
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Integration of GEMLCA and the P-GRADE portal

Kiss T, Sipos G, Kacsuk PK, Karoczkai K, Terstyanszky G and

Delaitre T

This is an electronic version of the paper, Kiss T, Sipos G, Kacsuk PK, Karoczkai K,

Terstyanszky G and Delaitre T (2005) Integration of GEMLCA and the P-GRADE portal

presented at CoreGRID Workshop on Grid Systems, Tools and Environments (WP7

Workshop) (in conjunction with GRIDS@Work) Sophia Antipolis, France 12-14 Oct 2005

.

The WestminsterResearch online digital archive at the University of Westminster aims to make the

research output of the University available to a wider audience. Copyright and Moral Rights remain

with the authors and/or copyright owners.

Whilst further distribution of specific materials from within this archive is forbidden, you may freely

distribute the URL of WestminsterResearch: ((http://westminsterresearch.wmin.ac.uk/).

In case of abuse or copyright appearing without permission e-mail repository@westminster.ac.uk

http://westminsterresearch.wmin.ac.uk/
repository@westminster.ac.uk

Integration of GEMLCA and the P-GRADE Portal
 T. Kiss1, G. Sipos2, P. Kacsuk2, K. Karoczkai2, G. Terstyanszky1, T. Delaitre1

1Centre of Parallel Computing,Cavendish School of Computer Science,
University of Westminster, 115 New Cavendish Street, London W1W 6UW,

2MTA SZTAKI Laboratory of Parallel and Distributed Systems
H-1518 Budapest, P.O. Box 63, Hungary

1. Introduction

There are many efforts all over the world to provide new Grid middleware concepts
for constructing large production Grids. As a result, the Grid community is in the
phase of producing third generation Grid systems that are represented by the OGSA
(Open Grid Services Architecture) and WSRF (Web Services Resource Framework)
specifications. On the other hand relatively little attention has been paid to how end-
users can survive in the rapidly changing world of Grid generations. Moreover, the
efforts in this field remained isolated resulting only in limited functionality prototypes
for specific user domains and not serving a wider user community.
This paper describes how the integration of two different architectures, the P-GRADE
Grid portal [1] and GEMLCA (Grid Execution Management for Legacy Code
Architecture) [2] resulted in a more generic solution serving a large variety of Grid
systems and application domains. The integrated solution provides a high-level user-
friendly Grid application environment that supports users of GT2-based second
generation and GT3/GT4-based third generation Grid systems from the same user
interface. It also allows the integration of legacy code applications into complex Grid
workflows which can be mapped to Grid nodes running this wide variety of
middleware.
The integration has happened at different levels. In the first step, the GEMLCA
clients were added to the portal providing a user-friendly interface for legacy code
deployment, execution and visualisation. On the other hand this integration also
enhanced the usability of the originally GT2-based P-GRADE portal making it
capable to handle GT3/GT4 Grid services. In the second step, GEMLCA was
extended to handle legacy code submission to current GT2-based production Grids,
like the UG National Grid Service or the EGEE Grid. This resulted in a legacy code
repository that makes it even easier to P-GRADE portal end users to create and
execute workflows from previously published legacy components. Finally, the
research teams are currently working on a more loosely coupled integration that will
allow incorporating advanced functionality, like GEMLCA-based legacy code
support, into the portal as a plug-in, resulting in more flexible solution depending on
actual user requirements.
 The paper introduces GEMLCA and the P-GRADE portal and describes the
integration activities outlined above.

2. Baseline technologies

2.1 P-GRADE Portal

The P-GRADE portal [1] is a workflow-oriented Grid portal with the main goal to
cover the whole lifecycle of workflow-oriented computational grid applications. It
enables the graphical development of workflows consisting of various types of
executable components (sequential, MPI or PVM programs), executing these

workflows in Globus-based grids [4] relying on user credentials, and finally analyzing
the correctness and performance of applications by the built-in visualization facilities.
Workflow applications can be developed in the P-GRADE portal by its graphical
Workflow Editor.
A P-GRADE portal workflow is an acyclic dependency graph that connects sequential
and parallel programs into an interoperating set of jobs. The nodes of such a graph are
jobs, while the arc connections define the execution order of the jobs and the data
dependencies between them that must be resolved by the workflow manager during
the execution. An example for P-GRADE portal workflows can be seen in the middle
part of Figure 2. Large rectangles represent jobs while small rectangles around the
jobs are called ports and represent data files that the corresponding jobs expect or
produce. Directed arcs interconnect pairs of input and output files if an output file of a
job serves as an input file for another job.
The semantics of the workflow execution means that a job (a node of the workflow)
can be executed if, and only if all of its input files are available, i.e. all the jobs that
produce input files for this job have successfully terminated, and all the user-defined
input files are available either on the portal server and at the pre-defined grid storage
resources. Therefore, the workflow describes both the control-flow and the data-flow
of the application.
Managing the transfer of files and recognition of the availability of the necessary files
is the task of the workflow manager portal subsystem, currently implemented on the
top of Condor DAGMan [3]. The workflow manager is capable to transfer data among
Globus VOs [4], thus the different components of the same workflow can be mapped
onto different Globus VOs. These VOs can be part of the same grid, or can belong to
multiple grids.

2.2 GEMLCA

GEMLCA represents a general architecture for deploying legacy applications as Grid
services without re-engineering the code or even requiring access to the source files.
The high-level GEMLCA conceptual architecture is represented on Figure 1.
As shown in the figure, there are four basic components in the architecture:

1) The Compute Server is a single or multiple processor computing system on
which several legacy codes are already implemented and available. The goal of
GEMLCA is to turn these legacy codes into Grid services that can be accessed by
Grid users.

2) The Grid Host Environment implements a service-oriented OGSA-based Grid
layer, such as GT3 or GT4. This layer is a pre-requisite for connecting the
Compute Server into an OGSA-built Grid.

3) The GEMLCA Resource layer provides a set of Grid services which expose
legacy codes as Grid services.

4) The fourth component is the GEMLCA Client that can be installed on any client

Figure 1 GEMLCA conceptual architecture

machine through which a user would like to access the GEMLCA resources.
The deployment of a GEMLCA legacy code service assumes that the legacy
application runs in its native environment on a Compute Server. It is the task of the
GEMLCA Resource layer to present the legacy application as a Grid service to the
user, to communicate with the Grid client and to hide the legacy nature of the
application. The deployment process of a GEMLCA legacy code service requires only
a user-level understanding of the legacy application, i.e., to know what the parameters
of the legacy code are and what kind of environment is needed to run the code (e.g.
multiprocessor environment with ‘n’ processors). The deployment defines the
execution environment and the parameter set for the legacy application in an XML-
based Legacy Code Interface Description (LCID) file that should be stored in a pre-
defined location. This file is used by the GEMLCA Resource layer to handle the
legacy application as a Grid service.

3. Integrating GEMLCA and the P-GRADE portal

GEMLCA provides the capability to convert legacy codes into Grid services just by
describing the legacy parameters and environment values. However, an end-user
without specialist computing skills still requires a user-friendly Web interface to
access the GEMLCA functionalities: to deploy, execute and retrieve results from
legacy applications. The P-GRADE portal offers these functionalities besides other
capabilities like Grid certificate management, workflow creation, execution
visualization and monitoring. This section describes how the integration enhanced the
functionalities of both environments and how this integration can be even more
effective in the future.

3.1 Extending the P-GRADE portal towards service oriented Grids

The P-GRADE portal supported only GT2 based Grids, originally. On the other hand,
GEMLCA aims to expose legacy applications as GT3/GT4 Grid services. The
integration of GEMLCA and the portal extended the GT2-based P-GRADE portal
towards service oriented Grids. Users can still utilise GT2 resources through
traditional job submission, and can also use GT3/GT4 resources by including
GEMLCA legacy code services in their workflows. The generic architecture of the

Figure 2 GEMLCA extending the P-GRADE portal towards service oriented Grids

Job
 su

bm
iss

ion

Service
invocation

P-GRADE
Portal

Desktop 1

Desktop N

Web browser

Web browser

Desktop 1

Desktop N

Web browser

Web browser

Web browser

Web browser

2nd generation (GT2)
Grids

Legacy applications

Grid Site 1

Grid Site 2

3rd generation Grids:
(OGSA: GT4, gLite)

GEMLCA – P-GRADE portal Grid is shown on figure 2.
Integrating the P-GRADE portal with GEMLCA required several modifications in the
P-GRADE portal. These are as follows:
1. In the original P-GRADE portal a workflow component can be a sequential or

MPI program. The portal was modified in order to include legacy code Grid
services as GEMLCA components into the workflow.

2. The Job properties window of the P-GRADE portal was changed in order to
extend it with the necessary legacy code support. The user can select a GEMLCA
Grid resource from drop-down list. Once the Grid resource is selected the portal
retrieves the list of legacy code services available on the selected Grid resource.
Next, the user can choose a legacy code service from this list. Once the legacy
code service is selected the portal fetches the parameter list belonging to the
selected legacy code service with default parameter values. The user can either
keep these values or modify them.

3. The P-GRADE portal was extended with the GEMLCA Administration Portlet
that hides the syntax and structure of the LCID file from users. After filling in a
simple Web form the LCID file is created automatically and uploaded by the
portal to the appropriate directory of the GEMLCA resource.

After these modifications in the portal, end-users can easily construct workflow
applications built from both GT2 jobs and legacy code services, and can map their
execution to different Grid resources, as shown in Figure 3.

3.2 Legacy code repository for production Grids

Creating a workflow in the P-GRADE portal requires the user to define input and
output parameters and identify ports. For the owner of the code this task is not too
complex. However, if another end-user wants to use the same code in a workflow the
process have to be repeated by a user who has no deeper understanding of the code
itself. In order to help these end-users a legacy code repository based on GEMLCA
was created that can be connected to GT2 based production Grid services, like the UK
National Grid Service (NGS). The GEMLCA repository enables code owners to
publish their applications as GEMLCA legacy codes in the same way as it was
described in section 3.1. After this publication other authorised users can browse the
repository and simply select the application they would like to use. Parameter values

P orta l
H ost

G rid H ost
Environm ent

M M JFS

legacy
code job

G T2
G R AM

N G S
scrip t job

G EM LCA
R esource H ost

3 rd party G E M L C A - portal Serv ice

P roduction G rid (N G S)

T ransfer input files

C reate w orkflow
B rowse reposito ry

B inary and param eters

G EM LCA

porta l
legacy

code user

G EM LCA
resource

centra l
repository

Figure 3 GEMLCA and P-GRADE portal for GT2 based production Grids

can be set by the user. However, there is no need to define parameter types or
input/output ports as these are created automatically by the portal based on the
GEMLCA description.
The P-GRADE portal extended with the GEMLA repository has been successfully
implemented and offered for UK NGS users as a third party service. This
implementation of the integrated GEMLCA – P-GRADE portal solution extends the
capabilities of both tools. On one hand, GEMLCA is now capable of working with
GT2 based Grids by submitting the legacy executables as jobs to the remote GT2
gatekeeper. On the other hand, the usability of the P-GRADE portal has also been
enhanced by making it much easier for end-users to create workflows using legacy
codes published in the repository. The integrated GEMLCA – P-GRADE portal
solution for GT2 based production Grids is shown of figure 3.

3.3 GEMLCA as a plug-in in the P-GRADE portal

Both GEMLCA and the P-GRADE portal are continuously developing products. In
order to present their latest features in a uniform way, the two systems must be
integrated into a single software from time to time. Although the integration could be
done with reasonable effort in case of the first few GEMLCA and portal releases, the
task became quite cumbersome with the appearance of additional features and grid
middleware technologies.
The P-GRADE portal and the GEMLCA developer teams elaborated a new concept to
handle this issue. According to the idea the portal will be transformed into a
component-based environment that can be extended with dynamically downloadable
plug-ins on the fly. The approach exploits the fact that GEMLCA and P-GRADE jobs
are quite similar to each other. They both consist of a binary executable and 1-N input
files, a set of input parameters, a resource that has been selected for the execution, etc.
The only difference is that the executable and the input files of a GEMLCA job can
come from different users, the executable and the input files of a P-GRADE job must
be provided by the same party. Nevertheless, this difference can be hidden from the
higher software layers during execution by the workflow manager subsystem (an
intelligent script can transfer executable and input files to the executor site uniformly,
even if those files are coming from different parties), due to the different concept
GEMLCA and P-GRADE job developers must be provided with different user
interfaces. (As it was described in Section 3.1 other types of parameters must be set
on the “Properties” windows for a GEMLCA and for a P-GRADE job.)
While job property windows are hard coded parts of the current version of the
workflow editor, the new plug-in based concept enables the dynamic download of
these graphical elements, making the P-GRADE and GEMLCA integration task

Portal server

Plug-in provider

Workflow editor

User

Plug-in
list

GEMLCA
plug-in

(1)
Register plug-in

Plug-in
list

GEMLCA
plug-in

(3)
Specify job

type

(5)
Specify job

content (4)
Download plug-in
and present it as

“Job property
window”

(2)
Download list

Portal server

Plug-in provider

Workflow editor

UserUser

Plug-in
list

GEMLCA
plug-in

(1)
Register plug-in

Plug-in
list

GEMLCA
plug-in

(3)
Specify job

type

(5)
Specify job

content (4)
Download plug-in
and present it as

“Job property
window”

(2)
Download list

Figure 4 The plug-in based P-GRADE portal workflow editor

almost self evident. The plug-in based editor works in the following way: (See also
Figure 4) When the user drops a new job onto the editor canvas and opens its property
window, the editor obtains a list of the currently available job types from the portal
server (2). Each entry of this list consists of a name (e.g. GEMLCA job) and a
reference pointing to a dynamically downloadable plug-in. In subject to the choice of
the user (3) the editor downloads the plug-in that belongs to the selected job type and
presents it on its GUI as the content of the job property window (4). Since each plug-
in can encapsulate customised graphical elements to support the development of one
specific type of job (5), no property windows must be hard coded into the workflow
editor any more.
Because the workflow editor is a Web Start application plug-ins can be implemented
as Java objects. While the list of plug-ins can be retrieved from the portal server using
a text format (e.g. an XML message), a binary protocol is needed between the editor
and the plug-in provider to make object transmission possible. Java Web Services [6],
Jini services [5], EJBs [7] or RMI servers [8] are all suitable for this purpose, thus the
plug-in provider can be implemented with any of these technologies. Besides
GEMLCA jobs other types of computational jobs can be plugged into the portal in
this way. The plug-in provider has to only register its service at the portal server (1).

4. Conclusions and future work

With the integration of the GEMLCA and the P-GRADE portal tools a complex
environment has been created that provides solution for a wide range of grid-related
problems. Using the integrated system Grid users can deploy legacy and newly
developed sequential and parallel applications as software services. They can test and
then share these services with a larger community. The members of the community
can develop workflows that connect their own computational tasks and the pre-
deployed services into an acyclic graph. These workflows can be submitted into
Globus-2, 3 and 4 based Grids, can be monitored in a real-time fashion, moreover, the
different components can be executed in different Globus VOs.
As the next step, the P-GRADE portal will be transformed into a plug-in based
computational framework. With the plug-in concept the portal will be able to support
other types of computational services than GEMLCA, without modifying any source
code or even stopping the portal server.

References

[1] G. Sipos and P. Kacsuk: Classification and Implementations of Workflow-Oriented Grid Portals, To appear in
the Proc. of The 2005 International Conference on High Performance Computing and
Communications (HPCC2005), Sorrento, Italy

[2] T. Delaittre, T. Kiss, A. Goyeneche, G. Terstyanszky, S.Winter, P. Kacsuk: GEMLCA: Running Legacy Code
Applications as Grid Services, To appear in “Journal of Grid Computing” Vol. 3. No. 1.

[3] T. Tannenbaum, D. Wright, K. Miller, and M. Livny: Condor - A Distributed Job Scheduler. Beowulf Cluster
Computing with Linux, The MIT Press, MA, USA, 2002.

[4] I. Foster, C. Kesselman: Globus: A Toolkit-Based Grid Architecture, In I. Foster, C. Kesselmann (eds.) „The
Grid: Blueprint for a New Computing Infrastructure“, Morgan Kaufmann, 1999, pp. 259-278.

[5] J. Waldo. The Jini architecture for network-centric computing.Communications of the ACM, 42(10):76–82,
Oct. 1999.

[6] D. Chappell and T. Jewell, “Java Web Services”, O’Reilly Press, 2002.
[7] Sun Microsystems: Enterprise JavaBeans: http://java.sun.com
[8] Troy Bryan Downing. Java RMI: Remote Method Invocation. Number 0764580434. IDG Books, 1998.

