor and in vivo may obtain growth signals from surrounding fibroblasts in a 

paracrine fashion. MCF7 had the highest cell density when conditioned media was 

collected as compared to MG63, U2OS, HOS and MCF7.  This indicates that the growth 

enhancing properties of conditioned media are independent of cell density. 
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To further characterise the growth enhancing potential of U2OS conditioned media, 

conditioned media collected at different cell densities and cell exposure times was 

compared. It was found that a confluency ranging from 70 % – 100 % did not alter the 

growth properties of the conditioned media but increasing the exposure time did. 

Conditioned media exposed to cells for 72 hours was found to increase growth more than 

24 and 48 hour conditioned media. Analysis of the growth enhancing properties of 72 hour 

conditioned media using reciprocal analysis of MG63, U2OS, HOS and MCF7 cells, 

demonstrated that U2OS and MG63 cells produced the same response as was observed in 

24 hour conditioned media (MG63, U2OS and HOS conditioned media increased growth of 

both cell lines). HOS and MCF7 cells responded with increased growth to U2OS media which 

was also observed in response to 24 hour media. MCF7 cells also responded with increased 

growth to HOS conditioned media and HOS cells responded to MG63 conditioned media at 

72 hours. This finding suggests that MG63 cells do secrete growth factors which can 

influence multiple cell lines, however, the concentration at 24 hours is too low to achieve 

this.  

 

In order to increase the volume of reagents required for the growth assessment of 

conditioned media, 72 hour conditioned media from the same four cells lines (HOS, MG63, 

U2OS and MCF7) was tested in a 96 well format upon HOS and U2OS cells. This assay may 

present a less sensitive assay to measure growth than assessing colony size as HOS 

conditioned media had no effect upon on U2OS. In addition HOS cells did not respond with 

enhanced growth to MG63 conditioned media, which had been observed to increase 

colony size. Therefore, although the 96 well format does not exactly mirror the results of 

the colony size assay it does present a more efficient method to assess growth in response 

to conditioned media. 

 

In order to assess whether the growth enhancing properties of OS is common to other types 

of sarcoma, conditioned media from a Ewing’s sarcoma (RDES-1), fibrosarcoma (HT1080) 

and leiomysarcoma (SKLNS1) was tested upon the same cell line and upon U2OS cells. 

RDES-1 cells were loosely attached so would not form colonies making this cell line 

inappropriate for testing growth enhancement. HT1080 and SKLNS1 both produced growth 

factors which increased growth upon the same cell line and also U2OS cells. This finding 
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suggests that these cell lines may share a common growth factor with U2OS, to further 

elucidate this hypothesis SKLNS1 proliferation was tested using its own conditioned media 

and also HT1080 and U2OS conditioned media. SKLNS1 was found to respond only to its 

own conditioned media but not in response to HT1080 or U2OS media. Two explanations 

could explain this observation, either SKLNS1 utilise an alternative growth factor to HT1080 

and U2OS. Alternatively, SKLNS1 conditioned media may contain higher concentrations of 

the same cytokine and SKLNS1 cells have a reduced sensitivity.  

 

Isolated holoclonal cells from the MG63 cell line have been shown to have enhanced 

clonogenicity and proliferate more rapidly in vitro than non-holoclonal cells (Lou et al., 

2010). In order to assess whether growth enhancing conditioned media also enhances the 

presence of holoclones. The colony hierarchy frequencies were assessed in the presence of 

24 hour conditioned media, by the reciprocal testing of the cell lines HOS, U2OS and MCF7 

with each of their conditioned media along with MG63 conditioned media. U2OS cells 

which responded with increased growth in response to U2OS, HOS and MG63 conditioned 

media also responded with an elevated presence of holoclones and mercolones. Therefore, 

the enhanced growth in U2OS cells in response to paracrine factors could be linked to 

enhancing the maintenance of holoclonal cells. Assessment of putative CSC based on 

mammosphere forming ability has demonstrated that IL-8 signalling inhibition can 

decrease putative CSC in breast cancer cells ex vivo (Singh et al., 2013) and also decreases 

tumour growth in vivo (Ginestier et al., 2010). A cytokine present in OS conditioned media 

could therefore be promoting the growth of holoclones by maintaining the CSC phenotype 

in U2OS. The same increase in holoclones was not observed in HOS or MCF7, suggesting 

that holoclonal increase is not attributing to their enhanced growth in response to 

conditioned media. One observation common to all cell lines tested was in response to 

MCF7 conditioned media, which resulted in an increase in paraclones in all cell lines tested. 

Additionally HOS and MCF7 also had a reduced frequency of holoclones and meroclones. 

This reduction in amplifying colony types and shift toward the differentiated paraclonal 

colonies with limited proliferative properties could be attributed to MCF7 conditioned 

media inability to enhance growth. MCF7 has been identified to display characteristics of 

differentiated mammary epithelial tissue (Soule et al., 1973), therefore, may release a 

cytokine which enhanced differentiation in not only MCF7 but also OS cell lines. 
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In order to identify candidate growth factors responsible for the paracrine effects 

conditioned media cells from cell lines that enhanced growth (MG63 and U2OS) was 

compared to conditioned media which did not enhance growth (MCF7). In addition HOS 

conditioned media was also tested which enhanced growth but only upon MG63 and U2OS. 

These cell lines had an increased sensitivity to growth enhancing conditioned media, 

therefore HOS conditioned media is predicted to contain a lower growth factor 

concentration. Based on these findings any candidate growth factor must be highly 

expressed by U2OS and MG63, absent in MCF7 and weakly expressed by HOS. IL-8 and CCL-

2 were two cytokines to fit these criteria so were hypothesised to act as growth factors in 

OS conditioned media. The complement component 5 (C5) was also expressed by all three 

cell lines, however was not further tested due to its established role in innate immunity 

(Gerard and Gerard, 1991).  

 

Interestingly, all of the cell lines tested expressed the following cytokines; MIF, IL-5, IL-23, 

serpinE1 and RANTES. MIF was originally identified because it could inhibit monocyte 

migration in vitro (George and Vaughan, 1962), its expression has been associated with 

poor prognosis in soft cell sarcomas (Takahashi et al., 2013) and it has been found to act as 

a growth factor in eosphageal squamous cell carcinoma in vivo (Wang et al., 2014). IL-5 

recruits and differentiates eosinophils (Dubucquoi et al., 1994), IL-23 has been found to 

play a role in the suppression of innate immune responses against cancer cells, through the 

induction of murine tumours after exposure to carcinongens (3-methylcholanthrene). Mice 

lacking IL-23 have reduced fibrosarcoma formation and metastasis, however, this 

protection was lost if natural killer cells were absent, suggesting it suppresses immune 

response to cancer cells (Teng et al., 2010). SerpinE1 is a serine protease inhibitor which is 

important for blood clot breakdown, fibrinolysis and tissue repair (Bauman et al., 2002). Its 

role in cancer progression may seem contradictory, as metastasis relies upon tissue 

breakdown and dissemination of cancer cells, however, serpinE1 has been found as a 

marker of poor oral carcinoma prognosis (Gao et al., 2010). siRNA inhibition of serpinE1 in 

cell lines of fibrosarcoma (HT1080) and breast cancer (MDA-MB-231) has been shown to 

decrease in vivo tumour formation of these cell lines, which was attributed to increased 

cancer cell apoptosis (Fang et al., 2012). RANTES is a chemotractant for a variety of 
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leukocytes including eosinophils (Kameyoshi et al., 1992) and plasma and tissue levels 

correlate with breast and cervical cancer stage (Niwa et al., 2001). The cytokines with 

shared expression from the cell lines have a common role in inflammation and tissue repair, 

tumours have been shown to arse from sites of chronic inflammation (Anderson and Wong, 

2010). Therefore the cytokine expression profile from these cell lines indicates that 

maintaining the expression of inflammatory cytokines is important for continual cancer 

growth in vitro. 

 

In order to further characterise the IL-8 and CCL-2 expression profile from sarcoma cell lines 

and MCF7, the concentration of IL-8 and CCL-2 was quantified in conditioned media 

(collected after 24 hours growth) using an ELISA.  No correlation was observed between IL-

8 expression and the enhanced growth rates observed in response to conditioned media.  

This was particularly evident in the U2OS conditioned media which consistently increased 

growth and was found to contain less IL-8 than 143B conditioned media which had no 

growth enhancing effect. This finding was supported when correlating IL-8 concentration 

with increase in colony size observed in response to conditioned media from the same cell 

line, which was not found to produce a statistically significant Pearson’s correlation. In 

contrast, CCL-2 conditioned media concentration closely resembled the growth 

enhancement observed. Cell lines which produced conditioned media with an elevated 

concentration of CCL-2 were correlated with increased cell line growth at low density. 

 

CCL-2 has been shown to increase the proliferation and migration of prostate cancer cells 

in vitro. Interestingly the CCL-2 was hypothesised to originate not from tumour cells but 

bone marrow endothelial cells (Loberg et al., 2006). Media taken at 24 hours from U2OS 

cells was found to secrete a higher concentration than MG63, however, at 72 hours the 

conditioned media from MG63 contained an elevated concentration compared to U2OS. 

This finding indicates that U2OS CCL-2 expression although rapid after 24 hours may be 

decrease over time, whereas MG63 cells continually secrete CCL-2 at a consistently high 

rate. In response to the glycoprotein oncostatin U2OS cells have been found to express 

CCL-2, interestingly the CCL-2 mRNA levels peaked after 8 hours, which led to rapid CCL-2 

secretion over 24 hours and the rate of secretion decreased after 48 hours and 72 hours 

(Kok et al., 2009), which could explain the reduction in U2OS CCL-2 expression over time.  
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The growth enhancing properties of conditioned media from the cell lines MG63 and in 

particular U2OS has been established. The growth factors secreted from U2OS are able to 

enhance growth in not only alternative OS cell lines but sarcoma cell lines and MCF7 as well, 

indicating the presence of a common cancer growth factor. The growth enhancement in 

response to conditioned media was not found to be related to an increase in holoclones, 

however, the conditioned media from MCF7 which did not increase proliferation was found 

to increase the presence of paraclones, suggesting that this media may enhance the 

differentiation of these cell lines. The cytokine profiles of the cell lines tested, indicates that 

inflammatory cytokines are closely related to cancer progression in OS cell lines. IL-8 and 

CCL-2 were identified as candidate growth factors in growth enhancing conditioned media, 

which have both been identified in carcinoma proliferation. IL-8 has been demonstrated to 

enhance the symmetrical division of breast CSC (Singh et al., 2013, Ginestier et al., 2010), 

CCL-2 has been shown to increase prostate cancer proliferation and migration (Loberg et 

al., 2006, Loberg et al., 2007). Therefore, further investigation will be important to further 

understand the role these cytokines play in OS in vitro cell growth. 
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6.1 Introduction 

OS cell lines have been demonstrated to secrete a paracrine factor which enhances both 

OS and MCF7 growth (Section 5.2), the proteins IL-8 and CCL-2 were identified as candidate 

OS growth factors which may be responsible for this growth (Section 5.10). In response to 

tumour necrosis factor α (TNFα) the OS cell lines HOS, MG63, U2OS and SaOS-2 have been 

found to alter their expression profile with increased expression of the cytokines CCL-2 and 

IL-8 (Grigolo et al., 1999). CCL-2 and IL-8 are two cytokines which have been implicated in 

cancer progression, CCL-2 was originally identified for its role in inflammation and is a 

potent chemotractant factor for monocytes (Matsushima et al., 1989) and is utilised by 

osteoblasts for recruitment of monocytes to aid with osteolysis (Williams et al., 1992) 

(Section 1.4.4). CCL2 signals via the G-protein coupled receptor CCR2 and has been found 

reliant upon phosphatidyl-inositiol-3-kinase (PI3K) for intracellular signal transduction in 

both monocyte chemotaxis and in vitro prostate cancer growth (Terashima et al., 2005, 

Loberg et al., 2006) (Section 1.4.4). In OS CCL2 secreted from the cell line MG63 has been 

attributed to cancer progression through the recruitment of tumour associated 

macrophages (TAM) (Graves et al., 1989). Solid tumours contain not only cancer cells but a 

large number of non-malignant cells (Pollard, 2004), these non-malignant cells frequently 

include TAM. In breast cancer TAM have been found to promote tumour progression by 

expressing TNFα, vascular endothelial growth factor and basic fibroblast growth factor, 

which have been implicated in angiogenesis (Lewis et al., 1995). The chemokine IL-8 signals 

via the CXCR1 and CXCR2 receptors (Park et al., 2011b) it has a potent chemotractive effect 

upon neutrophils (Yoshimura et al., 1987), therefore plays an important role in acute 

inflammatory responses. IL-8 is expressed by a wide range of cancer types including cancers 

including breast, colon, gastric, melanoma, pancreatic and B-cell chronic lymphocytic 

leukaemia (Lippitz, 2013), in breast cancer IL-8 has been demonstrated to not only increase 

cancer invasiveness (Freund et al., 2003) but also the presence of putative CSC based on 

the expression of ALDH and mammosphere formation (Charafe-Jauffret et al., 2009) 

(Section 1.4.5).  

The reliance of cancer cells upon growth factors and signaling molecules provides a 

therapeutic target to inhibit their growth or progression. These treatments often provide 

treatment strategies with decreased toxicity and high affinity for cancer cells (Heinrich et 
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al., 2003, Fisher et al., 1998, Fisher et al., 1994). Two successful examples of this targeted 

treatment strategy in breast cancer include the estrogen receptor antagonist tamoxifen, 

which has been found to reduce breast cancer incidence by 50 % in high risk patients (Fisher 

et al., 1998) and humanized monoclonal antibody trastuzumab which inhibits signal 

transduction via HER2 (Owens et al., 2004) (Section 1.4.6).  

 

Aims 

In order to establish the role CCL-2 and IL-8 play in OS proliferation, recombinant CCL-2 and 

IL-8 will be supplemented in to unconditioned media to assess changes in proliferation. In 

addition IL-8 and CCL-2 receptor anatagonism and gene knockown through RNA 

interference (RNAi) will be analysed to assess the impact upon cell line growth. This study 

will use OS cell lines HOS and U2OS. MG63 will also be used to replace HOS for low 

attachment assays in which HOS is unsuited. The specific objectives within this chapter are 

as follows: 

 Assessment of the in vitro role of candidate growth factors in OS growth through 

receptor inhibition, gene expression knockdown and cytokine supplementation. 

 Assessment of low attachment colony formation (sarcosphere assay and soft 

agarose assay) in response to recombinant CCL-2.  

 Analysis of gene expression in response to candidate cytokine and growth 

enhancing conditioned media to identify genes associated with enhanced 

proliferation.  
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6.2 Effect of IL-8 and CCL-2 receptor antagonism on HOS and U2OS growth rates 

The cytokines IL-8 and CCL-2 have been identified as potential growth enhancing factors 

produced in OS conditioned media (Section 5.10). Receptor antagonists were used in the 

presence of growth enhancing media (MG63 and U2OS 72 hour conditioned media) in 

order to identify whether these cytokines contribute to OS growth. The CXC chemokine IL-

8 has been found to signal via the CXCR1 and CXCR2 G-protein coupled receptors (Park et 

al., 2011b) (Section 1.4.5). In order to analyse the impact of IL-8 antagonists on the growth 

rate HOS and U2OS, cells were grown for 8 – 9 days and cell density was assessed using an 

MTT assay (Section 2.4.4).  No significant decrease in growth was observed in conditioned 

or unconditioned media for either U2OS or HOS cells in response to 200 ng/ml of CXCR1 

and CXCR2 antagonist antibodies (Figure 6.1). Increasing the concentration of the CXCR1 

inhibitory antibody 10 fold to 2 µg/ml also had no significant effect on the growth rates of 

either HOS or U2OS (Figure 6.2). These findings suggest that the IL-8 present in U2OS and 

MG63 conditioned media is not responsible for the growth enhancement observed in HOS 

and U2OS proliferation (Section 5.7).  

CCL-2 is specific for the G-protein coupled receptor CCR2 and CCR2 signal transduction can 

be inhibited using a specific CCR2 antagonist RS 504393 (Section 2.4.4). Using RS 504393 at 

a concentration of 1 µM had no significant effect on growth of HOS and U2OS cells when 

grown in unconditioned media and MG63 72 hour conditioned media (Figure 6.3). 

However, increasing the concentration to 10 µM significantly reduced the growth (Figure 

6.3). These findings suggest that both HOS and U2OS utilise CCR2 signaling to enhance 

proliferation. In addition, the increased growth observed in U2OS and HOS cells in response 

to MG63 conditioned media (Section 5.7) is attributed to the expression of CCL-2 from 

MG63 cells. CCR2 antagonism reduced the growth of U2OS cells in response to U2OS 

conditioned media (Figure 6.4.A), however it had no significant effect on HOS proliferation 

in the presence of U2OS conditioned media (Figure 6.4.B).     
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(A) U2OS 

 

(B) HOS 

 

Figure 6.1: IL-8 receptor anatagonism of U2OS and HOS cells growth in unconditioned, U2OS and 

MG63 72 hour conditioned media in the presence or absence of 200 ng/ml CXCR1 and CXCR2 

inhibitory antibodies. U2OS (A) and HOS (B) cells were grown in unconditioned (red bars), U2OS 

conditioned (green bars) and MG63conditioned (blue bars) in the absence and presence of CXCR1 

and CXCR2 antagonist antibodies (200 ng/ml).  Data presented as mean and standard error, all 

samples repeated in sextruplicate in 3 separate experiments (n = 3 independent replicates). Tukey’s 

post hoc analysis used to assess significance by comparing no antagonist present to antagonist in 

unconditioned, U2OS conditioned and MG63 conditioned cells. No significant difference observed 

between conditions. 
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 (A) U2OS 

 

(B) HOS 

 

Figure 6.2: IL-8 receptor anatagonism of U2OS and HOS cells growth in unconditioned, U2OS and 

MG63 72 hour conditioned media in the presence or absence of 2 µg/ml CXCR1 inhibitory 

antibody. To analyse the effect CXCR1 receptor antagonism upon OS growth U2OS (A) and HOS (B) 

cells were grown in unconditioned (red bars), U2OS conditioned (green bars) and MG63 blue bars 

in the absence and presence of  CXCR1 antagonist antibodies (2 µg/ml). Data presented as mean 

and standard error, all samples repeated in sextruplicate in 3 separate experiments (n = 3 

independent replicates). Tukey’s post hoc analysis used to assess significance by comparing to no 

antagonist present to antagonist in unconditioned, U2OS conditioned and MG63 conditioned cells. 

No significant difference observed between conditions. 
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(A) U2OS 

 

(B) HOS 

 

Figure 6.3: RS 504393 CCR2 receptor antagonism (1 µM) of U2OS and HOS cells growth in 

unconditioned, U2OS and MG63 72 hour conditioned media. To analyse the effect CCR2 receptor 

antagonism upon OS growth U2OS (A) and HOS (B) cells were grown in unconditioned (red bars), 

U2OS conditioned (green bars) and MG63 (blue bars) in the absence and presence  CCR2 anatgonist 

(1 µM).  Data presented as mean and standard error, all samples repeated in sextruplicate in 3 

separate experiments (n = 3 independent replicates). Unpaired T-test used to assess statistical 

significance by comparing to no antagonist present to antagonist in unconditioned, U2OS 

conditioned and MG63 conditioned cells. No significant difference observed between conditions. 
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(A) U2OS 

 

 

(B) HOS 

 

Figure 6.4: CCR2 receptor antagonism (10 µM) of U2OS and HOS cells growth in unconditioned, 

U2OS and MG63 72 hour conditioned media.  To analyse the effect CCR2 receptor antagonism 

upon OS growth U2OS (A) and HOS (B) cells were grown in unconditioned (red bars), U2OS 

conditioned (green bars) and MG63 conditioned (blue bars) in the absence and presence  CCR2 

anatgonist (10 µM). Data presented as mean and standard error, all samples repeated in 

sextruplicate in 3 separate experiments (n = 3 independent replicates). Significance calculated using 

an unpaired T-test (*= < 0.05). 
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6.3 Growth reponse of HOS, MCF7 and MG63 cells to IL-8 and CCL-2 

To establish whether CCL-2 or IL-8 enhanced growth when supplemented individually or 

when combined in unconditioned media, the colony size after exposure to 2 ng/ml of both 

cytokines was analysed. Both HOS and MCF7 did not respond to either cytokines when 

supplemented indivdually or when combined in to unconditioned media (Figure 6.5.A and 

B). In contrast MG63 responded to CCL-2 when used as a single suplement and produced a 

significant increase in colony size compared to unconditioned colonies and CCL-2 and IL-8  

co-supplemeted colonies (Figure 6.5.C).   

(A) HOS     (B) MCF7 

  

    (C) MG63 

 

Figure 6.5 Growth reponse of HOS, MCF7 and MG63 to CCL-2 and IL-8. 2 ng/ml of IL-8, CCL-2 or IL-
8 and CCL-2 was tested on HOS (A), MCF7 (B) and MG63 (C). Cells grown in 6 well dishes and colony 
size was assessed using ImageJ. Statistaical significance assessed using Tukey’s posy hoc analysis 
(*p = <0.05). 
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6.4 Growth response of HOS and U2OS to recombinant CCL-2 in a 96 well growth assay 

The use of a CCR2 antagonist reduced the growth rates of both HOS and U2OS (Figure 6.4). 

To assess the effect of CCL-2 upon growth, recombinant CCL-2 was supplemented in to 

complete media and growth was assessed using a 96 well MTT assay (Section 2.4.3). CCL-2 

used at a concentration of 10 ng/ml did not enhance the growth of either U2OS or HOS 

(Figures 6.5 and 6.6). An increased CCL-2 concentration of 100 ng/ml resulted in enhanced 

growth in U2OS (Figure 6.6) and HOS (Figure 6.7). Both HOS and U2OS cells were also grown 

in U2OS 72 hour conditioned media to compare the growth enhancement of the 

conditioned media to recombinant CCL-2. Both HOS and U2OS responded with increased 

growth in response to U2OS conditioned media as previously observed (Section 5.8). U2OS 

72 hour conditioned media contains 22 ng/ml of CCL-2 according to the CCL-2 ELISA 

(Section 5.11). Recombinant CCL-2 at a concentration of 100 ng/ml did not enhance 

proliferation to the same degree as U2OS media, therefore, the lower concentration of 

CCL-2 secreted by U2OS suggests that either the recombinant protein has less activity 

compared to the native version expressed by U2OS or another growth factor is responsible 

for the increased proliferation.  
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Figure 6.6: Supplementation of recombinant CCL-2 in to complete media to assess the 

growth affect upon U2OS cells. U2OS cells were exposed to 10 and 100 ng/ml recombinant 

CCL-2 and also U2OS 72 hour conditioned media (U2OS cond) for a growth comparison. 10 

ng/ml CCL-2 had no effect on growth but 100 ng/ml increased growth. Data presented as 

mean and standard error, all samples repeated in sextruplicate in 3 separate experiments 

(n = 3 independent replicates). Significance calculated using Tukey’s post hoc analysis by 

comparing to unconditioned cells (**= < 0.01). 

 

Figure 6.7: Supplemention of recombinant CCL-2 in to complete media to assess the 

growth affect upon HOS cells. HOS cells were exposed to 10 and 100 ng/ml recombinant 

CCL-2 and also U2OS 72 hour conditioned media (U2OS cond) for a growth comparison. 

CCL-2 at 10 and 100 ng/ml had no effect on growth but U2OS conditioned media increased 

growth. Data presented as mean and standard error, all samples repeated in sextruplicate 

in 3 separate experiments (n = 3 independent replicates). Significance calculated using 

Tukey’s post hoc analysis by comparing to unconditioned cells (*= <0.05, ** = <0.01). 
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6.5. Assessment of soft agarose colony formation in response to recombinant IL-8 and 

CCL-2 in the OS cell lines MG63 and U2OS 

The soft agarose assay is an in vitro assay which has been found to replicate cancer growth 

rates observed in vivo (Courtenay, 1976), therefore, soft agarose colony formation 

represents an in vitro technique to assess the in vivo tumourigenicity of a cell line. MG63 

and to a lesser extent U2OS have been demonstrated to produce colonies in soft agarose, 

whereas, HOS was unable to form colonies (Fawdar, 2010). Based upon these findings 

U2OS and MG63 were selected to be grown in the soft agarose assay in the presence of 

recombinant CCL-2 and IL-8 to assess the effect of these cytokines upon colony formation. 

According to ELISA results MG63 72 hour conditioned media contained the highest 

concentration of CCL-2 and IL-8 (Section 5.11) and therefore concentrations which 

replicated these were chosen (CCL-2 concentration of 36.4 ng/ml and IL-8 a concentration 

of 9 ng/ml). Colony formation was monitored over 12 – 15 days beyond this point a 

monolayer formed on the agarose and the media acidified (Section 2.2.5). MG63 cells were 

found to produce colonies of a greater size than U2OS and MG63 colonies were oval in 

shape unlike the irregular shapes produced by U2OS (Table 6.1). U2OS cells were found to 

produce a greater number of colonies in response to CCL-2 (Figure 6.8), which suggests that 

U2OS may rely on CCL-2 signaling to promote growth in vivo. MG63 cells did not respond 

to CCL-2 (Figure 6.9) suggesting that it may not be a universal growth factor in all OS 

tumours. Neither U2OS nor MG63 responded to IL-8 (Figures 6.9 and Figure 6.10), 

indicating that this cytokine does not have a role in soft agarose colony formation in U2OS 

and MG63. 
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Cytokine 

supplement 

MG63 
(12 days growth) 

U2OS 
(15 days growth) 

Unconditioned 
 
 

  

Recombinant 
CCL-2 

(36.4 ng/ml) 

 
 

Recombinant 
IL-8  

(9 ng/ml) 

  

Figure 6.8: Appearance of MG63 and U2OS soft agarose colonies formed in the absence 

and presence of recombinant CCL-2 and IL-8. Cells seeded at a density of 1053 cells/cm2 

and grown for 12 – 15 days under standard culture conditions. Scale bars represent 100 

µM. 
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Figure 6.9: Number of U2OS colonies present in the soft agarose assay in response to CCL-

2 and IL-8. U2OS cells were seeded at 1 x 10 cells/6 well and allowed to grow for 15 days 

in the absence and presence of 36.4 ng/ml CCL-2 and 9 ng/ml IL-8. Colonies ≥ 85 µM were 

counted and data presented as mean and standard deviation, all samples tested in 

triplicate (n = 3). Significance calculated using Tukey’s post hoc analysis by comparing CCL-

2 to unconditioned and IL-8 (* = <0.05). 

 

 

Figure 6.10: Number of MG63 colonies present in the soft agarose assay in response to 

CCL-2 and IL-8. MG63 cells were seeded at 1 x 10 cells/6 well and allowed to grow for 12 

days in the absence and presence of 36.4 ng/ml CCL-2 and 9 ng/ml IL-8. Colonies ≥ 85 µM 

were counted and data presented as mean and standard deviation, all samples tested in 

triplicate (n = 3). Tukey’s post hoc anlysis used to assess statistical significance, no 

significant difference observed. 
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6.6. Assessment of sarcosphere formation in response to recombinant IL-8 and CCL-2 in 

the OS cell line MG63 

The sarcosphere assay was originally proposed to select multi-potent neuronal cells 

(Reynolds et al., 1992), however, this assay has also been utilised to select for CSC which 

are able to grow within these serum depleted and low attachment conditions. OS cell lines 

have been screened for their sarcosphere forming ability, MG63 has been found to produce 

secondary sarcospheres (Section 3.7) so was used to identify if IL-8 or CCL-2 and any effect 

sarcosphere forming ability. A concentration of 2 ng/ml recombinant IL-8 or CCL-2 was 

supplemented in to growth media, which was chosen to reflect the concentration identified 

in U2OS 24 hour condtioned media (0.65 ng/ml IL-8 and 1.3 ng/ml CCl-2) (Section 5.11). 

U2OS 24 hour conditioned media was found to enhance growth in MG63 (Section 5.7), 

therefore, selecting a concentration higher than U2OS conditioned media could be 

hypothesised to increase MG63 sarcosphere formation. 

Exposure of MG63 cells to IL-8 and CCL-2 did not alter the appearance of primary 

sarcospheres. In all conditions tested the primary sarcosphere appearance was oval shaped 

as was observed when grown in unconditioned media.  However IL-8 and CCL-2 exposed 

sarcospheres presented a smoother appearance and individual cells within the spherical 

colony were less identifiable (Figure 6.11). Assessment of the size of these primary 

sarcospheres indicated that MG63 sarcospheres conditioned with IL-8 or CCL-2 did not 

have an increased size (Figure 6.12), suggesting that IL-8 and CCL-2 does not enhance the 

proliferation of primary sarcospheres or this was masked by the sarcospheres having a 

more compact shape. Secondary sarcospheres generated from all the conditions tested had 

a similar appearance which was characterised by a small colony size with individual cells 

clearly visible. However, IL-8 and CCL-2 conditioned cells produced colonies with a more 

spherical shape than the irregular shape of unconditioned colonies (Figure 6.11). Analysis 

of the sarcosphere forming efficiency of secondary sarcospheres showed that exposure to 

IL-8 and CCL-2 did not alter the sarcosphere forming efficiency of MG63 (Figure 6.13), 

suggesting that IL-8 and CCL-2 do not enhance the formation of sarcospheres in MG63.   
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Figure 6.11: Appearance of MG63 primary and secondary sarcosphere formed in the 

absence and presence of recombinant CCL-2 and IL-8. MG63 cells seeded at a density of 

1053 cells/cm2 and grown for 7 days to form primary sarcospheres before passaging and 

re-seeding at 211 cells/cm2 and allowing secondary sarcospheres to form over 7 days under 

standard culture conditions. 2 ng/ml of IL-8 and CCL-2 were supplemented in to 

sarcosphere media. Scale bars represent 100 µM, images representative of 4 images. 
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Figure 6.12: Analysis of primary sarcosphere sizes in MG63 in response to IL-8 and CCL-2. 

MG63 cells were either unconditioned (no cytokine) or exposed to either 2 ng/ml IL-8 or 

CCL-2, sarcosphere size assessed using ImageJ. All results repeated in triplicate (n = 3), 

presented as mean and standard deviation. Statistical significance was assessed using 

Tukey’s post hoc analysis. No significance was observed when comparing all condition 

combinations. 

 

 

Figure 6.13: Analysis of secondary sarcosphere forming efficiency of MG63 cells in 

response to IL-8 and CCL-2. MG63 cells were treated with either unconditioned (no 

cytokine) media or media supplemented with either 2 ng/ml IL-8 or CCL-2. Sarcosphere 

forming efficiency (SFE), was assessed by counting each sarcosphere ≥ 40 µM. All results 

repeated in triplicate (n = 3), presented as mean and standard deviation. Statistical 

significance was assessed using Tukey’s post hoc analysis. No signifiance was observed 

when comparing all condition combinations. 
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6.7 Analysis of CXCR1, CXCR2 and CCR2 expression in OS cell lines and MCF7 

IL-8 and CCL-2 have been identified as potential growth factors in OS cell lines (Section 

5.11), therefore, identifying if the cell lines express the appropriate cognate receptors is 

necessary to evaluate whether receptor expression is linked to the observed proliferation 

response to conditioned media. IL-8 has been shown to signal via two different G-protein 

coupled receptors; CXCR1 and CXCR2 (Park et al., 2011b) (Section 1.4.5), whereas CCL-2 is 

specific to only one receptor CCR2 (Section 1.4.4). The expression level of each receptor 

expressed by the selected cell lines (HOS, MG63, U2OS and MCF7) was evaluated by, fixing 

cells and antibody staining for both surface and intracellular receptor expression which was 

evaluated using flow cytometry (Section 2.8.2).  

Earlier findings indicated that the OS cell lines MG63 and U2OS respond with enhanced 

growth to all conditioned media apart from MCF7 media (Section 5.7). HOS only responded 

to MG63 and U2OS conditioned media. U2OS and MG63 conditioned media contained 

higher quantities of both cytokines compared to HOS conditioned media as determined by 

ELISA (Section 5.11). Therefore, it could be hypothesised that both U2OS and MG63 express 

higher levels of the growth factor receptor than HOS or MCF7, because they are able to 

respond to lower concentrations of the growth factor.   

The CXCR1 expression profile did not fit the expected receptor expression pattern with all 

OS cell lines having a similar profile (Figure 6.14) with mean receptor expression values 

between 158.1 to 277.1 (Table 6.1). For CXCR2 the highest expression was observed in 

MCF7 with a mean expression value of 39, whilst HOS and U2OS expressed the lowest levels 

of the receptor of 9.5 and 9.7 respectively (Table 6.1). Expression levels of CXCR2 receptor 

did not therefore correlate with the observed growth in response to conditioned media. 

CCR2 receptor expression did fit the hypothesized receptor expression with U2OS and 

MG63 containing the largest mean expression of the receptors with 196.8 and 83.1 

respectively (Table 6.1).  In addition, MCF7 contained significantly less CCR2 expression 

than U2OS, (Table 6.1). The flow cytometry histogram of U2OS demonstrates the large 

proportion of cells positive for CCR2 in this cell line, demonstrating the high number of cells 

expressing this receptor. 
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MG63 

U2OS 

MCF7 

Figure 6.14: Flow cytometry overlay analysis of CXCR1, CXCR2 and CCR2 expression from the cell lines HOS, MG63, U2OS and MCF7. Cells stained 

with primary and secondary antibodies for the markers (Section 2.8.2), for analysis stained cells normalised to 1 x 104 and dead cells and duplets (two 

cells passing through the laser at once) excluded. The control population of cells was stained with an isotype matched primary antibody and the same 

secondary antibody (red) as used for CXCR1 (green), CXCR2 (blue) and CCR2 (yellow) staining. The x axsis on graphs represents cell counts and y axis 

FL1 Log ranging from 100 - 104. 
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Table 6.1: CXCR1, CXCR2 and CCR2 expression in the cell lines HOS, MG63, U2OS and 

MCF7. The values indicate the difference in mean fluoroesence between control 

populations (isotype matched primary antibody and the same secondary antibody used for 

analysis of CXCR1, CXCR2 and CCR2) and marker labelled population after removal of dead 

cells. Highlighted red indicates significant difference to expression in MCF7 (Significance 

Tukey’s post hoc analysis * < 0.01). 

 

Cell line CXCR1 expression  
± std dev 

CXCR2 expression 
± std dev 

CCR2 expression 
± std dev 

HOS 277.1 ± 196.2 9.5 ± 3.5 76.0 ± 54.8 

MG63 172.0 ± 75.6 13.1 ± 6.3 83.1 ± 27.3 

U2OS 295.5 ± 56.4 9.7 ± 6.8 196.8 ± 72.8* 

MCF7 151.8 ± 40.1 39.0 ± 21.2 32.3 ± 16.0 
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6.8 RNA inference of CCL-2 gene expression in U2OS cells 

In order to assess the role CCL-2 plays in OS proliferation CCL-2 gene expression was stably 

knocked down using RNA interference in the OS cell line U2OS. CCL-2 expression was 

suppressed using a retroviral based plasmid containing short hairpin RNA (shRNA) specific 

to CCL-2 (Section 2.6). To establish gene knockdown expression levels of CCL-2 were 

assessed using real time PCR, thermal melting curves of primers verified that the primers 

were binding to the same sequences within the cell lines (Appendix IV). The shRNA 

antisense sequences TTATAACAGCAGGTGACTGGG (knockdown 1) and 

TAAGGCATAATGTTTCACATC (knockdown 2), were found to reduce the presence of CCL-2 

mRNA in the CCL-2 knockdown cell lines compared to cells infected with a plasmid 

containing a shRNA sequence which has no specificity to any mammalian genes  (scrambled 

control).  

The sequence used in knockdown 2 was more effective than knockdown 1, which is evident 

because less CCL-2 mRNA is present in the knockdown 2 cells compared to knockdown 1 

(Figure 6.15). Conditioned media taken from the knockdown cells was tested using a CCL-2 

ELISA (Section 2.5.2) to confirm if CCL-2 had been knocked down at the protein level. 

Conditioned media (24 hour) of the knocked down cell lines was found to contain 82 % less 

CCL-2 for knockdown 1 and 96 % less  CCL-2 for knockdown 2 compared to the scrambled 

control cell line. U2OS wild-type cells (non-transduced) were found to contain a higher 

concentration of CCL-2 than scrambled control cells (Figure 6.15). The observed 

discrepancy of CCL-2 concentration between U2OS normal cells and empty vector control 

cells was not apparent in 72 hour conditioned media with both cell lines expressing 

approximately 22 ng/ml (Figure 6.17 and table 6.2). This finding confirms the CCL-2 mRNA 

levels observed in the cells lines correlate with CCL-2 expression at the protein level. 
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Figure 6.15: Relative mRNA expression of CCL-2 compared to 18S rRNA expression from 

U2OS empty vector cells and CCL-2 knockdown 1 and 2 cells. mRNA expression was 

calculated by subtracting ΔCt value of CCL-2 (target gene) from ΔCt of shRNA (calibrator 

gene) to produce ΔΔCt. Data presented as mean and standard deviation, all samples 

repeated in triplicate (n = 3). Statistical significance calculated using Tukey’s post hoc 

analysis (* = < 0.05, **= <0.01). 

 

 

Figure 6.16: Analysis of CCL-2 concentration of 24 hour conditioned media taken from 

normal U2OS cells along with U2OS CCL-2 knockdown lines. A CCL-2 ELISA was used to 

obtain concentrations, data presented as mean and standard deviation, all samples 

repeated in triplicate (n = 3). Statistical significance calculated using Tukey’s post hoc 

analysis (* = < 0.05, **= <0.01). 
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Figure 6.17: Analysis of CCL-2 concentration of 72 hour conditioned media taken from 

normal U2OS cells along with U2OS CCL-2 gene knockdown cell lines. A CCL-2 ELISA was 

used to obtain concentrations, data presented as mean and standard deviation, all samples 

repeated in triplicate (n = 3). Statistical significance calculated using Tukey’s post hoc 

analysis (**= <0.01). 

 

Table 6.2: Comparison of CCL-2 concentrations of conditioned media taken from U2OS 

cell, empty vector and knockdown 1 and 2 at 24 and 72 hours. CCL-2 concentrations 

(ng/ml) established using an ELISA, all samples tested in triplicate. Statistical significance 

calculated by comparing to scrambled control CCL-2 concentration using Tukey’s post hoc 

analysis (**p = <0.01). Data presented as mean values ± standard deviation (std dev). 

Conditioned media CCL-2 24 hr concentration 
(ng/ml) ± std dev 

CCL-2 72 hr concentration 
(ng/ml) ± std dev 

Normal U2OS 13.1 ± 0.23 ** 21.9 ± 0.24 

Scrambled control 8.9 ± 0.38  22.3 ± 0.94 

Knockdown 1 1.6 ± 0.01 ** 6 ± 0.16 ** 

Knockdown 2 0.4 ± 0.01 ** 1.7 ± 0.06 ** 
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6.9 Assessment of the U2OS CCL-2 knockdown cell lines proliferation rate 

To assess whether knockdown of CCL-2 effects the proliferation rate of U2OS cells, CCL-2 

knockdown cells were compared to U2OS empty vector control cells. Proliferation was 

assessed by seeding cells at 40 cells/96 well and growing for 8 days before staining with 

MTT and reading the absorbance at 530 nm (Section 2.4.3). The rate of growth of the 

scrambled control cells was found to be significantly faster than both U2OS CCL-2 

knockdown 1 and 2. Interestingly although knockdown 2 cells were found to express less 

CCL-2 than knockdown 1 (Table 6.2), this had no impact the overall growth rate of the two 

knockdown cell lines with both producing similar similar growth rates (Figure 6.18). 

Supplementing recombinant CCL-2 in to complete media had no impact upon the growth 

rates of either knockdown cell line, however, growth of both cell lines in 72 hour empty 

vector conditioned media restored the growth rates to that observed in empty vector cells 

(Figure 6.19). Interestingly, the 72 hour conditioned media from knockdown 1 cells 

restored growth to the same level as the scrambled control conditioned cells (Figure 

6.19.A), however, knockdown 2 cells grown in their own 72 hour conditioned media grew 

at a slower rate than empty vector conditioned cells (Figure 6.19.B). Knockdown 2 cells 

express less CCL-2 than knockdown 1 cells (Table 6.2), therefore, the reduced growth rate 

of knockdown 2 cells compared to scrambled control conditioned cells may be due to a 

lower concentration of CCL-2 in the conditioned media.  

Recombinant CCL-2 supplemented in to unconditioned media did not alter the growth rates 

of either knockdown cell line. To identify if a CCR2 signaling co-factor is required for the 

growth promoting effect, recombinant CCL-2 was added to 24 hour and 72 hour 

conditioned media collected from knockdown 2 cells. In both knockdown cell lines no 

increase in growth was observed when supplementing recombinant CCL-2 in to 72 hour 

conditioned media. However, the 24 hour conditioned media supplemented with CCL-2 

resulted in increased proliferation in knockdown 2 cells (Figure 6.20.B) but no change in 

growth was observed in the same conditions for knockdown 1 cells (Figure 6.19.A). This 

finding suggests that a co-factor may be required for the enhancement of growth in 

response to CCL-2, however, the increased proliferation observed at high recombinant CCL-

2 concentrations (100 ng/ml) did not restore growth to the same level as knockdown 2 72 

hour conditioned media which contains 1.7 ng/ml CCL-2.  Therefore, another growth factor 
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may also be responsible for the increased proliferation rates observed in response to U2OS 

conditioned media, as was indicated in the CCR2 antagonist growth experiments (Figure 

6.6). 

 

 

Figure 6.18: Analysis of U2OS empty vector control and CCL-2 knockdown cell lines 

growth rates. Cells grown seeded at a low density (40 cells/96 well) and grown for 8 day in 

1.25 µg/ml puromyicin and assessing growth by staining with 1 mg/ml MTT and measuring 

absorbance at 530 nm. Data presented as mean and standard error, all samples repeated 

in octruplicate in four separate experiments (n = 3 independent replicates). Statistical 

significance calculated using Tukey’s post hoc analysis comparing to scrambled control 

absorbance (**= <0.01). 
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(A) Knockdown 1 

 

(B) Knockdown 2  

 

Figure 6.19: Assessment U2OS CCL-2 knockdown cell lines growth response to CCL-2 (100 ng/ml) 

and conditioned media from scrambled control and CCL-2 knockdown cell lines. U2OS CCL-2 

knockdown 1 (A) and knockdown 2 (B) cell lines were seeded at low density (50 cells/96 well) and 

grown in the presence of CCL-2 (100 ng/ml), 72 hour conditioned media taken from the same cell 

knockdown cell line as was grown, 72 hour empty vector conditioned media. Empty vector cells 

were also included to identify for a growth rate comparison. Data presented as mean and standard 

error, all conditions repeated in octruplicate in 3 separate experiment (n = 3 independent 

replicates). Statistical significance calculated using Tukey’s post hoc analysis (* = < 0.05, ** = <0.01). 

Unconditioned and CCL-2 supplemented samples had a significantly lower absorbance than 

knockdown conditioned, scrambled control conditioned and scrambled control cells. 
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(A) Knockdown 1 

 

CCL-2 (100 ng/ml) - + - + - + 
24 hour 

knockdown 2 
conditioned 

- - + + - - 

72 hour 
knockdown 2 
conditioned 

- - - - + + 

 

(B) Knockdown 2 

 

CCL-2 (100 ng/ml) - + - + - + 
24 hour 

knockdown 2 
conditioned 

- - + + - - 

72 hour 
knockdown 2 
conditioned 

- - - - + + 

Figure 6.20: The growth effect of supplementing CCL-2 in to knockdown 2 conditioned media 

upon knockdown 1 and 2 cell lines. CCL-2 (100 ng/ml) was supplemented in to unconditioned 

media and conditioned media collected from knockdown 2 cells at 24 hours and 72 hours. U2OS 

CCL-2 knockdown 1 (A) and 2 (B) cell lines were used. Cells were seeded at 50 cells/96 well and 

grown for 8 days in standard cell culture conditions before staining with MTT. Data presented as 

mean and standard deviation, all conditions repeated in quadruplicate in 3 separate experiment (n 

= 3). Statistical significance calculated using an unpaired T-test (* = < 0.05), comparing the addition 

of CCL-2 in unconditioned, knockdown 1 and 2 conditioned media. 
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6.10 U2OS CCL-2 knockdown cell lines in low attachment conditions 

Growth of cancer cells within low attachment conditions has been found to replicate in vivo 

cancer growth (Courtenay, 1976). U2OS CCL-2 knockdown cell lines were grown within the 

soft agarose assay (Section 2.2.5) to assess whether CCL-2 expression effected colony 

formation in these conditions. The U2OS knockdown cell lines were grown in the absence 

and presence of recombinant CCL-2 (36.4 ng/ml). Cells grown in the presence of 

recombinant CCL-2 formed colonies which were in general larger in size and displayed a 

more oval appearance (Figure 6.21). An increased number of soft agarose colonies were 

formed by the scrambled control cells compared to the CCL-2 knockdown cell lines (Figure 

6.22), which suggests that the of expression CCL-2 may enhance proliferation in anchorage 

independent conditions. This finding is supported by supplementation of recombinant CCL-

2 (36.4 ng/ml) in to the soft agarose assay, which increased the number of colonies present 

in the scrambled control cells and knockdown 1 and 2 cells (Figure 6.23).  
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Cell line Unconditioned CCL-2 (36.4 ng/ml) 

 
 
 
 

Scrambled control 

 
 

 

 
 
 
 

Knockdown 1 

 
 

 
 

 
 
 
 

Knockdown 2 

 
 

 
 

 

Figure 6.21: Comparison of soft agarose colonies formed by U2OS CCL-2 knockdown cell 

lines and empty vector control in the absence (unconditioned) and presence of CCL-2 at 

36.4 ng/ml. Cells seeded at a density of 1053 cells/cm2 and grown for 12 days under 

standard cell culture conditions Bar = 100 µM. 
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Figure 6.22: Assessment of colonies formed by U2OS CCL-2 knockdown cell lines and 

empty vector control in the soft agarose assay. Colonies ≥ 40 µM were counted, data 

presented as mean and standard deviation, all conditioned tested in triplicate. Statistical 

significance calculated using unpaired T-test (* = < 0.05).  

 

 

 

Figure 6.23: Assessment of colonies formed by U2OS CCL-2 knockdown cell lines and 

empty vector control in the soft agarose assay. Cell lines grown in the absence 

(unconditioned) or presence of CCL-2 (MCP-1) at 36.4 ng/ml. Colonies ≥ 40 µM were 

counted, data presented as mean and standard deviation, all conditioned tested in 

triplicate. Statistical significance calculated using unpaired T-test (* = < 0.05).  
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6.11 Identification of genes with altered expression in U2OS cells in response to CCL-2 

and U2OS conditioned media 

Illumina gene microarrays were used in order to identify genes with altered expression in 

response to CCL-2 and U2OS conditioned media. U2OS cells were exposed to CCL-2 at a 

concentration of 36.4 ng/ml or U2OS conditioned for 8 days before RNA was extracted and 

analysed using an Illumina gene microarray (Section 2.7). This gene microarray analyses the 

expression level of all genes within the human genome. Samples were tested in triplicate, 

however, due to one array from the unconditioned cells and another from U2OS 

conditioned cells failing Bioconductor quality controls these samples were removed from 

analysis (Appendix V).  Analysis of the remaining samples using Genespring (Agilent 

Technologies®) demonstrated that gene expression of unconditioned cells and CCL-2 

exposed cells was similar whereas U2OS conditioned cells gene expression was clearly 

altered compared to unconditioned cells (Figure 6.24 and 6.25).  

When comparing gene expression of CCL-2 treated cells to unconditioned cells, treated 

cells had a small number of genes (81) with an altered level of expression (Figure 6.25.A), 

whilst U2OS cells treated with conditioned media had a larger number of genes (857) with 

altered expression compared to the unconditioned cells (Figure 6.25.B). CCL-2 and U2OS 

conditioned cells shared 16 genes with altered expression (Figure 6.26). Annotation of 

these gene using NIH DAVID identified that these 16 genes were involved in transcription, 

producing a modified Fisher’s exact test (EASE) score of 0.032 (Table 6.3). An EASE score of 

< 0.05 is statistically significant (Huang et al., 2008), therefore, the assignment of these 

genes to transcription related processes is reliable. Annotation of genes with altered 

expression in CCL-2 compared to unconditioned cells, identified 14 genes with an EASE 

score of 0.0192 were associated with transcription regulation (Table 6.4). Annotation of 

genes with altered expression in response to U2OS conditioned media identified a number 

of different cellular functions. A highly significant EASE score of 3 x 10-4 was observed in 

genes associated with anti-apoptotic processes (Table 6.5) and also cancer signaling 

pathway associated genes (Table 6.6). Genes associated with cancer signaling were used to 

review published research to identify if any had been associated with CCL-2 signal 

transduction. Other genes which were found to be up-regulated in response to U2OS 
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conditioned media included genes involved with cell locomotion (Table 6.7), indicating that 

U2OS conditioned may enhance U2OS cell migration.  

 

 

 

Figure 6.24: Heatmap of genes expressed in U2OS cells in response to unconditioned 

(DMEM), CCL-2 (MCP-1) and U2OS conditioned media. U2OS cells were seeded at 36 

cells/cm2 and grown either in unconditioned media or media supplemented with 36.4 

ng/ml CCL-2 or U2OS 72 hour conditioned media for 7 days. Cell RNA was extracted and 

samples analysed using the genespring software to identify a 1.2 fold change in gene 

expression along with an unpaired T-test (p = <0.05) to establish statistical significance. 
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(A)  CCL-2 conditioned     (B) U2OS conditioned 

 

Figure 6.25: Volcoano plots of genes with altered expression in CCL-2 conditioned or 

U2OS conditioned cells compared to unconditioned cells. Genes with altered expression 

in CCL-2 (A) and U2OS conditioned cells (B), were analysed using genespring to identify a 

1.2  fold change in expression along with an unpaired T-test (p = <0.05) to establish 

statistical significance. 

 

 

Figure 6.26: Venn diagram of genes with altered expression compared to unconditioned 

cells in CCL-2 conditioned and U2OS conditioned cells. In CCL-2 (red) 65 gene were found 

to have been altered and 841 in U2OS conditioned cells (blue) compared to unconditioned 

cells. CCL-2 and U2OS conditioned cells shared 16 genes which had the same alterations in 

expression compared to unconditioned cells.  
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Table 6.3: Transcription genes with shared altered expression in U2OS cells in response 

to recombinant CCL-2 and U2OS conditioned media. Using NIH DAVID genes were 

associated with transcription producing an EASE score of 0.032.   

Gene Protein description Change in expression Fold change 

PRDM10 PR domain containing 10 Decreased 1.22 

SNORA25 TATA box binding 
protein 

Increased 1.22 

POLR3G Polymerase (RNA) III 
(DNA directed ) peptide 

Decreased 1.21 

TCEA2 Transcription elongation 
factor 

Decreased 1.34 

ZNF783 Zinc finger family 
member 

Increased 1.21 

 

 

Table 6.4: Transcription genes with altered expression in U2OS cells in response to 

recombinant CCL-2. Using NIH DAVID genes were associated with transcription producing 

an EASE score of 0.0192.  

Gene Protein description Change in expression Fold change 

SOX17 SRY (sex determining region 
Y)-box 17RGHomo sapiens 

Increased 1.22 

SNORA25 TATA box binding protein Increased 1.22 

HES1 hairy and enhancer of split 
1 

Increased 1.25 

MLL3 myeloid/lymphoid or 
mixed-lineage leukemia 

Increased 1.24 

ZNF783 Zinc finger family member Increased 1.21 

 

 
 

Table 6.5:  Apoptosis inhibiting genes with altered expression in U2OS cells in response 

to U2OS conditioned media. Using NIH DAVID genes were associated with apoptosis 

inhibition producing an EASE score of 3 x 10-4.  

Gene Protein description Change in expression Fold change 

TAX1BP1 ax1 (human T-cell 
leukemia virus type I) 

binding protein 

Increased 1.21 

BIRC3 baculoviral IAP repeat-
containing 

Increased 1.65 

CRYAB crystallin, alpha Increased 1.39 

FOXC1 forkhead box Increased 1.21 

GCLC glutamate-cysteine 
ligase, catalytic subunit 

Increased 1.49 

GSTP1 glutathione S-
transferase 

Increased 1.35 

Table 6.5 continued overleaf. 

http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=809284
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=809284
http://david.abcc.ncifcrf.gov/relatedGenes.jsp?id=809284
http://david.abcc.ncifcrf.gov/relatedGenes.jsp?id=809284
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=814499
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=814499
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Table 6.5 
Gene Protein description Change in expression Fold change 

HSPBL2 heat shock 27kDa 
protein-like 2 

pseudogene; heat shock 
27kDa protein 

Increased 1.20 

NRG1 neuregulin Increased 1.20 

PIK3CA phosphoinositide-3-
kinase, catalytic, alpha 

polypeptide 

Increased 1.22 

RPS27 ribosomal protein S27a 
pseudogene 12; 

Increased 1.28 

SQSTM1 sequestosome Increased 1.63 

THBS1 thrombospondin Increased 1.45 

TNFAIP3 tumor necrosis factor, 
alpha-induced protein 3 

Increased 1.22 

UBB ubiquitin Increased 1.22 

 
 

 

Table 6.6:  Cancer signaling genes with altered expression in U2OS cells in response to 
U2OS conditioned media. Using NIH DAVID genes were associated with signaling in cancer 
cells producing an EASE score of 4.5 x 10 -5.  

Gene Protein description Change in expression Fold change 

BCL2L1 BCL2-like 1 Decreased 1.35 

TRAF1 TNF receptor-associated 
factor 1 

Increased 2.00 

ARNT2 aryl-hydrocarbon 
receptor nuclear 

translocator 2 

Increased 1.26 

AXIN2 axin 2 Increased 1.24 

BIRC2 baculoviral IAP repeat-
containing 2 

Increased 1.37 

BIRC3 baculoviral IAP repeat-
containing 3 

Increased 1.26 

BMP4 bone morphogenetic 
protein 4 

Decreased 1.64 

CDH1 cadherin 1, type 1, E-
cadherin 

Increased 1.28 

FGF1 fibroblast growth factor 
1 

Decreased 1.31 

FGFR3 fibroblast growth factor 
receptor 3 

Increased 1.25 

FN1 fibronectin 1 Increased 1.20 

FZD1 frizzled homolog 1 Increased 1.34 

FZD6 frizzled homolog 6 Increased 1.26 

GSTP glutathione S-
transferase pi 1 

Increased 1.35 

IKBKG inhibitor of kappa light 
polypeptide gene 

enhancer in B-cells, 
kinase gamma 

Increased 1.43 

Table 6.6 continued overleaf 

http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=797532
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=797532
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=797532
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=807966
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=807966
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=816515
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=790089
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=790089
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=810936
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=810936
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=810936
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=818884
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=784852
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=784852
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=795442
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=795442
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=780522
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=780522
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=787522
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=787522
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=800291
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=817433
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=817433
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=811245
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=811245
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=811245
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=811245


Chapter 6. Results  

239 
 

Table 6.6 
Gene Protein description Change in expression Fold change 

ITGA3 integrin, alpha 3 
(antigen CD49C, alpha 3 

subunit of VLA-3 
receptor) 

Increased 1.48 

ITGA6 integrin, alpha 6 Decreased 1.30 

ITGAV integrin, alpha V 
(vitronectin receptor, 

alpha polypeptide, 
antigen CD51) 

Increased 1.27 

IL-8 Interleukin 8 Increased 1.99 

LAMA5 laminin, alpha 5 Decreased 2.05 

LAMB1 laminin, beta 1 Decreased 1.33 

LEF1 lymphoid enhancer-
binding factor 1 

Increased 1.27 

MMP-9 matrix metallopeptidase 
9 

Increased 1.35 

MAP2K2 mitogen-activated 
protein kinase kinase 2 

Increased 1.32 

PIK3CA phosphoinositide-3-
kinase, catalytic, alpha 

polypeptide 

Increased 1.22 

PDGFRB phosphoinositide-3-
kinase, catalytic, alpha 

polypeptide 

Increased 1.49 

PRKCA protein kinase C, alpha Increased 1.41 

AKT1 v-akt murine thymoma 
viral oncogene homolog 

Decreased 1.30 

AKT3 v-akt murine thymoma 
viral oncogene homolog 

3 (protein kinase B, 
gamma) 

Increased 1.24 

ETS1 v-ets erythroblastosis 
virus E26 oncogene 

homolog 1 

Increased 1.27 

FOS v-fos FBJ murine 
osteosarcoma viral 

oncogene 

Decreased 1.75 

VEGFC ascular endothelial 
growth factor C 

Increased 1.42 

Wnt5b 
 

Wingless-type MMTV 
integration site, 

member 5B 

Increased 1.33 

 
 
 

 

 

 

http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=787106
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=787106
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=787106
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=787106
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=780476
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=820867
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=820867
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=820867
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=820867
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=772471
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=798108
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=800775
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=820338
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=820338
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=797532
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=797532
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=797532
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=797532
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=797532
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=797532
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=796402
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=788864
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=788864
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=788864
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=788864
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Table 6.7: Locomotion genes with altered expression in U2OS cells in response to U2OS 
conditioned media. Using NIH DAVID genes were associated with cell locomotion 
producing an EASE score of 3.2 x 10-4. 

Gene Protein description Change in expression Fold change 

THY1 THY-1 cell surface 
antigen 

Decreased 1.23 

ADORA1 
 

Adenosine A1 receptor Decreased 1.24 

CXCL16 Chemokine (C-X-C 
motif) ligand 16 

Increased 1.44 

F2RL1 
 

Coagulation factor II 
(thrombin) receptor-like 

1 

Increased 1.24 

HDAC9 Histone deacetylase 9 Increased 1.27 

IL6ST 
 

Interleukin 6 signal 
transducer (gp130, 

oncostatin M receptor) 

Increased 1.21 

IL-8 Interleukin 8 Increased 1.57 

LAMA5 
 

Laminin, alpha 5 Decreased 2.06 

LAMB1 Laminin, beta 1 Decreased 1.33 

MMP9 
 

Matrix 
metallopeptidase 9 
(gelatinase B, 92kDa 

gelatinase, 92kDa type 
IV collagenase) 

Increased 1.35 

PDGFRB Platelet-derived growth 
factor, receptor 

polypeptide 

Increased 1.49 

SERPINE2 Serpin peptidase, clade 
E (nexin plasminogen 
activator inhibitor), 

member 2 

Increased 1.61 

SLIT2 
 

slit homolog 2 
(Drosophila) 

 

Increased 1.31 

SPAG9 Sperm associated 
antigen 9 

Increased 1.21 

THBS1 
 

thrombospondin 1 Increased 1.45 

TPM1 Tropomyosin 1 (alpha) Increased 1.53 

AKT1 
 

v-akt murine thymoma 
viral oncogene homolog 

1 

Decreased 1.30 

VEGFC Vascular endothelial 
growth factor C 

Increased 1.42 

 

 

 
 
 
 

http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=817299
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=817299
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=817299
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=784676
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=784676
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=784676
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=798108
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=819926
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=819926
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=819926
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=819926
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=819926
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=772249
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=772249
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=817654
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=791692
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=791692
http://david.abcc.ncifcrf.gov/geneReportFull.jsp?rowids=791692
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6.12 Discussion 
 

In order to further elucidate the role that IL-8 and CCL-2 play in U2OS and HOS growth, 

receptor antagonists were used in the presence of growth enhancing conditioned media 

(MG63 and U2OS 72 hour conditioned media) to assess their impact upon proliferation. IL-

8 has been found to signal via two receptors CXCR1 and CXCR2 (Park et al., 2011b), 

therefore, antagonist antibodies for both receptors were supplemented in to conditioned 

and unconditioned media. An initial experiment at 200 ng/ml demonstrated that the 

antibodies had no effect upon growth in unconditioned or conditioned media. Treating the 

human breast cancer cell line SUM159 using the same CXCR1 inhibiting antibody as used 

within this study at 10 µg/ml reduced cell viability by 95 % (Ginestier et al., 2010). Due to 

this finding the concentration of CXCR1 was increased by 10 fold to 2 µg/ml, however, even 

at this increased concentration no effect on the growth rate of HOS or U2OS cells was 

observed. This suggests that IL-8 signalling is not involved with the enhanced proliferation 

in response to conditioned media.  

 

CCL-2 signals via the G-protein coupled receptor CCR2 (Deshmane et al., 2009) and 

therefore a specific CCR2 antagonist (RS 504393) was used which has a high affinity to 

selectively inhibiting CCL-2 binding to CCR2 (Mirzadegan et al., 2000, Cherney et al., 2008). 

RS 504393 when used at a concentration of 1 µM had no impact upon OS cell line 

proliferation, however increasing the concentration to 10 µM reduced the growth rate of 

both HOS and U2OS cells when grown in unconditioned and MG63 conditioned media. This 

finding suggests that HOS and U2OS cells both utilise CCR2 signalling for proliferation and 

MG63 conditioned media is reliant upon the presence of CCL-2 to enhance growth. The 

decreased growth observed in response to RS 504393 could be related to off target toxic 

effects, however, in the hamster ovary cell line (CHO) a RS 504393 concentration of 61 µM 

has been used and the cells are still able to migrate (Mirzadegan et al., 2000), therefore, 

the concentration of RS 504393 used within this study does not exceed in vitro published 

data. In addition U2OS conditioned growth enhancement was unaffected in both cell lines 

by RS 504393, suggesting that U2OS conditioned media contains additional growth factors, 

which compensates for the antagonism of CCR2.  
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In order to assess the growth enhancing potential of CCL-2, a commercially available 

recombinant CCL-2 was supplemented in to growth media. Findings show that recombinant 

CCL-2 did not increase the growth of either HOS or U2OS cells at 10 ng/ml. Increasing the 

concentration to 100 ng/ml did increase proliferation in U2OS and HOS cells. The increase 

in U2OS and HOS proliferation in response to 100 ng/ml CCL-2 was significantly less than 

the enhancement observed in response to U2OS 72 hour conditioned media. According to 

ELISA results this conditioned media contained 22 ng/ml CCL-2 which is less than the 100 

ng/ml of recombinant protein used. The reduced activity of recombinant protein could 

indicate; recombinant CCL-2 has less bio-activity than the native protein, another growth 

factor is present within growth enhancing conditioned media or a co-stimulatory factor is 

required for CCL-2 increased proliferation. Another level of complexity has also been 

identified in CCL-2 signalling. Normally CCR2 homodimers form post ligand interaction 

which allows signal transduction, however, heterodimers can also form between CCR2 and 

CCR5. These receptor heterodimers along with their ligands have been found to activate 

cellular response in HEK293 cells at 10 – 100 fold lower ligand thresholds than when a single 

cytokine is used (Mellado et al., 2001). RANTES signals via the CCR5 receptor (Wang et al., 

2012), RANTES was present in the conditioned media of all cell lines tested, therefore CCL-

2 and RANTES could be signalling via CCR2-CCR5 heterodimeric receptors to increase 

proliferation in OS cell lines. If a heterodimeric CCR2 is present within U2OS and HOS it 

could explain why a receptor antagonist for CCR2 inhibits proliferation but supplementing 

the recombinant protein has no effect. 

 

Soft agarose colony formation has been shown to be representative of in vivo cancer 

growth (Courtenay, 1976), and was used to identify if supplementing recombinant CCL-2 

and IL-8 enhanced U2OS and MG63 colony formation. IL-8 did not alter colony formation 

in either cell line, which suggests that IL-8 does not contribute to non-adherent colony 

formation in these OS cell lines. CCL-2 was found to enhance soft agarose colony formation 

in U2OS cells but not MG63, therefore CCL-2 may represent an important factor in tumour 

formation in vivo, however, a mouse model of OS growth is required for conclusive 

evidence. The inability of CCL-2 to increase MG63 soft agarose colony formation highlights 

the heterogeneity of the OS cell lines. ELISA evaluation of MG63 72 hour conditioned media 

demonstrated that it contained significantly greater amounts of CCL-2 than U2OS 
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conditioned media. Therefore, it could be possible that increased expression of CCL-2 from 

this cell line may help to compensate for the lack of CCL-2 in the unconditioned cells and 

enhance proliferation.  

 

Another assay which also selects cells able to grow in low attachment conditions is the 

spherical colony formation assay, however, this was originally utilised to select for multi-

potent stem cells (Reynolds et al., 1992), IL-8 supplementation in breast cancer cell lines 

has been demonstrated to enhance sarcosphere forming ability through increased putative 

CSC replication (Tsuyada et al., 2012, Ginestier et al., 2010). Due to MG63 being able to 

form secondary sarcospheres it was tested to identify if recombinant CCL-2 or IL-8 would 

enhance sarcosphere formation. Both IL-8 and CCL-2 did not increase MG63 sarcosphere 

formation suggesting that CCL-2 or IL-8 do not increase the presence of putative CSC in 

MG63.     

 

In order to assess whether the expression of IL-8 and CCL-2 receptors correlated with the 

observed sensitivity of the cell lines to growth enhancing conditioned media (MG63 and 

U2OS conditioned media). The cell lines HOS, MG63, U2OS and MCF7 were stained for 

receptor expression, cytokine receptors are frequently internalised in order to transduce a 

signal, in particular leukocyte CCR2 has been found to be rapidly internalised and a high 

rate of receptor recycling occurs (Volpe et al., 2012). Therefore intracellular expression of 

the receptors was tested to provide an accurate estimation of the receptors expressed by 

each cell line. CXCR1 was expressed to a high degree in the cell lines tested with no 

statistical difference in expression observed. For CXCR2 expression MCF7 was found to 

contain higher receptor CXCR2 expression than in the OS cell lines. Neither CXCR1 nor 

CXCR2 fitted the expected growth response to conditioned media, as U2OS and MG63 were 

found to be most responsive to the growth enhancement of the conditioned media, 

therefore, should have had a higher expression of a candidate growth receptor than HOS 

or MCF7. CCR2 however did fit this hypothesised expression pattern and MG63 and U2OS 

were found to express CCR2 at higher levels than HOS and MCF7. U2OS in particular was 

found to express the highest levels of CCR2, analysis of the flow cytometry histogram 

demonstrates that the receptor is expressed on almost all cells within this cell line. In 

prostate cancer enhanced CCR2 mRNA expression correlates with increased cell line 
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tumourigencity, which is also supported by analysis of clinical tissue samples, whereby an 

increase in CCR2 was associated with an increased Gleason score (Lu et al., 2007). It would 

be of interest to identify if CCR2 expression also correlated with OS progression and to 

identify if highly expressing CCR2 cells have enhanced tumourigenic properties. 

 

Short hairpin RNA (shRNA) is a method which has been found to inhibit gene expression, 

through viral transduction of plasmids into cells this allows stable integration of shRNA 

sequences in to the genome with high efficiency (Brummelkamp and Bernards, 2003). In 

order to assess the RNA gene interference of CCL-2 two CCL-2 antisense sequences 

TTATAACAGCAGGTGACTGGG (knockdown 1) and TAAGGCATAATGTTTCACATC (knockdown 

2) were transduced in to U2OS cells and found to reduce the presence of CCL-2 mRNA. 

Analysis of the presence of CCL-2 mRNA using real time PCR found that CCL-2 mRNA was 

significantly lower in both knockdown cell lines compared to a scrambled control vector. 

Knockdown 1 CCL-2 mRNA was present at a lower level than knockdown 2 cells, suggesting 

that knockdown 1 expresses more CCL-2 than knockdown 2. To confirm that CCL-2 protein 

expression reflects the CCL-2 mRNA levels, conditioned media from these genetically 

manipulated cells was analysed using a CCL-2 ELISA. The same pattern of CCL-2 mRNA 

expression observed in the knockdown cell lines and scrambled control cells was replicated 

in the CCL-2 concentrations in 24 hour and 72 hour conditioned media. This finding shows 

that the RNA interference has inhibited the expression of CCL-2 and this inhibition has 

increased efficiency in the knockdown 2 cell line. When comparing the scrambled control 

CCL-2 expression with the normal U2OS cells, at 72 hours both cell lines expressed 22 ng/ml 

of CCL-2, however, at 24 hours normal cells express statistically more CCL-2. This 

discrepancy is unexpected, however, cell density of conditioned media was not 

standardised and was collected after cells had reached confluency. Therefore, the higher 

expression of normal cells at 24 hours could be attributed to a higher cell density compared 

to the scrambled control cells.  

 

The proliferation of the knockdown cell lines was compared with the scrambled control 

cells to identify if decreasing CCL-2 expression effects U2OS growth. Findings show that 

both the knockdown 1 and 2 cells had a reduced proliferation rate compared to the control 

cells. However, although knockdown 2 cells expressed less CCL-2, this did not effect the 
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proliferation rate as both knockdown 1 and 2 produced the same amount of growth after 

8 days. Recombinant CCL-2 and conditioned media were assessed to identify if they could 

increase the proliferation of knockdown 1 and 2 cells, conditioned media from scrambled 

control cells was able to return the growth rate of the both knockdown cells to same 

proliferation rate as empty vector cells. This finding indicates that the CCL-2 present within 

the empty vector conditioned media is able to increase the growth rate, interestingly 

knockdown 1 conditioned media increased growth to the same level as the scrambled 

control conditioned media.  

 

The empty vector conditioned media contains 22 ng/ml of CCL-2 and knockdown 1 media 

contains 6 ng/ml CCL-2, this indicates that even though there is statistically a significant 

difference between the CCL-2 content of these conditioned media it has no impact upon 

growth. However, the lower concentration of 1.7 ng/ml found in 72 hour knockdown 2 

conditioned media did produce a lower growth enhancement than empty vector 72 hour 

conditioned cells. This suggests that the CCL-2 content of conditioned media may have an 

effect upon cell growth, however, recombinant CCL-2 at 100 ng/ml had no effect upon the 

growth of either knockdown cell line. It is possible that either the recombinant CCL-2 does 

not produce the same proliferative response as the native cytokine in the conditioned 

media or alternatively a CCR2 signalling co-factor may be required for CCL-2 signal 

transduction. In order to identify whether a co-signalling molecule is required, the effect of 

adding 100 ng/ml recombinant CCL-2 into 24 hour and 72 hour knockdown 2 conditioned 

media was tested using both knockdown cell lines. No increase in growth was observed 

when adding recombinant CCL-2 in to 72 hour conditioned media, however, the effect in 

response to 24 hour conditioned media were contrasting for each cell line. Knockdown 1 

had no growth enhancement, whereas knockdown 2 cells responded with increased 

growth in response to supplementing 100 ng/ml recombinant CCL-2 in to the conditioned 

media. The growth enhancement observed was not as high as occurred when cells were 

grown within 72 hour knockdown 2 conditioned media, therefore, supplementing 100 

ng/ml of recombinant CCL-2 does not have the same effect as the presence of 1.7 ng/ml 

native CCL-2. These findings complicate the role CCL-2 plays in growth enhancement and 

suggest that either the recombinant CCL-2 used does not have the same effect as the native 
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form of CCL-2 produced by U2OS or alternatively there is another growth factor which is 

required.  

 

The use of shRNA to inhibit CCL-2 expression could be causing off target effects which 

decrease growth, therefore producing misleading results indicating that CCL-2 is a OS 

growth factor. A scrambled control vector was used in this study, however, it is 

recommended that controls contain a sequence with a complimentary sequence except 

residues 2-7 or 2-8 from the 5’ end. This produces an shRNA which has a similar sequence 

but unable to inhibit gene expression, allowing the assessment of off target effects of the 

shRNA to be accurately assessed (Cullen, 2006). The gold standard to test RNAi specific 

gene inhibition is through the use of RNAi knockdown, followed by restoring gene function 

using an RNAi resistant gene for the same function. This procedure can be achieved by 

using a gene from a different species which carries out the same function to restore the 

organism to the original phenotype (Rusconi et al., 2005). In order to identify if CCL-2 

expression has been specifically inhibited in OS a functional complementary study would 

be required.     

 

CCL-2 was found to play a central role in promoting growth in the soft agarose colony 

formation assay for both knockdown cell lines. Both knockdown 1 and 2 were found to 

produce statistically less colonies than the scrambled control cell line. In addition 

supplementation of recombinant CCL-2 at a concentration reflecting that found in MG63 

72 hour conditioned media (36.4 ng/ml) enhanced the colony formation in both the 

scrambled control cell line and knockdown 1 and 2 cells. This demonstrates that 

recombinant CCL-2 does increase soft agarose colony formation, however, the inability to 

increase growth of the same cell lines in an adherent assay could be explained by the 

hierarchical nature of the cells which respond to CCL-2. Putative CSC in carcinomas which 

display EMT characteristics have been demonstrated to have an enhanced ability to form 

colonies in non-adherent in vitro conditions (Mani et al., 2008, Biddle et al., 2011), 

therefore, cells with similar EMT characteristics present in the U2OS knockdown and 

scrambled control cells lines may have enhanced sensitivity to CCL-2 than non-EMT cells.  

CCL-2 has been found to act as a chemoattractant for both prostate cancer and breast 

cancer cells, and is highly expressed by osteoblasts, therefore, has been hypothesised as a 
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mechanism by which these cancers commonly metastasise to the bone (Loberg et al., 2006, 

Molloy et al., 2009). Due to the high expression of CCL-2 from the OS cell lines it would 

appear contradictory to hypothesise that this is a chemoattractant for these metastatic OS 

cells, however, it may be a mechanism to increase the proliferation of OS EMT cells. The 

lungs are the primary site of OS secondary tumours (Jeffree et al., 1975), CCL-2 is expressed 

by the lungs and has been demonstrated to increase carcinoma lung metastasis through 

the recruitment of monocytes which promote tumour growth (Lu and Kang, 2009). It could 

therefore be hypothesised that CCL-2 may be an important protein in the establishment of 

secondary OS tumours through the recruitment of monocytes. 

 

Assessment of genes with altered expression in U2OS in response to recombinant CCL-2 

and U2OS conditioned media was achieved using a gene microarray. An increase in 

proliferation was observed by U2OS normal cells in response to recombinant CCL-2, 

therefore, U2OS normal cells were tested for their response to the cytokine and 

conditioned media. Due to a replicate from the unconditioned and U2OS conditioned 

microarray not meeting quality controls these samples were removed from analysis. 

Therefore, unconditioned and U2OS conditioned gene expression were tested in duplicate 

which will compromise the results and decrease the sensitivity of gene expression analysis. 

A total of 81 genes had altered expression in response to recombinant CCL-2 compared to 

unconditioned cells, U2OS conditioned media cells had a more dramatic change in gene 

expression with 857 genes displaying changes. In order to identify if genes with changed 

expression in response to CCL-2 were also present in response to U2OS conditioned media, 

the gene expression between the two conditions was compared, 16 genes had shared 

altered expression. Although 16 genes is a small sample size, annotation of these genes 

using NIH DAVID found that they were statistically enriched in transcription regulation, of 

the 16 genes 5 are involved in transcription regulation. This indicates that the increased 

proliferation observed in response to recombinant CCL-2 and U2OS conditioned media may 

be attributed to enhanced transcription. However, a limitation of NIH DAVID is that it does 

take in to account whether a gene has been up or down regulated, of these 5 genes only 2 

had increased expression. Therefore, the association of these genes with increased 

transcription is questionable.  
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In contrast to CCL-2, the 81 genes with changed expression in response to recombinant 

CCL-2 were also linked with transcription, however, 14 genes were identified all associated 

with transcription regulation and all had increased expression. FOXC1 and GSTP1 had 

increased expression in response to CCL-2 and loss of this gene in carcinoma cells decreased 

in vitro proliferation (Xu et al., 2012, Jin et al., 2012). Annotation of genes with altered 

expression in response to U2OS conditioned media identified a number of different cellular 

processes, including genes associated with inhibition of apoptosis, this indicates 

conditioned media may increase growth through suppression of cell death.  Inaddition 

U2OS conditioned media may enhance resistance to chemotherapeutic agents. GST1 which 

had increased expression in response to U2OS conditioned media has been associated with 

OS cis resistance in vitro and within clinical samples (Pasello et al., 2008). In OS IL-8 which 

was also increased in response to U2OS conditioned media has also been attributed to dox 

resistance (Rajkumar and Yamuna, 2008). Altered gene expression from U2OS conditioned 

media also identified an association with cell migration, indicating that the conditioning 

effect may also be promoting cell migration, however, further investigation will required 

to substantiate this hypothesis.  

 

The catalytic subunit of phosphoinositide-3-kinase (PIK3CA), was found up-regulated in 

response to U2OS conditioned media, and was associated with both anti-apoptotic and cell 

signalling processes. PI3K has been demonstrated as a signalling pathway utilised by CCR2 

in prostate cancer to increase proliferation (Loberg et al., 2006). Interestingly when CCR2 

forms a heterodimeric receptor complex with CCR5 and both receptors are activated by 

their respective ligands, this results in an increased and sustained activation of PI3K, 

compared to activation with CCL-2 alone (Mellado et al., 2001). Therefore, the 

enhancement in growth observed in response to U2OS conditioned media may be a 

consequence of intracellular signal transduction via PI3K and requires further investigation 

in OS proliferation.  

 

In conclusion, the growth enhancing properties of conditioned media from the cell lines 

MG63 and in particular U2OS has been established. The growth factors secreted from U2OS 

are able to enhance growth in not only alternative OS cell lines but sarcoma cell lines and 

MCF7 as well, indicating the presence of a common cancer growth factor. IL-8 and CCL-2 
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were identified as candidate growth factors in growth enhancing conditioned media, 

further testing of IL-8 and CCL-2 signal transduction demonstrated that CCR2 inhibition is 

required for growth and this finding was confirmed through CCL-2 RNA interference in 

U2OS. Supplementing recombinant CCL-2 to assess growth resulted in enhanced growth of 

normal U2OS and HOS or U2OS at high concentrations (100 ng/ml) but had no impact upon 

U2OS CCL-2 knockdown cell lines. A co-stimulatory factor did not appear to be required for 

CCL-2 growth enhancement, however, CCR2 and CCR5 heterodimers have been 

demonstrated to enhance CCR2 response to CCL-2 when in the presence of RANTES 

(Mellado et al., 2001), therefore, supplementing both cytokines may be necessary to 

increase proliferation. Within non-adherent conditions (soft agarose assay) did consistently 

increase proliferation of U2OS cells. This indicates that a subset of cells within U2OS cell 

line are able to grow within low attachment conditions are sensitive to growth 

enhancement in response to CCL-2. Analysis of altered gene expression in response to CCL-

2 suggests that the genes increase proliferation through up-regulation of transcription.
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7.1 General discussion 
 
This thesis is framed by three aims; to characterise putative CSC present in a panel of OS 

cell lines, identify if putative OS CSC contribute to chemotherapeutic drug resistance and 

to characterise OS signaling used to control growth.  

 

Defining populations of putative CSC within OS cell lines was achieved by screening OS cells 

for ALDH and CD117 expression, both markers have been previously identified as OS CSC 

markers in a small number of cell lines (Wang et al., 2011, Adhikari et al., 2010). Both 

proteins were found to be heterogeneously expressed in vitro (Section 3.2) with CD117 

expression ranging from a population of 0 % to 6.4 % and ALDH from 0.9 % to 60 % of cells. 

Cancer associated mutations have been demonstrated to enhance ALDH expression, loss 

of the tumour suppressor PTEN in mammary epithelial cells increased ALDH expression by 

2 fold (Dull et al., 1998). OS tumours are characterised by a host of genetic abnormalties 

(Hansen, 2002), therefore the acquisition of these mutations during OS progression may 

result in the observed variations in ALDH expression between the cell lines. The OS cell lines 

tested are all able to recapitulate the colony hierarchies at low cell density (Section 3.5), 

however, the highly expressing ALDH cell lines (>10 % ALDH expression) contained ALDH 

positive cells within all the colony hierarchies not just the holoclones which are thought to 

originate from and contain CSC (Section 3.6). Therefore, if OS holoclones represent 

populations of OS CSC, as has been observed in carcinoma (Li et al., 2008), this makes ALDH 

an unsuitable CSC marker in these cell lines with an ALDH population greater than 10 % 

(143B, G292 and HOS). In contrast cell lines with lower ALDH expression (<10 % of cells) 

(MG63, SaOS-2 and MCF7) contained ALDH positive cells only within the holoclones, which 

indicates it has potential to function as a CSC marker in these cell lines, although further 

research is required to confirm the location of OS CSC within the colony hierarchies. This 

research will be aided by the use of multiple CSC markers for definitive identification of 

CSC, as has been utilised with the use of CD117 and stro-1 expression in the identification 

of OS CSC (Adhikari et al., 2010).  

 

As part of the putative CSC characterisation cell lines were screened for epithelial and 

mesenchymal markers to evaluate the cellular origin of these cell lines. Results indicate 
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that all OS cell lines display a mesenchymal phenotype, this was evident from low e-cad 

expression (< 0.22 %) and high vimentin expression (> 90 %) (Section 3.3). These findings 

are suggestive of a mesenchymal cell origin of OS, which has been previously hypothesised 

(Tang et al., 2008), however, further conclusive evidence linking MSC to OS is required. One 

recent study demonstrated that human xenotransplanted MSC cells lacking Rb and P53 

could form OS tumours when grown upon calcified ceramic scaffolds in a murine model 

(Rubio et al., 2014). P53 and Rb are common OS mutations but still present in only 62 % of 

OS tumours (Miller et al., 1996), therefore the finding by Rubio et al (2014) linking MSC to 

OS may not be representative of all OS tumours. CD44 is another protein highly expressed 

by MSC cells (Lee et al., 2004) and also OS cell lines, however, cells expressing CD44 and 

the epithelial marker e-cad had an enhanced primary sarcosphere forming ability (Section 

3.7). A putative CSC population has been identified based upon a similar expression profile 

of CD44/e-cad in head and neck carcinoma cells in vitro (Biddle et al., 2011), therefore, it 

will be of interest to test OS cells expressing CD44+/e-cad+ to analyse their CSC properties 

by FACS sorting and comparison of their sarcosphere forming ability. 

 

To identify if putative OS CSC (based on ALDH expression) display enhanced chemo-

resistance the effect of inhibiting ALDH activity was analysed using the ALDH inhibitor 

DEAB. OS ALDH expressing cells were previously shown to have an enhanced resistance to 

chemotherapeutics (Honoki et al., 2010), however, in Chapter 4 ALDH was found to 

comprise a chemo-resistant population in MG63 cells in response to MTX, U2OS cells in 

response to cisplatin and HOS cells in response to doxorubicin (Section 4.10). This finding 

indicates that ALDH expressing cells in different OS cell lines display resistance to opposing 

chemotherapeutics. If ALDH expressing cells do comprise a CSC population then the ability 

to successfully target them may require tailoring chemotherapeutic treatments strategies 

to individual patients. 

 

Cell density dictates the in vitro population sizes of OS cells expressing ALDH, higher cell 

densities were observed to reduce ALDH expression (Section 4.7). In vivo conditions have 

been demonstrated to reduce the ALDH compared to in vitro culture conditions of the OS 

cell line OS99-1 (Wang et al., 2011), therefore, this reduction in ALDH expression could be 

attributed to an increase in cell density. Sarcospheres which has been shown to select for 
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the growth of OS cells with enhanced tumourigenicity (Rainusso et al., 2011), were found 

to contain more abundant ALDH expression in sarcospheres larger in size, which suggests 

that ALDH expressing cells may be driving growth in low attachment conditions (Section 

3.8.1). CD117 expression was found to become reduced upon culture at low density 

(Section 3.6.2), therefore, CD117 may be increased in expression as cell density increases. 

These findings indicate a potential cell communication network, which controls CSC marker 

expression within a tumour and further elucidation of this network may help in the 

advancement of our understanding of OS progression.  

 

In order to elucidate the paracrine growth factors utilised by OS conditioned media from a 

panel of sarcoma cell lines and MCF7 was tested. All the OS and sarcoma cell lines tested 

except for the Ki-ras transformed OS cell line 143B and its parental cell line HOS, secreted 

a paracrine factor which was found to enhance growth. The conditioned media from the 

cell line U2OS was found to also increase the growth of a fibrosarcoma cell line and breast 

carcinoma cell line (MFC7), suggesting the cytokine growth enhancement pathway may be 

common in both carcinomas and sarcomas. Alternatively, the paracrine growth factor may 

be an artifact of the cancer cells adaptation to in vitro conditions, which is common in cell 

lines derived from different cancer types.  

 

The growth enhancement observed in the OS cell line U2OS in response to OS conditioned 

media increased growth by enhancing the presence of holoclone forming cells, indicating 

that an OS paracrine factor may enhance the CSC population. A similar observation has 

been observed in breast cancer in response to IL-8 (Singh et al., 2013), however analysis of 

IL-8 signaling in OS demonstrated it was not involved with OS proliferation. In order to 

identify candidate OS growth factors, the cytokines present in conditioned media of 

selected OS cell lines (HOS, U2OS and MG63) and MCF7 was anlaysed. The cytokines MIF, 

IL-5, IL-23, serpinE1 and RANTES were expressed by all four cell lines (Section 5.9). These 

cytokines have been associated with tumour progression either through mediating 

inflammation or promoting cell survival. Cytokines which have been found to mediate 

inflammatory responses include MIF, which promotes tumour formation through the 

suppression of immune response to cancer cells (Teng et al., 2010). IL-23 suppresses 

natural killer cell responses to cancer cells (Teng et al., 2010), and IL-5  and RANTES recruit 
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eosinophils during immune responses (Dubucquoi et al., 1994, Kameyoshi et al., 1992). 

SerpinE1 is important in tissue repair and has an anti-apoptotic role in fibrosarcoma and 

breast cancer cell lines (Fang et al., 2012). 

 

CCL-2 was identified as a candidate growth factor and CCR2 antagonism (Section 6.2) and 

CCL-2 gene RNAi resulted in decreased proliferation of OS cell lines (Section 6.8). 

Supplementation of complete media with recombinant CCL-2 increased the growth rate of 

U2OS and HOS cells (Section 6.3) when used at a high concentration (100 ng/ml). The 

increase in proliferation in response to 100 ng/ml recombinant CCL-2 was lower than the 

increase in growth observed in response to U2OS 72 hour conditioned media (which 

according to ELISA results contained 22 ng/ml CCL-2). An explanation for this finding may 

be due to CCR2 heterodimers formed with CCR5, which can lead to intracellular signal 

transduction when both receptors are activated by their ligands CCL-2 and RANTES 

(Mellado et al., 2001, Sohy et al., 2009). Mellado et al (2001), identified that the 

heterodimeric receptor was able to enhance signal transduction by 10 – 100 fold compared 

to the monomeric CCR2 receptor via increased and sustained activation of 

phosphoinositide 3-kinase (PI3K). Therefore in order to increase proliferation in response 

to recombinant CCL-2 recombinant RANTES may also be required.  Analysis of genes in 

U2OS cells with altered expression in response to U2OS conditioned media identified that 

PI3K catalytic gene (PIK3CA) was increased but not in response to recombinant CCL-2 

(Section 6.10). Therefore, RANTES which is present in U2OS conditioned media (Section 

5.10) may be enhancing proliferation when also in the presence of CCL-2, through PI3K 

signal transduction (Figure 7.1).  
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Figure 7.1: Proposed signal transduction of homodimeric CCR2 and heterodimeric CCR2 
and CCR5. Based on Mellado et al (2001) findings CCR2 when bound to CCL-2 
homodimerises and intracellular signal is proposed to activate JAK2, which leads to a 
moderate increase in PI3K and STAT3 activation and proliferation. Heterodimeric CCR2 and 
CCR5 which form after the binding to CCR2 to CCL-2 and CCR5 to RANTES are able to 
transduce intracellular signaling at 10 – 100 fold lower concentrations than the 
homodimeric receptor complex. Upon activation of the heterodimeric receptor complex 
signal is transduced via JAK1 and 2 which lead to an increased sustained activation of PI3K, 
which then activate both STAT3 and 5 and lead to increased proliferation. 
 
 

CCL-2 was found to play a central role in colony formation in low attachment conditions 

(soft agarose colony formation), the presence of recombinant CCL-2 was shown to increase 

colony formation (Section 6.4) and knock-down of CCL-2 by RNAi was shown to decrease 

colony formation in U2OS cells (Section 6.8). In vitro carcinoma cells which demonstrate 

EMT characteristics have been shown to have enhanced ability to form colonies in low 

attachment conditions (Biddle et al., 2011, Mani et al., 2008). Cells present within the OS 

cell lines which have a mesenchymal phenotype may therefore have an enhanced 

sensitivity to CCL-2 possibly through the up-regulation of CCR2, which may also have a 

chemotactic role. In prostate cancer CCL-2 expression is associated with cancer progression 

(Izumi et al., 2013) and has been shown to attract breast and prostate cancer cells to the 

bone (Loberg et al., 2006, Molloy et al., 2009). CCL-2 has been shown to attract the breast 

cancer cell line MDA-MB-231 to lungs in a mouse model due to CCL-2 expression from both 

the target organ and the cancer cells via recruitment of inflammatory monocytes (Qian et 

al., 2011). These CCR2 expressing monocytes have been proposed to aid pulmonary breast 
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metastasis by facilitating cancer colonisation (Lu and Kang, 2009). The primary site of OS 

metastasis is the lungs (Jeffree et al., 1975), therefore, CCL-2 expression from the lungs and 

OS cells may be attributing to its  migration to the this organ and may provide a mechanism 

for reducing OS metastasis.   
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7.2 Conclusions 

To conclude the findings within this thesis, the following novel observations have been 

made: 

 The putative OS CSC markers ALDH and CD117 are heterogeneously expressed 

within 7 OS cell lines.  

 The OS cell lines express mesenchymal markers vimentin and lack the epithelial 

marker e-cadherin. 

 ALDH expression in the MG63 and MCF7 is decreased in response to increased cell 

density. 

 The cell lines Cal72, G292, MG63, U2OS, SaOS-2, HT1080 and SKLNS1 were all found 

to secrete a factor which enhanced growth. 

 Growth factors secreted by U2OS cells increase OS, sarcoma and MCF7 cell line 

proliferation. 

 Cytokines secreted by OS cell lines are associated with inflammation. 

 Cell line CCL-2 expression (measured by commercial ELISA) correlated with OS and 

MCF7 growth enhancement observed in response to conditioned media.  

  CCR2 receptor antagonism and CCL-2 RNA interference decrease U2OS 

proliferation. 

 Genes with altered expression in response to recombinant CCL-2 are associated 

with transcription. 

 Genes with increased expression following exposure to U2OS conditioned media 

were associated with cancer signaling pathways and cell migration. 

 

To summarise, the data presented in this thesis characterised OS cells expressing putative 

CSC markers (ALDH and CD117) in a panel of 7 OS cell lines and MCF7. OS cell lines have 

been observed to secrete a paracrine growth factor, decreased proliferation has been 

observed in response to CCR2 antagonism and reduced CCL-2 expression. Genes associated 

with altered expression in response to CCL-2 signaling are associated with transcription, 

and U2OS conditioned media was found to express genes associated with cancer cell 

signaling pathways and cell locomotion.  
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7.3 Future work 

In summary, future directions of this study could focus on the following aspects: 

 Analysis of clonogencity and sarcosphere forming ability of OS cells expressing 

CD44+/e-cad-. Flow assisted cell sorting (FACS) can be used to isolate OS cell line 

cells which express the phenotypes CD44+/e-cad-, CD44+/e-cad+, CD44-/e-cad+ and 

CD44-/e-cad-. These four populations of cell can then be seeded at low density to 

assess clonogenicity through colony formation along with sarcosphere forming 

efficiency. This would confirm if CD44+/e-cad- cells have enhanced colony forming 

capabilities in both these assays.   

 Cell sorting of OS ALDH expressing cells to identify if these cells have an enhanced 

chemotherapy resistance. ALDH expressing cells can be isolated using FACS and 

tested for resistance to cisplatin, doxorubicin and methotrexate by identifying the 

LD50 concentrations for each drug.  

 Improving CCL-2 knockdown through the use of an appropriate CCL-2 shRNA 

control, which utlises functional complementation to identify the effect of this upon 

OS proliferation. The murine chemokine MCP-5 shares 66 % sequence homology 

with human CCL-2 and carries out the chemotraction of leukocytes (Sarafi et al., 

1997). OS cell lines transfected with murine MCP-5 can then have human CCL-2 

expression reduced through RNAi. The expression of murine MCP-5 can be assessed 

to identify if CCL-2 RNAi has specific CCL-2 gene knockdown. 

 CCR2 shRNA inhibition to identify the effect upon OS proliferation. To analyse the 

impact of reducing CCR2 expression upon OS cell lines, lentiviral shRNA particles 

can be generated and used to inhibit CCR2 expression. The growth of these CCR2 

RNAi cell lines growth can then be assessed, along with the response of these cell 

lines to recombinant CCL-2 and conditioned media.  

 Analysis of MG63 CCL-2 shRNA inhibition and effect upon cell proliferation. The 

impact of CCL-2 expression in the cell MG63 which highly expresses CCL-2 can 

assessed through RNAi gene knockdown. Upon confirmation of CCL-2 gene 

knockdown the cells can be tested for proliferation rates and compared to the 

scrambled control cell line. 
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 Analyse effect of recombinant CCL-2 upon calcium influx in order to assess bio-

activity in an alternative CCL-2 signal transduced pathway. To confirm the bio-

activity of recombinant CCL-2, HEK293 cells transfected with CCR2 have been shown 

to respond to CCL-2 with an influx of intracellular calcium (Sarafi et al., 1997). Using 

the same system recombinant CCL-2 can be utilised upon HEK293 cells to assess the 

ability to recombinant CCL-2 to signal via CCR2.   

 Assess the chemo active capabilities of CCL-2 on OS cell lines. In prostate cancer 

CCL-2 has been shown to act as a chemokine (Loberg et al., 2006), OS cells can be 

assessed for their ability to migrate towards CCL-2 using a transwell assay. 
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Appendix 

 

I. Control images of confocal microscopy staining 

To assess whether antibodies and reagents used to assess putative CSC marker expression 

(ALDH, CD117 and CD44) using confocal microscopy. Isotype control antibodies which had 

affinity only to murine proteins were also matched according to fluorescent label were 

tested to assess non-specific binding.  Control antibodies were used at the same 

concentration as CSC marker antibodies (Section 2.8). For ALDH which is analysed using the 

BODIPY® aminoacetaldehyde, which is converted to a fluorescent molecule by ALDH, has 

been inhibited by the ALDH inhibitor DEAB. For all ALDH and CD44 isotype control images 

no non-specific binding can be observed for 143B when stained adherently (Figure I.A) or 

when grown under sarcosphere conditions (Figure I.B). No 

 

  

   (A)      ` (B) 

Figure I: Negative control confocal microscopy images of ALDH and CD44 co-stained 

images. (A) and (B) are representative images of 143B cells stained the ALDH (FITC) 

inhibitor DEAB and a CD44 isotype control and fluorescent label (PE) matched antibody  

when adherent (A) or grown under sarcosphere conditions (B). FITC fluorescence (green) 

can be observed in the top left panel, PE (red) in top right panel, bottom left indicates To-

pro-3 fluoresence (blue) and an overlay in the bottom right panel.   
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Figure II: Negative control confocal microscopy image of CD117 and CD44 co-stained 

image. Image is representative 143B cells stained the CD117 (FITC) and CD44 (PE) isotype 

control and fluorescent label matched antibody. FITC fluorescence (green) can be observed 

in the top left panel, PE (red) in top right panel, bottom left indicates To-pro-3 fluoresence 

(blue) and an overlay in the bottom right. (C) 143B representative image of adherent cells. 
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II. Calibration curves to determine CCL-2 and IL-8 concentrations 

To determine the concentration of IL-8 and CCL-2 in conditioned media (Section  

2.5.2) a commercial ELISA kit (BioLegend) was used. For each experiment a calibration 

curve was constructed using a concentration of 0 – 500 pg/ml for CCL-2 and 0 – 1000 

pg/ml for IL-8, each standard concentration was tested in triplicate. Absorbance 

readings at 570 nm were subtracted from 450 nm, and ploted as absorbance readings 

minus the blank absorbance (0 ng/ml) (Figure III). R2 values varied from 0.98 – 0.99.      

 

A      B 

 

Figure III: Calibration curves of CCL-2 and IL-8 concentration. CCL-2 (A) and IL-8 (B) 

standards were prepared in triplicate (Section 2.5.2). Concentration  of standards for CCL-

2 was 0 – 500 pg/ml and IL-8 was 0 – 1000 pg/ml. Absorbance reading at 570 were 

subtracted from 450 nm readings and average blank reading were subtracted from 

standards. Average values were plotted and an excel power trendline was used to assess 

linearity. 
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III. Real time PCR 18s rRNA and CCL-2 primer efficiencies 

In order to assess the amplification efficiencies of the target gene (CCL-2) and 

endogenous reference gene (18s rRNA), both primers were tested using  U2OS DNA 

concentrations of 0.16  – 100 ng/ml (Figure II). The amplification efficiencies of both 

primers was assessed using the by using the gradient of each primer DNA 

concentration curve, to calculate primer efficiency (E). An E value of 2 represents 100 

% efficiency, CCL-2 primer produced an E value of 2.33 and 18s rRNA produced an E 

value of 2.11 (Table IV). 

   

 

 

Figure IV: Real time PCR primer efficiencies. 18s rRNA and CCL-2 primers were used to 

assess DNA amplification for U2OS DNA concentrations at 0.16 – 100 ng/ml, ΔCt values 

were calculated, each primer was tested in triplicate for each DNA concentration.  Data 

presented as mean and standard deviation.   

 

Table I: Primer efficiencies (E) for 18s rRNA and CCL-2. 

Primer E value 

18s rRNA 2.33 

CCL-2 2.11 
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IV. Real time PCR melt curve 

To assess the specificity of primers used for real time PCR (Section 2.7.3) CCL-2 gene 

expression analysis of U2OS CCL-2 RNAi cell lines, the temperature required to 

dissociate primer from the template strand was assessed. All cell lines were tested in 

triplicate, for the 18s rRNA primers melting temperatures varied from 76.5 – 76.7 ºC 

(Figure V and table II) and CCL-2 primer melting concentration varied from 85.3 – 85.5 

ºC (Figure VI and table III). The due to the low concentration of CCL-2 present within 

knockdown 2 cell lines a melting temperature was not recoreded because the peak was 

below the threshold. However, a small peak is visible for this cell line at 85.3 – 85.5 ºC 

(Figure IV). All control samples which contained no DNA all did not produce a melting 

peak within the threshold.  

 

 

 

Figure V: Melting curves of 18s rRNA primers. U2OS cell knockdown cell lines were 

tested in triplicate using 100 ng of template DNA and 1 µM of forward and reverse 

primers  
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Table II: Melting temperatures of 18s rRNA primers tested with U2OS CCL-2 knockdown 

cell lines reverse transcribed RNA.  

Colour Name Temperature (ºC) 

 Neagtive control  

 Empty vec sample 1 76.5 

 Empty vec sample 2 76.5 

 Empty vec sample 3 76.7 

 Knockdown (1) sample 1 76.5 

 Knockdown (1)  sample 2 76.5 

 Knockdown (1) sample 3 76.5 

 Knockdown (2) sample 1 76.5 

 Knockdown (2)  sample 2 76.5 

 Knockdown (2) sample 3 76.5 

 

 

 

Figure VI: Melting curves of CCL-2 primers. U2OS cell knockdown cell lines were tested in 

triplicate using 100 ng of template DNA and 1 µM of forward and reverse primers  
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Table III: Melting temperatures of CCL-2 primers tested with U2OS CCL-2 knockdown 

cell lines reverse transcribed RNA.  

Colour Name Temperature (ºC) 

 CCL-2 negative control  

 Empty vec CCL-2 sample 1 85.5 

 Empty vec CCL-2 sample 2 85.3 

 Empty vec CCL-2 sample 3 85.5 

 Knockdown (1)  sample 1 85.5 

 Knockdown (1) sample 2 85.5 

 Knockdown (1) sample 3 85.3 

 Knockdown (2) sample 1 Below threshold 

 Knockdown (2) sample 2 Below threshold 

 Knockdown (2) sample3 Below threshold 
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V. Quality control of microarray data 

In order to assess the suitability of all samples analysed using the affymetrix microarray 

(Section 2.7.4), samples were assessed using the R analysis package in the Bioconductor 

program. The software identified one of unconditioned sample (DMEM) and one of the 

U2OS conditioned samples did not have the same expression profiles as the other two 

samples tested in the same conditions. This was apparent when samples were analysed 

using a box plot of the fluorescence intensity (Figure VII), which is confirmed by the multi-

dimensional plot (Figure VIII). Due to both these samples not conforming the expression 

observed in the other samples from the same conditions they were removed from 

analysis. 

 

Figure VII: Box plot of samples tested in using the affymetrix gene microarray. Sample 1 

(unconditioned) and sample 9 (U2OS conditioned media) do not correspond with the 

same box plot as the other samples. 

 

 

Figure VIII: Multi-dimensional plot of genes expressed by microarray samples. One 

sample from U2OS and another from DMEM do not have the same expression profile as 

the other samples so were removed from analysis.
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