
WestminsterResearch
http://www.westminster.ac.uk/westminsterresearch

Identifying four obesity axes through integrative multi-omics and 

imaging analysis

Odoemelam, C.S., Naz, A., Thanaj, M., Sorokin, E., Whitcher, B., 

Sattar, N., Bell, J.D., Thomas, E.L., Cule, M. and Yaghootkar, H.

This is an author-created, uncopyedited electronic version of an article accepted for 

publication in Diabetes Care. The American Diabetes Association (ADA), publisher of 

Diabetes Care, is not responsible for any errors or omissions in this version of the 

manuscript or any version derived from it by third parties. The definitive publisher-

authenticated version will be available in a future issue of Diabetes Care in print and 

online at http://care.diabetesjournals.org.

The WestminsterResearch online digital archive at the University of Westminster aims to 

make the research output of the University available to a wider audience. Copyright and 

Moral Rights remain with the authors and/or copyright owners.

http://care.diabetesjournals.org.


Identifying four obesity axes through integrative multi-omics and imaging 
analysis

Running title: Obesity Axes: MRI Insights and Disease Links

Chiemela S. Odoemelam1*(me@chiemelao.com), Afreen 
Naz1*(ANaz@lincoln.ac.uk), Marjola Thanaj2 (M.Thanaj@westminster.ac.uk), Elena P 
Sorokin3 (sorokin@calicolabs.com), Brandon Whitcher2 (B.Whitcher@westminster.ac.uk), 
Naveed Sattar4 (Naveed.Sattar@glasgow.ac.uk), Jimmy D Bell2 

(J.Bell@westminster.ac.uk), E Louise Thomas2 (l.thomas3@westminster.ac.uk), 
Madeleine Cule3(cule@calicolabs.com), Hanieh 
Yaghootkar1‡(HYaghootkar@lincoln.ac.uk)

1School of Natural Science, College of Health and Science, University of Lincoln, 
Lincoln, UK

2Research Center for Optimal Health, School of Life Sciences, University of 
Westminster, London, UK

3Calico Life Sciences LLC, South San Francisco, CA

4School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, 
UK

* Contributed equally

‡Corresponding authors:

Hanieh Yaghootkar: HYaghootkar@lincoln.ac.uk (+44 7576890854)

Keywords: Obesity Subtypes, Magnetic Resonance Imaging, Precision Medicine, 
Ectopic Fat, Mendelian Randomization, Genome-Wide Association Studies, Body 
Composition Analysis 

Word count: 4500; #Figures: 6; #Tables: 1

Page 1 of 53

For Peer Review Only

Diabetes
D

ow
nloaded from

 http://diabetesjournals.org/diabetes/article-pdf/doi/10.2337/db24-1103/805639/db241103.pdf by guest on 06 June 2025

mailto:me@chiemelao.com
mailto:ANaz@lincoln.ac.uk
mailto:M.Thanaj@westminster.ac.uk
mailto:sorokin@calicolabs.com
mailto:B.Whitcher@westminster.ac.uk
mailto:Naveed.Sattar@glasgow.ac.uk
mailto:J.Bell@westminster.ac.uk
mailto:l.thomas3@westminster.ac.uk
mailto:cule@calicolabs.com
mailto:HYaghootkar@lincoln.ac.uk


Abstract

We aimed to identify distinct axes of obesity using advanced MRI-derived 
phenotypes.

We used 24 MRI-derived fat distribution and muscle volume measures (UK Biobank, 
n= 33,122) to construct obesity axes through principal component analysis (PCA). 
Genome-wide association studies were performed for each axis to uncover genetic 
factors, followed by pathway enrichment, genetic correlation, and Mendelian 
randomization analyses to investigate disease associations.

Four primary obesity axes were identified: (1) General Obesity, reflecting higher fat 
accumulation in all regions (visceral, subcutaneous, and ectopic fat); (2) Muscle-
Dominant, indicating greater muscle volume; (3) Peripheral Fat, associated with 
higher subcutaneous fat in abdominal and thigh regions; and (4) Lower Body Fat, 
characterized by increased lower-body subcutaneous fat and reduced ectopic fat. 
Each axis was associated with distinct genetic loci and pathways. For instance, the 
Lower Body Fat Axis was associated with RSPO3 and COBLL1 which are emerging 
as promising candidates for therapeutic targeting. Disease risks varied across axes: 
the General Obesity Axis correlated with higher risks of metabolic and cardiovascular 
diseases; the Lower Body Fat Axis appeared protective against type 2 diabetes and 
cardiovascular disease. 

This study highlights the heterogeneity of obesity through the identification of obesity 
axes and emphasizes the potential to extend beyond BMI in defining and treating 
obesity for obesity-related disease management.
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Article Highlights

• This study aimed to address potential limitations of BMI by exploring the 
heterogeneity of obesity using MRI-derived fat distribution and muscle volume 
measures.

• We sought to identify distinct obesity axes and investigate their genetic, 
metabolic, and disease associations.

• Four obesity axes were identified: General Obesity, Muscle-Dominant, 
Peripheral Fat, and Lower Body Fat, each linked to unique genetic loci, 
metabolic traits, and disease risks.

• These findings emphasize the potential to extend beyond BMI in defining and 
managing obesity, offering a more nuanced framework for understanding and 
treating obesity-related diseases.
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Introduction

Obesity presents with a range of metabolic patterns, disease risks, and responses to 
weight loss interventions among individuals.(1-4) This variability is largely due to the 
traditional clinical definition of obesity, which uses a BMI threshold of over 30 to 
identify at-risk groups.(1) While this measure effectively categorises obesity at the 
population level, it fails to capture the heterogeneity among individuals.(5) This broad 
metric, while useful for public health strategies, is inadequate for the nuanced 
requirements of precision medicine that necessitate tailored approaches.

Numerous studies have explored the complexities of obesity by identifying specific 
subtypes, notably focusing on "metabolically healthy obesity," where individuals 
exhibit no initial metabolic dysfunctions despite living with obesity.(6) However, the 
stability of this state is uncertain, as many may develop metabolic complications over 
time as they gain weight or age.(2, 6) The use of biomarkers to classify obesity into 
subtypes and guide personalized treatments has been proposed.(2, 7) Yet, gathering 
biomarker data post-diagnosis can challenge causal interpretations due to potential 
reverse causation, where the disease itself might influence biomarker levels.(8) 
Additionally, the reliance on BMI hinders these methods as it fails to differentiate 
between fat and muscle mass or consider the importance of fat distribution.(1, 2) 
These limitations mean that even those within a normal BMI range can face 
metabolic challenges, whereas some individuals with obesity might display metabolic 
resilience.(2, 9) 

Recent advancements in magnetic resonance imaging (MRI) technology and the 
availability of comprehensive scan data from participants in the UK Biobank have 
opened new avenues for detailed assessments of fat and muscle across various 
body regions. These image-derived phenotypes (IDPs) enable the classification of 
obesity axes without preconceived hypotheses by examining diverse fat distribution 
patterns in subcutaneous and ectopic locations.

In this study, we used 24 MRI-derived fat distribution and muscle measurements to 
agnostically construct four principal component (PC)-derived obesity axes. These 
axes are linear combinations of the IDPs, representing distinct dimensions of 
obesity, and allow us to move beyond traditional BMI classifications. We 
demonstrate that these axes capture unique patterns of fat distribution and muscle 
volume that are linked to different genetic profiles and disease risks. By integrating 
advanced imaging with genetic analysis, this study offers a comprehensive 
framework to better understand obesity heterogeneity, paving the way potentially for 
more targeted approaches in obesity management and treatment.
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Methods

Study design

We applied 24 MRI-derived measures of fat distribution (volumes and percentages) 
and muscle indices from the UK Biobank to construct obesity axes. Analyses were 
conducted separately for males and females due to known sex-specific differences in 
fat distribution patterns. After confirming consistent principal component (PC) 
patterns across sexes, we performed meta-analyses of genome-wide association 
studies (GWAS) results for each axis. We investigated genetic correlations with 
metabolic biomarkers, lifestyle, behaviour, and psychological disorders. Additionally, 
we performed Mendelian randomization to explore relationships between each axis 
and obesity-related disease risks.

Image-derived measures of fat distribution and muscle volume

We employed neck-to-knee Dixon MRI and single-slice multi-echo MRI acquisitions 
for abdominal imaging, as previously outlined in the UK Biobank protocol.(10) Image 
processing was conducted using deep learning models as previously described.(11-
14) The image-derived phenotypes (IDPs) included volume and median proton 
density fat fraction (PDFF), calculated via the Phase Regularized Estimation using 
the Smoothing and Constrained Optimization (PRESCO) method.(15) Quality control 
was performed by analyzing univariate distributions and visually inspecting scans for 
anomalies.

Supplementary table 1 details the 24 IDPs used in this study, including 
subcutaneous adipose tissue (SAT) volumes (abdominal and thigh), visceral adipose 
tissue (VAT) volumes, internal fat and thigh intermuscular adipose tissue volumes 
(corrected for muscle volume), iliopsoas and total muscle volumes (indexed to 
height2). We also obtained a measure of fat (PDFF) stored in the liver, pancreas, and 
paraspinal muscles (intramyocellular fat) from the single-slice multi-echo acquisition.

Construction of obesity axes

Principal component analysis (PCA) was applied to the 24 IDPs to identify obesity 
axes. PCA, a robust and widely validated dimensionality reduction technique, 
captures dominant patterns of variation across datasets while minimizing noise. 
Each IDP was scaled and standardized to mean zero and unit variance. Resultant 
PCs were oriented to align with higher obesity levels. The number of PCs retained 
was determined based on the proportion of variance explained (>85% cumulatively), 
and the interpretability of the components. 

Given sex-specific differences in fat and muscle distribution, PCA was conducted 
separately for males and females. Meta-analysis was subsequently performed on 
follow-up analyses (e.g. GWAS) for consistent axes across sexes, ensuring that 
male PC1 aligned with female PC1, male PC2 with female PC2, and so forth. 

We did not include BMI or total body fat percentage as covariates in our analyses 
because these measures are highly correlated with certain axes—particularly the 
General Obesity and Muscle-Dominant axes. Adjusting for these variables could 
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obscure the meaningful variation in fat distribution and muscle composition that our 
MRI-derived phenotypes capture.

Genome-wide association studies (GWAS)

Using REGENIE version v3.1.1,(16) which is well-suited for association testing in the 
presence of closely related individuals, our GWAS included participants who self-
identified as 'White British' who clustered with this group in PCA. We excluded 
participants with sex chromosome anomalies, sex discrepancies, heterozygosity 
outliers, and genotype call rate outliers.(17) Covariates included age, squared age, 
genotyping array, imaging center, and the first ten genotype-related principal 
components. IDPs were inverse normal transformed before analysis. Imputed SNPs, 
filtered by a minor allele frequency (MAF) > 0.01 and an INFO score > 0.9, resulted 
in 9,788,243 SNPs for the final analysis. GWAS was conducted separately for each 
gender, followed by a meta-analysis using METAL to integrate results across 
genders.

Pathway and tissue enrichment analysis

We utilized the SNP2GENE function in the Functional Mapping and Annotation 
(FUMA)(18) platform to identify expression quantitative trait loci (eQTLs) using GTEx 
v8 project.(19) Identified genes were analyzed for pathway enrichment using the 
PANTHER v17.0 tool,(20) enhancing our understanding of the biological pathways 
enriched in our gene sets.

Genetic correlation analysis

We estimated genetic correlations between obesity axes and various biomarkers, 
lifestyle traits, and psychological conditions using LD Score Regression (LDSC) (21). 
We selected 110 traits using publicly available GWAS summary statistics 
(supplementary table 2) based on established links with obesity and body 
composition. It is important to note that some of these GWAS include UK Biobank 
participants. While incorporating these datasets increases our statistical power, it 
may also introduce a degree of sample overlap, potentially inflating genetic 
correlation estimates. We set a multiple-testing-corrected significance level at p < 
0.05/110*4 = 0.00011. 

Mendelian Randomization 

To investigate the potential causal impacts of different obesity axes on disease 
outcomes, we applied Mendelian randomization (supplementary table 2). Genetic 
variants were selected as instrumental variables for each obesity axis based on 
stringent criteria: a p-value of ≤ 5x10^-8 and linkage disequilibrium pruning with r^2 > 
0.001 within a 10 Mb window, using European ancestry data from the 1000 
Genomes Project.

Our primary method was the Inverse Variance Weighted (IVW) method. This method 
is subject to biases such as weak instrument bias—where the weak association 
between genetic instruments and exposures can skew estimates—and horizontal 
pleiotropy, where genetic variants may influence outcomes through pathways 
unrelated to the studied exposure. To try to counteract these potential biases, we 
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confirmed strong associations between each genetic instrument and its 
corresponding obesity axis (F-statistics > 10) and used MR-Egger regression to test 
for horizontal pleiotropy, as indicated by the Egger intercept. Additionally, we applied 
methods like MR-PRESSO, weighted median, simple mode, and weighted mode to 
enhance the robustness of our findings(22). We adjusted the results for multiple 
testing using the Benjamini-Hochberg correction and considered results statistically 
significant at an adjusted p-value < 0.05.
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Results

Axes of obesity

In our study, we analyzed data from 33,122 participants who underwent MRI 
scanning in the UK Biobank study. We derived 24 Image-Derived Phenotypes (IDPs) 
from these samples, with sample characteristics detailed in supplementary table 1. 
Using these IDPs, we constructed four obesity axes through principal component 
analysis (PCA) performed separately for males and females. Each measure was 
oriented to positively correlate with BMI. The resulting obesity axes explained 4.43% 
to 57.50% of the variance in men and 5.89% to 54.76% in women (supplementary 
figures 1 and 2). Consistent PC patterns across sexes allowed us to meta-analyse 
results for equivalent PCs (e.g., male PC1 with female PC1) (figure 1; 
supplementary table 3).

We named the axes based on their PC loadings (figure 1). (1) General Obesity Axis: 
Reflects increased fat accumulation across all regions, including visceral, 
subcutaneous, and ectopic fat (figure 2A). (2) Muscle-Dominant Axis: Indicates 
greater muscle volume (figure 2B). (3) Peripheral Fat Axis: Associated with higher 
subcutaneous fat in the abdominal and thigh regions (figure 2C). (4) Lower Body Fat 
Axis: Characterized by increased lower-body subcutaneous fat and reduced ectopic 
fat in the liver, pancreas, and muscles (figure 2D).

To better contextualize the axes within clinical obesity definitions, we examined the 
BMI distributions of individuals in the top 10% of each axis (supplementary table 4). 
Individuals in the top 10% of all axes showed significantly higher BMI (p < 0.0001), 
with most having a BMI >30 kg/m², suggesting that high scores on these axes 
generally reflect a phenotype consistent with clinical obesity. However, the observed 
differences between axes indicate that even among individuals classified as having 
obesity by BMI criteria, there is substantial heterogeneity in fat distribution.

Axes represent overlapping dimensions rather than discrete categories. Muscle-
Dominant and Peripheral Fat Axes displayed a weak negative correlation, 
suggesting that individuals scoring high on one axis tend to score lower on the other 
(supplementary figure 3). 

Relationship between axes and age

We analyzed the relationship between PC scores and age for all obesity axes in 
males and females. Scores for the General Obesity Axis increased with age 
(rmen=0.15, pmen<1E-10; rwomen=0.10, pwomen<1E-10), indicating a higher likelihood of 
accumulating fat in older individuals. Conversely, scores for the Muscle-Dominant 
(rmen=-0.48, pmen<1E-10; rwomen=-0.36, pwomen<1E-10), Peripheral Fat (rmen=-0.14, 
pmen<1E-10; rwomen=-0.10, pwomen<1E-10), and Lower Body Fat (rmen=-0.18, pmen<1E-
10; rwomen=-0.24, pwomen<1E-10) Axes decreased with age, suggesting these patterns 
of fat or muscle distribution are less common among older individuals (figure 3). 

Differences in axes by ancestry

To explore potential differences in the distribution of obesity axes across ancestry 
groups, we categorized participants into four major genetic ancestry groups: African 
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ancestry (N=146), Central/South Asian ancestry (N=320), East Asian ancestry 
(N=152), and European ancestry (N=29,179). Comparisons revealed that East Asian 
individuals had lower scores for the General Obesity (p-valueEUR vs EAS < 0.00001) 
and Lower Body Fat Axes (p-valueEUR vs EAS < 0.00004). Central/South Asians had 
lower scores for the Muscle-Dominant Axis (p-valueEUR vs CSA < 0.00001), while 
individuals of African ancestry had higher scores for the Muscle-Dominant and Lower 
Body Fat Axes but lower scores for the Peripheral Fat Axis (all p-valueEUR vs AFR < 
0.00001, figure 4, supplementary table 5).

Genetic background of obesity axes

Given the ancestry-related differences in axis distribution and to minimize 
confounding from unrelated factors (e.g., beta-cell function differences influencing 
type 2 diabetes risk in individuals of African ancestry), all genetic analyses were 
restricted to White British participants. GWAS were conducted separately for males 
and females and meta-analyzed across sexes for consistent axes, resulting in a total 
sample size of 25,637 (Table 1, supplementary figures 4 & 5). No evidence of sex-
specific associations was observed, as the genetic loci contributing to the axes were 
consistent between males and females (supplementary table 6).

General Obesity Axis. Two significant loci were identified: rs62033405 (eQTL for 
FTO in skeletal muscle, p-value=2.6E-7 and IRX1 in pancreases, p-value=1.2E-7) 
and rs33823 (eQTL for PEPD in skeletal muscle; p-value=4.9e-9 and subcutaneous 
adipose tissue; p-value=5E-6), both previously associated with obesity-related traits. 
Pathway enrichment highlighted the corticosteroid receptor signaling pathway; 
however, these results did not remain significant after Bonferroni correction 
(supplementary table 7).

Muscle-Dominant Axis. Nine loci were associated, including rs7515497 
near FBLIM1, rs80345488 near RIMS2, rs80345488 (eQTL for RIMS2 in thyroid; p-
value=7E-18), rs3850625, an exonic variant in CACNA1S, rs12632536 (eQTL for 
DLG1  in skeletal muscle; p-value=1.2E-7), rs13170533 (sQTL for PIK3R1 in skeletal 
muscle; p-value=2.2E-6), rs1028883 ( eQTL for KLF5  in skeletal muscle; p-value= 
6.6e-38), rs6058093 near PIGU (eQTL for GGT7; p-value=1E-6 and MAP1LC3A; p-
value=8E-9 in skeletal muscle), and rs9306468 near MTMR3 (eQTL for THOC5 in 
skeletal muscle; p-value=2E-8). Pathway enrichment analysis revealed nominally 
significant enrichment in pathways related to muscle function, particularly ion 
transport, muscle contraction, and structural integrity; however, these results did not 
remain significant after Bonferroni correction (supplementary table 8). 

Peripheral Fat Axis. Fifteen loci were identified, many of which have been 
previously linked to WHR, lipid levels, type 2 diabetes, or red blood cell count. Three 
loci were shared between the Peripheral and Lower Body Fat Axes, including 
COBLL1, RSPO3, and DNAH10/CCDC92 (supplementary figure 6). Pathway 
enrichment analysis for the Peripheral Fat Axis revealed several key pathways that 
provide insight into the genetic basis of this axis. These include pathways related to 
cellular growth and energy metabolism, which may impact adipocyte behavior, and 
mechanisms that regulate cell-matrix interactions and developmental processes 
influencing fat distribution; however, these results did not remain significant after 
Bonferroni correction (supplementary table 9).
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Lower Body Fat Axis. Fifteen loci were identified, including rs1128249 (sQTL for 
COBLL1 in subcutaneous fat; p-value=5E-13), rs72959041 (eQTL for RSPO3 in 
subcutaneous fat; p-value=2E-8 and pQTL in blood; p-value=6E-89) rs7133378 
near DNAH10 (eQTL for DNAH10OS in subcutaneous fat; p-value=1E-32), 
rs3818717 near RAI1 (eQTL for TOM1L2 in subcutaneous fat; p-value=1E-15, and 
pQTL for SHMT1 p-value=1E-42), rs6822892 (eQTL for PDGFC in subcutaneous fat; 
p-value=3E-8), rs10406327 (eQTL for PEPD in subcutaneous fat; p-value=1E-11), 
rs2287922, an exonic variant in RASIP1, rs3747207 near PNPLA3 (eQTL for 
SAMM50 in subcutaneous fat; p-value=7E-15), rs2943653 near NYAP2 (eQTL 
for IRS1 in subcutaneous fat; p-value=2E-13), rs6888037 near SLC12A2, rs998584 
near VEGFA, rs12138803 near PIGC, rs55893113 near ZC3H11B, rs754243 
near ANAPC1, and rs58542926 near TM6SF2 (pQTL for NCAN (p-value=4E-92) 
and SUGP1 (p-value=6E-12)). The pathway enrichment analysis indicated a 
significant potential role of adiponectin in metabolic regulation and the importance of 
lipid biosynthesis processes in maintaining healthier adipose tissue; however, these 
results did not remain significant after Bonferroni correction (supplementary table 
10).

Association with metabolic biomarkers

We performed LDSC to evaluate the genetic correlations between obesity axes and 
a wide range of complex traits, including anthropometric measures, metabolic 
biomarkers, lifestyle behaviors, psychological traits, and obesity-related diseases. 
Out of 110 traits tested, 53 showed significant genetic correlations (corrected for 
multiple testing) with at least one obesity axis.

All obesity axes demonstrated positive genetic correlations with adult BMI. The 
General Obesity Axis showed strong positive correlations with body fat percentage, 
waist-to-hip ratio (WHR) in both sexes, and childhood obesity. The Muscle-Dominant 
Axis correlated positively with fat-free mass index, height, birth weight, and childhood 
obesity. The Peripheral Fat Axis was positively correlated with body fat percentage 
and WHR in males. In contrast, the Lower Body Fat Axis was negatively correlated 
with WHR in both sexes but positively associated with birth weight and childhood 
obesity (figure 5a).

Each obesity axis had distinct pattern of genetic correlation with metabolic traits and 
health outcomes (figure 5b). The General Obesity Axis showed positive correlations 
with insulin resistance markers, C-reactive protein (CRP), liver enzymes, branched-
chain amino acids (valine, leucine, isoleucine), and triglycerides, while demonstrating 
negative correlations with sex hormone-binding globulin (SHBG), high-density 
lipoprotein cholesterol (HDL-C), and apolipoprotein A1. The Muscle-Dominant Axis 
did not present extensive correlations but showed a strong positive association with 
HOMA-IR and a negative correlation with HDL-C. The Peripheral Fat Axis correlated 
positively with fasting insulin and CRP levels. In contrast, the Lower Body Fat Axis 
was positively associated with insulin sensitivity, SHBG, and HDL-C and negatively 
associated with branched-chain amino acids and triglycerides.

Additionally, the General Obesity Axis was positively correlated with sedentary 
behavior, smoking, Attention-Deficit/Hyperactivity Disorder (ADHD), substance use, 
and binge eating. Conversely, the Muscle-Dominant Axis was negatively correlated 
with sleep duration, while the Peripheral Fat Axis was negatively correlated with 
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physical activity (figure 5c). These findings underscore the complex and distinct 
metabolic and lifestyle associations for each obesity axis. 

Association with disease outcomes

In our UK Biobank imaging sub-cohort, the General Obesity Axis was associated 
with a higher risk of various cardiovascular diseases, asthma, psoriasis, and 
depression but a lower risk of osteoporosis. In contrast, the Lower Body Fat Axis 
was associated with a lower risk of cardiovascular diseases. For example, 
participants in the top 10% of the General Obesity Axis, as determined by their PC 
scores, had approximately 25% (95% confidence interval: 22% to 29%) higher odds 
of developing type 2 diabetes compared to those in the bottom 10% based on 
prevalent disease cases. Conversely, individuals in the top 10% for the Lower Body 
Fat Axis had 55% lower odds (95% CI: 50% to 60%) of developing type 2 diabetes 
compared to those in the bottom 10% (supplementary figure 7).

To validate these findings in studies independent of the UK Biobank dataset, we 
performed genetic correlation analyses between the obesity axes and disease risks. 
The General Obesity Axis was genetically correlated with a higher risk of type 2 
diabetes, steatotic liver disease, hypertension, coronary heart disease, stroke, 
myocardial infarction, aortic aneurysm, heart failure, peripheral artery disease, gout, 
osteoarthritis, asthma, psoriasis, depression, and cholelithiasis. The Muscle-
Dominant Axis was linked to a higher risk of type 2 diabetes, chronic kidney disease, 
atrial fibrillation, and osteoarthritis but a lower risk of depression. The Peripheral Fat 
Axis did not present significant genetic correlations with major diseases. The Lower 
Body Fat Axis was associated with a lower risk of type 2 diabetes, steatotic liver 
disease, and myocardial infarction (figure 5d). 

Mendelian randomization analyses, using genetic instruments with robust F-statistics 
(F = 36 for the General Obesity Axis, F = 31 for the Muscle-Dominant Axis, F = 42 for 
the Peripheral Fat Axis, and F = 40 for the Lower Body Fat Axis), provided support 
for causal associations between obesity axes and various disease outcomes (figure 
6; supplementary table 11). The General Obesity Axis, was instrumented with only 
two variants, and therefore, sensitivity tests such as MR-Egger could not be reliably 
performed; our conclusions for this axis are based solely on IVW estimates, which 
linked it to increased risks of osteoarthritis, asthma, cholelithiasis, and 
gastroesophageal reflux disease. For the Muscle-Dominant Axis, while IVW 
indicated an increased risk of chronic kidney disease and osteoarthritis, the 
association with hip osteoarthritis did not replicate in the MR-Egger analysis. For the 
Peripheral Fat Axis, sensitivity tests were generally consistent, except that MR-Egger 
did not confirm associations with chronic kidney disease, steatotic liver disease, and 
polycystic ovary syndrome. Finally, for the Lower Body Fat Axis, the majority of MR 
sensitivity tests corroborated IVW findings—linking this axis to lower risks of type 2 
diabetes, polycystic ovary syndrome, steatotic liver disease, hypertension, 
myocardial infarction, aortic aneurysm, and psoriasis, and a higher risk of 
osteoarthritis—except MR-Egger estimates which failed to replicate associations for 
aortic aneurysm and coronary heart disease.
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Discussion

This study presents a comprehensive exploration of obesity, leveraging advanced 
imaging and genetic analyses to unravel the complex pathways underlying obesity. 
Using MRI-derived phenotypes from the UK Biobank, we identified four distinct axes 
of obesity: General Obesity, Muscle-Dominant, Peripheral Fat, and Lower Body Fat. 
These findings highlight the heterogeneity of obesity and underscore some 
limitations of conventional metrics like BMI in capturing the nuances of individual 
obesity-related risks and outcomes.

Implications of axes for disease risk

The identification of these axes provides important insights into disease 
mechanisms. The General Obesity Axis, characterized by overall fat accumulation, 
was strongly associated with increased risks for several metabolic and 
cardiovascular conditions, including type 2 diabetes, hypertension, myocardial 
infarction, and liver disease. These findings align with prior research linking overall 
adiposity to metabolic dysregulation and inflammation(23, 24). Pathway enrichment 
analyses suggest a role for corticosteroid receptor signaling, though the extent of its 
direct contribution remains uncertain. While elevated cortisol levels, as seen in 
conditions like Cushing's syndrome(25), are clearly implicated in metabolic 
disturbances, other factors likely play a more prominent role in general obesity.

The Muscle-Dominant Axis, defined by increased muscle volume, presented a 
unique metabolic profile. While higher HOMA-IR levels were observed, there was no 
association with other insulin sensitivity indices, suggesting insulin resistance might 
be confined to specific tissues such as the liver. The increased risks of chronic 
kidney disease and atrial fibrillation, coupled with a lower risk of depression, highlight 
the complexity of this axis. Previous studies have shown that increased muscle mass 
can have both beneficial and detrimental metabolic effects, depending on factors 
such as muscle composition and lipid infiltration(26, 27). The elevated risks of 
chronic kidney disease and atrial fibrillation might indicate a link between higher 
muscle mass and increased cardiac workload, as well as renal strain due to 
increased protein metabolism and creatinine turnover. The lower risk of depression 
associated with this axis supports previous findings that greater muscle mass may 
be protective against mood disorders, potentially through improved physical function 
and self-perception(28). Genetic loci associated with the Muscle-Dominant Axis, 
including CACNA1S, DLG1, and PIK3R1, further point to the importance of muscle 
function, ion transport, and insulin signaling in this phenotype.

The Peripheral Fat Axis, associated with higher subcutaneous fat in the abdomen 
and thighs, demonstrated a relatively benign metabolic profile, with no significant 
genetic correlation with major disease outcomes. This finding aligns with previous 
studies indicating that subcutaneous fat, particularly in peripheral regions, is less 
metabolically detrimental than visceral fat(29-32). This contrasts with the General 
Obesity Axis, highlighting that not all forms of fat accumulation carry the same health 
risks. 

The Lower Body Fat Axis, marked by increased lower body subcutaneous fat and 
reduced ectopic fat, exhibited a favorable metabolic profile. Participants with higher 
scores along this axis showed lower risks of type 2 diabetes, myocardial infarction, 

Page 12 of 53

For Peer Review Only

Diabetes
D

ow
nloaded from

 http://diabetesjournals.org/diabetes/article-pdf/doi/10.2337/db24-1103/805639/db241103.pdf by guest on 06 June 2025



and fatty liver disease. These findings support the protective metabolic effects of 
gluteofemoral fat as a “safe storage depot”, consistent with previous genetic 
studies(24, 31, 33, 34). Pathway enrichment analyses highlighted the importance of 
adiponectin secretion and lipid biosynthesis, suggesting enhanced adipocyte 
function and fat storage capacity may drive this protective effect.

Ancestry-related differences and precision medicine

Significant ancestry-related variations in the distribution of these axes were 
observed. For example, East Asian participants had lower scores for the General 
and Lower Body Fat Axes, while African participants exhibited higher scores for the 
Muscle-Dominant and Lower Body Fat Axes but lower scores for the Peripheral Fat 
Axis. These differences underscore the need for ancestry-informed approaches in 
managing obesity and its associated disease risks. The metabolic risks tied to each 
axis may vary across populations, emphasizing the importance of moving beyond a 
"one-size-fits-all" strategy in obesity management(9, 35).

Genetic insights

The GWAS identified distinct genetic loci and pathways associated with each axis, 
providing novel insights into the biological mechanisms underlying fat distribution 
patterns. For the Muscle-Dominant Axis, several genes of particular interest were 
identified. CACNA1S has been linked to mild human myopathy, with supporting 
evidence from zebrafish models.(36) Disruptions in DLG1, which impair myosin 
distribution, can affect muscle efficiency and metabolic regulation(37). PIK3R1 is 
critical in muscle metabolism, as demonstrated by knockout mice that resist 
glucocorticoid-induced insulin resistance and muscle atrophy, maintaining healthier 
muscle structure(38). KLF5, a zinc-finger transcription factor, is essential for cell 
proliferation and muscle regeneration(39). GGT7 plays a key role in glutathione 
metabolism, protecting against oxidative stress and supporting muscle 
health(40). MAP1LC3A is involved in the autophagy pathway essential for muscle 
repair(41). THOC5 influences muscle differentiation and haematopoiesis(42).

Genes highlighted for Lower Body Fat Axis have been previously shown to be 
involved in adipose tissue function. Knocking down COBLL1 disrupts fat storage by 
impairing stress fiber breakdown in subcutaneous fat cells, affecting insulin 
responsiveness and lipid metabolism.(43) Variants in RSPO3 suppress 
adipogenesis, promote apoptosis of gluteal adipocytes, limit adipose tissue 
expansion, and stimulate upper-body fat distribution(44). DNAH10OS regulates 
nearby genes like DNAH10 and CCDC92, both involved in lipid accumulation in 
adipocyte models(45). SHMT2 deficiency in mice increases fatty liver, highlighting its 
role in fat metabolism(46). PDGFC regulates adipose tissue in response to dietary 
changes(47). PEPD is vital for collagen turnover in adipose tissue, with lower 
expression linked to increased fibrosis and insulin resistance(48). RASIP1 plays a 
crucial role in vascular development and endothelial cell function, which are integral 
to the health and function of adipose tissue(49). SAMM50 is involved in beige 
adipocyte thermogenesis and energy balance(50). Shared genetic architecture 
between the Peripheral Fat and Lower Body Fat Axes, including genes like RSPO3, 
COBLL1, and DNAH10OS, points to overlapping mechanisms. Additionally, genes 
involved in adipogenesis, lipid metabolism, and insulin signaling emerged as key 
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drivers of these axes. Tissue-specific eQTLs in skeletal muscle and adipose tissue 
further underscore the role of regulatory mechanisms in shaping these phenotypes.

Clinical implications and future directions 

Our study provides novel insights into the heterogeneity of obesity by leveraging 
MRI-derived phenotypes to define distinct obesity axes. Unlike traditional measures 
such as BMI(2), our approach offers a more granular assessment of body 
composition and its genetic determinants, revealing that individuals with similar BMIs 
can present vastly different patterns of fat distribution and metabolic risk. We show 
that these axes have distinct genetic backgrounds, with no evidence of sex-specific 
associations, suggesting that genetic influences on fat distribution and muscle 
volume are largely shared between men and women. Although many of the genetic 
markers we identified have been previously implicated in adiposity, our findings, 
such as the associations linking RSPO3 and COBLL1 to the Lower Body Fat Axis 
and unique loci for the Muscle-Dominant Axis, underscore the complexity of obesity 
and suggest that the underlying biological mechanisms differ across these axes.

While these findings are not yet directly applicable in clinical practice, they lay the 
groundwork potentially for future precision medicine approaches. As imaging 
technologies become more accessible, MRI-derived obesity classifications may 
eventually allow for targeted interventions that address specific patterns of fat 
distribution and muscle composition. Furthermore, our study highlights the potential 
value for risk stratification beyond BMI, as even individuals classified as living with 
obesity by conventional standards may have different disease trajectories. Also, 
understanding the genetic architecture of these obesity axes may guide therapeutic 
research, particularly in developing treatments that modulate fat storage patterns or 
muscle composition to mitigate metabolic risk. Future work should focus on 
replicating these findings in more diverse populations and on investigating whether 
these obesity axes predict incident disease risk over time, ultimately guiding the 
development of tailored therapeutic strategies. How newer weight loss therapies 
influence body compositional changes and future outcome risks in these different 
obesity phenotypes will also be of interest.

Strengths and Limitations: 

This study's strengths include its large sample size and the use of advanced MRI 
imaging to define obesity axes. However, limitations include the restriction of 
analyses to individuals of White British ancestry, which may affect the 
generalizability of the findings to other populations. Future studies should replicate 
these findings in more diverse cohorts. Additionally, while Mendelian randomization 
provided causal insights, potential residual confounding or pleiotropic effects cannot 
be completely ruled out.

Conclusion: 

This study highlights the complexity and heterogeneity of obesity by identifying 
distinct axes with unique genetic, metabolic, and disease risk profiles. Potentially 
extending beyond BMI and integrating advanced imaging with multi-omics data 
provides a nuanced understanding of obesity. These findings pave the way for more 
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personalized approaches to obesity treatment and prevention, tailored to an 
individual’s genetic, metabolic, and fat distribution profile.
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Table 1. Genetic results for the different obesity axes.

Obesity Axes rsID Chr Position P EA NEA Beta Se Nearest 
Gene

Locus previously 
associated with

General Obesity rs62033405 16 53822387 5.6E-11 T C 0.06 0.01 FTO Obesity and metabolic 
traits

General Obesity rs33823 19 34000725 8.2E-10 T C 0.06 0.01 PEPD Obesity and metabolic 
traits

Muscle-Dominant rs7515497 1 16120240 2.6E-8 T G -0.04 0.01 FBLIM1 -
Muscle-Dominant rs3850625 1 201016296 4.5E-8 A G -0.07 0.01 CACNA1S Lean mass, creatinine, 

estimated glomerular 
filtration rate, lung 
function and liver 
enzymes

Muscle-Dominant rs2138157 2 227103717 1.4E-8 A C -0.05 0.01 IRS1 Lipids, obesity, and other 
metabolic biomarkers

Muscle-Dominant rs12632536 3 196833650 4E-9 T C -0.05 0.01 DLG1 Lung function, creatinine 
and estimated glomerular 
filtration rate

Muscle-Dominant rs13170533 5 68058041 4.6E-9 C G -0.08 0.01 SLC30A5 Creatinine levels, 
estimated glomerular 
filtration rate and lung 
function

Muscle-Dominant rs80345488 8 104536643 4.7E-8 A C 0.10 0.02 RIMS2 -
Muscle-Dominant rs1028883 13 74108587 4.2E-9 T G -0.05 0.01 KLF5 Lean mass, liver enzyme 

levels, and kidney 
function

Muscle-Dominant rs6058093 20 33213196 3.2E-10 A C 0.05 0.01 PIGU Estimated glomerular 
filtration rate, liver 
enzymes, creatinine 
levels, and lung function

Muscle-Dominant rs9306468 22 30374281 4.7E-9 T C 0.05 0.01 MTMR3 Lung function, estimated 
glomerular filtration rate, 
and creatinine levels
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Peripheral Fat rs11205797 1 51474198 2.9E-9 A G -0.05 0.01 CDKN2C Red blood cell count
Peripheral Fat rs566596164 2 165558215 4.2E-12 C G 0.09 0.01 COBLL1 WHR, lipids, type 2 

diabetes, other metabolic 
biomarkers

Peripheral Fat rs13172689 5 53463520 3.2E-10 A G -0.07 0.01 ARL15 Type 2 diabetes
Peripheral Fat rs1651274 5 158020425 3.3E-8 A G -0.06 0.01 EBF1 WHR, lipids, type 2 

diabetes, other metabolic 
biomarkers

Peripheral Fat rs141783576 6 127439897 4.5E-12 C G -0.12 0.02 RSPO3 WHR, lipids, type 2 
diabetes, other metabolic 
biomarkers

Peripheral Fat rs10827616 10 36469937 1E-9 T C 0.05 0.01 FZD8 Red blood cell count
Peripheral Fat rs7129492 11 74381181 2.1E-12 A G -0.06 0.01 POLD3 Colorectal cancer, 

creatinine
Peripheral Fat rs11045236 12 20578939 3E-9 T C -0.06 0.01 PDE3A White blood cell count, 

lipids, HbA1c
Peripheral Fat rs11057413 12 124489162 2.9E-9 A G -0.05 0.01 ZNF664, 

FAM101A
WHR, lipids, type 2 
diabetes, other metabolic 
biomarkers

Peripheral Fat rs749170 13 22350875 3.3E-10 T C -0.06 0.01 FGF9 Platelet count, SHBG, 
liver enzyme

Peripheral Fat rs3116602 13 51111355 5.1E-12 T G -0.07 0.01 DLEU1 WHR, lipids
Peripheral Fat rs9565581 13 81098500 2.5E-13 A C -0.07 0.01 SPRY2 Body fat
Peripheral Fat rs1883711 20 39179822 1.5E-9 C G -0.15 0.02 SNORD112 Lipids, metabolic 

biomarkers
Peripheral Fat rs11698277 20 45502865 5.3E-14 T C -0.07 0.01 EYA2 WHR
Peripheral Fat rs2267373 22 38600542 1.9E-12 T C -0.06 0.01 PLA2G6, 

MAFF
WHR, lipids, type 2 
diabetes, other metabolic 
biomarkers

Lower Body Fat rs12138803 1 172348823 3.1E-8 T C -0.05 0.01 DNM3, 
PIGC

WHR and SHBG

Lower Body Fat rs55893113 1 219773122 8E-9 C G 0.05 0.01 ZC3H11B WHR, SHBG, lipids and 
type 2 diabetes
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Lower Body Fat rs754243 2 112251121 7.1E-10 A G 0.06 0.01 ANAPC1 WHR, SHBG
Lower Body Fat rs1128249 2 165528624 1.1E-17 T G 0.07 0.01 COBLL1 Lipids, obesity, type 2 

diabetes and other 
metabolic biomarkers

Lower Body Fat rs2943653 2 227047771 1.1E-9 T C -0.05 0.01 NYAP2 Lipids, type 2 diabetes 
and metabolic biomarkers

Lower Body Fat rs6822892 4 157734675 2.3E-8 A G -0.05 0.01 PDGFC Lipids, type 2 diabetes 
and metabolic biomarkers

Lower Body Fat rs6888037 5 127406259 2.2E-8 T G -0.05 0.01 SLC12A2 Lipids, measures of 
obesity and metabolic 
biomarkers

Lower Body Fat rs998584 6 43757896 2.1E-18 A C -0.07 0.01 VEGFA WHR, lipids, type 2 
diabetes and metabolic 
biomarkers

Lower Body Fat rs72959041 6 127454893 5.6E-11 A G -0.13 0.02 RSPO3 WHR and lipids
Lower Body Fat rs7133378 12 124409502 1.6E-11 A G 0.06 0.01 DNAH10, 

CCDC92
WHR, lipids, and type 2 
diabetes

Lower Body Fat rs3818717 17 17707105 1.3E-8 T C -0.05 0.01 RAI1 WHR, lipids, and type 2 
diabetes

Lower Body Fat rs58542926 19 19379549 3.5E-19 T C -0.14 0.02 TM6SF2 Lipids and type 2 diabetes
Lower Body Fat rs10406327 19 33890838 5.9E-9 C G 0.05 0.01 PEPD WHR and type 2 diabetes
Lower Body Fat rs2287922 19 49232226 2.3E-8 A G -0.05 0.01 RASIP1 WHR, lipids, and other 

metabolic biomarkers
Lower Body Fat rs3747207 22 44324855 3.5E-30 A G -0.12 0.01 PNPLA3 Liver enzymes, fatty liver, 

lipids and type 2 diabetes

Chr: chromosome; P: p-value; EA: effect allele; NEA: non-effect allele; Se: standard error
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Figure legends.

Figure 1. Characteristics of Obesity Axes.

Radial plots display the magnitudes of principal component (PC) loadings for the four 
obesity axes from (A) men and (B) women. Points above the inner circle indicate 
positive loadings, reflecting traits that contribute positively to the respective obesity 
axis, whereas points below the inner circle represent negative loadings, indicating 
traits that contribute inversely to the axis.

Figure 2. MRI Scans and Fat Distribution Patterns Across Obesity Axes.

MRI scans illustrate the contrasting fat distribution patterns observed in individuals 
with the highest and lowest scores along each obesity axis. These visual 
comparisons highlight the distinctive anatomical fat accumulation and muscle 
distribution associated with each axis.

Figure 3. Relationship Between Obesity Axes and Age in (A) Males and (B) 
Females.

Scatter plots depict the variation in scores for each obesity axis across different 
ages. General obesity scores tend to increase with age, while scores for other axes, 
such as the Lower Body Fat Axis, decrease in older individuals.

Figure 4. Ancestry-related Variation in Obesity Axes.
Density plots show the distribution of scores for each obesity axis across different 
ancestry groups. AFR = African ancestry, CSA = Central/South Asian ancestry, EAS 
= East Asian ancestry, EUR = European ancestry. 

Figure 5. Genetic Correlations Between Obesity Axes and Selected 
biomarkers, Lifestyle Traits and Psychological Disorders.

Heatmap of genetic correlations (rg) between obesity axes and (a) anthropometric 
traits, insulin-related traits, and metabolic biomarkers, (b) metabolites, (c) lifestyle 
traits and psychological disorders; and (d) various disease outcomes, including 
cardiovascular disease and type 2 diabetes. Colors and their intensities represent 
the correlation coefficients (rg), with asterisks indicating statistical significance after 
multiple testing correction (p-value < 0.00011).

Figure 6. Mendelian randomization. 

The heatmap illustrates causal associations between obesity axes and selected 
disease outcomes. Colors and their intensities represent the direction and strength of 
associations determined by the Inverse Variance Weighted (IVW) method. Asterisks 
indicate statistical significance after Benjamini-Hochberg correction (adjusted p-value 
< 0.05).
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Supplementary Table 1: Summary of data used in the study. This table provides an overview of the 24 image-derived 
phenotypes (IDPs) included in the study. These measures were derived from MRI imaging and represent various fat distribution 
and muscle characteristics across different anatomical regions. IMAT: intermuscular adipose tissue; PDFF: proton density fat 
fraction.

Male Female Combined
No of Participants 16169 16953 33122
Age (Years) Mean±SD 65.37±7.72 63.98±7.46 64.66±7.62
BMI (Mean±SD) 26.82±3.73 26.02±4.63 26.41±4.23
Alcohol Intake Frequency (Daily) (n) 3285 2257 5542
Alcohol Intake Frequency (3-4x/Week) (n) 5161 4309 9470
Alcohol Intake Frequency (1-2x/Week) (n) 4185 4553 8738
Alcohol Intake Frequency (1-3x/Month) (n) 1538 2262 3800
Alcohol Intake Frequency (Special Occasions) (n) 1051 2192 3243
Alcohol Intake Frequency (Never) (n) 941 1374 2315
Alcohol Intake Frequency (No response) (n) 8 6 14
Current Smoker (n) 9014 8295 17309
Never Smoker (n) 7008 8514 15522
Former Smoker (n) 29 0 29
Type 2 Diabetes (% Case) 5.57 2.24 3.86
Hypertension  (% Case) 38.43 25.03 31.57
Stroke  (% Case) 3.30 3.27 3.28
Myocardial infarction  (% Case) 4.95 1.03 2.94
Aortic aneurysm  (% Case) 0.67 0.14 0.40
Heart failure  (% Case) 1.82 0.62 1.20
Atrial fibrillation  (% Case) 6.55 2.77 4.61
Pulmonary embolism  (% Case) 1.48 0.99 1.23
Gout  (% Case) 6.39 0.44 3.35
Osteoarthritis  (% Case) 7.69 7.62 7.65
Rheumatoid arthritis  (% Case) 2.87 2.80 2.83
Osteoporosis  (% Case) 1.13 6.13 3.69
Asthma  (% Case) 13.28 14.16 13.73
Psoriasis  (% Case) 4.00 3.09 3.54
Depression  (% Case) 8.08 11.19 9.67
Parkinson's disease  (% Case) 0.38 0.19 0.28
Alzheimer's disease  (% Case) 0.06 0.05 0.06
Chronic Ischaemic Heart Disease (% Case) 9.51 2.50 5.92
Total Fat (Mean±SD) L 22.73 ± 8.16 26.57 ± 9.28 24.69±8.96
Subcutaneous fat (Mean±SD) L 14.71 ± 5.49 21.52 ± 7.52  18.20±7.43
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Abdominal subcutaneous fat (Mean±SD) L 6.94 ± 3.14 9.84 ± 4.30  8.42±4.05
Internal fat (Mean±SD) L 2.88 ± 1.15 2.22 ± 0.83  2.54±1.05
Thigh subcutaneous fat (Mean±SD) L 5.82 ± 2.08 8.97 ± 2.96 7.43±3.01
Thigh IMAT (Mean±SD) L 0.84 ± 0.36 0.71 ± 0.29 0.77±0.33
Mid-thigh IMAT (Mean±SD) L 0.05 ± 0.05 0.05 ± 0.04  0.05±0.04
Mid-thigh subcutaneous fat (Mean±SD) L 1.24 ± 0.45 2.06 ± 0.76  1.66±0.75
Index thigh IMAT (Mean±SD) L/m2 0.27 ± 0.12 0.27 ± 0.11 0.27±0.11
Index mid-thigh IMAT (Mean±SD) L/m2 0.02 ± 0.02 0.02 ± 0.01 0.02±0.01
Visceral fat (Mean±SD) L 5.14 ± 2.31 2.83 ± 1.55  3.96±2.27
PDFF liver (Mean±SD) % 5.48 ± 5.00 4.18 ± 4.49 4.82±4.79
PDFF paraspinal (Mean±SD) % 7.01 ± 3.72 8.03 ± 4.17 7.53±3.99
PDFF pancreas (Mean±SD) % 12.92 ± 8.76 8.53 ± 6.85 10.67±8.15
Total muscle (Mean±SD) L 21.72 ± 2.92 14.03 ± 1.94 17.79±4.57
Thigh muscle (Mean±SD) L 10.30 ± 1.48 6.68 ± 1.00  8.45±2.21
Mid-thigh muscle (Mean±SD) L 2.71 ± 0.40 1.87 ± 0.28 2.28±0.54
Iliopsas muscle (Mean±SD) L 0.78 ± 0.12 0.51 ± 0.08 0.64±0.17
Index iliopsas muscle (Mean±SD) L/m2 0.25 ± 0.03 0.19 ± 0.02  0.22±0.04
Index thigh muscle (Mean±SD) L/m2 3.32 ± 0.40 2.52 ± 0.31 2.91±0.54
Index tmid-thighmuscle (Mean±SD) L/m2 0.88 ± 0.12 0.71 ± 0.10 0.79±0.14
Index total muscle (Mean±SD) L/m2 7.00 ± 0.79 5.29 ± 0.61  6.13±1.11
Ratio thigh internal fat to thigh muscle (Mean±SD) 0.08 ± 0.03 0.10 ± 0.03 0.09±0.03
Ratio mid-thigh internal fat to mid-thigh muscle (Mean±SD) 0.02 ± 0.02 0.02 ± 0.02 0.02±0.02

Supplementary Table 2: Traits used in the genetic correlation study of obesity axes and Mendelian randomization. These 
traits span anthropometric measures, metabolic biomarkers, lifestyle behaviors, psychological conditions, and disease outcomes.

Trait PubMed 
ID

Sample size 
Case/control 
Pubgwas

Phenocode 
Pubgwas

Phenocode 
FinnGen

Case/control 
FinnGen

Author
Pubgwas

Data 
Freeze 
FinnGen

Include 
UKBB 
Data

ADHD 36702997 186,843 NA NA NA Demontis 2023 NO
Panic disorder 31712720 7992 NA NA NA Forstner 2021 NO
Autism spectrum disorder 30804558 27,969 NA NA NA Grove 2019 NO
Bipolar disorder 34002096 371,549 NA NA NA Mullins 2021 YES
Anorexia nervosa 31308545 55,525 NA NA NA Watson 2019 YES
Tourette syndrome 30818990 9,488 NA NA NA Yu 2019 NO
OCD 28761083 7037 NA NA NA Posthuma 2018 NO
Hoarding symptoms 36379924 NA NA NA NA Strom 2022 NO
PTSD 31594949 170,000 NA NA NA Nievergelt 2019 YES
Schizophrenia 35396580 243,649 NA NA NA Trubetskoy 2022 NO
Substance use disorder 37250466 NA NA NA NA Hatoum 2023 NO
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Opioid dependence 32099098 NA NA NA NA Polimanti 2020 NO
Cannabis use disorder 33096046 357,219 NA NA NA Johnson 2020 NO
Alcohol use 30336701 NA NA NA NA Sanchez-Roige 2019 YES
Alcohol dependence 30482948 34,999 NA NA NA Walters 2018 NO
Cytokines and growth 
factors

27989323, 
33491305

8,293 NA NA NA Ahola-Olli AV(2017), 
Kalaoja(2021)

NO

Metabolites 35692035 114000 met-d-* NA NA Borges CM(2022) YES
Childhood BMI 33045005 39,620 NA NA NA Vogelezang S (2020) NO
Childhood Obesity 31504550 24160 ebi-a-

GCST90002409
NA NA Bradfield JP(2019) NO

HbA1c 34059833 281416 ebi-a-
GCST90002244

NA NA Chen J(2021) NO

Adiponectin 22479202 45891 ieu-a-1 NA NA Dastani Z (2012) NO
HOMA-B, HOMA-IR 20081858 46186 ieu-b-117/118 NA NA Dupius J(2010) NO
HDL, LDL and non-HDL 
cholesterol, Total 
cholesterol, Triglycerides

34887591, 
36575460, 
35931049

1320000 ieu-a-1002 NA NA Graham SE(2021); 
Kanoni S(2022); 
Ramdas S(2022)

YES

Leptin 26833098 32161 NA NA NA Kilpel€ainen TO(2016) NO
Fasting glucose, Fasting 
insulin

33558525 140595, 98210 NA NA NA Lagou V(2021) NO

Disposition index, 
corrected insulin 
response, insulin at 30 
mins, incremental insulin 
at 30 mins

24699409 5318 NA NA NA Prokopenko I(2014) NO

Adult BMI, waist-to-hip 
ratio (combined), waist-to-
hip ratio (combined)

30239722 806834, 
379501, 315284

NA NA NA Pulit SL(2019) YES

Adult height 36224396 4080687 NA NA NA Yengo L(2022) YES
Proinsulin Levels 36693378 45861 NA NA NA Broadway A. K(2023) NO
Insulin sensitivity index 37291194 55,535 and 

55,172 (w/o 
diabetes)

NA NA NA Williamson(2023) NO

Birth weight 31043758 298142 NA NA NA Warrington NM(2019) YES
Body fat percentage NA 454633 NA NA NA Elsworth B(2018) NO
C-Reactive protein 30388399 204402 NA NA NA Ligthart S(2018) NO
Whole body fat-free mass NA 454850 NA NA NA Elsworth B(2018) YES
Sex hormone-binding 
globulin (female)

NA 214989 NA NA NA Richmond R(2020) YES

Sex hormone-binding 
globulin (male)

NA 185221 NA NA NA Richmond R(2020) YES

Liver enzymes: ALT, 
ALP,GGT

33972514 437438, 
437267, 437194

NA NA NA Pazoki R (2021) YES
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Type 2 diabetes 35551307 80154/853816 NA T2D 65085/335112 Mahajan A (2022) DF10
Polycystic ovary syndrome 34791234 797/140558 ebi-a-

GCST90044902
E4_PCOS 2544/408430 Tyrmi JS DF10

MASLD 34841290 8434/770180 ebi-a-
GCST90091033

NAFLD 2568/409613 Ghodsian N(2021) DF10

Chronic kidney disease 31152163 41395/439303 Wuttke, 2019 N14_CHRONKID
NEYDIS

10039/396706 Wuttke (2019) DF10

Hypertension 33959723 129909/354689 ebi-a-
GCST90038604

I9_HYPTENS 122996/289117 Dönertaş et al. (2021) DF10

Coronary heart disease 26343387 22233/64762 ebi-a-
GCST003116

I9_ATHSCLE 16243/381977 Nickpay 2015 DF10

Stroke 26343387 34217/406111 ebi-a-
GCST006908

I9_STR 27497/371723 Malik R. 2018 DF10

Myocardial infarction 33532862 14825/2680 ebi-a-
GCST011364

I9_MI_STRICT 26060/343079 Hartiala JA et al. 2021 DF10

Aortic aneurysm 34594039 3230/475964 ebi-a-
GCST90018783

I9_AORTANEUR 8125/381977 Sakaue S(2021) DF10

Heart failure 31919418 47309/930014 ebi-a-
GCST009541

I9_HEARTFAIL 29672/382509 Shah et al. 2020 DF10

Atrial fibrillation 30061737 60620/970216 ebi-a-
GCST006414

I9_AF 50743/210652 Nielsen JB et al. 2018 DF10

Peripheral artery disease 34594039 7114/475964 ebi-a-
GCST90018890

I9_PAD 11924/288638 Sakaue S(2021) DF7

Deep vein thrombosis 33959723 9529/475069 ebi-a-
GCST90038615

I9_PHLETHROMB
DVTLOW

6501/357111 Dönertaş et al. (2021) DF10

Pulmonary embolism 34017140 407,746 ebi-a-
GCST90013937

I9_PULMEMB 10046/401128 Mbatchou J(2021) DF10

Gout 23263486 2115/69374 ieu-a-1054 M13_GOUT 9568/262844 Kottgen(2013) DF10
Knee osteoarthritis 30664745 24955/378169 ebi-a-

GCST007090
M13_ARTHROSIS
_KNEE

48836/262844 Tachmazidou(2019) DF10

Hip osteoarthritis 30664745 15704/378169 ebi-a-
GCST007091

M13_ARTHROSIS
_COX

80598/262844 Tachmazidou(2019) DF10

Rheumatoid arthritis 33310728 14361/43923 ebi-a-
GCST90013534

M13_RHEUMA 13621/262844 Ha E (2020) DF10

Osteoporosis 33959723 7751/476847 ebi-a-
GCST90038656

M13_OSTEOPOR
OSIS

8017/391037 Dönertaş et al. (2021) DF10

Asthma 34103634 56167/352255 ebi-a-
GCST90014325

J10_ASTHMA_MA
IN_EXMORE

37760/219734 Valette K(2021) DF10

Psoriasis 34927100 15967/ 28169 ebi-a-
GCST90019017

L12_PSORIASIS 10312/397564 Stuart PE(2021) DF10

Depression 34594039 13559/435855 ebi-a-
GCST90018833

F5_DEPRESSIO 47696/359290 Sakaue S(2021) DF10

Parkinson's disease 31701892 33674/449056 ieu-b-7 G6_PARKINSON 4681/407500 Nalls MA(2019) DF10
Alzheimer's disease 35379992 39106/46828 ebi-a-

GCST90027158
G6_ALZHEIMER 10520/401661 Bellenguez C(2022) DF10
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Cholelithiasis 34594039 26122/461431 ebi-a-
GCST90018819

K11_CHOLELITH 40191/361641 Sakaue S(2021) DF10

Gastroesophageal reflux 
disease

34187846 129080/473524 ebi-a-
GCST90000514

K11_REFLUX 28859/350064 Ong Js (2021) DF10

Supplementary Table 3: Contributions of MRI-derived phenotypes to obesity axes. This table provides a comprehensive 
overview of all 24 MRI-derived phenotypes used in the principal component (PC) analysis, along with their corresponding loadings 
on each obesity axis.

PCs PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4
Sex Male Male Male Male Female Female Female Female
Abdominal subcutaneous fat 0.23 0.10 0.35 0.04 0.27 0.09 0.31 0.04
Iliopsoas muscle 0.01 0.29 -0.03 0.02 0.03 0.27 -0.08 0.10
Internal fat 0.28 -0.07 -0.14 -0.10 0.26 -0.10 -0.16 -0.07
Total muscle 0.02 0.30 -0.07 0.04 0.05 0.29 -0.13 0.07
Visceral fat 0.24 0.08 0.14 -0.34 0.22 0.03 0.13 -0.23
Mid-thigh IMAT 0.31 -0.04 -0.22 0.09 0.27 -0.10 -0.25 0.06
Index mid-thigh muscle 0.04 0.33 -0.09 0.03 0.07 0.33 -0.15 0.01
Mid-thigh subcutaneous fat 0.18 0.11 0.34 0.30 0.18 0.08 0.31 0.37
PDFF erosion median pancreas 0.16 -0.02 0.09 -0.60 0.19 -0.03 0.16 -0.44
PDFF erosion median ideal liver 0.15 0.12 0.08 -0.41 0.21 0.10 0.16 -0.55
PDFF erosion median ideal paraspinal 0.21 -0.09 -0.03 -0.30 0.22 -0.06 0.04 -0.30
Ratio mid-thigh internal fat to mid-thigh muscle 0.29 -0.14 -0.19 0.08 0.26 -0.20 -0.22 0.06
Index iliopsoas muscle 0.02 0.32 -0.10 -0.02 0.04 0.29 -0.07 0.02
Index total muscle 0.03 0.33 -0.16 0.00 0.07 0.33 -0.14 -0.02
Subcutaneous fat 0.23 0.08 0.35 0.12 0.25 0.08 0.32 0.15
Total fat 0.28 0.08 0.27 -0.03 0.29 0.07 0.29 0.08
Index thigh IMAT 0.29 -0.08 -0.24 0.13 0.28 -0.11 -0.22 0.09
Index thigh muscle 0.03 0.34 -0.17 0.00 0.06 0.34 -0.16 -0.04
Index mid-thigh IMAT 0.30 -0.06 -0.23 0.08 0.27 -0.11 -0.25 0.04
Index mid-thigh muscle 0.05 0.37 -0.18 -0.02 0.08 0.35 -0.15 -0.09
Thigh IMAT 0.29 -0.05 -0.20 0.15 0.28 -0.09 -0.23 0.13
Thigh muscle 0.02 0.31 -0.08 0.04 0.05 0.30 -0.14 0.05
Thigh subcutaneous fat 0.21 0.08 0.36 0.27 0.20 0.07 0.30 0.36
Ratio thigh internal fat to thigh muscle 0.26 -0.22 -0.16 0.12 0.24 -0.25 -0.15 0.10

Supplementary Table 4: BMI distributions in the top and bottom 10% of each obesity axis as defined by our principal 
component analysis. Min: minimum; max: maximum; sd: standard deviation.

Axis Class Sex BMI min BMI max BMI median BMI mean BMI sd BMI>30
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General Obesity Top Female 22.2 55.2 34.1 34.5 4.6 1400
General Obesity Bottom Female 15.3 26.9 20.6 20.6 1.7 0
Muscle-Dominant Top Female 16.3 55.2 27.7 28.8 5.8 614
Muscle-Dominant Bottom Female 15.3 44.9 23.0 23.4 3.5 56
Peripheral Fat Top Female 16.7 55.2 27.1 28.0 5.3 500
Peripheral Fat Bottom Female 16.1 42.3 23.6 24.3 3.8 140
Lower Body Fat Top Female 18.2 52.1 25.7 26.8 5.1 334
Lower Body Fat Bottom Female 15.7 41.6 25.5 25.8 4.1 243
General Obesity Top Male 22.9 50.5 32.6 33.0 3.7 1233
General Obesity Bottom Male 16.5 31.3 22.4 22.3 1.8 1
Muscle-Dominant Top Male 20.6 50.5 29.7 30.1 4.0 736
Muscle-Dominant Bottom Male 16.5 41.8 24.0 24.3 3.1 69
Peripheral Fat Top Male 18.0 45.4 27.6 28.2 4.4 460
Peripheral Fat Bottom Male 17.6 44.5 26.0 26.3 3.5 224
Lower Body Fat Top Male 17.6 44.9 26.0 26.9 4.3 319
Lower Body Fat Bottom Male 18.6 42.7 26.3 26.5 3.0 187

Supplementary Table 5: Comparison of obesity axes scores across ancestry groups. This table presents the mean and 
standard deviation (SD) of obesity axes scores for individuals of African ancestry (AFR; N=146), Central/South Asian ancestry 
(CSA; N=320), East Asian ancestry (EAS; N=152), and European ancestry (EUR; N=29,179). 

Obesity axes Mean/SD 
in EUR

Mean/SD 
in AFR

Mean/SD
in CSA

Mean/SD 
in EAS

p-value 
(EUR vs AFR)

p-value 
(EUR vs CSA)

p-value 
(EUR vs EAS)

General Obesity 0 ± 3.18 0.33 ± 3.5 0.21 ± 2.79 -1.97 ± 2.85 0.2576 0.18442 <0.00001
Muscle-Dominant -0.01 ± 1.77 2.21 ± 2 -1.11 ± 1.99 -0.21 ± 1.69 <0.00001 <0.00001 0.14081
Peripheral Fat 0 ± 1.13 -0.79 ± 1.39 0.16 ± 1.09 0.01 ± 1.1 <0.00001 0.01235 0.94422
Lower Body Fat -0.01 ± 0.96 0.98 ± 0.92 0.11 ± 0.97 -0.41 ± 1.16 <0.00001 0.03395 0.00004

Supplementary Table 6: Genetic loci associated with obesity axes and consistency across sexes. This table summarises the 
genetic loci contributing to the obesity axes, highlighting the lack of evidence for sex-specific associations. The loci were consistent 
between males (M) and females (F), as shown by the heterogeneity p-value (HetPVal).

Axis A1 A2 rsID Effect 
Size (F)

Effect 
Size (F)

Effect 
Size (F)

Number 
(F)

Effect 
Size (M)

Effect 
Size (M)

Effect 
Size (M)

Number 
(M)

HetPVal

General Obesity t c rs62033405 0.05 0.01 1.5e-05 13034 0.06 0.01 7.4e-07 12603 0.6207
General Obesity t c rs33823 0.06 0.01 7.1e-06 13034 0.05 0.01 2.7e-05 12603 0.8712
Muscle-Dominant t g rs7515497 -0.05 0.01 7.4e-06 13034 -0.04 0.01 0.0007 12603 0.4658
Muscle-Dominant a g rs3850625 -0.08 0.02 6.9e-06 13034 -0.05 0.02 0.001 12603 0.3953
Muscle-Dominant a c rs2138157 -0.04 0.01 0.00012 13034 -0.05 0.01 2.8e-05 12603 0.7706
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Muscle-Dominant t c rs12632536 -0.05 0.01 4.4e-05 13034 -0.05 0.01 2.2e-05 12603 0.8711
Muscle-Dominant c g rs13170533 -0.09 0.02 5.5e-06 13034 -0.07 0.02 0.0001 12603 0.6036
Muscle-Dominant a c rs80345488 0.12 0.03 3.4e-06 13034 0.08 0.02 0.002 12603 0.2866
Muscle-Dominant t g rs1028883 -0.04 0.01 0.0009 13034 -0.06 0.01 5.2e-07 12603 0.2087
Muscle-Dominant a c rs6058093 0.04 0.01 9e-05 13034 0.05 0.01 6.1e-07 12603 0.4186
Muscle-Dominant t c rs9306468 0.06 0.01 1.2e-07 13034 0.03 0.01 0.002 12603 0.1136
Peripheral Fat a g rs11205797 -0.05 0.01 6.1e-05 13034 -0.06 0.01 1.1e-05 12603 0.7454
Peripheral Fat c g rs566596164 0.11 0.02 3.3e-09 13034 0.07 0.02 0.0001 12603 0.1651
Peripheral Fat a g rs13172689 -0.08 0.02 4.2e-08 13034 -0.05 0.02 0.0006 12603 0.1549
Peripheral Fat a g rs1651274 -0.06 0.01 6.3e-05 13034 -0.06 0.01 0.0001 12603 0.9333
Peripheral Fat c g rs141783576 -0.13 0.02 3.8e-08 13034 -0.1 0.02 1.8e-05 12603 0.4209
Peripheral Fat t c rs10827616 0.05 0.01 4.4e-05 13034 0.06 0.01 5.2e-06 12603 0.6991
Peripheral Fat a g rs7129492 -0.06 0.01 2.1e-06 13034 -0.06 0.01 1.9e-07 12603 0.6974
Peripheral Fat t c rs11045236 -0.07 0.01 4.5e-06 13034 -0.06 0.02 0.0001 12603 0.6078
Peripheral Fat a g rs11057413 -0.05 0.01 9.7e-05 13034 -0.06 0.01 6.6e-06 12603 0.6319
Peripheral Fat t c rs749170 -0.06 0.01 7.8e-07 13034 -0.05 0.01 8.2e-05 12603 0.512
Peripheral Fat t g rs3116602 -0.08 0.01 1.3e-08 13034 -0.06 0.01 4.6e-05 12603 0.282
Peripheral Fat a c rs9565581 -0.07 0.01 3.7e-09 13034 -0.06 0.01 8.8e-06 12603 0.3337
Peripheral Fat c g rs1883711 -0.12 0.03 0.0009 13034 -0.18 0.04 1.6e-07 12603 0.1588
Peripheral Fat t c rs11698277 -0.07 0.01 1.2e-08 13034 -0.06 0.01 7.9e-07 12603 0.6353
Peripheral Fat t c rs2267373 -0.05 0.01 9.6e-05 13034 -0.07 0.01 1.2e-09 12603 0.1106
Lower Body Fat t c rs12138803 -0.06 0.01 1.4e-05 13034 -0.05 0.01 0.0004 12603 0.5824
Lower Body Fat c g rs55893113 0.05 0.01 7.8e-05 13034 0.06 0.01 2.5e-05 12603 0.8152
Lower Body Fat a g rs754243 0.07 0.01 8.6e-07 13034 0.06 0.01 0.0001 12603 0.4544
Lower Body Fat t g rs1128249 0.08 0.01 2.3e-12 13034 0.06 0.01 3.5e-07 12603 0.1986
Lower Body Fat t c rs2943653 -0.05 0.01 2.7e-05 13034 -0.06 0.01 9.7e-06 12603 0.8323
Lower Body Fat a g rs6822892 -0.04 0.01 0.0021 13034 -0.06 0.01 1.2e-06 12603 0.1887
Lower Body Fat t g rs6888037 -0.06 0.01 3.7e-05 13034 -0.05 0.01 0.0001 12603 0.8521
Lower Body Fat a c rs998584 -0.09 0.01 9.1e-15 13034 -0.06 0.01 4.1e-06 12603 0.03135
Lower Body Fat a g rs72959041 -0.14 0.03 2e-07 13034 -0.11 0.03 4.8e-05 12603 0.4536
Lower Body Fat a g rs7133378 0.08 0.01 3.8e-10 13034 0.04 0.01 0.001 12603 0.03769
Lower Body Fat t c rs3818717 -0.05 0.01 4.4e-05 13034 -0.05 0.01 7.3e-05 12603 0.9724
Lower Body Fat t c rs58542926 -0.15 0.02 3.9e-12 13034 -0.13 0.02 1.1e-08 12603 0.4256
Lower Body Fat c g rs10406327 0.04 0.01 0.001 13034 0.06 0.01 4.8e-07 12603 0.1827
Lower Body Fat a g rs2287922 -0.06 0.01 1.3e-06 13034 -0.04 0.01 0.002 12603 0.2262
Lower Body Fat a g rs3747207 -0.14 0.01 2.5e-23 13034 -0.09 0.01 7.1e-10 12603 0.009817

Supplementary Table 7: Top 10 significant gene sets for General Obesity Axis. Including their effect sizes (Beta), 
standardised effect sizes (Beta STD), standard errors (SE), and p-values (both unadjusted and Bonferroni-adjusted).
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Gene Set N Genes Beta Beta STD SE P Pbon
GOBP_CORTICOSTEROID_RECEPTOR_SIGNALING_PATHWAY 14 0.70491 0.019218 0.18574 7.40E-05 1
GOBP_EMBRYONIC_DIGESTIVE_TRACT_DEVELOPMENT 31 0.60347 0.024471 0.15978 7.96E-05 1
REACTOME_STAT3_NUCLEAR_EVENTS_DOWNSTREAM_OF_ALK_SIGNALING 9 1.0911 0.023853 0.29966 1.36E-04 1
GOBP_TRANSFORMING_GROWTH_FACTOR_BETA2_PRODUCTION 9 1.0485 0.022921 0.29613 2.00E-04 1
WP_THERMOGENESIS 105 0.28806 0.021455 0.082149 2.28E-04 1
WP_MICRORNAS_IN_CARDIOMYOCYTE_HYPERTROPHY 79 0.31485 0.020355 0.090763 2.62E-04 1
GOBP_APPENDAGE_MORPHOGENESIS 142 0.25625 0.022173 0.074035 2.70E-04 1
GERY_CEBP_TARGETS 121 0.26664 0.02131 0.077103 2.72E-04 1
REN_ALVEOLAR_RHABDOMYOSARCOMA_UP 95 0.29985 0.021249 0.086861 2.79E-04 1
BIOCARTA_ALK_PATHWAY 34 0.52742 0.022396 0.15329 2.91E-04 1

Supplementary Table 8. Top 10 significant gene sets for Muscle-Dominant axis. Including their effect sizes (Beta), 
standardised effect sizes (Beta STD), standard errors (SE), and p-values (both unadjusted and Bonferroni-adjusted).

Gene Set N 
Genes

Beta Beta STD SE P Pbon
GOBP_REGULATION_OF_POTASSIUM_ION_IMPORT 4 1.7339 0.025275 0.47811 0.00014398 1
GOBP_CARDIAC_MUSCLE_CELL_ACTION_POTENTIAL_INVOLVED_IN_CONTRAC
TION

47 0.50114 0.025011 0.14055 0.00018194 1
GOMF_ALPHA_ACTININ_BINDING 27 0.64735 0.024501 0.1816 0.00018266 1
GOBP_POTASSIUM_ION_IMPORT_ACROSS_PLASMA_MEMBRANE 45 0.46799 0.022856 0.13189 0.00019435 1
GOBP_DETECTION_OF_MUSCLE_STRETCH 7 1.3578 0.026179 0.38282 0.00019557 1
GOCC_ENDOPLASMIC_RETICULUM_CHAPERONE_COMPLEX 11 0.85939 0.02077 0.24257 0.00019847 1
GOBP_VENTRICULAR_CARDIAC_MUSCLE_CELL_ACTION_POTENTIAL 32 0.61788 0.025455 0.17472 0.00020336 1
PID_ECADHERIN_NASCENT_AJ_PATHWAY 39 0.46398 0.021098 0.13617 0.0003288 1
SCHLINGEMANN_SKIN_CARCINOGENESIS_TPA_DN 24 0.54425 0.019422 0.16346 0.00043573 1

Supplementary Table 9. Top 10 significant gene sets for Peripheral Fat axis. Including their effect sizes (Beta), standardised 
effect sizes (Beta STD), standard errors (SE), and p-values (both unadjusted and Bonferroni-adjusted).

Gene Set N Genes Beta Beta STD SE P Pbon
WHITE_NEUROBLASTOMA_WITH_1P36.3_DELETION 19 1.2182 0.038685 0.29636 1.98E-05 0.33
BILANGES_SERUM_SENSITIVE_VIA_TSC2 28 0.61387 0.023659 0.15615 4.24E-05 0.72
GOCC_PROTEIN_COMPLEX_INVOLVED_IN_CELL_MATRIX_ADHESION 17 0.79412 0.023855 0.20804 6.77E-05 1
GOBP_DIGESTIVE_TRACT_MORPHOGENESIS 48 0.49899 0.025166 0.13326 9.07E-05 1
NOUSHMEHR_GBM_GERMLINE_MUTATED 7 1.0902 0.02102 0.29839 0.00012972 1
WU_APOPTOSIS_BY_CDKN1A_NOT_VIA_TP53 10 0.9723 0.022405 0.29131 0.00042334 1
REACTOME_SUMOYLATION_OF_DNA_METHYLATION_PROTEINS 15 0.77101 0.021757 0.2333 0.00047614 1
GOMF_WNT_RECEPTOR_ACTIVITY 17 0.69733 0.020948 0.21331 0.00054047 1
GOBP_LACRIMAL_GLAND_DEVELOPMENT 7 1.0708 0.020647 0.3321 0.00063236 1
DASU_IL6_SIGNALING_SCAR_DN 15 0.82531 0.023289 0.25799 0.00069078 1
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Supplementary Table 10. Top 10 significant gene sets for Lower Body Fat axis. Including their effect sizes (Beta), 
standardised effect sizes (Beta STD), standard errors (SE), and p-values (both unadjusted and Bonferroni-adjusted).

Gene Set N Genes Beta Beta STD SE P Pbon
LINDGREN_BLADDER_CANCER_HIGH_RECURRENCE 47 0.51822 0.025863 0.13544 6.53E-05 1
CAFFAREL_RESPONSE_TO_THC_UP 30 0.55358 0.022083 0.14648 7.89E-05 1
GOBP_REGULATION_OF_ADIPONECTIN_SECRETION 7 1.1143 0.021485 0.2981 9.30E-05 1
GOBP_FOREBRAIN_MORPHOGENESIS 13 0.83411 0.021914 0.22966 0.00014108 1
GOBP_DIACYLGLYCEROL_BIOSYNTHETIC_PROCESS 9 1.1038 0.024132 0.30611 0.00015593 1
GOCC_MRNA_EDITING_COMPLEX 14 0.78114 0.021296 0.21696 0.0001593 1
GAUSSMANN_MLL_AF4_FUSION_TARGETS_C_UP 162 0.23231 0.021459 0.06575 0.00020583 1
GOBP_GLAND_MORPHOGENESIS 120 0.29291 0.023313 0.083554 0.00022838 1
REACTOME_ACYL_CHAIN_REMODELING_OF_DAG_AND_TAG 5 1.2181 0.01985 0.35423 0.00029307 1
GOBP_CARDIAC_ATRIUM_DEVELOPMENT 35 0.54983 0.023688 0.16009 0.00029756 1

Supplementary Table 11: Mendelian Randomization sensitivity analyses for obesity axes. This table presents the sensitivity 
analyses for the associations between obesity axes and disease outcomes. For each significant association based on the primary 
IVW method, the table reports the IVW results, and the corresponding results from sensitivity tests. Note that for the General 
Obesity Axis, which was instrumented with only two SNPs, sensitivity tests were not performed, and only IVW estimates are 
presented. All p-values are adjusted as described in the Methods.

Outcome Exposure Method Beta Se P-value Upper CI Lower CI
Asthma General Obesity Axis Inverse variance weighted 0.39 0.09 2.80E-05 0.57 0.21
Cholelithiasis General Obesity Axis Inverse variance weighted 0.72 0.29 1.38E-02 1.29 0.15
Hip osteoarthritis General Obesity Axis Inverse variance weighted 0.85 0.38 2.58E-02 1.60 0.10
Knee osteoarthritis General Obesity Axis Inverse variance weighted 0.72 0.36 4.81E-02 1.44 0.01
Chronic kidney disease Muscle-Dominant Axis Inverse variance weighted 0.29 0.10 3.58E-03 0.49 0.10
Chronic kidney disease Muscle-Dominant Axis MR Egger 1.32 2.59 6.12E-01 6.39 -3.76
Chronic kidney disease Muscle-Dominant Axis Simple mode 0.28 0.20 1.57E-01 0.67 -0.11
Chronic kidney disease Muscle-Dominant Axis Weighted median 0.26 0.12 3.01E-02 0.49 0.02
Chronic kidney disease Muscle-Dominant Axis Weighted mode 0.24 0.16 1.30E-01 0.54 -0.07
Hip osteoarthritis Muscle-Dominant Axis Inverse variance weighted 0.33 0.09 3.93E-04 0.51 0.15
Hip osteoarthritis Muscle-Dominant Axis MR Egger -0.75 2.36 7.50E-01 3.88 -5.38
Hip osteoarthritis Muscle-Dominant Axis Simple mode 0.25 0.15 8.71E-02 0.55 -0.04
Hip osteoarthritis Muscle-Dominant Axis Weighted median 0.22 0.11 4.10E-02 0.44 0.01
Hip osteoarthritis Muscle-Dominant Axis Weighted mode 0.25 0.14 8.01E-02 0.53 -0.03
Chronic kidney disease Peripheral Fat Axis Inverse variance weighted -0.17 0.06 6.24E-03 -0.05 -0.30
Chronic kidney disease Peripheral Fat Axis MR Egger -0.60 0.68 3.74E-01 0.73 -1.93
Chronic kidney disease Peripheral Fat Axis Simple mode 0.03 0.14 8.59E-01 0.30 -0.25
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Chronic kidney disease Peripheral Fat Axis Weighted median -0.15 0.08 6.63E-02 0.01 -0.32
Chronic kidney disease Peripheral Fat Axis Weighted mode -0.14 0.14 3.02E-01 0.13 -0.41
MASLD Peripheral Fat Axis Inverse variance weighted 0.28 0.11 1.38E-02 0.50 0.06
MASLD Peripheral Fat Axis MR Egger -0.18 1.21 8.82E-01 2.19 -2.55
MASLD Peripheral Fat Axis Simple mode 0.51 0.26 4.77E-02 1.02 0.01
MASLD Peripheral Fat Axis Weighted median 0.33 0.15 2.92E-02 0.62 0.03
MASLD Peripheral Fat Axis Weighted mode 0.41 0.23 6.75E-02 0.86 -0.03
Polycystic ovary syndrome Peripheral Fat Axis Inverse variance weighted 0.40 0.19 3.26E-02 0.77 0.03
Polycystic ovary syndrome Peripheral Fat Axis MR Egger -2.79 2.01 1.66E-01 1.16 -6.74
Polycystic ovary syndrome Peripheral Fat Axis Simple mode 0.92 0.40 2.25E-02 1.71 0.13
Polycystic ovary syndrome Peripheral Fat Axis Weighted median 0.64 0.22 3.73E-03 1.06 0.21
Polycystic ovary syndrome Peripheral Fat Axis Weighted mode 0.58 0.36 1.09E-01 1.30 -0.13
Aortic aneurysm Lower Body Fat Axis Inverse variance weighted -0.36 0.14 8.58E-03 -0.09 -0.62
Aortic aneurysm Lower Body Fat Axis MR Egger 0.21 0.58 7.23E-01 1.35 -0.93
Aortic aneurysm Lower Body Fat Axis Simple mode -0.59 0.34 8.31E-02 0.08 -1.26
Aortic aneurysm Lower Body Fat Axis Weighted median -0.14 0.16 3.86E-01 0.17 -0.44
Aortic aneurysm Lower Body Fat Axis Weighted mode -0.12 0.26 6.56E-01 0.39 -0.63
Coronary heart disease Lower Body Fat Axis Inverse variance weighted -0.26 0.12 2.93E-02 -0.03 -0.49
Coronary heart disease Lower Body Fat Axis MR Egger 0.54 0.50 2.79E-01 1.51 -0.43
Coronary heart disease Lower Body Fat Axis Simple mode -0.48 0.18 7.25E-03 -0.13 -0.83
Coronary heart disease Lower Body Fat Axis Weighted median -0.31 0.10 1.75E-03 -0.12 -0.51
Coronary heart disease Lower Body Fat Axis Weighted mode -0.49 0.18 5.81E-03 -0.14 -0.84
Hypertension Lower Body Fat Axis Inverse variance weighted -0.08 0.02 3.51E-07 -0.05 -0.11
Hypertension Lower Body Fat Axis MR Egger -0.01 0.07 9.01E-01 0.13 -0.15
Hypertension Lower Body Fat Axis Simple mode -0.11 0.02 3.05E-10 -0.07 -0.14
Hypertension Lower Body Fat Axis Weighted median -0.09 0.01 4.12E-16 -0.07 -0.11
Hypertension Lower Body Fat Axis Weighted mode -0.10 0.02 1.87E-06 -0.06 -0.14
Knee osteoarthritis Lower Body Fat Axis Inverse variance weighted 0.20 0.06 2.05E-03 0.32 0.07
Knee osteoarthritis Lower Body Fat Axis MR Egger 0.10 0.28 7.20E-01 0.66 -0.45
Knee osteoarthritis Lower Body Fat Axis Simple mode 0.18 0.12 1.16E-01 0.41 -0.04
Knee osteoarthritis Lower Body Fat Axis Weighted median 0.11 0.06 7.58E-02 0.24 -0.01
Knee osteoarthritis Lower Body Fat Axis Weighted mode 0.05 0.08 4.99E-01 0.20 -0.10
MASLD Lower Body Fat Axis Inverse variance weighted -1.58 0.35 6.74E-06 -0.89 -2.26
MASLD Lower Body Fat Axis MR Egger -6.29 1.24 4.42E-07 -3.85 -8.72
MASLD Lower Body Fat Axis Simple mode -0.60 0.17 3.90E-04 -0.27 -0.93
MASLD Lower Body Fat Axis Weighted median -0.63 0.15 1.37E-05 -0.35 -0.92
MASLD Lower Body Fat Axis Weighted mode -0.61 0.16 1.50E-04 -0.29 -0.92
Myocardial infarction Lower Body Fat Axis Inverse variance weighted -0.31 0.11 6.30E-03 -0.09 -0.53
Myocardial infarction Lower Body Fat Axis MR Egger 1.04 0.44 1.75E-02 1.91 0.18
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Myocardial infarction Lower Body Fat Axis Simple mode -0.44 0.13 9.61E-04 -0.18 -0.71
Myocardial infarction Lower Body Fat Axis Weighted median -0.34 0.08 2.36E-05 -0.18 -0.50
Myocardial infarction Lower Body Fat Axis Weighted mode -0.33 0.11 2.78E-03 -0.11 -0.54
Polycystic ovary syndrome Lower Body Fat Axis Inverse variance weighted -0.39 0.14 3.51E-03 -0.13 -0.66
Polycystic ovary syndrome Lower Body Fat Axis MR Egger 0.67 0.58 2.54E-01 1.81 -0.48
Polycystic ovary syndrome Lower Body Fat Axis Simple mode -0.38 0.31 2.22E-01 0.23 -0.99
Polycystic ovary syndrome Lower Body Fat Axis Weighted median -0.36 0.19 6.03E-02 0.02 -0.73
Polycystic ovary syndrome Lower Body Fat Axis Weighted mode -0.30 0.26 2.45E-01 0.20 -0.80
Psoriasis Lower Body Fat Axis Inverse variance weighted -0.33 0.11 3.13E-03 -0.11 -0.55
Psoriasis Lower Body Fat Axis MR Egger -0.72 0.48 1.33E-01 0.22 -1.66
Psoriasis Lower Body Fat Axis Simple mode -0.17 0.19 3.65E-01 0.20 -0.53
Psoriasis Lower Body Fat Axis Weighted median -0.23 0.11 3.72E-02 -0.01 -0.44
Psoriasis Lower Body Fat Axis Weighted mode -0.16 0.16 3.27E-01 0.16 -0.48
Type 2 Diabetes Lower Body Fat Axis Inverse variance weighted -0.72 0.12 6.96E-10 -0.49 -0.95
Type 2 Diabetes Lower Body Fat Axis MR Egger -0.91 0.52 7.89E-02 0.10 -1.92
Type 2 Diabetes Lower Body Fat Axis Simple mode -0.92 0.12 9.59E-14 -0.68 -1.16
Type 2 Diabetes Lower Body Fat Axis Weighted median -0.51 0.06 2.67E-15 -0.39 -0.64
Type 2 Diabetes Lower Body Fat Axis Weighted mode -0.59 0.07 6.32E-16 -0.45 -0.73
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Supplementary Figure 1. Cumulative explained variance versus the number of 
principal components (PCs) derived from the MRI dataset for (A) males and (B) 
females. Each plot shows the proportion of variance explained by the PCs 
cumulatively, highlighting the significant contribution of the first four PCs in capturing 
the primary patterns of fat and muscle distribution. The elbow point in both graphs 
indicates diminishing returns in variance explained beyond these components.

Supplementary Figure 2. Explained variance ratio for each principal 
component (PC) in the male and female datasets. The bar plots show the 
proportion of variance explained by each individual PC, demonstrating the significant 
contributions of the first four PCs in both sexes. These components capture the 
primary dimensions of variation in fat and muscle distribution derived from the MRI 
dataset.
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Supplementary Figure 3: The correlation among obesity axes. (A) Genetic 
correlations among the obesity axes. (B) Phenotypic correlations among the obesity 
axes in males. (C) Phenotypic correlations among the obesity axes in females. The 
colors and their intensities represent the genetic correlation coefficients (rg) or the 
phenotypic correlation coefficients, providing a visual representation of the 
relationships between different obesity axes.
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Supplementary Figure 4: QQ plots of the four obesity axes.
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Supplementary Figure 5: Manhattan plots of the four obesity axes.
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Supplementary Figure 6. The effect of genetic loci associated with (a) General 
Obesity, (b) Muscle-Dominant, (c) Peripheral Fat, and (d) Lower Body Fat axes 
on other obesity axes. The color and intensity represent the direction and 
magnitude of the effect from linear regression in the genome-wide association 
model, with asterisks indicating associations with a p-value < 5e-08.
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Supplementary Figure 7: Disease risk comparison between top and bottom 
10% of each obesity axis. This figure displays the log(odds ratios) for various 
disease outcomes among individuals in the top 10% compared to those in the 
bottom 10% for each obesity axis, based on prevalent disease cases. Each pane 
represents a different axis: (A) General Obesity Axis; (B) Muscle-Dominant Axis; (C) 
Peripheral Fat Axis; (D) Lower Body Fat Axis. The bars indicate the odds ratios with 
95% confidence intervals, illustrating the increased or decreased risk of diseases 
across these axes. Asterisks denote statistically significant associations after 
Bonferroni correction (p < 0.05/18*4).
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